YOLT

ACTIVE DATA

VoltDB Kubernetes
Administrator's Guide

Abstract

This book explains how to create and manage VoltDB database clusters using Kubernetes.

V13

VoltDB Kubernetes Administrator's Guide

V13
Copyright © 2020-2023 Volt Active Data, Inc.

The text and illustrations in this document are licensed under the terms of the GNU Affero General Public License Version 3 as published by the
Free Software Foundation. See the GNU Affero General Public License (http://www.gnu.org/licenses/) for more details.

Many of the core VoltDB database features described herein are part of the VoltDB Community Edition, which islicensed under the GNU Affero
Public License 3 as published by the Free Software Foundation. Other features are specific to the VoltDB Enterprise Edition and VVoltDB Pro, which
are distributed by Volt Active Data, Inc. under acommercial license.

The VoltDB client libraries, for accessing VoltDB databases programmatically, are licensed separately under the MIT license.
Y our rights to access and use VoltDB features described herein are defined by the license you received when you acquired the software.
Volt Active Data, VoltDB, and Active(N) are registered trademarks of Volt Active Data, Inc.

VoltDB software is protected by U.S. Patent Nos. 9,600,514, 9,639,571, 10,067,999, 10,176,240, and 10,268,707. Other patents pending.

This document was generated on November 06, 2023.

http://www.gnu.org/licenses/

Table of Contents

PrE AR .. e viii
1. Structure of ThiS BOOKiiiiiiiiiiiii et viii

2. REIGLEA DOCUMENESceeitieeeeet ettt ettt e et e et e e e et eeeena s viii

O [gL oo [0 1o o RO TP TSP SPPPTR 1
1.1. Overview: Running VOItDB in KUDEMELESuiiiiiiiiiiiiiieeeei e 1

1.2. Setting Up Your Kubernetes ENVIFONMENToviiiiiiiiiiiiiieeeiii e e 3
1.2.1. Product REQUIFEMENESoeutieiiiii e et 3

1.2.2. Configuring the Host Environment and ACCOUNESuueeieiinieriiiiieeeiiieeeens 3

1.2.3. Configuring the CHENtcoouuiiiiii e 4

1.2.4. Granting Kubernetes Access to the Docker REPOSITONYovevveviiieeiiiineeeiiiinnnn, 4

2. Configuring the VOItDB Database CIUSIESiiiiiiiiiiiiiie ettt 6
2.1. Using Helm Properties to Configure Your Databasecccuvuvieiiiiiiiiiiiiiieeceiieeceiie 6

2.2. Configuring the CIUSLEYcoouiiieieii et 8

2.3. Configuring the DataDASEc.uuueieiiii et 9
2.3.1. Configuring High Availability (K-Safety and Placement Groups)c.oeeeee. 9

2.3.2. Configuring Command LOGGING ... cceevuueeierineeeetiieeeeiie e eeiia e e e e e 12

2.3.3. Configuring EXPOITieeeiiieeiiii ettt 12

2.4, ConfigUING LOGGING . ..veueeeeriieeeiiiiee ettt ettt e et e e e e e 13

3. Starting and Stopping the Dataaseccivueiiiiii e 14
3.1. Starting the Cluster for the First TIMeooeiiiiiiii e 14

3.2. Stopping and Restarting the CIUSLENcoouuiiiiiiii e 14

3.3. Resizing the Cluster with Elastic SCalingcccuvuiiiiiiiiiiiiii e 15

3.4. Pausing and Resuming the CIUSLErooiiiiiiiiiii e 15

3.5. Starting More than One Cluster Within a Namespacecocvvviiviiiiineeiiieecein 15

3.6. Stopping, Restarting, and Shutting Down Multiple Clusters Within a Namespace 16

4. Managing VoltDB Databases in KUDEINELEScoouuiiiiiiii e 18
4.1. Managing the Cluster Using kubectl and helmccoooiiiiii e, 18

4.2. Managing the Database Using voltadmin and Sglemdoooveviieiiiiinniiieeecie, 19
4.2.1. Accessing the Database INteraCtivelyoooeieiiiiiiiiii e 19

4.2.2. Accessing the Database ProgrammatiCallycooeveeiiiiiiiiiiniiiiiiicieees 21

5. UPdates aNd UPGIradESuueieitieeeiiie ettt et e ettt e et e et 22
5.1. Updating the Database SChEMaccuuiiiiiiiiicei e e 22

5.2. Updating the Database CONfigUIationoceeueuieieiiieieiir e eeni e 23
5.2.1. Changing Database Properties on the Running Databasecccoooevevvinieeenn. 23

5.2.2. Changing Database Properties That Require a Restartccooveveviiieiiiinnenes 24

5.2.3. Changing ClUSLEr Propertiesveiieiiieeiiiie e 25

5.3. Upgrading the VolItDB Software and Helm ChartScoooovviiieiiiiiiiieceieees 25
5.3.1. Updating Your HEImM REPOSITONYcoeuuuiiiiiiiieiiiiiie e 26

5.3.2. Updating the Custom Resource Definition (CRD)ccccvovieiiiiiiiiiiiiineeeiiie, 26

5.3.3. Upgrading the VoltDB Operator and SOftWarecceuuveeiiiiineeiiiiineeeiiinnnn, 27

5.3.4. Updating VOoItDB for XDCR CIUSLEI'Siiiiiiieiiiiieeeei e 27

6. Monitoring VoltDB Databases in KUDEINELESccouuiiiiiii e 29
6.1. Using Prometheus to Monitor VOItDBccouuiiiiiiiii e 29

7. Configuring Security iN KUDBIMELEScoeiei e 30
7.1. Configuring User Accounts and Roles Within The Databasecooveveviiieiiiinneennns 30

7.2. Configuring TLS/ISSL ...ouiiiiii e 31
7.2.1. Configuring TLS/SSL With YAML Propertiescooevveiiieiiiiinieeiiineeeeiinen 31

7.2.2. Using Kubernetes Secrets to Store and Reuse TLS/SSL Information 32

7.2.3. Using Kubernetes cert-manager to Store TLS/SSL CertificateSooevvvvnneeenns 33

7.3. Updating TLS/SSL Security CertifiCatesovvvueieieiiiieieeii e 35

8. Cross Datacenter Replication in KUDEIMELEScoouuiiiiiiii e e 36

VoltDB Kubernetes
Administrator's Guide

8.1. Requirements for XDCR in KUDEMELESc.uiviiiiiiiiicii e 36
8.2. Choosing How to Establish a Network Meshcoeviiiiiiiiiiiiicci e, 36
8.3. ComMMON XDCR PrOPErtiESccvuiiiieiii e e e e e e e e e e e e eaeas 38
8.4. Configuring XDCR in Local NamMESPACEScvuuiiiieiiiieeiieeiiieeeiee e e e e e e e e eanans 38
8.5. Configuring XDCR Using Load BalanCerscovuuiiiiiiiiiiieeiiiieciieee e e e e e 39
8.5.1. Separate Load Balancers For Each Node (cluster.serviceSpec.perpod) 40
8.5.2. Single Load Balancer For Discovery with Virtual Networking Peering (clus-
[0 RS AV [0 = oo | o) TP 40
8.6. Configuring XDCR Using Node Ports for Replicationccoooeviiiiiiiiiiiniccieccies 41
8.7. Configuring XDCR UsiNg NEWOIrK SEIVICEScvvviiiiieiii e 42
9. Managing XDCR Clusters in KUDEIMELESuuiiiiiiiii i e e e e e e e 44
9.1. Removing a Cluster TEMPOTarilycoouniiiiiiii e 44
9.2. Removing a Cluster PErmanentlycocouiiiiiiiiiiii e e e 44
9.3. Resetting XDCR When a Cluster Leaves Unexpectedlyooovvviiiiiiiiiiiiiiiiieeeiees 45
9.4. Rgjoining an XDCR Cluster That Was Previously Removedc.cccoeevviiiiiiiiciineenn. 45
A, Helm voltadmin PIUGIN ..o e e 47
hElM VOITAOMIN ... e e et e e e aae e e eanes 48
B. VOItDB HEIM PrOPErtiESccveiciii e e e e e e e e e e ean s 51
B.1. HOW t0 USE the PrOPEItIES ... ceviiiii i e e e e 51
B.2. Top-Level KUDEEtES OPtiONSuuiiiiiiiiieie e e e e e e e e e e e e eees 52
B.3. Kubernetes Cluster Startup OPtioNScoiuuiiiiiiieii e e e e e e e 52
[LAY o Q@ o4 o] = 56
B.5. VoItDB Database Startup OPtioNScouuuiiiiieiiiiie e e e e e e e e e e e e e 58
B.6. VoltDB Database Configuration OPtioNScccuuieiiiieiiiieeiiee e e e e e 59
B.7. Operator Configuration OPtiONSccuuiiieieiiiiei e e e e e e e e e e e e eeas 66
B.8. Metrics Configuration OPLiONSevuuiiiiieiiie e e e e e e e e e e eeen 67
B.9. Volt Management Center (VMC) Configuration Optionscccovevevieeiiiieiiieeiieennn. 67

List of Figures

1.1. Kubernetes/VOIIDB ATCHITECIUIEvieieiee ettt e e e e e aeas

List of Tables

B.1. TOP-LEVEI OPLIONSceeiiieiiiii ettt ettt ettt e et e e b 52
B.2. Options Starting with ClUSter.CIUSLErSPEC...oiiiieiiieiii e 52
B.3. Options Starting With ClUSIEr.SErVICESPEC... .ovvvviiiiiiii e 56
B.4. Options Starting With ClUStEr.CoNfig... «......viiiiiiiiiii e 59
B.5. Options Starting with cluster.config.deploymMent...o 59
B.6. Options Starting With OpEratOr...uieiiiiii e 66
B.7. Options Starting With ClUSIEr.SErVICESPEC... .civvviieiiiii e 67

Vi

List of Examples

5.1. Process for Upgrading the VoltDB Software

Vii

Preface

This book describes using Kubernetes and associated products to create and manage VoltDB databases
and the clustersthat host them. It isintended for database administrators and operators responsible for the
ongoing management and maintenance of database infrastructure in a containerized environment.

Thisbook isnot atutorial on Kubernetesor VoltDB. Please see“ Related Documents” bel ow for documents
that can help you familiarize yourself with these topics.

1. Structure of This Book

Thisbook is divided into 9 chapters and 1 appendix:

» Chapter 1, Introduction

» Chapter 2, Configuring the VoltDB Database Cluster

» Chapter 3, Starting and Sopping the Database

» Chapter 4, Managing VoltDB Databases in Kuber netes

» Chapter 5, Updates and Upgrades

» Chapter 6, Monitoring VoltDB Databases in Kubernetes
» Chapter 7, Configuring Security in Kubernetes

» Chapter 8, Cross Datacenter Replication in Kubernetes

» Chapter 9, Managing XDCR Clustersin Kubernetes

* Appendix B, VoltDB Helm Properties

2. Related Documents

This book assumes a working knowledge of Kubernetes, VoltDB, and the other technologies used in a
containerized environment (specifically Docker and Helm). For information on developing and managing
VoltDB databases, please see the manuals Using VoltDB and VoltDB Administrator's Guide. For new
users, seethe VoltDB Tutorial. For introductory information on the other products, please seetheir respec-
tive websites for appropriate documentation:

* Docker
e Helm
» Kubernetes

Finally, this book and all other documentation associated with VVoltDB can be found on the web at http://
docs.voltactivedata.com/.

viii

http://docs.voltactivedata.com/UsingVoltDB/
https://docs.voltactivedata.com/AdminGuide/
http://docs.voltactivedata.com/tutorial/
https://www.docker.com/
https://helm.sh/
https://kubernetes.io/
http://docs.voltactivedata.com/
http://docs.voltactivedata.com/

Chapter 1. Introduction

Kubernetes is an environment for hosting virtualized applications and services run in containers. It is
designed to automate the management of distributed applications, with a particular focus on microservices.
VoltDB is not amicroservice — thereis coordination between the nodes of aVoltDB cluster that requires
additional attention. So although it ispossibleto spin up ageneric set of Kubernetes"pods* torunaVoltDB
database, additional infrastructure is necessary to realize the full potential of Kubernetes and VoltDB
working together.

VoltDB Enterprise Edition provides additional services to simplify, automate, and unlock the power of
running V oltDB within Kubernetes environments. Thereare six key componentsto the VoltDB Kubernetes
offering, three available as open-source applications for establishing the necessary hosting environment
and three provided by VoltDB to Enterprise customers. The three open-source products required to run
VoltDB in a Kubernetes environment are:

» Kubernetesitself

» Docker, for managing the container images

» Helm, for automating the creation and administration of VoltDB in Kubernetes

In addition to these base requirements, VoltDB provides the following three custom components:
» Pre-packaged docker image for running VoltDB cluster nodes

» TheVoltDB Operator, aseparate utility (and docker image) for orchestrating the startup and manage-
ment of VoltDB clustersin Kubernetes

» Helm chartsfor initializing and communicating with Kubernetes, the VoltDB Operator and its associ-
ated VoltDB cluster

The remainder of this chapter provides an overview of how these components work together to support
running virtualized VoltDB clustersin a Kubernetes environment, the requirements for the host and client
systems, and instructionsfor preparing the host environment prior to running V oltDB. Subsequent chapters
provide details on configuring and starting your VVoltDB cluster as well as common administrative tasks
such as:

» Managing the running database with Helm and kubectl

Updating the database schema, configuration, or the VoltDB software
» Configuring and managing security options for the database and auxiliary services
» Configuring and starting multiple clusters using cross datacenter replication (XDCR)

Finally, an appendix providesafull list of the Helm propertiesfor configuring and controlling your VoltDB
clusters.

1.1. Overview: Running VoltDB in Kubernetes

Kubernetes lets you create clusters of virtual machines, on which you run "pods’. Each pod acts as a sep-
arate virtualized system or container. The containers are pre-defined collections of system and application
components needed to run an application or service. Kubernetes provides the virtual machines, Docker

Introduction

defines the containers, and Kubernetes takes responsibility for starting and stopping the appropriate num-
ber of pods that your application needs.

So the basic architecture for running VoltDB is a VoltDB database running on multiple instances of a
Docker container inside aKubernetes cluster. VoltDB al so starts one or more auxiliary services as separate
pods, such asthe VVolt Management Center.

........................

N ~
VoltDB ,/ ‘Aux.
Cluster Services

U™

Docker ;

Kubernetes

However, out of the box, VoltDB and Kubernetes do not "talk together" and so there is no agreement on
when pods are started and stopped and whether a VoltDB node is active or not. To solve this problem,
VoltDB provides an additional service, the VoltDB Operator that manages the interactions between the
VoItDB cluster, its auxiliary services, and the Kubernetes infrastructure. The Operator takes responsibil-
ity for initializing and starting the VoltDB server instances as appropriate, monitoring their health, and
coordinating changes to the configuration.

To further simplify the process, VoltDB uses the open-source management product Helm to integrate Ku-
bernetes, Docker, and VVoltDB under asingleinterface. Helm uses" charts' to define complex management
operations, such as configuring and starting the Kubernetes pods with the appropriate Docker images and
theninitializing and starting VVoltDB on those pods. Simply by "installing” the appropriate Helm chart you
can instantiate and run a VoltDB database cluster within Kubernetes using a single command.

Once the database is running, you can use standard VoltDB command line utilities to interact with and
manage the database contents, such as modifying the schema or initiating manual snapshots. However,
you will continue to use Helm to manage the server process and cluster on which the database runs, for
activities such as stopping and starting the database. Figure 1.1, “ Kubernetes/V oltDB Architecture”’ shows
the overall architecture of using VoltDB, the VoltDB Operator, and Helm to automate running aVoltDB
database within Kubernetes.

Figure 1.1. Kubernetes/\VVoltDB Architecture

YN
VoltDB Aux.
Cluster Services

DB Access === [0 (6010 ,‘
D e g voltadmin,

DB Config —

& Mgmt

Kubernetes

Platform

Config & ===l

Mgmt

-
-
=

Introduction

1.2. Setting Up Your Kubernetes Environment

Before you can run VoltDB in a containerized environment, you must be sure your host systems and client
are configured with the right software and permissions to support VoltDB. The following sections outline:

» What products are required on both the host environment and the local client you use to control Kuber-
netes and VoltDB

» How to configure the host environment and user accounts to run the VVoltDB components
» How to configure your local client to control Kubernetes and the Helm charts

» How to set permissions in Kubernetes and Docker to allow access to the VoltDB components

1.2.1. Product Requirements

Before you start, you must make sure you have the correct software products and versions installed on
both the host system and your local client. The host environment is the set of servers where Kubernetes
isinstalled, whether they are systems you set up yourself or hosted by a third-party cloud service, such
as the Google Cloud Platform or Microsoft Azure. The local client environment is the system, such asa
desktop or laptop, you use to access the services.

The following are the software requirements for running VoltDB in Kubernetes.
Host Environment

* Kubernetes VV1.23.x through V1.27.x

VoltDB on Kubernetes has been validated for the following cloud service providers:

« AWS

* Azure

» Google Cloud
» Openshift

e Tanzu

Client Environment
« Kubectl V1.22 or later*
e Helm V3.6.x or later

Optionally, you may want to install VoltDB on the client so you can use the voltadmin and sqlcmd
command utilities to access the database remotely. If not, you can still use kubect! to create an interactive
shell process on one of the server instances and run the utilities directly on the Kubernetes pods.

1.2.2. Configuring the Host Environment and Accounts

Once you have the necessary software installed, you must prepare the host environment to run VoltDB.
This includes adding the appropriate Docker and chart repositories to Helm and configuring your host
account with the permissions necessary to access those repositories.

1K ubect! on the client must be within one minor version of Kubernetes in the host environment. For example, if Kubernetes is at version 1.23,
Kubectl can be 1.22, 1.23, or 1.24. See the Kubernetes version skew documentation for further information.

https://kubernetes.io/docs/setup/release/version-skew-policy/

Introduction

First, you need accounts on the Kubernetes host environment and on the docker repository where the
VoltDB images are stored, https://docker.io. To run the VoltDB Helm charts, your accounts must be set
up with the following permissions:

* Your Kubernetes host account must have sufficient permissions to allocate persistent volumes and
claims and create and manage pods.

» Your Docker repository account must have permissionto accessthe VoltDB docker images. Accessto
the VoltDB docker imagesis assigned to VoltDB Enterprise customers on a per account basis. Contact
VoltDB support for more information.

1.2.3. Configuring the Client

1.24.

Next you must configure your client environment so you can communicate with and control Kubernetes
and the Helm charts. Firgt, install the Kubernetes and Helm command line interfaces, kubectl and helm.
Next, configure the services to access the appropriate remote accounts and repositories.

