
Volt Acve Data Acve(SP)
Stream Data Processing

Volt Active Data Active(SP): Stream Data Processing
Copyright © 2024 Volt Active Data, Inc.

Table of Contents
1. Active(SP) Stream Data Processing .. 1
2. See Active(SP) in Action ... 2

2.1. What You Will Need .. 2
2.2. Downloading the Sample Application ... 2
2.3. Building the Sample Application ... 3
2.4. Running the Sample Pipelines ... 4

3. How Active(SP) Stream Processing Works .. 6
4. Designing Your Active(SP) Pipeline ... 8

4.1. Setting Up Your Development Environment .. 8
4.2. Choosing the Source and Destination for the Pipeline .. 9
4.3. Defining the Business Operations (Processors) ... 9
4.4. Building and Loading Your Pipeline .. 10
4.5. Running Your Pipeline ... 10
4.6. Monitoring Your Pipeline ... 11

iii

List of Figures
3.1. Active(SP) Architecture ... 6

iv

Chapter 1. Acve(SP) Stream Data
Processing

Volt Active(SP) is a cloud-native framework for building streaming data pipelines. There are lots of
streaming data products out there. What makes Active(SP) stand out is its balance of flexibility, scalabil-
ity, and reliability. Seamless integration with Apache Kafka and Volt Active Data — an ACID database
for high performance applications requiring maximum throughput and durability — allow Active(SP) to
support complex processing of streams at maximum speed while minimizing your total cost of ownership.

The best way to understand what Active(SP) can do is to try it yourself. There are two sample pipelines
you can build and run on your own infrastructure to see how easily and flexibly it integrates with Kafka
and Volt Active Data. See the instructions now.

Or if you want to learn more, read about how Active(SP) works, the architecture that allows it to support
complex business requirements while remaining both flexible and robust at runtime.

Finally, if you like diving in and getting to the heart of the matter, see the sections on designing, building,
and running your own pipeline from scratch.

• Chapter 2, See Active(SP) in Action

• Chapter 3, How Active(SP) Stream Processing Works

• Chapter 4, Designing Your Active(SP) Pipeline

1

Chapter 2. See Acve(SP) in Acon
The best way to understand what Active(SP) does is to see it in action. The Active(SP) quick start imple-
ments two pipelines that demonstrate:

• Streaming data to Kafka

• Streaming data from Kafka to Volt Active Data

The source code for the sample is simple, easy to read, and useful both as a demonstration and as a template
for building your own pipelines.

But let's get started. The steps for running the sample pipelines are:

1. Make sure you have the necessary environment setup

2. Download the sample sources

3. Build the sample application and post it to a Docker repository

4. Run the pipelines in the cloud

2.1. What You Will Need
To run the quick start pipelines you will need an environment to build the sample from Java source files
into a Docker image, a cloud environment (such as Kubernetes) with access to a Docker repository, an
Apache Kafka server and a Volt Active Data database cluster. The build process requires access to the
Volt Active Data software repositories (see your Volt sales representative for more information) and the
following software:

• Java SDK version 17 or greater

• Maven

• Docker

The recommended runtime environment includes:

• Docker

• Kubernetes

• Helm

• Kafka

• Volt Active Data V14.0 or later

• A Volt Active Data license including Active(SP)

2.2. Downloading the Sample Application
The quick start is available from the Volt Active Data repositories, including a Maven file for downloading
and structuring the destination folders on your local system. First, set default to the directory where you
want to install the sample source files, then issue the following shell command:

2

See Active(SP) in Action

$ mvn archetype:generate \
 -DarchetypeGroupId=org.voltdb \
 -DarchetypeArtifactId=volt-stream-maven-quickstart \
 -DarchetypeVersion=1.1.0

The maven script will first ask you for the group ID and artifact ID. These represent the package prefix
(such as org.acme) and the name for the sample directory, respectively. In the following examples we
will use org.acme as the package prefix and sample as the sample name. The script then asks a series of
questions where you can take the default answer. For example:

$ mvn archetype:generate \
> -DarchetypeGroupId=org.voltdb \
> -DarchetypeArtifactId=volt-stream-maven-quickstart \
> -DarchetypeVersion=1.1.0

 [. . .]

Define value for property 'groupId': org.acme
Define value for property 'artifactId': sample
Define value for property 'version' 1.0-SNAPSHOT: :
Define value for property 'package' org.acme: :
Confirm properties configuration:
kafka-bootstrap-servers: REPLACE-ME-IN-PIPELINE-YAML
voltdb-servers: REPLACE-ME-IN-PIPELINE-YAML
voltsp-api-version: 1.1.0
groupId: org.acme
artifactId: sample
version: 1.0-SNAPSHOT
package: org.acme
 Y: :

 [. . .]

