
Planning Guide

Abstract

This book provides recommendations for those considering the use of VoltDB.

V13

Planning Guide
V13
Copyright © 2008-2023 Volt Active Data, Inc.

The text and illustrations in this document are licensed under the terms of the GNU Affero General Public License Version 3 as published by the
Free Software Foundation. See the GNU Affero General Public License (http://www.gnu.org/licenses/) for more details.

Many of the core VoltDB database features described herein are part of the VoltDB Community Edition, which is licensed under the GNU Affero
Public License 3 as published by the Free Software Foundation. Other features are specific to the VoltDB Enterprise Edition and VoltDB Pro, which
are distributed by Volt Active Data, Inc. under a commercial license.

The VoltDB client libraries, for accessing VoltDB databases programmatically, are licensed separately under the MIT license.

Your rights to access and use VoltDB features described herein are defined by the license you received when you acquired the software.

Volt Active Data, VoltDB, and Active(N) are registered trademarks of Volt Active Data, Inc.

VoltDB software is protected by U.S. Patent Nos. 9,600,514, 9,639,571, 10,067,999, 10,176,240, and 10,268,707. Other patents pending.

This document was generated on September 29, 2023.

http://www.gnu.org/licenses/

Table of Contents
Preface ... vi

1. Organization of this Manual ... vi
2. Other Resources ... vi

1. The Planning Process ... 1
2. Proof of Concept .. 2

2.1. Effective Partitioning ... 2
2.2. Designing the Stored Procedures ... 2

3. Choosing Hardware ... 4
3.1. The Dimensions of Hardware Sizing .. 4
3.2. Sizing for Throughput ... 4
3.3. Sizing for Capacity ... 5
3.4. Sizing for Durability ... 7

4. Sizing Memory ... 9
4.1. Planning for Database Capacity ... 9

4.1.1. Sizing Database Tables .. 10
4.1.2. Sizing Database Indexes .. 11
4.1.3. An Example of Database Sizing .. 12

4.2. Distributing Data in a Cluster .. 12
4.2.1. Data Memory Usage in Clusters .. 13
4.2.2. Memory Requirements for High Availability (K-Safety) 13

4.3. Planning for the Server Process (Java Heap Size) ... 13
4.3.1. Attributes that Affect Heap Size .. 14
4.3.2. Guidelines for Determining Java Heap Size ... 14

5. Benchmarking ... 16
5.1. Benchmarking for Performance ... 16

5.1.1. Designing Your Benchmark Application ... 16
5.1.2. How to Measure Throughput .. 18
5.1.3. How to Measure Latency ... 19

5.2. Determining Sites Per Host ... 20

iii

List of Figures
5.1. Determining Optimal Throughput and Latency ... 17
5.2. Determining Optimal Sites Per Host ... 20

iv

List of Tables
3.1. Quick Estimates for Memory Usage By Datatype ... 6
4.1. Memory Requirements For Tables By Datatype .. 11

v

Preface
This book provides information to help those considering the use of VoltDB. Choosing the appropriate
technology is more than deciding between one set of features and another. It is important to understand
how the product fits within the existing technology landscape and what it requires in terms of systems,
support, etc. This books provides guidelines for evaluating VoltDB, including sizing hardware, memory,
and disks based on the specific requirements of your application and the VoltDB features you plan to use.

1. Organization of this Manual
This book is divided into 5 chapters:

• Chapter 1, The Planning Process

• Chapter 2, Proof of Concept

• Chapter 3, Choosing Hardware

• Chapter 4, Sizing Memory

• Chapter 5, Benchmarking

2. Other Resources
This book assumes you are already familiar with the VoltDB feature set. The choice of features, especially
those related to availability and durability, will impact sizing. Therefore, if you are new to VoltDB, we
encourage you to visit the VoltDB web site to familiarize yourself with the product options and features.

You may also find it useful to review the following books to better understand the process of designing,
developing, and managing VoltDB applications:

• VoltDB Tutorial, a quick introduction to the product and is recommended for new users

• Using VoltDB, a complete reference to the features and functions of the VoltDB product

• VoltDB Administrator's Guide, information on managing VoltDB clusters

These books and more resources are available on the web from http://www.voltactivedata.com/.

vi

http://voltactivedata.com/
http://docs.voltactivedata.com/tutorial/
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/AdminGuide/
http://www.voltactivedata.com/

Chapter 1. The Planning Process
Welcome to VoltDB, a best-in-class database designed specifically for high volume transactional applica-
tions. Since you are reading this book, we assume you are considering the use of VoltDB for an existing or
planned database application. The goal of this book is to help you understand the impact of such a decision
on your computing environment, with a particular focus on hardware requirements.