The primary setup task for kubectl is creating the appropriate context for accessing the Kubernetes host
you will beusing. Thisis usually done as part of the installation or with a Kubconfig file and the kubect|
config command. Once you have a context defined, you can use the kubectl cluster-info command to
verify that your client is configured correctly.

For helm, you must add alink to the VoltDB docker repository, using the helm repo add command:

$ hel mrepo add vol tdb \
https://vol t db- kuber net es-charts. st orage. googl eapi s. com

The first argument to the command ("voltdb") is a short name for referencing the repository in future
commands. Y ou can specify whatever nameyou like. The second argument isthe location of therepository
itself and must be entered as shown above.

Note

Helm first looks in local folders for charts you specify, then in the repositories. So if the short
name you use matches a local directory, they can conflict and cause errors. In that case, you
may want to choose a different name, such as"voltkube", to avoid any ambiguity. Then the chart
locations you use in Helm commands would be "voltkube/voltdb" rather than "voltdb/voltdb™" as
shown in the examples.

Granting Kubernetes Access to the Docker Repository

Finally, you need to tell Kubernetesto access the Docker repository using the credentials for your Docker
account. There are several ways to do this. You can specify your credentials on the helm command line
each time you install a new VoltDB cluster. You can save the credentials in a YAML file with other
parameters you pass to helm. Or you can set the credentials in a Kuerbernetes secret using kubectl.

The advantage of using a secret to store the credentialsis that you only need to define them once and they
are not easily discovered by others, since they are encrypted. To create a Kubernetes secret you use the
kubectl create secret command, specifying the type of secret (docker-registry) and the name of the secret
(which must be dockerio-registry), plus the individual credential elements as arguments:

$ kubect!| create secret docker-registry dockerio-registry \
- - docker - user nane=j ohndoe \
- -docker - passwor d=" Thi sl sASecret' \

https://docker.io

Introduction

- -docker-emai | ="j doe@nybody. org

Once you add the secret, you do not need to specify them again. If, on the other hand, you prefer to specify
the credentialswhen you issue the helm commandstoinitialize the VoltDB cluster, you can supply them as
thefollowing helm properties using the methods described in Chapter 2, Configuring the VoltDB Database
Cluster:

» gl obal .image. credenti al s. user nane
* gl obal .image. credenti al s. password

Chapter 2. Configuring the VoltDB
Database Cluster

Thetwo major differences between creating aV oltDB database cluster in Kubernetes and starting acluster
using traditional serversare:

 In Kubernetes, there is a single Helm command (install) that performs both the initialization and the
startup of the database.

* You specify the database configuration with properties rather than as an XML file, environment vari-
ables, or command line arguments.

In fact, all of the configuration — including the configuration of the virtual servers (or pods), the server
processes, and the database — is accomplished using Helm properties. Helm simplifies the process by
coordinating all the different componentsinvolved, including Kubernetes, Docker, and VoltDB. By using
the provided Helm charts, it is possible to start a default VoltDB cluster with a single command:

$ helminstall mydb voltdb/voltdb \
--set-file cluster.config.licenseXM.File=license.xm

The name mydb specifies a name for the release you create, voltdb/voltdb specifies the Helm chart to
install, and the- - set - f i | e argument specifies anew value for aproperty to customize the installation.
Inthiscase, - - set - fi | e specifiesthe location of the VoltDB license needed to start the database. The
license is the only property you must specify; all other properties have default values that are used if not
explicitly changed.

However, a default cluster of three nodes and no schema or configuration is not particularly useful. So
VoltDB provides Helm properties to let you customize every aspect of the database and cluster configu-
ration, including:

* Cluster configuration, including size of the cluster, available resources, and so on
* Network configuration, including the assignment of ports and external mappings
 Databaseinitialization options, including admini stration username and password, schema, and classfiles

+ Database configuration, including the settings normally found in the XML configuration file on non-
Kubernetesinstallations

Thefollowing sections explain how to specify Helm propertiesin a propertiesfile or on the command line,
as well how to use those properties to make some of the most common customizations to your database.
Later chapters explain how to configure specific features (such as security and XDCR). Appendix B,
VoltDB Helm Properties provides afull list of the properties, including a brief description and the default
value for each.

2.1. Using Helm Properties to Configure Your
Database

First, it is useful to understand the different ways you can specify properties on the Helm command line.
The following discussion is not intended as a complete description of Helm; only a summary to give you
an idea of what they do and when to use them.

Configuring the Volt-
DB Database Cluster

Helm offers three different ways to specify properties:

--set

--set

--val

You
you

The- - set flagletsyou specify individua property valuesonthecommand line. Y ou canuse- - set
multiple times or separate multiple property/value pairs with commas. For example, the following
two commands are equivalent:

$ helminstall mydb voltdb/voltdb \
--set cluster.serviceSpec.clientPort=22222 \
--set cluster.serviceSpec. adm nPort=33333
$ helminstall mydb voltdb/voltdb \
--set cluster.serviceSpec.clientPort=22222,\
cl uster. serviceSpec. adm nPort =33333

The--set flag isuseful for setting afew parametersthat change frequently or for overriding parameters
set earlier in the command line (such asinaYAML file).

-file

The- - set - fi | e flagletsyou specify the contents of afile asthe valuefor aproperty. For example,
the following command sets the contents of the file | i cense. xm as the license for starting the
VoltDB cluster:

$ helminstall mydb voltdb/voltdb \
--set-file cluster.config.licenseXMFile=license.xm

Aswith --set, Youcanuse- - set - f i | e multiple times or separate multiple property/file pairswith
commas. The- - set - fi |l e flagisuseful for setting parameters where the value is too complicated
to set directly on the command line. For example, the contents of the VVoltDB licensefile.

ues, -f

The --values flag lets you specify afile that contains multiple property definitionsin YAML format.
Whereas properties set on the command line with - - set use dot notation to separate the property
hierarchy, YAML puts each level of the hierarchy on a separate line, with indentation and followed
by a colon. For example, the following YAML file (and - - val ues flag set the same two properties
show inthe - - set example above:

$ cat ports.yan
cluster:
servi ceSpec:
clientPort: 22222
adm nPort: 33333
$ helminstall mydb voltdb/voltdb \
--val ues ports.yani

YAML files are extremely useful for setting multiple properties with values that do not change fre-
guently. You can also use them to group properties (such as port settings or security) that work to-
gether to configure aspects of the database environment.

can use any of the preceding techniquesfor specifying propertiesfor the VoltDB Helm charts. In fact,
can use each method multiple times on the command line and mixed in any order. For example, the

following example uses- - val ues to set the database configuration and ports, - - set - f i | e toidentify

thel

$h

icense, and - - set to specify the number of nodes requested:

elminstall nydb vol tdb/vol tdb \

Configuring the Volt-
DB Database Cluster

--val ues dbconf.yam , dbports. yam \
--set-file cluster.config.licenseXM.File=license.xm \
--set cluster.clusterSpec.replicas=5

2.2. Configuring the Cluster

Many of the configuration options that are performed through hardware configuration, system commands
or environment variables on traditional server platforms are now available through Helm properties. Most
of these settings are listed in Section B.3, “ Kubernetes Cluster Startup Options”.

Hardware Settings

Hardware settings, such as the number of processors and memory size, are defined as Kubernetes
image resources through the Helm cl ust er . cl ust er Spec. r esour ces property. Under r e-
sour ces, you can specify any of the YAML properties Kubernetes expects when configuring pods
within a container. For example:

cluster:
cl ust er Spec:
resour ces:
requests:
cpu: 500m
menory: 1000M
limts:
cpu: 500m
menory: 1000M
System Settings

System settings that control process limits that are normally defined through environment variables
can be set withthecl ust er . cl ust er Spec. env properties. For example, the following YAML
increases the Java maximum heap size and disables the collection of VM statistics:

cluster:
cl ust er Spec:
env:
VOLTDB_HEAPMAX: 3072
VOLTDB_OPTS: - XX: +Per f Di sabl eShar edMem

One system setting that is not configurable through Kubernetes or Helm is whether the base platform has
Transparent Huge Pages (THP) enabled or not. Thisis dependent of the memory management settings on
the actual base hardware on which Kubernetes is hosted. Having THP enabled can cause problems with
memory-intensive applications like VoltDB and it is strongly recommended that THP be disabled before
starting your cluster. (See the section on Transparent Huge Pagesin the VoltDB Administrator's Guide for
an explanation of why thisis an issue.)

If you are not managing the Kubernetes environment yourself or cannot get your provider to modify their
environment, you will need to override V oltDB'swarning about THP on startup by setting the cluster.clus-
terSpec.additional Args property to include the VoltDB start argument to disable the check for THP. For
example:

cluster:
cl ust er Spec:
addi ti onal StartArgs:
"--ignore=thp"

https://docs.voltactivedata.com/AdminGuide/adminmemmgt.php#adminserverthp
https://docs.voltactivedata.com/AdminGuide/

Configuring the Volt-
DB Database Cluster

2.3. Configuring the Database

In addition to configuring the environment VoltDB runs in, there are many different characteristics of
the database itself you can control. These include mapping network interfaces and ports, selecting and
configuring database features, and identifying the database schema, class files, and security settings.

The network settings are defined through the cl ust er. ser vi ceSpec properties, where you can
choose the individual ports and choose whether to expose them through the networking service. For ex-
ample, the following YAML file disables exposure of the admin port and assigns the externalized client
port to 31313:

cluster:
servi ceSpec:
type: NodePort
adm nPort Enabl ed: fal se
clientPortEnabl ed: true
client NodePort: 31313

The majority of the database configuration options for VVoltDB are traditionally defined in an XML con-
figuration file. When using K ubernetes, these options are declared using Y AML and Helm properties. The
Helm properties follow the same structure as the XML configuration, beginning with "cluster.config”. So,
for example, where the number of sites per host is defined in XML as:

<depl oynent >
<cluster sitesperhost="{n}"/>
</ depl oynent >

It isdefined in Kubernetes as:

cluster:
config:
depl oynent :
cluster:
sitesperhost: {n}

Thefollowing sections give examples of defining common database configurations optionsusing YAML.
See Section B.6, “VoltDB Database Configuration Options” for a complete list of the Helm properties
available for configuring the database.

2.3.1. Configuring High Availability (K-Safety and Placement
Groups)

Volt Active Data provides high availability through K-safety, where copies of each partition are distributed
to different nodesin the database cluster. If anodefails, the database can continue to operate because there
are still copies of every partition within the cluster. The amount of durability depends on the K factor. So
aK factor of one means that the cluster is guaranteed to survive one node (or pod) failing, afactor of two
guarantees two nodes, and so on. (See the chapter on Availability in the Using VoltDB manual for more
information on how K-safety works.)

Y ou set the K-safety factor using thecl ust er. confi g. depl oynent . cl ust er. kf act or prop-
erty when configuring your database. For example, the following YAML sets the K-safety factor to two:

cluster:

https://docs.voltdb.com/UsingVoltDB/ChapKSafety.php
https://docs.voltdb.com/UsingVoltDB/

Configuring the Volt-
DB Database Cluster

cl ust er Spec:
replicas: 6

config:
depl oyrent :
cluster:
sitesperhost: 8
kfactor: 2

Note that the number of replicas must be at least as large as the K factor plus one (K+1) and K-safety is
most effectiveif the number of replicas times the number of sites per host is a multiple of K+1.

The combination of K-safety and Kubernetes provides an automated, self-healing system where K-safety
ensures the cluster survives individual nodes failing and K ubernetes manages the automated recreation of
the pods when they fail so the database can be restored to afull complement of nodes as soon as possible.
However, to take full advantage of this capability you need to ensure the Kubernetesinfrastructureis con-
figured correctly to distribute the Volt servers evenly and that Volt uses information about the configura-
tion to manage the distribution of partitions within the database. The following sections explain how to
use Kubernetes configuration options, such as affinity and spread constraints, and Volt placement groups
to achieve maximum availahility.

2.3.1.1. Configuring Kubernetes Clusters for High Availability (Spread
Constraints and Affinity)

K-safety ensures the database cluster can survive at least a certain number of node failures. However, to
reduce the risk of larger scale outages, you need to make sure that the Volt servers are distributed in such
away to minimize the impact of external outages. In particular, you want to ensure that each Volt server
pod runs on a separate Kubernetes node (so that a Kubernetes node failure cannot impact multiple pods)
and that the pods are, as much as possible, evenly distributed among the availability zonesin use.

By default, the Volt Operator establishes Kubernetes affinity and anti-affinity rules such that no two Volt
server pods can run on the same Kubernetes node. So, normally, you do not need to take any actions to
make this happen. However, if you are overriding the Operator's default configurations, you will need to
make sure your custom Kubernetes configuration includes this behavior.

When using multiple availability zones, you should also adjust the Kubernetes configuration — specifi-
cally the spread constraints — so that the Volt server pods are evenly distributed among the zones. This
makes it possible to avoid the database failing due to the loss of any one zone that contains an unbalanced
and excessive number of Volt server processes. Y ou can define the distribution of server pods within your
Helm configurationusing thecl ust er . cl ust er Spec. t opol ogySpr eadConst r ai nt s proper-
ty. The following example demonstrates how to do this, using the label selector to identify the Volt server
processes.

cluster:
cl ust er Spec:

t opol ogySpr eadConstrai nts:

- topol ogyKey: topol ogy. kubernetes.i o/ zone
whenUnsat i sfiabl e: DoNot Schedul e
maxSkew. 1
| abel Sel ector:

mat chLabel s:
nane: vol tdb-cluster

If you are running multiple databases within a single namespace, you should consider replacing the last
line of the configuration, "name: voltdb-cluster”, with an identifier that is specific to the cluster being

10

Configuring the Volt-
DB Database Cluster

configured. For example, if the cluster release nameis mydb, the last line of the configuration should read
"voltdb-cluster-name: mydb-voltdb-cluster”.

2.3.1.2. Cloud Native Placement Groups

K -safety guarantees the minimum number of nodesthat can fail without stopping the database. Configuring
Kubernetes affinity and spread constraintsto evenly distribute the database server pods reducesthe overall
threat of external failures taking down the database. However, to fully maximize the availability, Volt
needs to use knowledge about the Kubernetes configuration to intelligently distribute theindividual copies
of the partitions among those servers.

The cluster may survive more failures than just the minimum guaranteed by K-safety depending on how
the partitions are distributed and which nodes fail. Placement groups are amechanism for providing more
context concerning the hardware environment to improve the likelihood of the cluster surviving multiple
failures. For example, if you tell Volt certain nodes are in the same region and zone (i.e. in the same
placement group), it avoids placing all copies of any partition on those nodes, so if the zone fails, the
database can survive.

Because you do not control exactly where each pod is created in Kubernetes, Volt can use its knowledge
of the Kubernetes availability zones and regions1 to automate the placement groups and minimize the po-
tential of an infrastructure failure taking the database down with it. Y ou enable cloud native placement
groupsin Kubernetes by setting the property cl ust er. cl ust er Spec. useC oudNat i vePl ace-
ment Gr oup to "true". For cloud native placement groups to be effective, the cluster configuration must
meet the following requirements:

» The cluster must be distributed over three or more regions or availability zones.

» The number of nodes (or replicas) must be a multiple of the number of availability zones.

» The number of availability zones must be a multiple of K+1.

For example, the following configuration assumes the cluster is distributed across four availability zones:

cluster:
cl ust er Spec:
replicas: 8
useC oudNat i vePl acenent G- oup: true

config:
depl oynment :
cluster:
sitesperhost: 8
kfactor: 1

Once the database is running, you can use the @Statistics system procedure with the HOST selector to
determine where each node is running and what partitions are running on that node. In addition, if one or
more nodes go down, the "SAFETOSTOP" column lets you know which of the remaining nodes could
safely be stopped without endangering the cluster as awhole.

$ sql cnd
1> execute @t atistics HOST;
Tl MESTAMP HOST | D HOSTNAME PARTI TI ONS LEADERS

placement groups depend on the Kubernetes labels topol ogy.kubernetes.io/region and topology.kubernetes.io/zone, which are defined automat-
ically by most commercia cloud providers. If you are using a custom cloud deployment, you will need to make sure these labels are declared
appropriately before enabling cloud native placement groups.

11

Configuring the Volt-
DB Database Cluster

1677777171869 0 nydb-vol tdb-cluster-0 24, 25, 26, 27, 28, 29, 30, 31 25, 27, 29, 31
1677777171870 1 nydb-voltdb-cluster-1 8,9, 10,11, 12,13, 14,15 8§, 10, 12, 14
1677777171870 2 nydb-vol tdb-cluster-2 8,9, 10, 11, 12,13, 14,15 9, 11, 13, 15
1677777171870 3 nydb-vol tdb-cluster-3 16,17, 18, 19, 20, 21, 22, 23 16, 18, 20, 22
1677777171870 4 nydb-vol tdb-cluster-4 16, 17, 18, 19, 20, 21, 22,23 17,19, 21, 23
1677777171870 5 nydb-vol tdb-cluster-5 24, 25, 26, 27, 28, 29, 30, 31 24, 26, 28, 30
1677777171870 6 mydb-vol tdb-cluster-6 0,1,2,3,4,5,6,7 0,2,4,6
1677777171870 7 nmydb-vol tdb-cluster-7 0,1,2,3,4,5,6,7 1,3,5,7
(Returned 8 rows in 0.01s)

TI MESTAMP PLACEMENTGROUP SAFETCOSTOP

1677777171882 east--zone3 true
1677777171882 east--zone2 true
1677777171882 east--zonel true
1677777171882 east --zone4 true

2.3.2. Configuring Command Logging

Command logging provides durability of the database content across failures. Y ou can control the level
of durability as well as the length of time required to recover the database by configuring the type of
command logging and size of the logs themselves. In Kubernetes thisis done with the cl ust er. con-
fi g.depl oynent . commandl og properties. The following example enables synchronous command
logging and sets the log size to 3,072 megabytes and the frequency to 1,000 transactions:

cluster:
config:
depl oyrent :
conmand| og:
enabl ed: true
synchronous: true
| ogsi ze: 3072
frequency:
transacti ons 1000

2.3.3. Configuring Export

Export simplifies the integration of the VoltDB database with external databases and systems. You use
the export configuration to define external "targets' the database can write to. In Kubernetes you define
export targets using the cl ust er. confi g. depl oynment . export. confi gurati ons property.
Note that theconf i gur at i ons property can accept multiple configuration definitions. In YAML, you
specify alist by prefixing each list element with a hyphen, evenif thereisonly one element. The following
exampl e defines one export target, eventlog, using the file export connector:

cluster:
config:
depl oyrent :
export:
configurations:
- target: eventlog

type: file
properties:
type: csv

nonce: eventl og

12

Configuring the Volt-
DB Database Cluster

2.4. Configuring Logging

VolItDB uses Log4J for logging messages while the database is running. The chapter on "™Logging and
Analyzing Activity in a VoltDB Database" in the VoltDB Administrator's Guide describes some of the
ways you can customize the logging to meet your needs, including changing the logging level or adding
appenders. Logging isalso availablein the Kubernetes environment and is configured using aLog4dJ XML
configuration file. However, the default configuration and how you set the configuration when starting or
updating the database in Kubernetesis different than as described in the Administrator's Guide.