[INFO] ---
[INFO] BUILD SUCCESS
[INFO] ---

What the script does is create a subdirectory in the current folder named after the artifact ID. Within that
directory tree are the Java source files for building the pipeline template and resources needed to run the
pipelines. For example, if you chose sample as your artifact ID and org.acme as the group ID::

• sample/ — contains a README and the Maven pom.xml file for building the sample pipelines

• sample/src/main/java/org/acme/ — contains the Java source files defining the pipelines

• sample/src/main/resources — contains assets, including Helm YAML files and SQL schema,
needed to run the pipelines

2.3. Building the Sample Application
Once you download the sample source files, you can build the pipeline templates using Maven. Set default
to the sample directory created in the previous step and issue the mvn clean package command:

$ cd sample

3

See Active(SP) in Action

$ mvn clean package

Next you can load the completed pipeline templates into a Docker repository so they are available for use
in your cloud environment. The easiest way to do this, since they are resources you will need to reference
both now and when running the pipelines, is to define a few helpful environment variables for assets that
are unique to you. These include the name of the Docker repository you will use and the Volt license file
required to run the pipelines. For example:

$ export MY_DOCKER_REPO=johnqpublic/projects
$ export MY_VOLT_LICENSE=$HOME/licenses/volt-license.xml

Now you can issue the docker commands to build an image and push it to your repository:

$ docker build \
 --platform="linux/amd64" \
 -t ${MY_DOCKER_REPO}:voltsp-quickstart--latest \
 -f src/main/resources/Dockerfile .
$ docker push ${MY_DOCKER_REPO}:activesp-quickstart--latest

2.4. Running the Sample Pipelines
You are almost ready to run the sample pipelines. The last step before you can run the pipelines is to
set up the infrastructure they need as input and output. That is, identify an available Kafka server and/
or a Volt Active Data database, depending on which pipeline you run. For Kafka, if the server does not
allow automatic creation of topics, you may need to create the greetings topic manually. For VoltDB you
will need a server that has the necessary table defined. The easiest way to to that is initialize and start the
database and apply the DDL in the src/main/resources folder:

$ voltdb init -f -D ~/db/sample
$ voltdb start -D ~/db/sample &
$ sqlcmd < src/main/resources/ddl.sql

Once you've identified the data source and destination, you can update the Helm properties files for the
two pipelines to match your selections. For example, if you have a Kafka broker running at kafka.acme.org
and a VoltDB database running on volt.acme.org, you can insert those addresses into the YAML files
kafka-to-volt-pipeline.yaml and random-to-kafka-pipeline.yaml in src/main/
resources. For example, kafka-to-volt-pipeline.yaml might look like this (changes high-
lighted):

replicaCount: 1

resources:
 limits:
 cpu: 2
 memory: 2G
 requests:
 cpu: 2
 memory: 2G

streaming:
 javaProperties: >
 -Dvoltsd.pipeline=org.acme.KafkaToVoltPipeline
 -Dvoltdb.server=volt.acme.org
 -Dkafka.consumer.group=1

4

See Active(SP) in Action

 -Dkafka.topic=greetings
 -Dkafka.bootstrap.servers=kafka.acme.org

Once you have set up the necessary infrastructure and edited the YAML files, you are ready to start the
pipelines. You start the pipelines using Helm and specifying a name for the pipeline, the Active(SP) chart
(voltdb/voltsp), your license, your Docker registry, your image name, and a pointer to the YAML properties
file. If you have not defined environment variables for the Docker repository and license file yet, now is
a good time to do that. For example:

$ export MY_DOCKER_REPO=johnqpublic/projects
$ export MY_VOLT_LICENSE=$HOME/licenses/volt-license.xml

$ helm install pipeline1 voltdb/voltsp \
 --set-file streaming.licenseXMLFile=${MY_VOLT_LICENSE} \
 --set image.repository=${MY_DOCKER_REPO} \
 --set image.tag=activesp-quickstart--latest \
 --values test/src/main/resources/random-to-kafka-pipeline.yaml

The Helm command starts the Kubernetes pod and starts pushing random hello statements into the Kafka
topic. You can then start the second pipeline, which pulls the statements from the topic and inserts them
into the GREETINGS table in the database:

$ helm install pipeline2 voltdb/voltsp \
 --set-file streaming.licenseXMLFile=${MY_VOLT_LICENSE} \
 --set image.repository=${MY_DOCKER_REPO} \
 --set image.tag=activesp-quickstart--latest \
 --values test/src/main/resources/kafka-to-volt-pipeline.yaml

Once the pipelines are running you can see the results by monitoring the greetings topic in Kafka or
querying the GREETINGS table in VoltDB:

$ sqlcmd --servers=volt.acme.org
> select count(*) from greetings;

You can also use Prometheus and Grafana to monitor your pipelines, including a custom Grafana dash-
board. See Section 4.6, “Monitoring Your Pipeline” for more information.