Technology evaluation normally involves several related but separate activities:

• Feature Evaluation

The goal of the feature evaluation is to determine how well a product's features match up to the needs of
your application. For VoltDB, we strongly encourage you to visit our website and review the available
product overviews and technical whitepapers to see if VoltDB is right for you. If you need additional
information, please feel free to contact us directly.

• Proof of Concept

The proof of concept, or POC, is usually a small application that emulates the key business requirements
using the proposed technology. The goal of the POC is to verify, on a small scale, that the technology
performs as expected for the target usage.

• Hardware Planning

Once you determine that VoltDB is a viable candidate for your application, the next step is to deter-
mine what hardware environment is needed to run it. Hardware sizing requires an understanding of the
requirements of the business application (volume, throughput, and availability needs) as well as the
technology. The primary goal of this book is to provide the necessary information about VoltDB to help
you perform this sizing exercise against the needs of your specific application.

• Benchmarking

Having determined the feasibility of the technology, the final activity is to perform benchmarking to
evaluate its performance against the expected workload. Benchmarking is often performed against the
proof of concept or a similar prototype application. Benchmarking can help validate and refine the
hardware sizing calculations.

Let's assume you have already performed a feature evaluation, which is why you are reading this book.
You are now ready to take the next step. The following chapters provide practical advice when building a
proof of concept, sizing hardware, and benchmarking a solution with VoltDB.

Note that this book does not help with the detailed application design itself. For recommendations on
application design we recommend the other books about VoltDB. In particular, Using VoltDB.

1

http://docs.voltactivedata.com/UsingVoltDB/

Chapter 2. Proof of Concept
A proof of concept (POC) is a small application that tests the key requirements of the proposed solution. For
database applications, the POC usually focuses on a few critical transactions, verifying that the database
can support the proposed schema, queries, and, ultimately, the expected volume and throughput. (More
on this in the chapter on Benchmarking.)

A POC is not a full prototype. Instead, it is just enough code to validate that the technology meets the need.
Depending upon the specific business requirements, each POC emphasizes different database functional-
ity. Some may focus primarily on capacity, some on scalability, some on throughput, etc.

Whatever the business requirements, there are two key aspects of VoltDB that must be designed correctly
to guarantee a truly effective proof of concept. The following sections discuss the use of partitioning and
stored procedures in POCs.

2.1. Effective Partitioning
VoltDB is a distributed database. The data is partitioned automatically, based on a partitioning column you,
as the application developer, specify. You do not need to determine where each record goes — VoltDB
does that for you.

However, to be effective, you much choose your partitioning columns carefully. The best partitioning
column is not always the most obvious one.

The important thing to keep in mind is that VoltDB partitions both the data and the work. For best perfor-
mance you want to partition the database tables and associated queries so that the most common transac-
tions can be run in parallel. That is, the transactions are, in VoltDB parlance, "single-partitioned".

To be single-partitioned, a transaction must only contain queries that access tables based on a specific
value for the partitioning column. In other words, if a transaction is partitioned on the EmpID column of the
Employee table (and that is the partitioning column for the table), all queries in the transaction accessing
the Employee table must include the constraint WHERE Employee.EmpID = {value}.

To make single-partitioned transactions easier to create, not all tables have to be partitioned. Tables that
are not updated frequently can be replicated, meaning they can be accessed in any single-partitioned trans-
action, no matter what the partitioning key value.

When planning the partitioning schema for your database, the important questions to ask yourself are:

• Which are the critical, most frequent queries? (These are the transactions you want to be single-parti-
tioned.)

• For each critical query, what database tables does it access and using what column?

• Can any of those tables be replicated? (Replicating smaller, less frequently updated tables makes joins
in single-partitioned procedures easier.)

2.2. Designing the Stored Procedures
Designing the schema and transactions to be single-partitioned is one thing. It is equally important to make
sure that the stored procedures operate in a way that lets VoltDB do its job effectively.

The first step is to write the transactions as stored procedures that are loaded into the schema. Do not write
critical transactions as ad hoc queries to the database. VoltDB provides the @AdHoc system procedure

2

Proof of Concept

for executing arbitrary SQL queries, which can be helpful when building early prototypes to test queries
or occasionally validate the content of the database. But @AdHoc queries often run as multi-partitioned
transactions and, therefore, should not be used for critical or repetitive transactions.