Before you attempt to customi ze the logging, you should familiarize yourself with the default settings. The
easiest way to do thisisto extract a copy of the default configuration from the Docker image you will be
using. The following commands create a docker container without actually starting the image, extract the
configuration fileto alocal file (k8s- |1 og4j . xm inthe example), then delete the container.

$ | D=%(docker create voltdb/voltdb-enterprise)
$ docker cp ${I1D}:/opt/voltdb/tool s/ kubernetes/server-1og4j.xm k8s-1o0g4j.xm
$ docker rm$ID

Once you extract the default configuration and made the changes you want, you are ready to specify
your new configuration on the Helm command to start the database. Y ou do this by setting the cl us-
ter.config.l og4jcfgFil e property. For example:

$ helminstall mydb vol tdb/voltdb \
--val ues nyconfig.yan \
--set cluster.clusterSpec.replicas=5 \

--set-file cluster.config.licenseXMFile=license.xm \
--set-file cluster.config.|og4jcfgFile=ny-1og4j.xm

Similarly, you can update the logging configuration on a running cluster by using the - - set -fil e
argument on the Helm upgrade command:

$ hel m upgrade nydb vol tdb/voltdb --reuse-val ues \
--set-file cluster.config.log4jcfgFile=ny-1o0g4j.xm

13

https://docs.voltactivedata.com/AdminGuide/ChapLogging.php
https://docs.voltactivedata.com/AdminGuide/ChapLogging.php
https://docs.voltactivedata.com/AdminGuide/

Chapter 3. Starting and Stopping the
Database

The key to managing VoltDB clusters in Kubernetes is to let the Helm charts do the work for you. You
can use helm commands to perform all basic activities for running a database. This chapter explains how
to use helm commands to:

» Start the cluster for thefirst time

» Stop and restart the cluster

Resize the cluster

e Pause and resume

Start multiple clusters within one Kubernetes namespace

Subsequent chapters explain how to manage the database once it is running, how to modify the database
and cluster configuration, and how to upgrade the VVoltDB software itself.

3.1. Starting the Cluster for the First Time

As described in Chapter 2, Configuring the VoltDB Database Cluster you can customize every aspect of
the database and the cluster using Helm properties and the configuration can be as simple or as complex as
you choose. But once you have determined the configuration options you want to use, actually initializing
and starting the database cluster is a single command, helm install. For example:

$ helminstall mydb vol tdb/voltdb \
--val ues nyconfig. yan \
--set-file cluster.config.licenseXM.File=license.xm \
--set cluster.clusterSpec.replicas=5

3.2. Stopping and Restarting the Cluster

Once the cluster is running (what Helm callsa"release”), you can adjust the cluster to stop it, restart it, or
resizeit, by "upgrading” the release chart, specifying the new value for the number of nodesyou want. Y ou
upgrade the release using much the same command as you do to start it, except rather than repeating the
configuration, you can usethe - - r euse- val ues flag. So, for example, to stop the cluster, you simply
set the number of replicasto zero, reusing all other parameters:

$ hel m upgrade nydb vol tdb/vol tdb \
--reuse-val ues \
--set cluster.clusterSpec.replicas=0

To restart the cluster after you stop it, you reset the replica count to five, or whatever you set it to when
you initially defined and started it:

$ hel m upgrade mnmydb vol tdb/vol tdb \
--reuse-val ues \
--set cluster.clusterSpec.replicas=5

14

Starting and Stopping the Database

3.3. Resizing the Cluster with Elastic Scaling

To resize the cluster by adding nodes you simply upgrade the rel ease specifying the new number of nodes
you want. Of course, the new value must meet the requirementsfor elastically expanding the cluster, as set
out in the discussion of adding nodes to the cluster in the VoltDB Administrator's Guide. So, for example,
to increase the cluster size by two nodes, you can set the replica count to seven:

$ hel m upgrade mydb vol tdb/vol t db \
--reuse-val ues \
--set cluster.clusterSpec.replicas=7

3.4. Pausing and Resuming the Cluster

To pause the database — that is stop client activity through the client port when performing certain ad-
ministrative functions — you set the property cluster.clusterSpec.maintenanceM ode to true. For example,
the following commands pause and then resume the database associated with rel ease mydb:

$ hel m upgrade nydb vol tdb/vol tdb \
--reuse-val ues \
--set cluster.clusterSpec. mai nt enanceMde=t rue

$ hel m upgrade nydb vol tdb/vol tdb \
--reuse-val ues \
--set cluster.clusterSpec. nai nt enanceMde=f al se

3.5. Starting More than One Cluster Within a
Namespace

By default, the Volt Helm charts assume there is only one cluster in each Kubernetes namespace. It is
possible to run more than one Volt cluster within a namespace; however, to do so you need to start and
stop the clusters and the operator separately. Y ou do this by performing separate helm install operations
for the operator and each cluster, using separate release names for each operation and setting the ¢l us-
t er. enabl ed and oper at or . enabl ed properties appropriately in each step.

For example, | et's assume we want to start two clusters, rome and venice, in asingle namespace, The steps
for starting multiple Volt clusters in a single Kubernetes namespace are as follows:

1. Start the operator separately

Issue the helm install command setting the oper at or . enabl ed property to true and the cl us-
t er. enabl ed to false. Then wait for the operator to reach the ready state:

$ helminstall voltoperator voltdb/voltdb \
--val ues opconfig.yam \
--set operator.enabl ed=true \
--set cluster.enabl ed=fal se

Note that you can provide additional operator properties, separately or asa Y AML file, as part of the
install operation. See Section B.7, “Operator Configuration Options’ for a list of available operator
properties.

2. Start thefirst cluster

15

https://docs.voltactivedata.com/AdminGuide/MaintainUpgradeHw.php#MaintainUpgradeElastic
https://docs.voltactivedata.com/AdminGuide/

Starting and Stopping the Database

Once the operator is ready, you can start the first cluster, reversing the values for oper at or . en-
abl ed andcl ust er. enabl ed and providing whatever cluster-specific configuration you need:

$ helminstall ronme voltdb/voltdb
--val ues roneconfig. yam
--set cluster.clusterSpec.replicas=3
--set operator.enabl ed=fal se
--set cluster.enabl ed=true

— — - —

Again, wait for the pods of the cluster to reach the ready state before moving on to the next step.
3. Start subsequent clusters

Repeat step #2 for any other clusters you want to run in the namespace waiting after each install com-
mand for the pods to reach their ready state. In our example, we only have one other cluster:

$ helminstall venice voltdb/voltdb \
--val ues veniceconfig. yam \
--set cluster.clusterSpec.replicas=3 \
--set operator.enabl ed=fal se \
--set cluster.enabl ed=true

The key point when running multiple clusters within a single namespace is that there is only one Volt
Operator and the operator executes one operation at atime. So be sure to wait for each Helm command
to complete before issuing a new command. Because of the constraint to sequential processing in the
Operator, we recommend limiting the number of simultaneous Volt clusters within any single namespace
to three.

3.6. Stopping, Restarting, and Shutting Down Mul-
tiple Clusters Within a Namespace

Once you have multiple clusters running in the same namespace, you can stop and start the databases
independently, the same way you would a single database, by setting the property cl ust er. cl us-

t er Spec. repl i cas to zero to stop the database and the correct number of nodes to restart it. For ex-
ample, the following command stops the rome cluster without affecting the operator or other clustersin

the namespace:
$ hel m upgrade rone vol tdb/vol tdb \
--reuse-val ues \

--set cluster.clusterSpec.replicas=0

If you want to shutdown and remove the clusters and operator entirely, you must first shutdown and delete
the clusters, then delete the operator. The key point is that you cannot delete the Helm release for the
operator until all of the releases it manages have been removed. Therefore, the processis:

4. Shutdown and delete the individual clusters

$ hel m upgrade rome vol tdb/voltdb --reuse-val ues \
--set cluster.clusterSpec.replicas=0

$ hel m upgrade veni ce voltdb/voltdb --reuse-val ues \
--set cluster.clusterSpec.replicas=0

$ hel mdelete rone

$ hel m del ete venice

16

Starting and Stopping the Database

5. Delete the operator

$ # Make sure all pods have been del eted
$ kubect!l get pods
$ # Once all pods are gone, renove the Operator

$ hel m del ete vol t operat or

17

Chapter 4. Managing VoltDB Databases in
Kubernetes

When running VoltDB in Kubernetes, you areimplicitly managing two separate technol ogies: the database
cluster — that consists of "nodes" and the server processes that run on them — and the collection of
Kubernetes"pods' the database cluster runs on. Thereis a one-to-one relationship between VoltDB nodes
and Kubernetes pods and it isimportant that these two technologies stay in sync.

The good news is that the VoltDB Operator and Helm manage the orchestration of Kubernetes and the
VoltDB servers. If a database server goes down, Kubernetes recognizes that the corresponding pod is not
"live" and spins up areplacement. On the other hand, if you intentionally stop the database without telling
the Operator or Kubernetes, Kubernetes insists on trying to recreateit.

Therefore, whereas on traditional servers you use voltadmin and sglecmd to manage both the cluster and
the database content, it isimportant in a Kubernetes environment that you use the correct utilities for the
separate functions:

» Usekubectl and helm to manage the cluster and the database configuration
e Usevoltadmin and sglcmd to manage the database contents.

The following sections explain how to access and use each of these utilities. Subsequent chapters explain
how to perform common cluster and database management functions using these techniques.

4.1. Managing the Cluster Using kubectl and helm

The key advantage to using Kubernetes is that it automates common administrative tasks, such as making
surethe cluster keepsrunning. Thisisbecause the VoltDB Operator and Helm charts manage the synchro-
nization of VoltDB and Kubernetes for you. But it does mean you must use helm or kubectl, and not
the equivalent voltadmin commands, to perform operations that affect Kubernetes, such as starting and
stopping the database, resizing the cluster, changing the configuration, and so on.

When you start the database for the first time, you specify the VoltDB Helm chart and a set of properties
that define how the cluster and database are configured. Theresult isaset of Kubernetes podsand VoltDB
server processes known as a Helm "release”.

To manage the cluster and database configuration you use the helm upgrade command to update the
release and change the properties associated with the feature you want to control. For example, to change
the frequency of periodic snapshots in the mydb release to 30 minutes, you specify the new value for the
cl uster.config. depl oynent. snapshot . frequency property, like so:

$ hel m upgrade nmydb vol tdb/vol tdb \
--reuse-val ues \
--set cluster.config.depl oyment. snapshot. frequency=30m

Note

It is also possible to use the kubectl patch command to change release properties, specifying
the new property value and action to take as a JSSON string. However, the examplesin this book
use the helm upgrade equivalent wherever possible as the helm command tends to be easier to
read and remember.

18

Managing VoltDB Data
bases in Kubernetes

One caveat to using the helm upgrade command isthat it not only upgradestherelease, it checksto seeif
thereisanew version of the original chart (in thisexample, voltdb/voltdb) and upgradesthat too. Problems
could occur if there are changes to the original chart between when you first start the cluster and when
you need to stop or resizeit.

The public charts are not changed very frequently. But if your database is in production for an extended
period of timeit could be an issue. Fortunately, there isa solution. To avoid any unexpected changes, you
can tell Helm to use a specific version of the chart — the version you started with.

First, use the helm list command to list all of the releases (that is, database instances) you have installed.
In the listing it will include both the name and version of the chart in use. For example:

$ helmlist
NAME NAMESPACE REVI SI ON UPDATED STATUS CHART APP VERSI ON
nydb default 1 2020-08-12 12:45:30 deployed voltdb-1.0.0 10.0.0

You can then specify the specific chart version when your upgrade the release, thereby avoiding any
unexpected side effects:

$ hel m upgrade nmydb vol tdb/vol t db \
--reuse-val ues \
--set cluster.clusterSpec.replicas=7 \
--version=1.0.0

4.2. Managing the Database Using voltadmin and
sqlcmd

Y ou manage the database using the VVoltDB command line utilities voltadmin and sglcmd, the same way
you would in atraditional server environment. The one difference is that before you can issue VoltDB
commands, you need to decide how to access the database cluster itself. There are two types of access
available to you:

* Interactive access for issuing sqlcmd or voltadmin commands to manage the database

» Programmatic access, through the client or admin port, for invoking stored procedures

4.2.1. Accessing the Database Interactively

Kubernetes provides severa ways to access the pods running your services. Y ou can run commands on
individual pods interactively through the kubectl exec command. You can use the same command to
access the command shell for the pod by running bash. Or you can use port forwarding to open ports from
the pods to your current environment.

Inall three cases, you need to know the name of the pod you wish to access. When you start aVoltDB clus-
ter with Helm, the pods are created with templated names based on the Helm rel ease name and a sequential
number. So if you named your three node cluster mydb, the pods would be called mydb-voltdb-cluster-0,
mydb-voltdb-cluster-1, and mydb-voltdb-cluster-2. There are al so separate podsfor any auxiliary services,
such as the Volt Management Center (VMC). If you are not sure of the names, you can use the kubect!
get pods command to see alist:

$ kubect| get pods
NANMVE READY STATUS RESTARTS AGE
nydb- vol t db-cl uster-0 1/1 Runni ng 0 26m

19

Managing VoltDB Data
bases in Kubernetes

nydb- vol t db-cl uster-1 1/1 Runni ng 0 26m
nmydb- vol t db- oper at or - 6bbb96b575- 8275x 1/1 Runni ng 0 26m
nmydb- vol t db- vnt-86c8d7b688- pnmi g 1/1 Runni ng 0 26m

Having chosen a pod to use, running VoltDB commands interactively with kubectl exec is useful for
issuing individual commands. After the command executes, kubectl returns you to your local shell. For
example, you can check the status of the cluster using the voltadmin status command:

$ kubect!l exec -it mydb-voltdb-cluster-0 -- voltadnin status
Cluster 0, version 10.0, hostcount 2, kfactor O
2 live host, 0 nmissing host, O live client, uptine O days 00:41: 34. 293
Host 1 d Host Nane
Onydb-vol tdb-cl uster-0
1mydb-vol tdb-cluster-1

You can even use kubect! exec to start an interactive sqlcmd session, which stays active until you exit

sglemd:

$ kubect!l exec -it nydb-vol tdb-cluster-0 -- sqlcnd
SQ. Command :: |ocal host: 21212

1> exit

$

Or you can pipe afile of SQL statements to sglemd as part of the command:
$ kubect!l exec -it mydb-voltdb-cluster-0 -- sqlcnmd < nyschens. sql

However, kubectl exec commands execute in the context of the pod. So you cannot do things like load
JAR filesthat are in your local directory. If you need to load schema and stored procedures, it is easier to
use port forwarding, where ports on the pod are forwarded to the equivalent ports on localhost for your
local machine, so you can run applications and utilities (such as sglcmd, voltdb, and voltadmin) locally.

Thekubectl port-forward command initiates port forwarding, whichisactive until you stop the command
process. So you need a second process to utilize the linked ports. In the following example the user runs
the voter sample application locally on adatabase in a Kubernetes cluster. To do this, one session enables
port forwarding on the client port and the second session loads the stored procedures, schema, and then
runs the client application:

Session #1

$ kubect!l port-forward mydb-vol tdb-cluster-0 21212

Session #2

$ cd ~/vol tdb/ exanpl es/ vot er

$ sqlcnd

SQ. Command :: |ocal host: 21212

1> | oad cl asses voter-procs.jar;
2> file ddl.sql;

3> exit

$./run.sh client

Port forwarding is useful for ad hoc activities such as loading schema and stored procedures to a running
database and quick test runs of client applications. Port forwarding is not good for running production ap-
plications or any ongoing activities, dueto itsinherent lack of security or robustness as a network solution.

20

Managing VoltDB Data
bases in Kubernetes

You can also use port forwarding to monitor the cluster using the web-based Volt Management Center
(VMC) by forwarding port 8080 from the VMC service, using the service name. The following example
also addsthe - - addr ess argument so it isavailable to others on the local areanetwork. (Otherwiseitis
only accessible as |ocalhost:8080 from the system on which the port forward command is issued.)

$ kubect!l port-forward svc/ mydb-voltdb-vnc 8080 --address=0.0.0.0

Note that there is only one instance of VMC for the entire cluster. By forwarding the port from the VMC
service you can access al nodes of the cluster by using the server s menu on the DB Monitor tab.

4.2.2. Accessing the Database Programmatically

Theapproachesfor connecting to the database interactively do not work for access by applications, because
interactive access focuses on connecting to one node of the database. Applications are encouraged to create
connectionsto all nodes of the database to distribute the workload and avoid bottle necks. In fact, the Java
client for VoltDB has specia settingsto automatically connect to all available nodes (topology awareness)
and direct partitioned procedures to the appropriate host (client affinity).

Kubernetes provides a number of servicesto make pods accessible beyond the Kubernetes cluster they run
in; services such as cluster |Ps, node ports, and load balancers. These services usually change the address
and/or port number seen outside the cluster. And there are still other layers of networking and firewalls
to traverse before these open ports are accessible outside of Kubernetes itself. This complexity, plus the
fact that these services result in port numbers and external network addresses that do not match what the
database itself thinksit is running on, make accessing the database from external applicationsimpractical.

The recommended way to access a VoltDB database running in Kubernetes programmatically is to run
your application as its own service within the same Kubernetes cluster as the database. Thisway you can
take advantage of the existing VVoltDB service names, such as mydb-voltdb-cluster-client, to connect to the
database. Y ou can then enable topology awarenessin the Java cient and let the client make the appropriate
connections to the current VoltDB host | Ps.

For example, if your database Helm release is called mydb and is running in the namespace mydata, the
Java application code to initiate access to the database might look like the following:

org.voltdb.client.Client client = null;

CientConfig config = new dientConfig("","");
confi g. set Topol ogyChangeAwar e(true) ;

client

= ClientFactory.createdient(config);

client.createConnection("nydb-voltdb-cluster-client.mydata.svc.cluster.local");

21

Chapter 5. Updates and Upgrades

Once the database is up and running, Kubernetes works to keep it running in the configuration you speci-
fied. However, you may need to change that configuration as your database requirements evolve. Changes
may be as simple as adding, deleting, or modifying database tables or procedures. Or you may want to
modify the configuration of the database, adding new users, or even expanding the cluster by adding nodes.