5

Chapter 3. How Acve(SP) Stream
Processing Works

Stream data processing has become a critical component of business operations. The exponential growth
of available data and the pressure to act on information in real time have made traditional computing
approaches obsolete. It is no longer sufficient to gather data and post process it to determine what actions to
take. Now businesses need to operate on the data in flight to filter, format, validate, measure, and respond
to events in a timely manner.

And for simple operations this works. Many operations, like filtering data based on fixed rules or convert-
ing from one format to another, can be performed at speed. However, the Achilles heel of stream data
processing is the fact that many operations still require access to up-to-date and entrusted information such
as customer accounts, inventory levels, and resource availability. These stateful operations, if performed
against a traditional SQL database, incur the same latency to which previous centralized operations were
susceptible. Which is where Active(SP) comes in.

By integrating stream data processing with Volt Active Data — an ACID database designed to maximize
throughput without sacrificing consistency, durability, or availability — Active(SP) makes it possible to
combine both stateless and stateful processing in flight and at speed.

Figure 3.1. Active(SP) Architecture

The Active(SP) architecture consists of three primary parts: sources, sinks, and processors. And the Do-
main Specific Language you use to define Active(SP) pipelines mirror the exact same structure, letting
you define the source, one or more processors, and a sink:

stream
 source
 processor
 processor
 processor
 [...]
 sink

Where the processors can be any combination of stateless or stateful operations, with Volt Active Data
providing real time access to reference data that can be used to verify, authenticate, authorize, or in other
ways validate and enhance the data as it passes.

The advantages the Active(SP) architecture offers are:

• Cloud Native — Active(SP) pipelines are designed from the ground up to run in the cloud. It is also self
contained and does not require any additional infrastructure (such as resource managers, schedulers, or
the like). This allows for easy setup, scaling, and management.

6

How Active(SP) Stream
Processing Works

• Apache Kafka and Volt Active Data integration — Kafka is supported out of the box as a data source
and both Kafka and Volt Active Data are supported as sinks for the pipeline, so that setting up the initial
pipeline template is trivial.

• Complex business logic — Partitioned procedures in Volt Active Data can be used to incorporate
complex, stateful operations on the data without sacrificing latency.

• Flexibility — The pipelines are designed as templates, using placeholders for key resources such as
server addresses and topic names, so that different pipelines can be created from the same template by
identifying different resources in the properties at runtime.

• Scalability — The pipelines themselves can be scaled at runtime completely separately from the re-
sources, such as Kafka servers or Volt Active Data cluster nodes allowing you to optimize computing
resources to match actual needs.

7

Chapter 4. Designing Your Acve(SP)
Pipeline

Writing your own Active(SP) pipeline is simple. Each pipeline consists of a data source, one or more
processors that operate on the data, and ends by sending the resulting record to a data target or sink. You
describe the structure of your pipeline using a Domain Specific Language (DSL), written in Java. The
DSL includes classes and methods that define the structure of your pipeline and can be compiled into the
actual runtime code.

For Active(SP) the DSL describes the three primary components of the pipeline: the source, the processors,
and the sink. Like so:

stream
 .consumeFromSource([. . .])
 .processWith([. . .])
 .processWith([. . .])
 .processWith([. . .])
 [. . .]
 .terminateWithSink([. . .])

The following sections describe:

• How to start your pipeline project

• Defining the source and destination for the pipeline

• Defining the business operations on the data (the processors)

• Building and running the pipeline

4.1. Setting Up Your Development Environment
You could start your Active(SP) pipeline project from scratch, setting up the necessary folder structure,
creating Java source files and defining the Maven dependencies and Helm properties by hand. But it is
much easier to start with a template, and the quick start example described in Chapter 2, See Active(SP)
in Action can be used for just that. Follow the instructions for downloading the quick start, specifying
your organization's ID as the group ID and your pipeline name as the artifact ID to create your template.
Let's say you are creating a pipeline called mydatapipe, the resulting template might have the following
folder structure:

mydatapipe
- src
 - main
 - java
 - org
 - acme
 - resources
 - test
 ...