The next step is to ensure that single-partitioned stored procedures are correctly identified as such in the
schema using the PARTITION ON clause in the CREATE PROCEDURE statement and specifying the
appropriate partitioning column.

Finally, when designing for maximum throughput, use asynchronous calls to invoke the stored procedures
from within the POC application. Asynchronous calls allow VoltDB to queue the transactions (and their
responses), avoiding any delays between when a transaction completes, the results are returned to the POC
application, and the next procedure is invoked.

Chapter 5, Benchmarking later in this book provides additional suggestions for effectively designing and
testing proof of concept applications.

3

Chapter 3. Choosing Hardware
VoltDB is designed to provide world class throughput on commodity hardware. You do not need the latest
or most expensive hardware to achieve outstanding performance. In fact, a few low- to mid-range servers
can easily outperform a single high end server, since VoltDB throughput tends to scale linearly with the
number of servers in the cluster.

People often ask us at VoltDB "what type of servers should we use and how many?" The good news is
that VoltDB is very flexible. It works well on a variety of configurations. The bad news is that the true
answer to the question is "it depends." There is no one configuration that is perfect for all situations.

Like any technology question, there are trade offs to be made when choosing the "right" hardware for your
application. This chapter explains what those trade offs are and provides some general rules of thumb that
can help when choosing hardware for running a VoltDB database.

3.1. The Dimensions of Hardware Sizing
There are three key dimensions to sizing individual servers: the number and speed of the processors, the
total amount of memory, and the size and type of disks available. When sizing hardware for a distributed
database such as VoltDB, there is a fourth dimension to consider: the number of servers to use.

Each of these dimensions impacts different aspects of VoltDB performance. The number of processors
affects how many partitions can be run on each server and, as a result, throughput. The available memory
obviously impacts capacity, or the volume of data that can be stored. The size, number, and type of disks
impacts the performance of availability features such as snapshots and command logging.

However, they also interact. The more memory per server, the longer it takes to write a snapshot or for a
node to rejoin after a failure. So increasing the number of servers but reducing the amount of memory per
server may reduce the impact of durability on overall database performance. These are the sorts of trade
offs that need to be considered.

The following sections discuss hardware sizing for three key aspects of a VoltDB application:

• Throughput

• Capacity

• Durability

3.2. Sizing for Throughput
The minimum hardware requirements for running a VoltDB database server is a 64-bit machine with two
or more processor cores. The more cores the server has, the more VoltDB partitions can potentially run on
that server. The more unique partitions, the more throughput is possible with a well partitioned workload.

However, the number of processor cores is not the only constraint on throughput. Different aspects of the
server configuration impact different characteristics of the database process.

For example, although the more physical cores a server has increases the number of partitions that server
can potentially handle, at some point the number of transactions being received and data being returned
exceeds the capacity of the network port for that server. As a consequence, going beyond 12-16 cores on a

4

Choosing Hardware

single machine may provide little value to a VoltDB database, since the server's network adapter becomes
the gating factor.

Rule of Thumb

VoltDB runs best on servers with between 4 and 16 cores.

It should be noted that the preceding discussion refers to physical processor cores. Some servers support
hyperthreading. Hyperthreading is essentially the virtualization of processor cores, doubling the reported
number of cores. For example, a system with 4 cores and hyperthreading acts like an 8 core machine.
These virtualized cores can improve VoltDB performance, particularly for servers with a small (2 or 4)
number of physical cores. However, the more physical cores the system has, the less improvement is seen
in VoltDB performance. Therefore, hyperthreading is not recommended for VoltDB servers with more
than 8 physical cores.

The alternative to adding processors to an individual server for improving throughput is to add more
servers. If a single 4-core server can handle 3 partitions, two such servers can handle 6 partitions, three
can handle 9, etc. This is how VoltDB provides essentially linear scaling in throughput.

But again, there are limits. For peak performance it is key that network latency and disruption between
the cluster nodes be kept to a minimum. In other words, all nodes of the cluster should be on the same
network switch. Obviously, the capacity of the network switch constrains the number of nodes that it can
support. (A 32 port switch is not uncommon.)

Rule of Thumb

Best performance is achieved with clusters of 2-32 servers connected to the same network switch.