Thefollowing sections describe some common update scenarios and how to perform them in aKubernetes
environment, including:

* Modifying the database schema
» Modifying the database or cluster configuration

» Upgrading the VoltDB software and Helm charts

5.1. Updating the Database Schema

Once the VoltDB database starts, you are ready to manage the database contents. Using Kubernetes does
not change how you manage the database content. However, it doesrequire afew extra stepsto ensure you
have access to the database, as described in Section 4.2.1, “ Accessing the Database Interactively”.

First you need to identify the pods using the kubect! get pods command. Y ou can then access the pods,
individually, using the kubectl exec command, specifying the pod you want to access and the command
you want to run. For example, to run sglcmd on the first pod, use the following command:

$ kubect! exec -it nydb-vol tdb-cluster-0 -- sqlcnd
SQ. Command :: |ocal host: 21212
1>

You can execute alocal batch file of sglcmd commands remotely by piping the file into the utility. For
example:

$ cat schema. sql

CREATE TABLE HELLOWORLD (
HELLO VARCHAR(15), WORLD VARCHAR(15),
DI ALECT VARCHAR(15) NOT NULL

)

PARTI TI ON TABLE HELLOAORLD ON COLUWN DI ALECT;

$ kubect!l exec -it nydb-vol tdb-cluster-0 -- sqlcmd < schema. sql

Conmand succeeded.

Conmand succeeded.

$

Changing the database schema does not require synchronization with Helm or Kubernetes necessarily.
However, if you specified the schemaand/or procedure classeswhen youinitially created the Helm release,
it may be agood idea to keep those properties updated in case you need to re-initialize the database. (For
example, when re-establishing a XDCR connection that was broken due to conflicts.) This can be done
by updating the cl ust er. confi g. schemas and/or cl ust er. confi g. cl asses properties and
their unique subproperties. For example:

$ hel m upgrade mydb vol tdb/vol tdb \
--reuse-val ues \

22

Updates and Upgrades

--set-file cluster.config.schenmas. nysql =schema. sql \
--set-file cluster.config.classes. nyjar=procs.jar

Note that for the schema and classes you must specify a unique subproperty of your choosing for each
file (In the previous example mysgl and myjar). This way you can include multiple schema or class files
by specifying each with a separate - - set - f i | e flag and a separate unique subproperty name (such as
sql1, sql2, and so on).

5.2. Updating the Database Configuration

Y ou can a so change the configuration optionsfor the database or the cluster while the databaseis running.
In Kubernetes, you do this by updating the release properties rather than with the voltadmin update
command.

How you update the configuration properties is the same for all properties: you use the helm upgrade
command to update the individual properties. However, what actions result from the update depend on the
type of properties you want to modify:

» Dynamic database configuration properties that can be modified "on the fly" without restarting the
database

» Static database configuration properties that require the database be restarted before they are applied
» Cluster configuration properties that alter the operation of the cluster and associated K ubernetes pods

The following sections describe these three circumstances in detail .

5.2.1. Changing Database Properties on the Running Data-

base

There are a number of database configuration options that can be changed while the database is running.
Those optionsinclude:

 Security settings, including user accounts

cluster.config.depl oynent. security. enabl ed
cluster.config.depl oynent. users

 Import and export settings

cluster.config.depl oyment. export.configurations
cluster.config.deploynment.inport.configurations

 Database replication settings (except the DR cluster ID)

cluster.config.deploynment.dr.rol e
cluster.config.depl oynent.dr.connection

» Automated snapshots
cluster.config.depl oynent. snapshot . *
e System settings:

cluster.config.depl oynent. heartbeat.ti neout

23

Updates and Upgrades

cluster.config.depl oyment. systensettings. query.tineout
cluster.config. depl oynent. systensettings.resourcenonitor.*

For example, the following helm upgrade command changes the heartbeat timeout to 30 seconds:

$ hel m upgrade mydb vol tdb/vol t db \
--reuse-val ues \
--set cluster.config.depl oynent. heartbeat.ti meout=30

When dynamic configuration properties are modified, the VoltDB Operator updates the running database
configuration as soon asit is notified of the change.

5.2.2. Changing Database Properties That Require a Restart

Many database configuration properties are static — they cannot be changed without restarting the data-
base. Normally, this requires manually performing a voltadmin shutdown --save, reinitializing and
restarting the database cluster, then restoring the final snapshot. For example, command logging cannot
be turned on or off while the database is running; similarly, the number of sites per host cannot be altered
on thefly.

However, you can change these properties using the helm upgrade command and the VoltDB Operator
will make the changes, but not while the databaseis running. Instead, the Operator recognizes the changes
to the configuration, marks the database as requiring a restart, and then schedules a shutdown snapshot,
reinitialization, and restart of the database for later.

For example, you cannot change the number of sitesper host whilethe databaseisrunning. But the Operator
does let you change the property in Kubernetes:

$ hel m upgrade nmydb vol tdb/vol tdb \
--reuse-val ues \
--set cluster.config.depl oynment. siteperhost=12

No action is taken immediately, since the change will require a restart and is likely to interrupt ongoing
transactions. Instead, the Operator waits until you are ready to restart the cluster, which you signify by
changing another property, cl ust er. cl ust er Spec. al | owRest ar t Dur i ngUpdat e, to true:

$ hel m upgrade mydb vol tdb/vol t db \
--reuse-val ues \
--set cluster.clusterSpec. al | owRest art Duri ngUpdat e=t rue

If you are sure you are ready to restart the cluster when you change the configuration property, you can
set the two properties at the same time so that the change takes immediate effect:

$ hel m upgrade nmydb vol tdb/ vol t db \
--reuse-val ues \
--set cluster.config.depl oyment. siteperhost=12 \
--set cluster.clusterSpec. al | owRest art Duri ngUpdat e=t rue

Once al | onRest art Dur i ngUpdat e is set to true, the Operator initiates the restart process, saving,
shutting down, reinitializing, restarting and restoring the database automatically. Note that once the data-
baseisrestarted, itisagood ideatoreset al | owRest ar t Dur i ngUpdat e to false to avoid future con-
figuration changes triggering immediate restarts:

$ hel m upgrade nmydb vol tdb/vol t db \
--reuse-val ues \

24

Updates and Upgrades

--set cluster.clusterSpec. al | owRest art Duri ngUpdat e=f al se
Warning

There are certain database configuration changes that cannot be made either on the fly or with a
restart. In particular, do not attempt to change properties associated with directory paths or SSL
configuration. Changing any of these properties will leave your database in an unstable state.

5.2.3. Changing Cluster Properties

There are properties associated with the environment that the VVoltDB database runs on that you can also
modify with the helm upgrade command. Most notably, you can increase the size of the cluster, using
elastic scaling, by changing the cl ust er. cl ust er Spec. r epl i cas property, as described in Sec-
tion 3.3, “Resizing the Cluster with Elastic Scaling”.

Some properties affect the computing environment, such as environment variables and number of nodes.
Others control the network portsassigned or features specific to Kubernetes, such aslivenessand readiness.
All these properties can be modified. However, they each have separate scopesthat affect when the changes
will go into affect.

Of particular note, pod-specific properties will not take affect until each pod restarts. If this is not a
high availability cluster (that is, K=0), the Operator will wait until you to change the property cl us-
ter.clusterSpec. al |l owRest art Duri ngUpdat e to true before restarting the cluster and ap-
plying the changes. The same applies for any cluster-wide properties.

However, for a K-safe cluster, the Operator can apply pod-specific changes without any downtime by
performing arolling upgrade. That is, stopping and replacing each pod in sequence. So for high availability
clusters, the Operator will start applying pod-specific changes automatically viaarolling restart regardiess
of thecl ust er. cl ust er Spec. al | owRest ar t Duri ngUpdat e setting.

5.3. Upgrading the VoltDB Software and Helm
Charts

When new versions of the VoltDB software are released they are accompanied by new versions of the
Helm chartsthat support them. By default when you "install" a"release” of VoltDB with Helm, you get the
latest version of the VoltDB software at that time. Y our release will stay on itsinitial version of VoltDB
aslong as you don't update the charts and VVoltDB Operator in use.

You can upgrade an existing database instance to a recent version using a combination of kubectl and
helm commands to update the charts, the operator, and the VoltDB software. The steps to upgrade the
VoltDB software in Kubernetes are:

1. Update your copy of the VVoltDB repository.
2. Update the custom resource definition (CRD) for the VoltDB Operator.
3. Upgrade the VoltDB Operator and software.

The following sections explain how to perform each step of this process, including a full example of the
entire process in Example 5.1, “Process for Upgrading the VoltDB Software” However, when upgrading
an XDCR cluster, thereisan additional step required to ensurethe cluster's schemaismaintained during the
upgrade process. Section 5.3.4, “Updating VoltDB for XDCR Clusters’ explains the extra step necessary
for XDCR clusters.

25

Updates and Upgrades

5.3.1.

5.3.2.

Note

To use the helm upgrade command to upgrade the VoltDB software, the starting version of
VoltDB must be 10.1 or higher. See the VoltDB Release Notes for instructions when using Helm
to upgrade earlier versions of VoltDB.

Updating Your Helm Repository

The first step when upgrading VoltDB isto make sure your local copy of the VoltDB Helm repository is
up to date. Y ou do this using the helm repo update command:

$ hel m repo update
Once you update your local copy of the charts, you can determine which version — of both the charts
and the software — you want to use by listing al available versions. You do this with the helm sear ch

repo command.

hel m search repo voltdb/voltdb --versions
NANVE CHART VERSI ON APP VERSI ON DESCRI PTI ON

voltdb/voltdb 2.1.1 12.3.1 The Hel mchart for VoltDB
voltdb/voltdb 2.1.0 12.3.0 The Hel mchart for VoltDB
voltdb/voltdb 2.0.2 12.2.2 The Hel mchart for VoltDB
voltdb/voltdb 2.0.1 12.2.1 The Hel mchart for VoltDB
voltdb/voltdb 2.0.0 12.2.0 The Hel mchart for VoltDB
voltdb/voltdb 1.10.1 12.1.1 The Hel mchart for VoltDB
voltdb/voltdb 1.10.0 12.1.0 The Hel mchart for VoltDB
voltdb/voltdb 1.9.0 12.0.0 The Hel mchart for VoltDB
voltdb/voltdb 1.8.8 11.4.10 The Hel mchart for VoltDB
voltdb/voltdb 1.8.7 11.4.9 The Hel mchart for VoltDB

The display shows the available versions, including for each release a version number for the chart and
one for the VoltDB software (app version). Make a note of the pair of version numbers who want to use
because you will need them both to complete the following steps of the process. All of the examplesin this
document use the chart version 2.1.1 and the software version 12.3.1 for the purposes of demonstration.

Updating the Custom Resource Definition (CRD)

The second step is to update the custom resource definition (CRD) for the VoltDB Operator. This allows
the Operator to be upgraded to the latest version.

To update the CRD, you must first save acopy of the latest chart, then extract the CRD from the resulting
tar file. The helm pull command savesthe chart as agzipped tar file and thetar command lets you extract
the CRD. For example;

$ helmpull voltdb/voltdb --version 2.1.1
$ tar --strip-conponents=2 -xzf voltdb-2.1.1.tgz \
vol t db/ crds/ vol t db. com vol t dbcl usters_crd. yam

Note that the file name of the resulting tar fileincludes the chart version number. Once you have extracted
the CRD asa YAML file, you can use it to replace the CRD in Kubernetes:

$ kubect!l replace -f voltdb.comvoltdbclusters_crd.yanl

26

https://docs.voltactivedata.com/ReleaseNotes/

Updates and Upgrades

5.3.3.

5.3.4.

Upgrading the VoltDB Operator and Software

Once you update the CRD, you are ready to upgrade VoltDB, including both the Operator and the server
software. You do this using the helm upgrade command and specifying the version numbers for both
items on the command line. As soon as you make this change, the Operator will pause the database, take
afinal snapshot, shutdown the database and then restart with the new version, restoring the snapshot in
the process. For example:

$ hel m upgrade nmydb vol tdb/voltdb --reuse-val ues \
--set operator.imge.tag=2.1.1 \
--set cluster.clusterSpec.inage.tag=12.3.1

Example 5.1, “Process for Upgrading the VoltDB Software” summarizes all of the commands needed to
update a database release to VoltDB version 12.3.1.

Example 5.1. Process for Upgrading the VoltDB Software

$ # Update the [ocal copy of the charts

$ hel mrepo update

$ hel m search repo voltdb/voltdb --versions

NAME CHART VERSI ON APP VERSI ON DESCRI PTI ON

voltdb/voltdb 2.1.1 12. 3.1 The Hel m chart for Vol tDB

voltdb/voltdb 2.1.0 12. 3.0 The Hel m chart for Vol tDB

voltdb/voltdb 2.0.2 12. 2.2 The Hel m chart for Vol tDB

voltdb/voltdb 2.0.1 12. 2.1 The Hel m chart for Vol tDB
2.0.0 2.0

vol tdb/ vol tdb The Hel mchart for VoltDB

[..]

12.

$
$ # Extract and replace the CRD
$ hel mpull voltdb/voltdb --version 2.1.1
$ tar --strip-conmponents=2 -xzf voltdb-2.1.1.tgz \

vol tdb/ crds/vol tdb. com vol tdbcl usters_crd. yam
$ kubect!l replace -f voltdb.comvoltdbclusters_crd.yanl
$
$
$

Upgrade the Operator and Vol t DB software
hel m upgrade nydb vol tdb/vol tdb --reuse-val ues \
--set operator.imge.tag=2.1.1 \
--set cluster.clusterSpec.imge.tag=12.3.1

Updating VoltDB for XDCR Clusters

When upgrading an XDCR cluster, thereis one extra step you must pay attention to. Normally, during the
upgrade, VVoltDB saves and restores a snapshot between versions and so all data and schema information
is maintained. When upgrading an XDCR cluster, the data and schema is deleted, since the cluster will
need to reload the data from another cluster in the XDCR relationship once the upgrade is complete.

L oading the datais automatic. But loading the schema depends on the schemabeing stored properly before
the upgrade begins.

If the schema was loaded through the YAML properties cl ust er. confi g. schemas and cl us-
ter.config. cl asses originaly and has not changed, the schema and classes will be restored auto-
matically. However, if the schemawas|oaded manually or has been changed sinceit was originally loaded,
you must make sure a current copy of the schema and classes is available after the upgrade. There are
two waysto do this.

27

Updates and Upgrades

For both methods, the first step is to save a copy of the schema and the classes. Y ou can do this using the
voltdb get schema and voltdb get classes commands. For example, using Kubernetes port forwarding
you can save a copy of the schemaand class JAR file to your local working directory:

$ kubect!l port-forward mydb-voltdb-cluster-0 21212 &
$ voltdb get schema -0 myschena. sql
$ voltdb get classes -0 nycl asses.jar

Once you have copies of the current schema and classfiles, you can either set them as the default schema
and classes for your database release before you upgrade the software or you can set them in the same
command as you upgrade the software. For example, the following commands set the default schema and
classes firgt, then upgrade the Operator and server software. Alternately, you could put thetwo - - set -
fileandtwo--set argumentsin asingle command.

$ hel m upgrade nmydb vol tdb/voltdb --reuse-val ues \
--set-file cluster.config.schenas. mysqgl =nyschenma. sql \
--set-file cluster.config.classes. nmyjar=nycl asses.j ar
$ hel m upgrade nmydb vol tdb/voltdb --reuse-val ues \
--set operator.imge.tag=2.1.1 \
--set cluster.clusterSpec.imge.tag=12.3.1

28

Chapter 6. Monitoring VoltDB Databases
in Kubernetes

Once the database is running, you need to monitor the system to ensure reliable uptime and performance.
Variations in usage, workload, or the operational environment can affect the dynamics of the data appli-
cation, which may need corresponding adjustments to the schema, procedures, or hardware configuration.
VoltDB provides system procedures (such as @Statistics) and the web-based Volt Management Center to
help monitor current performance. But to provide persistent, historical intelligence concerning application
performance it is best to use a dedicated metrics data store, such as Prometheus.

Prometheusisametrics monitoring and al erting system that provides ongoing datacollection and persistent
storage for applications and other resources. By providing an open source industry standard for collecting
and storing metrics, Prometheus allows you to:

+ Offload monitoring from the database platform itself
» Combine metrics from VoltDB with other applications within your business ecosystem

* Query and visualize historical information about your database activity and performance (through tools
such as Grafana)

Section 6.1, “Using Prometheus to Monitor VoltDB” explains how to configure your VoltDB database
so the information you need is gathered and made available through Prometheus and compatible graphic
consoles such as Grafana.

6.1. Using Prometheus to Monitor VoltDB

To monitor VoltDB with Prometheus on Kubernetes, you enable per pod metrics where each node of
the cluster reports its own set of server-specific information. The servers make this data available in
Prometheus format through an HTTP endpoint (/metrics) on the metrics port (which defaults to 11781).
Y ou can control the port number and other characteristics of the metrics system through Helm properties.

To enable Prometheusmetrics, setthecl ust er. confi g. depl oynent . metri cs. enabl ed prop-
erty totrue. You can also setthecl ust er . servi ceSpec. per pod. netri cs. enabl ed property
to true, which creates a Kubernetes metrics service for each pod. Prometheus uses these metrics servicesto
identify the V olt pods astargetsfor scraping. For example, thefollowing command enables per pod metrics
with default settings while initializing the mydb database cluster. It also sets the service typeto Cluster|P:

$ helminstall mydb voltdb/voltdb \
--set-file cluster.config.licenseXM.File=license.xm \
--set cluster.clusterSpec.replicas=5 \
--set cluster.config.deployment. metrics. enabl ed=true \
--set cluster.serviceSpec. perpod. netrics. enabl ed=true \
--set cluster.serviceSpec.service.netrics.type=ClusterlP

Once metrics are enabled, each Volt server reports its own information through the Prometheus endpoint
on the metrics port. If you enable the per pod service, connection to the Prometheus server is handled
automatically. If the serviceis not enabled or Prometheusis not configured to auto-detect targets, you will
need to edit the Prometheus configuration to add the cluster nodes to the list of scraping targets.

Finally, if the database has security enabled, you will also need to configure Prometheus with the appro-
priate authentication information based on the truststore and password for the cluster. See the Prometheus
documentation for more information.

29

https://prometheus.io/docs/introduction/overview/

Chapter 7. Configuring Security in
Kubernetes

There are two aspects to security with Volt Active Data— security within the database with is managed
through user accounts and roles and network security between the database nodes, between the cluster and
client applications, and between clustersin the case of cross datacenter replication (XDCR). For interna
security, you define user accounts as part of the database configuration and assign them to roles that
are defined as part of the schema. For network security, Volt recommends encryption and authentication
certificates using the TLS/SSL protocol. The following sections explain how to configure both types of
security within Kubernetes.