The following are the key files you will use for creating your own pipeline from the quick start sample:

8

Designing Your Active(SP) Pipeline

• mydatapipe/pom.xml — The Maven project file for building the pipeline

• mydatapipe/src/main/java/{your-org}/*.java — Pipeline definition files you can re-
vise and reuse to match your pipeline's source, sink, and processors.

• mydatapipe/src/main/resources/*.yaml — Helm property files you can use to describe
the data resources the pipeline requires, such as Kafka streams, Volt Active Data databases, and their
properties.

4.2. Choosing the Source and Destination for the
Pipeline

The first thing the pipeline needs is a data source. This is defined in the .consumeFromSource method.
Active(SP) supports Apache Kafka as a data source out of the box. You specify the type of source with the
Sources.kafka() class, which has methods for setting the associated properties. For example, the following
code sample creates a data source from a Kafka topic:

.consumeFromSource(
 Sources.kafka()
 .withBootstrapServers("${kafka.bootstrap.servers}")
 .withTopicNames("${kafka.topic}")
 .withGroupId("${kafka.consumer.group}")
 .withStartingOffset(KafkaStartingOffset.EARLIEST)
 .withKeyDeserializer(LongDeserializer.class)
 .withValueDeserializer(StringDeserializer.class)

Note that the source definition uses placeholders (property names enclosed in braces and prefixed with a
dollar sign) in place of actual servers addresses, topic names, and group IDs. This way the pipeline acts a
template, defining the actions to take, while the actual sources and destinations can be defined at runtime
by setting property values in the Helm YAML files (see Section 4.5, “Running Your Pipeline”).

Similarly, Active(SP) supports two standard data destinations, or sinks: Kafka and Volt Active Data. You
define the sink in much the same way you define the source. The following code samples define a Kafka
topic and a Volt stored procedure as the final destination for the stream:

.terminateWithSink(
 Sinks.kafka()
 .withBootstrapServers("${kafka.bootstrap.servers}")
 .withTopicName("${kafka.topic}")
 .withValueSerializer(StringSerializer.class)
 .withKeyExtractor(String::hashCode, IntegerSerializer.class)

.terminateWithSink(
 Sinks.volt().procedureCall()
 .withHostAndStandardPort("${voltdb.host}")
 .withProcedureName("${voltdb.procedure}")

4.3. Defining the Business Operations (Processors)
The source and sink define where the stream starts and ends. But it is the processors in the middle that
do the real work of transforming the data into actionable business decisions. The processors are executed
sequentially as defined in the pipeline definition and can be any function or method you choose. For
example, the quick start random-too-kafka-pipeline uses an inline function to convert the text to uppercase:

9

Designing Your Active(SP) Pipeline

.processWith(
 string -> string.toUpperCase()
)

For more complex processing, you can include the processor source code separately elsewhere in the
pipeline definition file or define and build it as a separate class. But the key advantage of Active(SP) is that
it provides built-in methods for integrating common processors using Kafka and Volt Active Data. For
example, invoking a Volt stored procedure as a processor is a simple matter of identifying the procedure
name and database server:

.processWith(VoltFunctions.<Object[],
 VoltTable>procedureCall("CountByUser")
 .withHostAndPort("${voltdb.host}", "${voltdb.port}"))

4.4. Building and Loading Your Pipeline
Once you complete the pipeline definition you are ready to build and load the pipeline into your Docker
repository. You can use the Maven build file created when you downloaded the sample as a template
without any modifications:

$ mvn clean package

Similarly, you can build and load the Docker file using the same commands as before. Be sure you have the
defined the environment variable pointing to your Docker repository. Give the docker image a meaningful
name. The following example uses mypipe--latest as the image name:

$ export MY_DOCKER_REPO=johnqpublic/projects
$ export MY_VOLT_LICENSE=$HOME/licenses/volt-license.xml
$ docker build \
 --platform="linux/amd64" \
 -t ${MY_DOCKER_REPO}:mypipe--latest \
 -f src/main/resources/Dockerfile .
$ docker push ${MY_DOCKER_REPO}:mypipe--latest

4.5. Running Your Pipeline
Once you have prepared and loaded your pipeline template, you are ready to wrap up the final details
before running the pipeline. This includes specifying the runtime value for any placeholders you use in
the pipeline definition. For example, if you are using a Kafka topic as a source and Kafka or Volt Active
Data as the sink, you will need to identify the servers, topics, and/or table names to use.