It is possible to run a VoltDB cluster across switches. (For example, this is almost always the case in cloud
environments.) However, latency between the cluster nodes will have a negative impact on performance
and may ultimately limit overall throughput. In these situations, it is best to benchmark different configu-
rations to determine exactly what performance can be expected.

Finally, it should be noted that the speed of the processor cores may not have a significant impact on
overall throughput. Processor speed affects the time it takes to execute individual transactions, which may
be only a small percentage of overall throughput. For workloads with very compute-intensive transactions,
faster processors can improve overall performance. But for many small or simple transactions, improved
processor speed will have little or no impact.

3.3. Sizing for Capacity
The second aspect of database sizing is capacity. Capacity describes the maximum volume of data that
the database can hold.

Since VoltDB is an in-memory database, the capacity is constrained by the total memory of all of the nodes
in the cluster. Of course, one can never size servers too exactly. It is important to allow for growth over
time and to account for other parts of the database server that use memory.

Chapter 4, Sizing Memory explains in detail how memory is assigned by the VoltDB server for database
content. Use that chapter to perform accurate sizing when you have a known schema. However, as a rough
estimate, you can use the following table to approximate the space required for each column. By adding
up the columns for each table and index (including index pointers) and then multiplying by the expected
number of rows, you can determine the total amount of memory required to store the database contents.

5

Choosing Hardware

Table 3.1. Quick Estimates for Memory Usage By Datatype

Datatype Bytes in Table Bytes in Index

TINYINT 1 1

SMALLINT 2 2

INTEGER 4 4

BIGINT 8 8

DOUBLE 8 8

DECIMAL 16 16

TIMESTAMP 8 8

VARCHARa or VARBINARY (less than 64 bytes) length + 1 length + 1

VARCHARa or VARBINARY (64 bytes or greater) length 8

index pointers n/a 40
aFor VARCHAR columns declared in characters, rather than in bytes, the length is calculated as four bytes for every character.
In other words, for storage calculations a string column declared as VARCHAR(16) has the same length as a column declared as
VARCHAR(64 BYTES).

You must also account for the memory required by the server process itself. If you know how many tables
the database will contain and how many sites per host will be used, you can calculate the server process
memory requirements using the following formula:

384MB + (10MB X number of tables) + (128MB X sites per host)

This formula assumes you use K-safety, which is recommended for all production environments. If the
cluster is also the master database for database replication, you should increase the multiplier for sites per
host from 128 to 256 megabytes:

384MB + (10MB X number of tables) + (256MB X sites per host)

If you do not know how many tables the database will contain or how many sites per host you expect to use,
you can use 2 gigabytes as a rough estimate for the server process size for moderately sized databases and
servers. But be aware that you may need to increase that estimate once your actual configuration is defined.

Finally, your estimate of the memory required for the server overall is the combination of the memory
required for the content and the memory for the server process itself, plus 30% as a buffer.

 Server memory = (content + server process) + 30%

When sizing for a cluster, where the content is distributed across the servers, the calculation for the memory
required for content on each server is the total content size divided by the number of servers, plus some
percentage for replicated tables. For example, if 20% of the tables are replicated, a rough estimate of the
space required for each server is given by the following equation:

 Per server memory = ((content / servers) + 20% + server) + 30%

When sizing memory for VoltDB servers, it is important to keep in mind the following points:

• Memory usage includes not only storage for the data, but also temporary storage for processing trans-
actions, managing queues, and the server processes themselves.

• Even in the best partitioning schemes, partitioning is never completely balanced. Make allowances for
variations in load across the servers.

6

Choosing Hardware

• If memory usage exceeds approximately 70% of total memory, the operating system can start paging
and swapping, severely impacting performance.

Rule of Thumb

Keep memory usage per server within 50-70% of total memory.

Memory technology and density is advancing so rapidly, (similar to the increase in processor cores per
server), it is feasible to configure a small number of servers with extremely large memory capacities that
provide capacity and performance equivalent to a larger number of smaller servers. However, the amount
of memory in use can impact the performance of other aspects of database management, such as snapshots
and failure recovery. The next section discusses some of the trade offs to consider when sizing for these
features.