7.1. Configuring User Accounts and Roles Within
The Database

User accounts allow you to control who has access to specific functions and procedures within the data-
base. Security is enabled in the configuration with the cl ust er . confi g. depl oynment . securi -
ty. enabl ed property. You must also use the properties to define the actual user names, passwords,
and assigned roles. The user s property expects a list of sub-elements so you must prefix each set of
properties with a hyphen.

If you enable basic security, you must also tell the VoltDB operator which account to use when accessing
the database. To do that, you define the cl ust er. confi g. aut h properties, as shown below, which
must specify an account with the built-in administrator role. Thefollowing example enables basic security,
defines two accounts, and assigns the admin account for use by the VoltDB Operator:

cluster:

config:
depl oyment :
security:

enabl ed: true

users:

- nane: adnin
password: superman
rol es: adm ni strator

- nane: mtty
password: thurber
rol es: user

aut h:

user nane: adm n
password: superman

Once you have defined your account names, password and roles, as an additional level of privacy you can
hash the contents of the Y AML file so the passwords are not in plain text. With the helm voltadmin plugin
(described in Appendix A, Helmvoltadmin Plugin) you can use the mask command to hash the passwords.
If you only specify an input file, the passwords are hashed in place and the input file overwritten. If you
include a second file specification, the masked Y AML fileiswritten to that file instead.

Thefollowing exampl e uses the voltadmin mask command to processthefilenyaccount s. yanl and
write the Y AML including hashed passwordsto the filehashedaccount s. yamni .

$ hel mvol tadm n mask nyaccounts.yam hashedaccounts. yan

30

Configuring Security in Kubernetes

Y ou can then use the hashed file when starting the database:

$ helminstall nydb voltdb/voltdb \
--val ues nyconfig.yan \
--val ues hashedaccounts. yan

7.2. Configuring TLS/SSL

Another important aspect of security is securing and authenticating the ports used to access the database.
Themost common way to do thisisby enabling TLS/SSL to encrypt dataand authenticate the serversusing
user-created certificates. The process for creating the private keystore and truststore in Java is described
in the section on "Configuring TLS/SSL on the VoItDB Server” in the Using VoltDB guide. This process
is the same whether you are running the cluster directly on servers or in Kubernetes.

The one difference when enabling TLS/SSL for the cluster in Kubernetesis that if you want the Operator
to verify the authenticity of the cluster's certificate, you must also configure the operator with an appro-
priate truststore, in PEM format. If not, you must set the cl ust er. cl ust er Spec. ssl . i nsecure
property to true.

The easiest way to allow verification with a PEM format truststore is to configure the operator using the
same truststore and password you use for the cluster itself. First, you will need to convert the truststore
to PEM format using the Java keytool:

keyt ool -export \
-alias ny.key -rfc \
-file mycert. pem \
-keystore nykey.jks \
-storepass topsecret \
- keypass topsecret

Once you have your keystore, truststore, and truststore in PEM format, you can configure the cluster and
operator with the appropriate SSL properties, using one of three methods:

» Configuring TLS/SSL with YAML properties
» Using Kubernetes secrets to store and reuse TLS/SSL information
» Using cert-manager to create and manage TLS/SSL information for you

The following sections describe the three methods for configuring encryption. In addition, TLS/SSL cer-
tificates have an expiration date. It is important you replace the certificate before it expires. If not, the
operator will lose the ability to communicate with the cluster pods. See Section 7.3, “Updating TLS/SSL
Security Certificates’ for instructions on updating the TLS/SSL certificates in Kubernetes.

7.2.1. Configuring TLS/SSL With YAML Properties

The following example uses YAML properties to enable TLS/SSL security and specify the truststore
and keystore passwords. First you must enable TLS/SSL encryption, usingthecl ust er. confi g. de-
pl oyment . ssl . enabl ed property. Then you choose which ports will use SSL encryption (in this
example, the internal and external ports, but not DR). Finally, you specify the passwords for the keystore
and truststore. The YAML does not include the actual content of the truststore and keystore files, since
they arein abinary format.

cluster:

31

https://docs.voltactivedata.com/UsingVoltDB/SecuritySSL.php#SecuritySSLServer
https://docs.voltactivedata.com/UsingVoltDB/

Configuring Security in Kubernetes

config:
depl oyrent :
ssl:
enabl ed: true
external: true
internal: true
keyst ore:
password: topsecret
truststore:
password: topsecret
cl ust er Spec:
ssl:
i nsecure: false

Using the preceding YAML file (calling it ssl . yamn), we can complete the SSL configuration by spec-
ifying the truststore and keystore files on the helm command linewith the- - set - f i | e argument:

hel minstall nydb vol tdb/voltdb
--val ues nyconfi g. yan
--val ues ssl.yan
--set-file cluster.config.deploynment. ssl.keystore.fil e=nykey.jks
--set-file cluster.config.deployment.ssl.truststore.file=nytrust.jks
--set-file cluster.clusterSpec.ssl.certificateFile=nycert.pem

Three important notes concerning TLS/SSL configuration:

* If youenable SSL for the cluster's external interface and ports and you enable metrics, you must provide
the appropriate SSL information in the Prometheus configuration so it can access the metrics port.

« If you do not requirevalidation of the TL S certificate by the operator, you can avoid setting the truststore
PEM for the operator and, instead, set the cl ust er. cl ust er Spec. ssl . i nsecur e property to
true.

* If you enable SSL for the cluster, you must repeat the specification of the truststore and keystore files

every time you update the configuration. Using the - - r euse- val ues argument on the hel m up-
gr ade command is not sufficient.

7.2.2. Using Kubernetes Secrets to Store and Reuse TLS/SSL
Information

An dternative method is to store the key and trust stores and passwords in a Kubernetes secret. Secrets
are a standard feature of Kubernetes that allow you to store sensitive information as key value pairsin a
protected space. Three advantages of using a secret are:

* You do not have to enter sensitive TLS/SSL information in plain text when configuring or updating
your database.

» Thesecret isused automatically for subsequent updates; you do not have to repeatedly specify the TLSY
SSL files when updating the database configuration.

» You can reuse the same secret for multiple database instances and services.

To use a Kubernetes secret to store the TLS/SSL information for your database, you must first create the
necessary files as described in Section 7.2, “Configuring TLS/SSL”. Next you create your Kubernetes

32

— — — - -

Configuring Security in Kubernetes

secret using the kubectl create secret command, specifying the key names and corresponding artifacts
as arguments. For example:

$ kubectl create secret generic my-ssl-creds \
--fromfil e=keyst ore_dat a=nykey. j ks \
--fromfile=truststore_data=nytrust.jks \
--fromfile=certificate=mycert.pem \
--fromliteral =keyst ore_passwor d=t opsecr et \
--fromliteral =truststore_password=t opsecr et

It is critical you use the key names keystore _data, truststore _data, keystore password, truststore_pass-
word, and certificate for the keystore, truststore, corresponding passwords, and PEM file, respectively.
If not, the Volt Operator will not be able to find them. Also, the secret must be the the same Kubenetes
namespace as the Helm release you are configuring.

Once you create the secret you can use it to configure your database by not setting any of standard SSL
properties such as the cl ust er. confi g. depl oynent . ssl ... propertiesor cl ust er. cl us-
terSpec. ssl.certificateFile. Instead, set the property cl ust er. confi g. depl oynen-
t.ssl.ssl Secret. cert Secr et Nanme. Using the secret created in the preceding example, the con-
figuration of your database will look something like this:

cluster:
config:
depl oynent :
ssl:
ssl Secret :
cert Secret Nane: nmny-ssl-creds

7.2.3. Using Kubernetes cert-manager to Store TLS/SSL Cer-
tificates

Another aternative for maintaining the TLS/SSL information isto use the Kubernetes cert-manager (cert-
manager.io). The cert-manager is an add-on for Kubernetes that helps you create and maintain certificates
and other private information in Kubernetes. If you wish to use cert-manager for self-signed certificates,
you not only use it to store the certificate and truststore, you create them with cert-manager as well. (For
more detailed information concerning cert-manager, see the cert-manager documentation.)

The basic steps for storing self-signed TLS/SSL credentias in cert-manager are:
1. Create a Kubernetes secret with the TL S password you wish to use.

2. Create an issuer resource in Kubernetes that will generate and authenticate the certificate. You only
need to do this once for the namespace and multiple certificate requests can use the same issuer.

3. Create arequest for the issuer to generate the actual TLS/SSL certificate and store it in a Kubernetes
Secret.

4. Specify the resulting certificate secret in the VoltDB configuration and start your cluster.

Y ou create the K ubernetes secret containing the password using the kubect! cr eate secret command. For
example, The following command creates a secret (my-ssl-password) with the password "topsecret”. The
password must be assigned to the label password:

$ kubect!| create secret generic ny-ssl-password \

33

https://cert-manager.io/
https://cert-manager.io/
https://cert-manager.io/docs/

Configuring Security in Kubernetes

--fromliteral =passwor d=t opsecr et

Y ou create the cert-manager issuer and the certificate request using Y AML properties. The easiest way to
do thisis by typing the property declarationsinto a YAML file. For example, the following two YAML
files create a cert-manager issuer service and request a certificate.

create-issuer.yaml

api Version: cert-nanager.io/vl
ki nd: |ssuer
net adat a
nane: sel fsigned-issuer
nanespace: mnmydb
spec:
sel f Si gned: {}

request-cert.yaml

api Version: cert-manager.io/vl
kind: Certificate
nmet adat a
nane: my-ssl-certificate
nanespace: mydb
spec:
conmonNane: vol tdb. com
duration: 8766h
secret Name: ny-ssl-creds
keyst or es:
j ks:
create: true
passwor dSecr et Ref :
nane: my-ssl-password
key: password
i ssuer Ref:
nane: selfsigned-issuer
ki nd: |ssuer
privat eKey:
al gorithm RSA
encodi ng: PKCS1
size: 2048
usages:
- server auth

Four key points to note about the certificate request are:
» Theissuer must be in the same namespace as the database that uses the certificate.

» The certificate request references the secret you created containing the password (my-ssl-password in
the example).

» Asmentioned before, the key in the password secret must be "password".
* You specify the duration of the certificate in hours. In this example, 8766 hours, or one year.

Once you create the YAML files, you can create the issuer and request the certificate:

34

Configuring Security in Kubernetes

$ kubect! apply -f create-issuer.yani # Do only once
$ kubect!l apply -f request-cert.yan

Finally, in your database configuration, you point to the two secrets containing the password and created
by the certificate request (in this case, my-ssl-password and my-ssl-creds) the same way you would for
amanually created secret:

cluster:
confi g:
depl oyrent :
ssl:
ssl Secret :
passwor dSecr et Nanme: ny-ssl - password
cert Secret Nane: nmny-ssl-creds

7.3. Updating TLS/SSL Security Certificates

TLS certificates have an expiration date. If you are using TLS/SSL to encrypt data (either internally, ex-
ternally, or both), you will need to update those certificates befor e they expire to ensure minimal disruption
to normal operation.

One of the advantages of using cert-manager to create and manage your certificatesisthat it automatically
updates the certificates before they expire. If you are not using cert-manager — that is, you are either cre-
ating your own secret to contain the keystore and truststore or defining them manually with helm properties
— you will need to update the certificates yourself. Either way, shortly after the certificates are updated in
Kubernetes, the operator takes responsibility for applying the new credentialsto the cluster, the Operator,
and the auxiliary services as appropriate.

To update the TL S keystores, truststores, and credentials when using a self-defined secret, you must:
1. Create anew version of the truststore and keystore using a certificate with a new expiration date.
2. Delete the current Kubernetes secret.

3. Create a new version of the same secret using the new files.

Y ou create the new truststore and keystore using the same keytool commands used to create the original
files, as described in Section 7.2, “Configuring TLS/SSL”. Y ou then update the secret by deleting and
recreating the secret using the kubectl create secr et command from earlier, making sure you use the same
name for the secret but the new SSL files. For example:

$ kubect!| delete secret/mnmy-ssl-creds

$ kubect!| create secret generic mny-ssl-creds
--fromfil e=keyst or e_dat a=newkey. j ks
--fromfile=truststore_data=newtrust.jks
--fromfile=certificate=newcert.pem
--fromliteral =keyst ore_passwor d=t opsecr et
--fromliteral =truststore_password=t opsecr et

— — — - -

If you defined the TLS/SSL credentials manually using Helm properties, you will need to reapply the new
truststore and keystore files using a helm upgrade command and the --set-file flag.

35

Chapter 8. Cross Datacenter Replication
in Kubernetes

Previous chapters describe how to run asingle VoltDB cluster within Kubernetes. Of course, you can run
multiple independent VoltDB databases in Kubernetes. Y ou do this by starting each cluster in separate
regions, under different namespaces within the same Kubernetes cluster, or running asingleinstance of the
V oltDB Operator managing multiple clustersin the same namespace. However, some business applications
require the same database running in multiple locations— whether for dataredundancy, disaster recovery,
or geographic distribution. In VoltDB thisis done through Cross Datacenter Replication, or XDCR.

I mportant

Please note that in addition to the guidance specific to Kubernetes provided in this chapter, the
following rules apply to XDCR in any operating environment:

* You must have command logging enabled for three or more clusters.
» You can only join (or rejoin) onecluster at a time to the XDCR environment.

Command logging isalways recommended when using X DCR to ensure durability. Using XDCR
without command logging on two clusters, it is possible for transactions processed on one cluster
tobelost if the cluster crashes before the binary log is sent to the other cluster. However, for three
or more clusters, command logging is required. Without command logging, not only can XDCR
transactionsbelost, but it islikely the databaseswill diverge without warning, if acluster crashes
after sending a binary log to one cooperating cluster but not to the other.

8.1. Requirements for XDCR in Kubernetes

Once established, XDCR in Kubernetes works the same way it does in any other network environment, as
described in the chapter on Database Replicationin the Using VoltDB guide. Thekey differencewhenusing
XDCR in Kubernetes is how you establish the initial connection between the clusters. Unlike traditional
servers with known 1P addresses, in Kubernetes network addresses are assigned on the fly and are not
normally accessible outside individual namespaces or regions. Therefore, you must do additional work to
create the appropriate network relationships. Specifically, you must:

» Establish a network mesh between the Kubernetes clusters containing the VoltDB databases so that
the nodes of each VolItDB cluster can identify and resolve the IP addresses and ports of al the nodes
from the other VoltDB clusters.

» ConfiguretheVoltDB clusters, including propertiesthat identify the type of mesh involved and mesh-
specific annotations that determine what network addresses and portsto use.

The following sections describe the different approaches to establishing a network mesh and how to con-
figure the clustersin each case.

8.2. Choosing How to Establish a Network Mesh

For XDCR to work, each cluster must be able to identify and connect to the nodes of the other cluster.
Establishing the XDCR relationship occurs in two distinct phases:

36

https://docs.voltactivedata.com/UsingVoltDB/ChapReplication.php
https://docs.voltactivedata.com/UsingVoltDB/

Cross Datacenter Repli-
cation in Kubernetes

1. Network Discovery — First, the clusters connect over the replication port (port 5555, by default). The
initial connection confirms that the configurations are compatible, that the schema of the two clusters
match for all DR tables, and that there is datain only one of the clusters.

2. Replication — Oncethe clusters agree on the schema, each cluster sendsalist of node | P addresses and
ports to the other cluster and multiple connections are made, node-to-node, between the two clusters.
If there is existing data, a synchronization snapshot is sent between the clusters and then replication
begins.

For the network discovery phase, each cluster must have a clearly identifiable network address that the
other cluster can specify as part of its XDCR configuration. For the replication phase, each cluster must
have externally reachable network addresses for each node in the cluster that it can advertise during the
discovery phase and that the other cluster uses to make the necessary connections for replication.

Since, by default, the ports on a Kubernetes pod are not externally accessible, you must use additional
services to make the VVoltDB nodes accessible. Three such options are:

» KubernetesL oad Balancer s— Oneway to establish anetwork meshisto usethe built-in load balancer
service within Kubernetes. Load balancers provide a defined, persistent external interface for internal
pods. The advantage of using load balancers is that they are a native component of Kubernetes and
are easy to configure. The disadvantage is that if you are running your VoltDB clusters in a hosted
environment, load balancers tend to be far more expensive than regular pods and creating a separate
load balancer for each node in the cluster to handle the replication phase can be prohibitively expensive
unless you are managing your own infrastructure.

» Kubernetes Node Ports — An dternative to load balancersis using node ports. Node ports, like load
balancers, are native services of Kubernetes and provide an externally accessible interface for the inter-
nal pods. However, unlike load balancers where the addresses are persistent over time, node ports take
on the addresses of the underlying Kubernetes nodes and therefore can change as Kubernetes nodes
are recycled. Therefore node ports are not appropriate for the Network Discovery phase. On the other
hand, they can be a cheaper aternative to load balancers for the replication phase, since the cluster can
advertise the current set of node port addresses as pods come and go.

* Network Mesh Services— These additional services, such as Consul, create a network mesh between
Kubernetes clusters and regions. They essentially act asavirtua private network (VPN) within Kuber-
netes so the VoltDB clusters can interoperate as if they were local to each other. The advantage of us-
ing network mesh services is that configuring the VoltDB clusters is simpler, since al of the network
topology is handled separately. The deficit is that this requires yet another service to set up. And the
configuration of these services can be quite complex, requiring a deep understanding of — and access
to — the networking layer in Kubernetes.

Which networking solution you use is up to you. Y ou can even mix and match the alternatives — using,
for example, asingle load balancer per cluster for the Network Discovery phase and individual node ports
for each VoltDB cluster node during the replication phase.

Y ou define the type of network mesh to use and how to connect using Y AML properties when you config-
ureyour clusters. In general, the Helm properties starting with cl ust er . confi g. depl oynent . dr,
such asi d and r ol e, are generic properties common to all XDCR implementations. Helm properties
starting withcl ust er . ser vi ceSpec definethetype of network mesh to use and annotations specific
to the network type.