In the preceding code examples, the pipeline definition used the placeholders voltdb.host, voltdb.port, and
voltdb.procedure for Volt Active Data assets. To fill in these placeholders, you edit the YAML properties
file for your pipeline. If you used the quick start sample as a template, this means you can rename one of the
YAML files (in src/main/resources/) with a meaningful name and edit it to fill in the appropriate
values for the placeholders. You put these placeholder assignments in the streaming.javaProper-
ties property. For example:

streaming:
 javaProperties: >
 -Dvoltdb.host=volt.acme.org
 -Dvoltdb.port=21212
 -Dvoltdb.procedure=MYDATA.insert

10

Designing Your Active(SP) Pipeline

You use the same process for assigning values to any Kafka or application-specific placeholders your
pipeline definition uses. For example:

streaming:
 javaProperties: >
 -Dvoltdb.host=volt.acme.org
 -Dvoltdb.port=21212
 -Dvoltdb.procedure=MYDATA.insert
 -Dkafka.bootstrap.servers=kafa.acme.org
 -Dkafka.topic=mydata
 -Dkafka.consumer.group=42

Now you are ready to run your pipeline. Use the helm install command to start the pipeline, specifying
voltdb/voltsp as the chart and your edited YAML as the properties file. (If this is your first time running
a pipeline, it is a good idea to issue a helm repo update command first to make sure you have access to
the latest charts.) You will also need to include your volt license file:

$ export MY_DOCKER_REPO=johnqpublic/projects
$ export MY_VOLT_LICENSE=$HOME/licenses/volt-license.xml

$ helm install mydatapipe voltdb/voltsp \
 --set-file streaming.licenseXMLFile=${MY_VOLT_LICENSE} \
 --set image.repository=${MY_DOCKER_REPO} \
 --set image.tag=mypipe--latest \
 --values test/src/main/resources/mydatapipe.yaml

Once you start the pipeline you can use the kubectl get pods to verify the processes have started. If there
are any issues you can use kubectl logs {pod-id} to get details on what is happening.

4.6. Monitoring Your Pipeline
Once your pipeline is running, the natural next question is "how is it doing?" The nature of streaming
pipelines is that they quietly just do their work; problems only come to light if they start to slow down
the flow of data. Ideally, you can detect issues before they impact the stream itself. To help you do this,
Active(SP) has metrics reporting built into the framework. All you need to do it turn it on.

If you set the Helm property monitoring.prometheus.enabled to true when starting the pipeline,
it becomes a Prometheus client, reporting metrics that integrate with your existing Prometheus and Grafana
infrastructure. For example:

$ helm install mydatapipe voltdb/voltsp \
 --set-file streaming.licenseXMLFile=${MY_VOLT_LICENSE} \
 --set image.repository=${MY_DOCKER_REPO} \
 --set image.tag=mypipe--latest \
 --values test/src/main/resources/mydatapipe.yaml \
 --set monitoring.prometheus.enabled=true

If you do not have an existing Prometheus infrastructure or if you simply want to quickly evaluate the
pipeline performance without having to design your own dashboard, Volt provides a package containing
Prometheus, Grafana, and a custom Grafana dashboard for reporting on Active(SP) pipelines. To start the
management console with your pipeline, set management-console.enabled to true when you start
the pipeline:

$ helm install mydatapipe voltdb/voltsp \
 --set-file streaming.licenseXMLFile=${MY_VOLT_LICENSE} \

11

Designing Your Active(SP) Pipeline

 --set image.repository=${MY_DOCKER_REPO} \
 --set image.tag=mypipe--latest \
 --values test/src/main/resources/mydatapipe.yaml \
 --set monitoring.prometheus.enabled=true \
 --set management-console.enabled=true

Note that one copy of the management console can report on multiple pipelines. So you only need to start
it with one of the pipelines. Alternatively you can leave it out of the pipeline startup entirely and start the
management console separately with its own helm install command:

$ helm install mydataconsole voltdb/volt-stream/charts/management-console

12

	Volt Active Data Active(SP)
	Table of Contents
	Chapter 1. Active(SP) Stream Data Processing
	Chapter 2. See Active(SP) in Action
	2.1. What You Will Need
	2.2. Downloading the Sample Application
	2.3. Building the Sample Application
	2.4. Running the Sample Pipelines

	Chapter 3. How Active(SP) Stream Processing Works
	Chapter 4. Designing Your Active(SP) Pipeline
	4.1. Setting Up Your Development Environment
	4.2. Choosing the Source and Destination for the Pipeline
	4.3. Defining the Business Operations (Processors)
	4.4. Building and Loading Your Pipeline
	4.5. Running Your Pipeline
	4.6. Monitoring Your Pipeline