3.4. Sizing for Durability
Durability refers to the ability of a database to withstand — or recover from — unexpected events. VoltDB
has several features that increase the durability of the database, including K-Safety, snapshots, command
logging, and database replication

K-Safety replicates partitions to provide redundancy as a protection against server failure. Note that when
you enable K-Safety, you are replicating the unique partitions across the available hardware. So the hard-
ware resources — particularly servers and memory — for any one copy are being reduced. The easiest
way to size hardware for a K-Safe cluster is to size the initial instance of the database, based on projected
throughput and capacity, then multiply the number of servers by the number of replicas you desire (that
is, the K-Safety value plus one).

Rule of Thumb

When using K-Safety, configure the number of cluster nodes as a whole multiple of the number
of copies of the database (that is, K+1).

K-Safety has no real performance impact under normal conditions. However, the cluster configuration can
affect performance when recovering from a failure. In a K-Safe cluster, when a failed server rejoins, it
gets copies of all of its partitions from the other members of the cluster. The larger (in size of memory)
the partitions are, the longer they can take to be restored. Since it is possible for the restore action to
block database transactions, it is important to consider the trade off of a few large servers that are easier
to manage against more small servers that can recover in less time.

Two of the other durability features — snapshots and command logs — have only a minimal impact on
memory and processing power. However, these features do require persistent storage on disk.

Most VoltDB disk-based features, such as snapshots, export overflow, network partitions, and so on, can
be supported on standard disk technology, such as SATA drives. They can also share space on a single
disk, assuming the disk has sufficient capacity, since disk I/O is interleaved with other work.

Command logging, on the other hand, is time dependent and must keep up with the transactions on the
server. The chapter on command logging in Using VoltDB discusses in detail the trade offs between asyn-
chronous and synchronous logging and the appropriate hardware to use for each. But to summarize:

• Use fast disks (such as battery-backed cache drives) for synchronous logging

• Use SATA or other commodity drives for asynchronous logging. However, it is still a good idea to use
a dedicated drive for the command logs to avoid concurrency issues between the logs and other disk
activity.

7

http://docs.voltactivedata.com/UsingVoltDB/

Choosing Hardware

Rule of Thumb

When using command logging, whether synchronous or asynchronous, use a dedicated drive for
the command logs. Other disk activity (including command log snapshots) can share a separate
drive.

Finally, database replication (DR) does not impact the sizing for memory or processing power of the
servers. But it does require duplicates of the initial hardware for each additional cluster. For example, when
using passive DR, you should double the estimated number of servers — one copy for the master cluster
and one for the replica. When using cross datacenter replication (XDCR) you will need one complete copy
for each of the clusters participating in the XDCR relationship.

Rule of Thumb

When using database replication, multiply the number of servers needed by the number of clusters
involved — two for passive DR (master and replica); two or more to match the number of clusters
in a XDCR environment.

8

Chapter 4. Sizing Memory
An important aspect of system sizing is planning for the memory required to support the application.
Because VoltDB is an in-memory database, allocating sufficient memory is vital.

Section 3.3, “Sizing for Capacity” provides some simple equations for estimating the memory requirements
of a prospective application. If you are already at the stage where the database schema is well-defined
and want more precise measurements of potential memory usage, this chapter provides details about how
memory gets allocated.

For VoltDB databases, there are three aspects of memory sizing the must be considered:

• Understanding how much memory is required to store the data itself; that is, the contents of the database

• Evaluating how that data is distributed across the cluster, based on the proportion of partitioned to
replicated tables and the K-safety value

• Determining the memory requirements of the server process

The sum of the estimated data requirements per server and the java heap size required by the server process
provide the total memory requirement for each server.

4.1. Planning for Database Capacity
To plan effectively for database capacity, you must know in advance both the structure of the data and
the projected volume. This means you must have at least a preliminary database schema, including tables,
columns, and indexes, as well as the expected number of rows for each table.

It is often useful to write this initial sizing information down, for example in a spreadsheet. Your planning
may even allow for growth, assigning values for both the initial volume and projected long-term growth.
For example, here is a simplified example of a spreadsheet for a database supporting a flight reservation
system:

Name Type Size Initial Volume Future Volume

Flight Replicated table 5,000 20,000

- FlightByID Index 5,000 20,000

- FlightByDepartTime Index 5,000 20,000

Airport Replicated table 10,000 10,000

- AirportByCode Index 10,000 10,000

Reservation Table 100,000 200,000

- ReservByFlight Index 100,000 200,000

Customer Table 200,000 1,000,000

- CustomerByID Index 200,000 1,000,000

- CustomerByName Index 200,000 1,000,000

Using the database schema, it is possible to calculate the size of the individual table records and indexes,
which when multiplied by the volume projections gives a good estimate the the total memory needed to
store the database contents. The following sections explain how to calculate the size column for individual
table rows and indexes.