The following sections explain how to configure XDCR using Helm properties, with individual sections
discussing the differences necessary for various networking options, including:

» Common XDCR Properties

e Configuring XDCR in Local Namespaces

37

Cross Datacenter Repli-
cation in Kubernetes

e Configuring XDCR Using Load Balancers
» Configuring XDCR Using Node Ports for Replication

» Configuring XDCR Using Network Services

8.3. Common XDCR Properties

No matter what approach you choose for establishing the network mesh, you must first configure the
clusters as members of the XDCR quorum the same way you do on bare metal. That is, you must assign:

* A unique DR ID for each cluster between 0 and 127
» Thecluster role (XDCR)
« At least one node from the other cluster as the point of connection for the Network Discovery phase

On traditional servers these properties are defined in an XML configuration file. On Kubernetes, you
specify the configuration using Y AML properties starting. The following table configures XDCR using
DR ID 1 with a connection to the cluster with a release name of brooklyn.

cluster:
config:
depl oyrent :
dr:
id: 1
rol e: xdcr
connecti on:
enabl ed: true
source: \
"br ookl yn-vol t db-cl ust er-dr: 5555"

8.4. Configuring XDCR in Local Namespaces

The easiest way to configure XDCR clusters is when the VoltDB clusters are within the same Kuber-
netes namespace or cluster. In this case, the cluster IP addresses are al locally visible and so do not
need any additional network setup. The first step is to enable the DR service using thecl ust er . ser -
vi ceSpec. dr. enabl ed property:

cluster:
servi ceSpec:
dr:
enabl ed: true

Next, you must providethe address of areplication port from one node of the remote cluster asthesour ce
property.

In Kubernetesthe cluster nodes are assigned unique host namesbased on theinitial Helm release name (that
is, the name you assigned the cluster when you installed it). The VoltDB Operator also creates servicesthat
abstract the individual server addresses and provide a single entry point for specific ports on the database
cluster. The two services of interest are DR and client, which will direct traffic to the corresponding port
(5555 or 21212 by default) on an arbitrary node of the cluster. If the two database instances are within the
same Kubernetes cluster, you can use the DR service to make the initial connection between the database
systems, as shown in the following YAML configuration file.

38

Cross Datacenter Repli-
cation in Kubernetes

If the databases are running in different namespaces, you will need to specify the fully qualified service
name as the connection source in the configuration, which includes the namespace. So, for example, if the
manhattan database is in namespace nyl and brooklyn isin ny2, the Y AML configuration files related to
XDCR for the two clusters would be the following.

Manhattan Cluster

cluster:
config:
depl oyrment :
dr:
id: 1
rol e: xdcr
connecti on:
enabl ed: true
source: "brooklyn-vol tdb-cluster-dr.ny2.svc.cluster.|ocal: 5555"

Brooklyn Cluster

cluster:
config:
depl oyment :
dr:
id: 2
rol e: xdcr
connecti on:
enabl ed: true
source: "manhattan-voltdb-cluster-dr.nyl.svc.cluster.|ocal:5555"

8.5. Configuring XDCR Using Load Balancers

Kubernetesload balancersare an alternative for making VoltDB clusters accessible outside the Kubernetes
cluster or regionthey arein. Inthiscaseyou are not using load balancersfor their traditional role, balancing
the load between multiple pods. I nstead, the load balancers are solely used to provide externally accessible
| P addresses.

There are two approaches to using load balancers. The first approach is to assign a load balancer for
each node of the cluster. Since the nodes are externally reachabl e through persistent | P addresses on their
corresponding load balancer, the load balancers can be used for both the network discovery and replication
phases. The second approach is to use only one load balancer for the entire cluster to provide network
discovery, and use virtual network peering, available from your hosting provider, for replication.

Many hosting platforms, such as Google Cloud or AWS, provide proprietary mechanisms for performing
network peering between regions or data centers. Each of these solutions has its own unique set up and
configuration, separate from the configuration of VoltDB and the VoltDB Operator . As aresult, using a
network peering service is not as simple as the use of 1oad balancers for replication. However, they can be
significantly more cost effective when paired with a single load balancer for network discovery.

There is aso the choice of assigning the | P addresses for the load balancers dynamically, or having them
selected from arange of static addresses. Dynamic assignment is simpler, since you do not need to arrange
with your hosting provider for pre-assigned | Ps or hostnames. However, dynamic addresses al so mean you
do not know what the addresses are until the cluster starts. This means the remote XDCR cluster cannot
assign the sour ce property until after the cluster starts with its associated load balancers and you can
determine the IP addresses assigned to them.

39

Cross Datacenter Repli-
cation in Kubernetes

8.5.1. Separate Load Balancers For Each Node (cluster.ser-
viceSpec.perpod)

First you must assign the DR i d and r ol e as Helm properties. If the remote cluster is using static ad-
dresses, you can specify one of its nodes as the sour ce, as in the following example. If you are using
dynamic load balancers, leavethesour ce property blank and use the helm upgr ade --set command once
the clusters are running to assign a resulting node address for the remote cluster.

cluster:
config:
depl oyrent :
dr:
id: 1
rol e: xdcr
connecti on:
enabl ed: true
source: "chicago-dc-2" # Renpte cluster

Theninthecl uster. servi ceSpec section, you enable per pod by setting itst ype to LoadBal-
ancer. You will also want to set thedr . enabl ed property to true so the per pod load balancers are used
for network discovery aswell as replication.

For dynamically assigned addresses, set the publ i cl PFr onSer vi ce to true:

cluster:
servi ceSpec:
per pod:
type: LoadBal ancer
publ i cl PFronBervice: true
dr:
enabl ed: true

For static 1P addresses, usethe st at i ¢l Ps property to specify the addresses to assign when creating the
load balancers and, again, set dr . enabl ed to true.

cluster:
servi ceSpec:
per pod:
type: LoadBal ancer
staticl Ps:
- 12.34.56.78
- 12.34.56.79
- 12.34.56.80
dr:
enabl ed: true

8.5.2. Single Load Balancer For Discovery with Virtual Net-
working Peering (cluster.serviceSpec.dr)

To reduce the number of resources needed to connect XDCR clusters in different regions, you can use
asingle load balancer for network discovery and use virtual network peering services from your hosting
provider for connecting the two clusters during replication. How you set up and configure your network
peering is specific to each provider. See your provider's documentation for additional information. This

40

Cross Datacenter Repli-
cation in Kubernetes

section describes how to set up a single Kubernetes load balancer for network discovery once you have
your network peering established.

First you must assignthe DR i d and r ol e as Helm properties and, if known in advance, the sour ce
for the remote cluster:

cluster:
config:
depl oyrent :
dr:
id: 1
rol e: xdcr
connecti on:
enabl ed: true
source: "chicago-dc-2" # Renpte cluster

Then in the cl ust er. servi ceSpec section, you enable the dr service (rather than per pod) and
set itst ype to LoadBalancer. You may also need to provide additional annotations that help configure
the service. These annotations are specific to the host environment you are using. So, for example, the
following configuration provides annotations for AWS and the Google Cloud:

cluster:
servi ceSpec:
dr:
enabl ed: true
type: LoadBal ancer
annot ati ons:
CGoogl e d oud
net wor ki ng. gke. i o/ | oad- bal ancer-type: "Internal"
net wor ki ng. gke. i o/ i nt er nal -1 oad- bal ancer - al | ow gl obal - access: "true"

AWB
servi ce. bet a. kuber net es. i o/ aws- | oad- bal ancer-internal: "true"
servi ce. bet a. kuber net es. i o/ aws- | oad- bal ancer-type: "nlb"

8.6. Configuring XDCR Using Node Ports for Repli-
cation

Kubernetes node ports are another option for providing external access to the VoltDB cluster for replica
tion. Node portsare similar to load balancersin that they provide an externally accessible network address
for individual ports. Node ports are different in that the addresses are transitory — the address and/or port
number will change as pods come and go. So node ports are less practical for the Network Discovery
phase. However, they can be a cheap alternative for providing external access during the replication phase,
since the cluster can advertise the new addresses as its topology changes.

It isalso possible to mix and match solutions. So asingleload balancer can be used to provide the Network
Discovery service for a cluster, while node ports provide per pod network addresses for the replication
phase, as described next.

Again, you start by assigning the DR i d and r ol e as Helm properties and, if known in advance, the
sour ce for the remote cluster:

cluster:
config:

41

Cross Datacenter Repli-
cation in Kubernetes

depl oyrent :
dr:
id: 1
rol e: xdcr
connecti on:
enabl ed: true
source: "chicago-dc-2" # Renpte cluster

Y ou then define the load balancer for Network Discovery by setting the values of the cl ust er . ser -
Vi ceSpec. dr propertiesenabl ed totrueandt ype to LoadBalancer.

cluster:
servi ceSpec:
dr:
enabl ed: true
type: LoadBal ancer

Finally, define the replication phase as using node ports by configuring cl uster. ser-
Vi ceSpec. per pod properties t ype to NodePort and dr . enabl ed to true. You can aso use the
dr.start Replicati onNodePort property to specify the starting port number for the externally
accessible ports assigned to the node ports.

cluster:
servi ceSpec:
per pod:
type: NodePort
dr:

enabl ed: true
start Repl i cati onNodePort: 33111

8.7. Configuring XDCR Using Network Services

The goal of network services, such as Consul, is to make Kubernetes pods in different clusters or regions
appear asif they were local to each other. This makes configuring XDCR within VoltDB itself easier; in
most cases it is almost identical to how you configure clusters within local namespaces. However, how
you configure the network service itself is very dependent on which service you are using and the hosting
environment in which you are operating.

Using Consul as an example, Consul provides a "sidecar" — an additional process running in the same
pod as the VoItDB process — that makes remote pods and clusters appear to be local to the pod itself.
So rather than providing a remote I P address and port as the source for XDCR Network Discovery, you
specify alocal port. For example:

cluster:
config:
depl oyrent :
dr:
id: 1
role: xdcr
connecti on:
enabl ed: true
source: "l ocal host: 4444"

What port you specify and how you configure and start Consul and the Consul sidecar, is specific to the
Consul product and your implementation of it. The same is true when using other third-party networking

42

Cross Datacenter Repli-
cation in Kubernetes

services. Y ou may also need to provide additional annotations within the Helm configuration to complete
the network setup, depending upon which network service you use. For example:

cluster:
cl ust er Spec:
addi ti onal Annot ati ons:
"consul . hashi cor p. conf connect - servi ce": "chi cago-vol tdb-cluster"
"consul . hashi cor p. conif connect - servi ce-upstreans"”: "chi cago-vol tdb-cluster:55

See the product documentation for the specific service for further information.

43

Chapter 9. Managing XDCR Clusters in
Kubernetes

Once you have configured your XDCR clusters and your network environment, you are ready to start the
clusters. Y ou begin by starting two of the clusters. (Remember, only one of the clusters can have datain the
DR tables before the XDCR communication begins.) Once the schema of the DR tables in two databases
match, synchronization starts. After the initial two databases are synchronized, you can start additional
XDCR clusters, one at atime.

There are several management procedures that help keep the clusters in sync, especially when shutting
down or removing clusters from the XDCR environment. In other environments, these procedures use
voltadmin commands, such as shutdown, dr drop and dr reset. In Kubernetes, you execute these pro-
cedures through the VVoltDB Operator using Helm properties. Activities include;

* Removing acluster temporarily
» Removing acluster permanently
» Resetting XDCR when acluster islost

* Rejoining a cluster that was removed

9.1. Removing a Cluster Temporarily

If you want to remove acluster from the XDCR environment temporarily, you simply shutdown the cluster
normally, by setting the number of replicas to zero. This way, when the cluster restarts, the command
logs will take care of recovering al of the data and re-establishing the XDCR "conversations" with the
other clusters:

--set cluster.clusterSpec.replicas=0

9.2. Removing a Cluster Permanently

If you want to remove a cluster from the XDCR environment permanently, you want to make sureit sends
all of its completed transactions to the other clusters before it shuts down. Y ou do this by setting the DR
role to "none" to perform an orderly shutdown:

--set cluster.config. depl oynent.dr.rol e="none"
--set cluster.clusterSpec.replicas=0

Of course, you do not have to shut the cluster down. Y ou can simply remove it from the XDCR environ-
ment. Note that if you do so, the dataiin the current cluster will diverge from those clusters still participat-
ingin XDCR. So only do thisif you are sure you want to maintain a detached copy of the data:

--set cluster.config.depl oynment. dr.rol e="none"

Finaly, if you cannot perform an orderly removal from XDCR — for example, if one of the other clusters
isoffline or if sending the outstanding transactions will take too long and you are willing to lose that data
—you can settheproperty cl ust er. cl ust er Spec. dr. f or ceDr op to"TRUE" toforcethe cluster
to drop out of the XDCR mesh without finalizing its XDCR transfers. Once the cluster has been removed,
it is advisable to reset this property to "FALSE" so future procedures revert to the orderly approach of
flushing the queues.

Managing XDCR Clus-
tersin Kubernetes

--set cluster.clusterSpec.dr.forceDrop=TRUE
--set cluster.config.depl oyment.dr.rol e="none"
--set cluster.clusterSpec.replicas=0

--set cluster.clusterSpec.dr.forceDrop=FALSE

9.3. Resetting XDCR When a Cluster Leaves Unex-
pectedly

Normally, when acluster isremoved from XDCR in an orderly fashion, the other clusters are notified that
the cluster has left the mesh. However, if a cluster leaves unexpectedly — for example, if it crashes or is
shutdown and deleted without setting its role to "none" to notify the other clusters — the XDCR network
till thinks the cluster isamember and may return. Asaresult, the remaining clusters continue to save DR
logs for the missing member, using up unnecessary processing cycles and disk space. Y ou need to reset
the XDCR network mesh to correct this situation.

To reset the mesh you notify the remaining clustersthat the missing cluster isno longer amember. Y ou do
thisbe adding the DR ID of themissing cluster tothecl ust er . cl ust er Spec. dr. excl uded us-
t er s property. The property value is an array of DR IDs. For example, if the DR ID (cl ust er . con-
fig.depl oynment. dr.id)of thelost clusteris"3", you set the property to "{ 3} ":

--set cluster.clusterSpec.dr.excluded usters="'{3}"

Y ou must set this property for all of the clusters remaining in the XDCR environment. If later, you want
to add the missing cluster (or another cluster with the same DR ID) back into the XDCR mesh, you will
need to reset this property. For example:

--set cluster.clusterSpec.dr.excl udeC usters=null

9.4. Rejoining an XDCR Cluster That Was Previ-
ously Removed

If acluster isremoved from the XDCR cluster permanently, by resetting the DR role, or through exclusion
by the other clusters, it is still possible to rejoin that cluster to the XDCR network. To do that you must
reinitialize the cluster and, if it was forcibly excluded, remove the exclusion from the current members of
the network. (Note, the following procedure is not necessary if the cluster was removed temporarily by
setting the number of replicasto zero.)

First, if the cluster was forcibly removed by exclusion, you must remove the exclusion from the current
members of the XDCR network by clearingthecl ust er . cl ust er Spec. dr. excl udeC usters
property (removing the missing cluster's ID from the array):

--set cluster.clusterSpec.dr.excludeC usters=null

Then you must restart the cluster you want to rejoin, reinitializing the cluster's contents with the cl us-
ter.cl usterSpec.initForce property and setting the appropriate properties (such asthe DR role
and connection properties):

--set cluster.clusterSpec.initForce=TRUE
--set cluster.config.depl oynment.dr.rol e="xdcr"
--set cluster.clusterSpec.replicas=3

45

Managing XDCR Clus-
tersin Kubernetes

Once the cluster rejoins the XDCR network and synchronizes with the current members, be sure to reset
thecl ust er. cl ust er Spec. i ni t For ce property to false.

46

Appendix A. Helm voltadmin Plugin

Y ou can control and administer the VoltDB cluster by adjusting properties through the kubectl and helm
command line tools. However, a number of common administrative actions require several steps and ad-
justment of multiple propertiesin theright order to perform correctly. To simplify these activities, the helm
plugin voltadmin automates these steps and simplifies the management process by providing a consistent
interface across both bare metal and Kubernetes environments.

Tousethehelm plugin, you must first install the plugin software and itsdependencies. Toinstall the plugin:

1. Install Dependencies — The plugin requires the same versions of Python, Helm, and Kubernetes as
the Volt software; plus an additional Python module, click (version 8.0.1 or later). The easiest way to
install the click module is using pip:

$ python3 -mpip install click

If you do not already have pip installed, you may need to install it first. And if you do not want to install
click for all users, you can use avirtual environment with virtualenv.

2. Install the Plugin — Do adirectory of the repository for Volt Active Data charts and plugins (https:/
storage.googl eapis.com/voltdb-kubernetes-charts/) and search for "voltadmin". Select the most recent
version and install it using the helm plugin install command, specifying the URL of the plugin you
want. For example, the following command installs version 1.4.3:

$ helmplugin install \
https://storage. googl eapi s. coni vol t db- kuber net es-charts/voltadm n-1.4.3.tgz

3. Test the Plugin — Onceinstalled, you can use the voltadmin command directly on the helm command
line. Usethe - - hel p flag to get alist of the commands and arguments you can use. For example:

$ helmvoltadnmin --help

The following reference page describes the management commands that the voltadmin plugin supports.

47

https://storage.googleapis.com/voltdb-kubernetes-charts/
https://storage.googleapis.com/voltdb-kubernetes-charts/

Helm voltadmin Plugin

helm voltadmin

helm voltadmin — Performs administrative functions on aVVoltDB database in Kubernetes.

Syntax

helm voltadmin --release={release-name} collect

helm voltadmin --release={release-name} dr drop

helm voltadmin --release={release-name} dr reset [--cluster={cluster-id}]
helm voltadmin mask {config-file} [output-file]

helm voltadmin --release={release-name} pause

helm voltadmin --release={release-name} resume

helm voltadmin --release={release-name} shutdown

global qualifiers:
--chart={chart-name}
--context={context-name}
--help
--namespace={namespace-name}
--verbose

Description

The helm voltadmin command allows you to perform administrative tasks on a VoltDB database. You
specify the Helm release name and the action to take. There are global arguments to disambiguate the
context (such asthe chart name, Kubernetes context, and namespace) which can al so precede the command
keyword. Individual commands may have they own unique arguments as well.

Arguments

The following global arguments are available for all helm voltadmin commands and must precede the
command name.

- -help

Displays a list of available commands and qualifiers. To see help for a specific command and its
options, put the --help qualifier after the command name. For example:

$ helmvoltadmin collect --help
--chart={ helm-chart-name}

Specifies the Helm chart the database is using.
--context={ context-name}

Specifies the Kubernetes context where the database is running.

48

Helm voltadmin Plugin

--namespace={ namespace-name}

Specifies the Kubernetes namespace where the database is running.

--verbose

Displays additional information about the specific commands being executed.

Commands

The following are the administrative functions that you can invoke using voltadmin.

collect

Collectslogs, error files, stack dumps and other information needed for debugging any problemswith
database operation.

dr drop

Removes the current cluster from an XDCR environment. Performing a drop breaks existing DR
connections, deletes pending binary logs and stops the queuing of DR data on the current cluster. It
also tells al other clustersin the XDCR relationship to drop their connection to the current cluster
and remove any associated binary logs for that cluster.