9

Sizing Memory

4.1.1. Sizing Database Tables
The size of individual table rows depends on the number and datatype of the columns in the table. For
fixed-size datatypes, such as INTEGER and TIMESTAMP, the column is stored inline in the table record
using the specified number of bytes. Table 4.1, “Memory Requirements For Tables By Datatype” specifies
the length (in bytes) of fixed size datatypes.

For variable length datatypes, such as VARCHAR and VARBINARY, how the data is stored and, con-
sequently, how much space it requires, depends on both the actual length of the data and the maximum
possible length. If the maximum length is less than 64 bytes, the data is stored inline in the tuple as fixed-
length data consuming the maximum number of bytes plus one for the length. So, for example, a VAR-
CHAR(32 BYTES) column takes up 33 bytes, no matter how long the actual data is.

Note that VARCHAR columns can be declared in characters (the default) or bytes. For storage calculations,
variable-length strings declared in characters are considered to consume 4 bytes for every character. In
other words, a variable length string declared as VARCHAR(8) in characters consume the same amount
of space as a string declared as VARCHAR(32 BYTES).

If the maximum length is 64 bytes or more, the data is stored in pooled memory rather than inline. To do
this, there is an 8-byte pointer stored inline in the tuple, a 24-byte string reference object, and the space
required to store the data itself in the pool. Within the pool, the data is stored as a 4-byte length, an 8-byte
reverse pointer to the string reference object, and the data.

To complicate the calculation somewhat, data stored in pooled memory is not stored as arbitrary lengths.
Instead, data is incremented to the smallest appropriate "pool size", where pool sizes are powers of 2 and
intermediary values. In other words, pool sizes include 2, 4, 6 (2+4), 8, 12 (8+4), 16, 24 (8+16), 32 and so
on up to a maximum of 1 megabyte for data plus 12 bytes for the pointer and length. For example, if the
LastName column in the Customer table is defined as VARCHAR(32) (that is, a maximum length of 128
bytes) and the actual content is 95 bytes, the column consumes 160 bytes:

 8 Inline pointer
 24 String reference object
 4 Data length
 8 Reverse pointer
 95 Data
 107 128 Pool total / incremented to next pool size
 160 Total

Note that if a variable length column is defined with a maximum length greater than or equal to 64 bytes,
it is not stored inline, even if the actual contents is less than 64 bytes. Variable length columns are stored
inline only if the maximum length is less than 64 bytes.

Table 4.1, “Memory Requirements For Tables By Datatype” summarizes the memory requirements for
each datatype.

10

Sizing Memory

Table 4.1. Memory Requirements For Tables By Datatype

Datatype Size (in bytes) Notes

TINYINT 1

SMALLINT 2

INTEGER 4

BIGINT 8

DOUBLE 8

DECIMAL 16

TIMESTAMP 8

VARCHAR (<64 bytes) maximum size + 1 Stored inline

VARBINARY (<64 bytes) maximum size + 1 Stored inline

VARCHAR (>= 64 bytes) 32 + (actual size + 12 +
padding)

Pooled resource. Total size includes an
8-byte inline pointer, a 24-byte reference
pointer, plus the pooled resource itself.

VARBINARY (>=64 bytes) 32 + (actual size + 12 +
padding)

Same as VARCHAR.

For tables with variable length columns less than 64 bytes, memory usage can be sized very accurately
using the preceding table. However, for tables with variable length columns greater than 64 bytes, sizing
is approximate at best. Besides the variability introduced by pooling, any sizing calculation must be based
on an estimate of the average length of data in the variable columns.

For the safest and most conservative estimates, you can use the maximum length when calculating variable
length columns. If, on the other hand, there are many variable length columns or you know the data will
vary widely, you can use an estimated average or 90th percentile figure, to avoid over-estimating memory
consumption.

4.1.2. Sizing Database Indexes
Indexes are sized in a way similar to tables, where the size and number of the index columns determine
the size of the index.

VoltDB uses tree indexes. You can calculate the size of the individual index entries by adding up the size
for each column in the index plus 40 bytes for overhead (pointers and lengths). The size of the columns are
identical to the sizes when sizing tables, as described in Table 4.1, “Memory Requirements For Tables By
Datatype”, with the exception of non-inlined binary data. For variable length columns equal to or greater
than 64 bytes in length, the index only contains an 8-byte pointer; the data itself is not replicated.