The helm voltadmin dr drop command lets you effectively remove a single cluster — the cluster on
which the the command is executed — from amulti-cluster XDCR environment in asingle command.

dr reset

Resets the database replication (XDCR) connection(s) for the database. Performing a reset breaks
existing XDCR connections, deletes pending binary logs and stops the queuing of DR data on the
current cluster.

If there are two clustersin an XDCR environment, you can use helm voltadmin dr reset from one
cluster to drop the connection to the other cluster. If you are using multiple XDCR clusters, the helm
voltadmin dr drop command is the recommended way to remove a running cluster from the envi-
ronment.

Inamulti-cluster XDCR environment you can usethe --cluster qualifier to drop the connection to just
one cluster. Specify the ID of the remote cluster you wish to drop as an argument to the --cluster op-
tion. For example, if one cluster has stopped and you want to remove it from the XDCR environment,
you can reset the connections to that cluster by issuing the helm voltadmin dr reset --cluster ={id}
command on all the remaining clusters.

mask {configuration-file} [output-file}]

ReadsaY AML configuration file containing user and password declarations and hashesthe passwords
so they are not readablein plain text, but still usablefor configuring the database. If you do not specify
an output file, the command overwrites the input file.

pause

Pauses the database, stopping any additional activity on the client port.

resume

Resumes normal database operation after a pause.

49

Helm voltadmin Plugin

shutdown

Shuts down the database process on al nodes of the cluster. The shutdown command performs an
orderly shutdown, pausing the database, completing all pending transactions and writing any queued
export, import, or DR data to disk before shutting down the database.

Examples

The following example pauses the database cluster associated with the mydb release.
$ helmvoltadm n --rel ease=nydb pause

The next example shuts down the database.

$ hel mvoltadm n --rel ease=nydb shut down

The last exampl e uses the mask command to encrypt the passwords in the configuration file myusers.yaml
and writes out the masked entriesasanew YAML file, maskedusers.yaml.

$ hel mvol tadm n mask nyusers.yam maskedusers. yanl

50

Appendix B. VoltDB Helm Properties

Y ou communicate with the VoltDB Operator, and Kubernetesitself, through the Helm chartsthat VoltDB
provides. You can also specify additional Helm properties that customize what the Helm charts do. The
properties are hierarchical in nature and can be specified on the Helm command line either as one or more
YAML filesor asindividual arguments. For example, you can specify multiple propertiesina Y AML file
then reference the file as part of your command using the - - val ues or - f argument, like so:

$ helminstall mydb vol tdb/voltdb --val ues nyoptions. yan

Or you can specify the properties individually in dot notation on the command line using the --set flag,
like so:

$ helminstall mydb voltdb/voltdb \
--set cluster.clusterSpec.replicas=5\
--set cluster.config.deploynment.cluster. kfactor=2 \
--set cluster.config.deploynent.cluster.sitesperhost=12

For arrays and lists, you can specify the values in dot notation by enclosing the list in braces and then
guoting the command as required by the shell you are using. For example:

$ hel m upgrade nmydb vol tdb/voltdb -reuse-val ues
--set cluster.clusterSpec. excluded usters='{1, 3}’

In YAML, you specify each element of the property on a separate line, following each parent element
with a colon, indenting each level appropriately, and following the last element with the value of the
property . On the command line you specify the property with the elements separated by periods and the
value following an equals sign. So in the preceding i nst al | example, the matching YAML file for the
command line properties would look like this:

cluster:
cl ust er Spec:
replicas: 5
config:
depl oyrent :
cluster:
kfactor: 2
sitesperhost: 12

Many of the properties have default values; the following tables specify the default values where applic-
able. You do not need to specify values for all of the properties. In fact, you can start a generic VoltDB
database specifying only the license file. Otherwise, you need only specify those properties you want to
customize.

Finally, the properties are processed in order and can be overridden. So if you specify different values
for the same property in two YAML files and as a command line argument, the latter Y AML file setting
overrides the first and the command line option overrides them both.

B.1. How to Use the Properties

The following sections detail all of the pertinent Helm properties that you can specify when creating or
modifying the VoltDB Operator and its associated cluster. The properties are divided into categories and
each category identified by the root elements common to all propertiesin that category:

e Top-Level Kubernetes Options

51

VoltDB Helm Properties

» Kubernetes Cluster Startup Options

* Network Options

» VoltDB Database Startup Options

» VoltDB Database Configuration Options

For the sake of brevity and readability, the properties in the tables are listed by only the unique elements
of the property after the root. However, when specifying a property in YAML or on the command line,
you must specify all elements of the full property name, including both the root and the unique elements.

B.2. Top-Level Kubernetes Options

The following properties affect how Helm interacts with the Kubernetes infrastructure.

TableB.1. Top-Level Options

Parameter Description Default
cluster.enabled Create VoltDB Cluster true
cluster.serviceAccount.create If true, create & use service ac-|true
count for VoltDB cluster node
containers
cluster.serviceAccount.name If not set and createistrue, aname|""
is generated using the fullname
template

B.3. Kubernetes Cluster Startup Options

The following properties affect the size and structure of the Kubernetes cluster that gets started, aswell as
the startup attributes of the VoltDB cluster running on those pods.

Table B.2. Options Starting with cluster.cluster Spec...

Parameter Description Default

replicas Pod (VoltDB Node) replicacount, | 3
scaling to O will shutdown the
cluster gracefully

.maxPodUnavailable Maximum pods unavailable in|kfactor
Pod Disruption Budget

.maintenanceMode VoltDB Cluster maintenance|false
mode (pause all nodes)

.takeSnapshotOnShutdown Takes a snapshot when clus-|""

ter is shut down by scaling to
0. One of: NoCommandLogging
(default), Always, Never. No-
CommandLogging means 'snap-
shot only if command logging is
disabled'.

.enablelnServiceUpgrade WARNING: Use this switch on-|false
ly when you know that version
you are upgrading to is compat-

52

VoltDB Helm Properties

Parameter

Description

Default

ible with current version, check
Release Notes. Enable or disable
in service upgrade. When this is
enabled upon image change oper-
ator will not do full restart with
new image. It does a RollingUp-
date to upgrade individual pods
image/software.

.initForce

Always init --force on VoltDB
node start/restart. WARNING:
This will destroy VoltDB data on
PV Cs except snapshots.

false

.deletePVC

Delete and cleanup generated
PVCs when VoltDBCluster is
deleted, requires finalizers to be
enabled (on by default)

false

.adlowRestartDuringUpdate

Allow VoltDB cluster restarts if
necessary to apply user-request-
ed configuration changes. May in-
clude automatic save and restore
of database.

false

.stoppedNodes

User-specified list of stopped
nodes based on Stateful Set

forceStopNode

Enable or disable force stop node

false

.persistentVolume.size

Persistent Volume size per Pod
(VoltDB Node)

32Gi

.persistentVolume
.storageClassName

Storage Class name to use, other-
wise use default

.persistentV olume.hostpath
.enabled

Use HostPath volume for local
storageof VoltDB. Thisnodestor-
age is often ephemera and will
not use PV C storage classesif en-
abled.

false

.persistentV olume.hostpath.path

HostPath mount point, defaults
to /datalvoltdb/ if not specified.

.s9.certificateFile

PEM encoded certificate chain
used by the VoltDB operator
when TLS/SSL is enabled

.ssl.insecure

If true, skip certificate verifica
tion by the VoltDB operator when
TLS/SSL isenabled

false

.storageConfigs

Optional storage configs for pro-
visioning additional persistent
volume claims automatically

.additionalVVolumes

Additional list of volumesthat can
be mounted by node containers

53

VoltDB Helm Properties

Parameter Description Default
.additional VolumeMounts Pod volumes to mount into the|[]
container's filesystem, cannot be
modified once set
.Image.registry Image registry docker.io
.Image.repository Image repository voltdb/voltdb-enterprise
.image.tag Image tag 10.0.0
.Image.pullPolicy Image pull policy Always
.additional StartArgs Additional VoltDB start com-|[]
mand args for the pod container
.priorityClassName Pod priority defined by an existing|""
PriorityClass
.additional Annotations Additional custom Pod annota-|{ }
tions
.additional Labels Additional custom Pod labels {}
.resources CPU/Memory resource re-|{ }
questg/limits
.nodeSel ector Node labels for pod assignment |{ }
.tolerations Pod tolerations for Node assign-|[]
ment
afinity Node affinity {}
.topology SpreadConstraints describes how a group of pods||[]
ought to spread across topology
.useCloudNativePlacementGroup |Enable or disable cloud native|false
placement group in VoltDB
.podSecurityContext Pod security context {"runAsNonRoot":true,

"runAsUser":1001,
"fsGroup":1001}

.securityContext

Container security — context.
WARNING: Changing user or
group ID may prevent VoltDB
from operating.

{"privileged":false,
"runAsNonRoot":true,
"runAsUser":1001,
"runAsGroup":1001,
"readOnlyRootFilesystem™:true}

.clusterlnit.initSecretRefName

Name of pre-created Kuber-
netes secret containing init con-
figuration (deployment.xml, li-
cense.xml and log4j.xml), ignores
init configuration if set

.clusterlnit
.schemaConfigMapRefName

Name of pre-created Kubernetes
configmap containing schema
configuration

.Clusterlnit
.classesConfigM apRefName

Name of pre-created Kubernetes
configmap containing schema
configuration

VoltDB Helm Properties

Parameter Description Default
Duration in seconds the Pod needs| 30
.podTerminationGracePeriodSe- |to terminate gracefully. Defaults
conds to 30 seconds if not specified.
JivenessProbe.enabled Enable/disable livenessProbe true
JivenessProbe Delay before liveness probeisini-| 20
.initial DelaySeconds tiated
JivenessProbe.periodSeconds How often to perform the probe |10
JivenessProbe.timeoutSeconds | When the probe times out 1
JivenessProbe.failureThreshold | Minimum consecutive failuresfor|10
the probe
JivenessProbe.successThreshold |Minimum consecutive successes| 1
for the probe
.readinessProbe.enabled Enable/disable readinessProbe |true
.readinessProbe Delay before readiness probe is|30
.InitialDelaySeconds initiated
.readinessProbe.periodSeconds | How often to perform the probe |17
.readinessProbe.timeoutSeconds | When the probe times out
.readinessProbe.failureThreshold | Minimum consecutive failuresfor|6
the probe
.readinessProbe Minimum consecutive successes|1
.successThreshold for the probe
.StartupProbe.enabled Enable/disable startupProbe, fea-|true
ture flag must also be enabled at
acluster level (enabled by default
in 1.18)
.StartupProbe Delay before startup probe is ini-|45
.initial DelaySeconds tiated
.StartupProbe. periodSeconds How often to perform the probe |10
.StartupProbe.timeoutSeconds When the probe times out 1
StartupProbe.failureThreshold | Minimum consecutive failuresfor|18
the probe
StartupProbe.successThreshold | Minimum consecutive successes| 1

for the probe

.env.VOLTDB_OPTS

VoltDB cluster additional java
runtime options (VOLTDB_OP-
TS

env.VOLTDB_GC_OPTS

VoltDB cluster java runtime
garbage collector options (VOLT-
DB_GC_OPTYS)

.env.VOLTDB_HEAPMAX

VoltDB cluster heap size, integer
number of megabytes (VOLTD-

B_HEAPMAX)

55

VoltDB Helm Properties

Parameter Description Default

.env.VOLTDB_HEAPCOMMIT |Commit VoltDB cluster heap|""
at startup, true/false (VOLTD-
B_HEAPCOMMIT)

.env VoltDB logdjcfg file path

VOLTDB_K8S LOG_CONFIG

env Override for region label on node |""

VOLTDB_REGION_LA-

BEL_NAME

.env Override for zone label on node | ™"

VOLTDB_ZONE LA-

BEL_NAME

.customEnv Key-value map of additional|{}
envvarsto set in al VoltDB node
containers

.dr.forceDrop Indicate if you want to drop clus-|false
ter from XDCR without producer
drain.

.dr.excludeClusters User-specified list of clusters not|[]
part of XDCR

B.4. Network Options

The following properties specify what ports to use and the port-mapping protocol.

Table B.3. Options Starting with cluster .serviceSpec...

Parameter Description Default

type VoltDB service type (options|ClusterlP
ClusterlP, NodePort, and Load-
Balancer)

.external TrafficPolicy VoltDB service externa traffic|Cluster
policy (options Cluster, Local)

.vmcPort Volt Management Center web in-| 8080
terface Service port

.vmcNodePort Port to expose Volt Management| 31080
Center service on each node, type
NodePort only

.vmcSecurePort Volt Management Center secure|8443
web interface Service port

.vmcSecureNodePort Port to expose Volt Management| 31443

Center secure service on each
node, type NodePort only

.adminPortEnabled Enable exposing admin port with|true
the VoltDB Service

.adminPort VoltDB Admin exposed Service|21211
port

56

VoltDB Helm Properties

Parameter Description Default
.adminNodePort Port to exposeVoltDB Admin ser-|{ 31211
vice on each node, type NodePort
only
.clientPortEnabled Enable exposing client port with|true
the VoltDB Service
.ClientPort VoltDB Client exposed service|21212
port
.clientNodePort Port to expose VoltDB Client ser-|31212
vice on each node, type NodePort
only
.loadBalancerIP VoltDB Load Balancer IP
.loadBalancerSourceRanges VoltDB Load Balancer Source|[]
Ranges
.external | Ps List of IP addresses at which the|[]
VoltDB serviceisavailable
.http.sessionAffinity SessionAffinity override for the|ClientlP
HTTP service
.http.sessionAffinityConfig Timeout override for http.session-| 10800
.clientl P.timeoutSeconds Affinity=ClientIP
.dr.type VoltDB DR service type, valid|""
options are ClusterlP (default),
LoadBalancer, or NodePort
.dr.annotations Additiona custom Service anno- |{ }
tations
.dr.availablelPH]] (OBSOLETE as of 1.6.0) []
.dr.staticlP Single static IPfor DR serviceuse| ™
when creating L oadBalancers sin-
gle DR service
.dr.enabled Create single DR servicefor DR |false
.dr.external TrafficPolicy VoltDB DR service external traf-|""
fic policy
.dr.replicationPort Kubernetes service porty].port| 5555
for the VoltDB DR replication
service
.dr.replicationNodePort Kubernetes service portg].node-| 31555
Port for VoltDB replication ser-
vice on each node, only type
NodePort. If -1 is specified, ku-
bernetes will select a random un-
used port
.dr.servicePerPod (OBSOLETE as of 1.6.0) fase
.dr.publicl PFromService Operator will wait to get the pub-|false

lic IP addressfrom the service sta-
tus set by Kubernetes

57

VoltDB Helm Properties

Parameter Description Default

.dr.override Allows per-pod-service overrides||[|
of serviceSpec

.dr.override]].podIndex (OBSOLETE asof 1.6.0)

.dr.override]].annotations (OBSOLETE as of 1.6.0)

.dr.override]].publiclP (OBSOLETE as of 1.6.0)

.dr.override]].spec (OBSOLETE as of 1.6.0) {}

.dr.override]].spec.type (OBSOLETE asof 1.6.0)

.dr.override]].spec.loadBal- | (OBSOLETE as of 1.6.0)

ancerlP

.dr.override]].spec.externallPs | (OBSOLETE as of 1.6.0) [

.perpod.type VoltDB service type, vaid op-|""

tions are ClusterlP (default),
LoadBalancer, or NodePort

.perpod.publicl PFromService Operator will wait to get the pub-|false
lic IPaddressfrom the service sta-
tus set by Kubernetes

.perpod.staticl P] AvailablePsand I P-rangesto use|[]
when creating LoadBalancerson a
per-pod basis

.perpod.dr.enabled Enable DR services on a per-pod|false
basis

.perpod.dr.replicationPort Kubernetes service porty].port|5555

for the perpod VoltDB DR repli-
cation services

.perpod.dr Starting Kubernetes service| 32555
.startReplicationNodePort porty].noodePort for poerpod
VoltDB replication service, type
NodePort only. Start port indi-
cates starting port and each pod
gets subsequent number. If -1 is
specified, kubernetes will select a
random unused port

.perpod.dr.externa TrafficPolicy |VoltDB DR service external traf-|""
fic policy for per pod DR services.

.perpod.metrics.enabled Enables metrics k8s service for|false
each pod
.Service.metrics.type Sets service type ClusterlP

B.5. VoltDB Database Startup Options

The following properties affect how Helm interacts with the VoltDB cluster and specific initialization
options, such asthe initial schema and procedure classes.

58

VoltDB Helm Properties

Table B.4. Options Starting with cluster.config...

Parameter Description Default

.auth.username Operator admin user name used to| voltdb-operator
access VoltDB. Required. Super-
seded by credSecretName when
provided

.auth.password Operator admin password used to| ™"
access VoltDB if security is en-
abled. Required. Superseded by
credSecretName when provided.

.auth.credSecretName Name of the premade secret con-|""
taining Operator admin username
and password. This overrides
auth.username and auth.password
values and avoids including the
password in yaml.

.schemas Map of optional schemafilescon-|{ }
taining data definition statements

.Classes Map of optional jar files container|{ }
stored procedures

JlicenseXMLFile VoltDB Enterprise licensexml [{ }

JogdjcfgFile Custom Logdj configuration file |{ }

B.6. VoltDB Database Configuration Options

The following properties define the VoltDB database configuration.

Table B.5. Options Starting with cluster.config.deployment...

Parameter Description Default

.Cluster.kfactor K-factor to use for database dura- |1
bility and data safety replication

.cluster.sitesperhost SitesPerHost for VoltDB Cluster |8

.heartbeat.timeout Internal VoltDB cluster verifica-|90
tion of presence of other nodes
(seconds)

.partitiondetection.enabled Controlsdetection of network par-|true
titioning

.commandlog.enabled Command logging for database|true
durability (recommended)

.commandlog.logsize Command logging allocated disk| 1024
space (MB)

.commandlog.synchronous Transactions do not complete un- |false
til logged to disk

.commandlog.frequency.time How often the command log is|200
written, by time (milliseconds)

59

VoltDB Helm Properties

Parameter Description Default
.commandlog.frequency How often the command log is| 2147483647
.transactions written, by transaction command
.dr.id Unique cluster id, 0-127 0
.dr.role Role for this cluster, currently the| xdcr
only accepted valueis 'xdcr'
.dr.conflictretention Automatic pruning of xdcr con-|""
flict logs, value is integer fol-
lowed by one of m/h/d, for min-
utes’hours/days
.dr.connection.enabled Specifies whether disaster recov-|false
ery isenabled
.dr.connection.source If role is replica or xdcr: list of |""
host names or |P addresses of re-
mote node(s)
.dr.connection.preferredSource | Cluster ID of preferred source
.dr.connection.ssl (OBSOLETE asof 2.0.0 asa set-|{ }
ting in its own right; use the 3 fol-
lowing settings)
.dr.connection.ssl.truststorefile |Optional truststore file used to|""
verify the identity of the remote
VoltDB cluster; defaults to trust-
store of this cluster, unless sslSe-
cret isset
.dr.connection.ssl.truststore Password for truststore file speci-|""
.password fied above
.dr.connection.ssl.ssl Secret Optional pre-made secret contain-|""
.certSecretName ing truststore data, including pass-
word if needed
.dr.consumerlimit.maxsize Enable DR consumer flow con-|""
trol either maxsize or maxbuffers
must be specified maxsize can be
specified as 50m, 1g or just num-
ber for bytes
.dr.consumerlimit.maxbuffers Enable DR consumer flow con-|""
trol either maxsize or maxbuffers
must be specified
.dr.schemachange.enabled Enable DR consumer to continue|"fase"
while compatible schema changes
are being made
.dr.schemachange.truncate Enable values to be truncated if |"false"

a VARCHAR column is wider
on another cluster while schema
changes are being made

.export.configurations

List of export configurations

[]

.Import.configurations

List of import configurations

[]

60

VoltDB Helm Properties

Parameter Description Default
.avro.namespace Avro namespace
.avro.registry Avro registry URL
.avro.prefix Avro configuration prefix
.avro.properties Avro configuration properties {}
.topics.threadpool Kafka topics threadpool to use)
.topics.enabled Kafkatopics enabled or not true
.topics.broker Kafkatopics broker configuration| ™
.topics.broker.properties Kafkatopics broker configuration|[]
properties
.topics.topic List of topics [
.topics.topic.name topic name =
.topics.topic.procedure Procedure to invoke upon getting| ™
message
.topics.topic.format Format of topic message
.topics.topic.retention Topic retention policy
.topics.topic.opaque Is this an opague topic fase
.topics.topic.allow List of roles allowed to accessthe| ™
topic
.topics.topic.priority Priority for topics requests (if pri-|4
ority scheduling is enabled)
.topics.topic.properties Topic configuration properties []
.httpd.enabled Determinesif HTTP APl daemon|false
isenabled
.httpd.jsonapi.enabled Determines if jSON over HTTP|false
API isenabled
.httpd.port Specifies port for HTTP 8080 or 8443
.paths.commandl og.path Directory path for command log |/pvc/voltdb/voltdbroot/
command_log
.paths.commandl ogsnapshot.path | Directory path for command log|/pvc/voltdb/voltdbroot/
snapshot command_log_snapshot
.paths.droverflow.path Directory path for disaster recov-|/pvc/voltdb/voltdbroot/
ery overflow dr_overflow
.paths.exportcursor.path Directory path for export cursors |/pvc/voltdb/voltdbroot/
export_cursor
.paths.exportoverflow.path Directory path for export over-|/pvc/voltdb/voltdbroot/
flow export_overflow
.paths.|argequeryswap.path Directory path for large query|/pvc/voltdb/voltdbroot/
swapping large_query_swap
.paths.snapshots.path Directory path for snapshots.|/pvc/voltdb/voltdbroot/snapshots

Must not be located in aread-only
root directory of mounted storage
(as init --force will rename exist-

61

VoltDB Helm Properties

Parameter

Description

Default

ing snapshot folder). Use a subdi-
rectory.

.security.enabled

Controls whether user-based au-
thentication and authorization are
used

false

.Security.provider

Sets authentication provider as
'hash’ (local) or 'ldap' (using a
customer-specified LDAP/LDAP
server)

hash

.security.ldap.server

URL for LDAP server, required;
as 'ldap://server:port’, or 'ldaps://
server:port', port optional

.security.ldap.user

Username used by VoltDB for
read-only accesson LDAP server,
required

.security.ldap.password

Password corresponding to LDAP
server username, required

.security.ldap.rootdn

Distinguished Name of the root
of the LDAP schema that defines
users and groups, required

.security.ldap.userclass

Name of the LDAP schema's ob-
jectClass containing user informa-
tion

"inetOrgPerson”

.security.ldap.useruid

Name of the LDAP attributein the
userObjectClass that should con-
tain the username provided by the
VolItDB client

"uid"

.security.ldap.groupclass

Name of the LDAP schema's ob-
jectClassdefining agroup of users

"groupOfUniqueNames"

.security.ldap.groupmemberid

Name of the LDAP schema's ob-
jectClassdefining agroup of users

"uniqueMember”

.security.ldap.timeout Timeout, in seconds, for requests| 10
tothe LDAP server

.security.ldap.group List of LDAP groups and their|[]
mapping to VoltDB roles

.security.ldap.sdl.truststorefile | Truststore file used to validate|""
LDAPS server certificate (Java
KeyStore format)

.security.ldap.sdl truststore Password for LDAP truststore file|""

.password

.Snapshot.enabled Enable/disable periodic automatic| true
snapshots

.snapshot.frequency Frequency of automatic snapshots|24h
(insm,h)

.snapshot.prefix Unique prefix for snapshot files |AUTOSNAP

62

VoltDB Helm Properties

Parameter

Description

Default

.Snapshot.retain

Number of snapshotsto retain

.snmp.enabled

Enables or disables use of SNMP

false

.snmp.target

Host name or |P address, and op-
tional port (default 162), for SN-
MP server

.snmp.authkey

SNMPv3 authentication key if
protocol is not NoAuth

voltdbauthkey

.snmp.authprotocol

SNMPv3 authentication protocol.
Oneof: SHA, MD5, NoAuth

SHA

.shmp.community

Name of SNMP community

public

.snmp.privacykey

SNMPv3 privacy key if protocol
isnot NoPriv

voltdbprivacykey

.snmp.privacyprotocol

SNMPv3 privacy protocol. One
of: AES, DES, 3DES, AES192,
AES256, NoPriv

AES

.Shmp.username

Username for SNMPv3 authenti-
cation; else SNMPv2c is used

.sd.enabled

Enable or disable configuration
of TLS/SSL on the cluster. Oth-
er properties control activation of
TLS/SSL for specific ports and
features

false

.s9l.externd

Extends TLS/SSL security to
al external ports (default admin
21211, client 21212). Only ac-
tive if cluster.config.deployment
.sdl.enabled isalso "true”.

false

.ssl.internal

Extends TLS/SSL security to the
internal port (default 3021). On-
ly active if cluster.config.deploy-
ment.ssl.enabled isalso "true”.

false

.s9l.dr

Extends TLS/SSL security to
the DR port (5555). Only ac-
tive if cluster.config.deployment
.ssl.enabled is also "true”.

false

.sd.keystorefile

Keystore file to mount at the key-
store path (unless sslSecret is set)

.53l keystore.password

Password for VoltDB keystore
file

.s9l.truststore.file

Truststore file to mount at the
truststore path (unless sslSecret is
Set)

.Sdl.truststore.password

Password for VoltDB truststore
file

63

VoltDB Helm Properties

Parameter Description Default
.53l.s3l Secret.certSecretName Pre-made secret containing key-|""
store and truststore data, optional -
ly including passwords
.sdl.ssl Secret Pre-made secret containing pass-|""
.passwordSecretName word for keystore/truststore, if
password is not in the secret
named by certSecretName
.Systemsettings.elastic.duration | Target value for the length of |50
time each rebalance transaction
will take (milliseconds)
.Systemsettings.elastic.throughput | Target value for rate of data pro- |2
cessing by rebalance transactions
(MB)
.Systemsettings.compaction Interval to indicate how often|60
.nterval memory compaction should run
(seconds)
.Systemsettings.compaction Set a target block count com-|1
.maxcount paction should try and achieve if
thereis memory fragmentation
.Systemsettings.flushinterval Interval between checking for|1000
.minimum need to flush (milliseconds)
.Systemsettings.flushinterval.dr | Interval for flushing DR data(mil- | 1000
.interval liseconds)
.Systemsettings.flushinterval Interval for flushing export data|4000
.export.interval (milliseconds)
.Systemsettings.procedure if set, mutable array parameters|true
.copyparameters should be copied before process-
ing
.Systemsettings.procedure.loginfo | Threshold for long-running task | 10000
detection (milliseconds)
.Systemsettings.query.timeout Timeout on SQL queries (mil-|10000
liseconds)
.Systemsettings.priorities.enabled | Enables priority scheduling of re-|false
quests by VoltDB cluster (true/
false)
.Systemsettings.priorities Modifies priority scheduling by|1000
.maxwait setting a limit on time waiting
while higher priority requests ex-
ecute (millisecs)
.Systemsettings.priorities.batch | Modifiespriority scheduling algo- | 25
rithm to execute multiple requests
before rescheduling
.Systemsettings.priorities.dr Priority for DR requests (1-8, 1is|5
priority highest priority)
.Systemsettings.priorities Priority for snapshot requests|6

.Snapshot.priority

(1-8, 1ishighest priority)

VoltDB Helm Properties

Parameter

Description

Default

.Systemsettings.resourcemonitor
.frequency

Resource Monitor interval be-
tween resource checks (seconds)

60

.Systemsettings.resourcemonitor
.memorylimit.size

Limit on memory use (in GB or as
percentage)

80%

.Systemsettings.resourcemonitor
.memorylimit.alert

Alert level for memory use (in GB
or as percentage)

70%

.Systemsettings.resourcemonitor
.disklimit.commandlog.size

Resource Monitor disk limit on
disk use (in GB or percentage,
empty is unlimited)

.Systemsettings.resourcemonitor
.disklimit.commandlog.alert

Resource Monitor alert level for
disk use (in GB or as percentage,
empty is unlimited)

.Systemsettings.resourcemonitor
.disklimit.commandlogsnapshot
Size

Resource Monitor disk limit on
disk use (in GB or percentage,
empty is unlimited)

.Systemsettings.resourcemonitor
.disklimit.commandlogsnapshot
aert

Resource Monitor alert level for
disk use (in GB or as percentage,
empty is unlimited)

.Systemsettings.resourcemonitor
disklimit.droverflow.size

Resource Monitor disk limit on
disk use (in GB or percentage,
empty is unlimited)

.Systemsettings.resourcemonitor
.disklimit.droverflow.alert

Resource Monitor alert level for
disk use (in GB or as percentage,
empty is unlimited)

.Systemsettings.resourcemonitor
.disklimit.exportoverflow.size

Resource Monitor disk limit on
disk use (in GB or percentage,
empty is unlimited)

.Systemsettings.resourcemonitor
.disklimit.exportoverflow.alert

Resource Monitor alert level for
disk use (in GB or as percentage,
empty is unlimited)

.Systemsettings.resourcemonitor
.disklimit.snapshots.size

Resource Monitor disk limit on
disk use (in GB or percentage,
empty is unlimited)

.Systemsettings.resourcemonitor
.disklimit.snapshots.alert

Resource Monitor alert level for
disk use (in GB or as percentage,
empty is unlimited)

.Systemsettings.resourcemonitor
.disklimit.topicsdata.size

Resource Monitor disk limit on
disk use (in GB or percentage,
empty is unlimited)

.Systemsettings.resourcemonitor
.disklimit.topicsdata.al ert

Resource Monitor alert level for
disk use (in GB or as percentage,
empty is unlimited)

.Systemsettings.snapshot.priority

Priority for snapshot work (really
a delay factor; see under system-
settings for scheduling priority)

65

VoltDB Helm Properties

Parameter Description Default
.Systemsettings.temptables Limit the size of temporary data-| 100
.maxsize base tables (MB)
.Systemsettings.clockskew Interval of the scheduled clock|60
.interval skew collection (minutes). Oisal-

lowed and it disables collection.
Interval cannot be less than 0 and
if set below such value it will be

reset to default.
.users Definealist of VoltDB userstobe|[]
added to the deployment
.metrics.enabled Enables cloud native metrics sys-|false

tem on each VoltDB pod. It is
an alternativeto using Prometheus
Agent.

.metrics.interval Controls how often metrics sys-|60seconds
tem prepares metrics dlice to be
sourced by external system like
prometheus.

.metrics.maxbuffersize Controls how much memory, at|16
maximum, metric system will use
for internal metric buffering. But
at least system will retain one met-
rics dicein the buffer.

.metrics.retain Controls how many metrics slices| 1
retain in the buffer.

B.7. Operator Configuration Options

Thefollowing properties configurethe Volt Operator, which isin turn responsible for managing the startup
and operation of all other VVolt components.

Table B.6. Options Starting with operator...

Parameter Description Default
.enabled Create VoltDB Operator to man-|true

age clusters
.Image.registry Image registry docker.io
.image.repository Image repository voltdb/voltdb-operator
.Image.tag Image tag v0.1.0
.Iimage.pullPolicy Image pull policy Always
replicas Pod replica count 1
.debug.enabled Debug level 1ogging fase
Jogformat L og encoding format for the oper-|json

ator (console or json)

66

VoltDB Helm Properties

Parameter Description Default
.ServiceAccount.create If true, create & use service ac-|true
count for VoltDB operator con-
tainers
.serviceAccount.name If not set and createistrue, aname|""
is generated using the fullname
template
.cleanupCustomResource Attempt to cleanup CRDs before|false
installing the Helm chart (Helm 2
only)
.cleanupNamespaceClusters Delete ALL VoItDB clusters in|false
the namespace when the operator
Helm chart is deleted
.podLabels Additional custom Pod labels {}
.podAnnotations Additional custom Pod annota-|{ }
tions
.resources CPU/Memory resource re-|{ }
questg/limits
.nodeSel ector Node labels for pod assignment |{ }
.tolerations Pod tolerations for Node assign-|[]
ment
Afinity Node affinity {}
.securityContext Container security context {"privileged":false,
"runAsNonRoot":true,"runA

B.8. Metrics Configuration Options

Properties starting withnet ri cs. . . were used to configure the standalone VoltDB Prometheus agent.
However, the Prometheus agent has been deprecated in favor of per pod metrics. See Section 6.1, “Using
Prometheus to Monitor VoltDB” for more information on using the current metrics system.

B.9. Volt Management Center (VMC) Configura-
tion Options
The following properties start and configure the web-based Volt Management Center auxiliary service.

Table B.7. Options Starting with cluster.serviceSpec...

Default

Allocates a metrics service per|fase
VoltDB cluster pod.

Metrics port service type (options| Cluster| P
ClusterlP, NodePort, and Load-
Balancer)

Parameter Description

.perpod.metrics.enabled

.service.metrics.type

67

	VoltDB Kubernetes Administrator's Guide
	Table of Contents
	Preface
	1. Structure of This Book
	2. Related Documents

	Chapter 1. Introduction
	1.1. Overview: Running VoltDB in Kubernetes
	1.2. Setting Up Your Kubernetes Environment
	1.2.1. Product Requirements
	1.2.2. Configuring the Host Environment and Accounts
	1.2.3. Configuring the Client
	1.2.4. Granting Kubernetes Access to the Docker Repository

	Chapter 2. Configuring the VoltDB Database Cluster
	2.1. Using Helm Properties to Configure Your Database
	2.2. Configuring the Cluster
	2.3. Configuring the Database
	2.3.1. Configuring High Availability (K-Safety and Placement Groups)
	2.3.1.1. Configuring Kubernetes Clusters for High Availability (Spread Constraints and Affinity)
	2.3.1.2. Cloud Native Placement Groups

	2.3.2. Configuring Command Logging
	2.3.3. Configuring Export

	2.4. Configuring Logging

	Chapter 3. Starting and Stopping the Database
	3.1. Starting the Cluster for the First Time
	3.2. Stopping and Restarting the Cluster
	3.3. Resizing the Cluster with Elastic Scaling
	3.4. Pausing and Resuming the Cluster
	3.5. Starting More than One Cluster Within a Namespace
	3.6. Stopping, Restarting, and Shutting Down Multiple Clusters Within a Namespace

	Chapter 4. Managing VoltDB Databases in Kubernetes
	4.1. Managing the Cluster Using kubectl and helm
	4.2. Managing the Database Using voltadmin and sqlcmd
	4.2.1. Accessing the Database Interactively
	4.2.2. Accessing the Database Programmatically

	Chapter 5. Updates and Upgrades
	5.1. Updating the Database Schema
	5.2. Updating the Database Configuration
	5.2.1. Changing Database Properties on the Running Database
	5.2.2. Changing Database Properties That Require a Restart
	5.2.3. Changing Cluster Properties

	5.3. Upgrading the VoltDB Software and Helm Charts
	5.3.1. Updating Your Helm Repository
	5.3.2. Updating the Custom Resource Definition (CRD)
	5.3.3. Upgrading the VoltDB Operator and Software
	5.3.4. Updating VoltDB for XDCR Clusters

	Chapter 6. Monitoring VoltDB Databases in Kubernetes
	6.1. Using Prometheus to Monitor VoltDB

	Chapter 7. Configuring Security in Kubernetes
	7.1. Configuring User Accounts and Roles Within The Database
	7.2. Configuring TLS/SSL
	7.2.1. Configuring TLS/SSL With YAML Properties
	7.2.2. Using Kubernetes Secrets to Store and Reuse TLS/SSL Information
	7.2.3. Using Kubernetes cert-manager to Store TLS/SSL Certificates

	7.3. Updating TLS/SSL Security Certificates

	Chapter 8. Cross Datacenter Replication in Kubernetes
	8.1. Requirements for XDCR in Kubernetes
	8.2. Choosing How to Establish a Network Mesh
	8.3. Common XDCR Properties
	8.4. Configuring XDCR in Local Namespaces
	8.5. Configuring XDCR Using Load Balancers
	8.5.1. Separate Load Balancers For Each Node (cluster.serviceSpec.perpod)
	8.5.2. Single Load Balancer For Discovery with Virtual Networking Peering (cluster.serviceSpec.dr)

	8.6. Configuring XDCR Using Node Ports for Replication
	8.7. Configuring XDCR Using Network Services

	Chapter 9. Managing XDCR Clusters in Kubernetes
	9.1. Removing a Cluster Temporarily
	9.2. Removing a Cluster Permanently
	9.3. Resetting XDCR When a Cluster Leaves Unexpectedly
	9.4. Rejoining an XDCR Cluster That Was Previously Removed

	Appendix A. Helm voltadmin Plugin
	helm voltadmin

	Appendix B. VoltDB Helm Properties
	B.1. How to Use the Properties
	B.2. Top-Level Kubernetes Options
	B.3. Kubernetes Cluster Startup Options
	B.4. Network Options
	B.5. VoltDB Database Startup Options
	B.6. VoltDB Database Configuration Options
	B.7. Operator Configuration Options
	B.8. Metrics Configuration Options
	B.9. Volt Management Center (VMC) Configuration Options