So, for example, the CustomerByName index on the Customer table, which is an index containing the
VARCHAR(32) fields LastName and FirstName, has a length of 56 bytes for each entry:

 8 Pointer to LastName
 8 Pointer to FirstName
 40 Overhead
 56 Total

The following equation summarizes how to calculate the size of an index.

 (sum-of-column-sizes + 8 + 32) * rowcount

11

Sizing Memory

4.1.3. An Example of Database Sizing
Using the preceding formulas it is possible to size the sample flight database mentioned earlier. For exam-
ple, it is possible to size the individual rows of the Flight table based on the schema columns and datatypes.
The following table demonstrates the sizing of the Flight table.

Column Datatype Size in Bytes

FlightID INTEGER 4

Carrier VARCHAR(32) 160

DepartTime TIMESTAMP 8

ArrivalTime TIMESTAMP 8

Origin VARCHAR(3
BYTES)

4

Destination VARCHAR(3
BYTES)

4

Destination VARCHAR(3
BYTES)

4

Total: 192

The same calculations can be done for the other tables and indexes. When combined with the expected vol-
umes (described in Section 4.1, “Planning for Database Capacity”), you get a estimate for the total memory
required for storing the database content of approximately 500 megabytes, as shown in the following table.

Name Type Size Final Volume Total Size

Flight Replicated table 184 20,000 3,840,000

- FlightByID Index 36 20,000 1,040,008

- FlightByDepartTime Index 48 20,000 960,000

Airport Replicated Table 484 10,000 4,840,000

- AirportByCode Index 44 10,000 440,000

Reservation Table 243 200,000 48,600,000

- ReservByFlight Index 36 200,000 10,400,008

Customer Table 324 1,000,000 324,000,000

- CustomerByID Index 36 1,000,000 52,000,008

- CustomerByName Index 56 1,000,000 56,000,000

Total: 502,120,024

4.2. Distributing Data in a Cluster
In the simplest case, a single server, the sum of the sizing calculations in the previous section gives you
an accurate estimate of the memory required for the database content. However, VoltDB scales best in a
cluster environment. In that case, you need to determine how much of the data will be handled by each
server, which is affected by the number of servers, the number and size of partitioned and replicated tables,
and the level of availability, or K-safety, required.

The following sections explain how to determine the distribution (and therefore sizing) of partitioned and
replicated tables in a cluster and the impact of K-safety.

12

Sizing Memory

4.2.1. Data Memory Usage in Clusters
Although it is tempting to simply divide the total memory required by the database content by the number
of servers, this is not an accurate formula for two reasons:

• Not all data is partitioned. Replicated tables (and their indexes) appear on all servers.

• Few if any partitioning schemes provide perfectly even distribution. It is important to account for some
variation in the distribution.

To accurately calculate the memory usage per server in a cluster, you must account for all replicated tables
and indexes plus each server's portion of the partitioned tables and indexes.

 Data per server = replicated tables + (partitioned tables/number of servers)

Using the sample sizing for the Flight database described in Section 4.1.3, “An Example of Database
Sizing”, the total memory required for the replicated tables and indexes (for the Flight and Airport tables) is
only approximately 12 megabytes. The memory required for the remaining partitioned tables and indexes
is approximately 490 megabytes. Assuming the database is run on two servers, the total memory required
for data on each server is approximately 256 megabytes:

 12 Replicated data
 2 Number of servers
 490 245 Paritioned data total / per server
 256 Total

Of course, no partitioning scheme is perfect. So it is a good idea to provide additional space (say 20% to
30%) to allow for any imbalance in the partitioning.

4.2.2. Memory Requirements for High Availability (K-Safety)
The features you plan to use with a VoltDB database also impact capacity planning, most notably K-Safety.
K-Safety improves availability by replicating data across the cluster, allowing the database to survive
individual node failures.

Because K-Safety involves replication, it also increases the memory requirements for storing the replicated
data. Perhaps the easiest way to size a K-Safe cluster is to size a non-replicated cluster, then multiply by
the K-Safety value plus one.

For example, let's assume you plan to run a database with a K-Safety value of 2 (in other words, three
copies) on a 6-node cluster. The easiest way to determine the required memory capacity per server is
to calculate the memory requirements for a 2-node (non K-Safe) cluster, then create three copies of that
hardware and memory configuration.

4.3. Planning for the Server Process (Java Heap
Size)

The preceding sections explain how to calculate the total memory required for storing the database content
and indexes. You must also account for the database process itself, which runs within the Java heap.
Calculating the memory required by the sever process both helps you define the total memory needed
for planning purposes but also identifies the Java heap size that you will need to set in production when
starting the database.

13

Sizing Memory

It is impossible to define an exact formula for the optimal heap size. But the following basic guidelines
can be used to accommodate differing hardware configurations and database designs.

4.3.1. Attributes that Affect Heap Size
The database features that have the most direct impact on the server process and, therefore, the Java heap
requirements are:

• Schema size, in terms of number tables and stored procedures

• The number of sites per host

• The features in use, specifically K-safety and/or database replication

The schema size affects the base requirements for the server process. The more tables the schema has and
the more stored procedures it contains, the more heap space it will take up. In particular, it is important to
provide enough heap so the schema can be updated, no matter what other features are enabled.

The general rule of thumb is a base Java heap size of 384MB, plus 10MB for every table in the schema.
Stored procedures don't impact the heap size as much as the number of tables do. However, if you have
lots of stored procedures (that is, hundreds or thousands of them) it is a good idea to add additional space
to the base heap size for good measure.

Beyond the base heap size, use of K-safety and database replication (for the master database) each increases
the requirements for Java heap space, with the increase proportional to the number of sites per host. In
general each feature requires an additional 128MB for every site per host.

For example, a K-safe cluster with 4 sites per host requires an additional 512MB, while a K-safe cluster
with 8 sites per host requires an extra gigabyte. If that cluster is also the master cluster for database repli-
cation, those extra heap requirements are doubled to 1GB and 2GB, respectively.

Note that the Java heap requirements for features are based solely on the sites per host, not the number of
nodes in the cluster or the K-safety value. Any K-safety value greater than zero has the same requirements,
in terms of the server process requirements.

4.3.2. Guidelines for Determining Java Heap Size
The recommended method for determining the appropriate heap size for a VoltDB cluster node is the
following:

Step #1 Calculate the base Java heap requirement using the following formula:

384MB + (10MB X number of tables) = base Java heap size

Be sure to allow for growth if you expect to add tables in the future. Also, if you expect to
have large numbers of stored procedures (200 or more), increment the base heap size accord-
ingly. Note that where memory is available, additional Java heap space beyond the minimum
settings may provide performance benefits during operational events, such as schema updates
and node rejoins.

Step #2 Based on the hardware to be used in production (specifically cores per server), and perfor-
mance testing of the proposed schema, determine the optimal number of sites per host. 8 sites
per host is the default. Setting the sites per host greater than 24 is not recommended.

Step #3 Determine which database features will be used in production. K-safety, network partition
detection, and command logging are recommended for all production environments. Database
replication (DR) is an optional feature that provides additional durability.

14

Sizing Memory

If K-safety is in use, but DR is not, multiply the number of sites per host by 128MB to
determine the feature-specific Java heap requirements. If K-safety is enabled and the cluster
is the master database for DR, multiply the number of sites per host by 256MB.

Step #4 Add the base Java heap requirements defined in Step #1 to the feature-specific requirements
in Step #3 to determine the recommended Java heap size for the production servers.

15

Chapter 5. Benchmarking
Benchmarking is the process of evaluating performance against a known baseline. For database applica-
tions, you can benchmark against other technologies, against a target metric (such as a specific number
of transactions per second), or you can use the same application on different hardware configurations to
determine which produces the best results.

For VoltDB applications, benchmarking is useful for establishing metrics with regards to:

• Optimum throughput

• Optimum number of sites per host

5.1. Benchmarking for Performance
When establishing performance criteria for database applications, there are usually two key metrics:

• Throughput — how many transactions can be completed at one time, usually measured in transactions
per second, or TPS

• Latency — how long each individual transaction takes, usually measured as the average or percentile
of the latency for a sample number of transactions

Note that neither of these metrics is exact. For many databases, throughput can vary depending upon
the type of transaction; whether it is a read or write operation. One of the advantages of VoltDB is that
throughput does not change significantly for write versus read operations. However, VoltDB throughput
does change when there are many multi-partitioned transactions versus a single-partitioned transaction
workload. This is why it is important to design your schema and stored procedures correctly when bench-
marking a VoltDB database.

Similarly, latency can vary, both in how it is measured and what impacts it. You can measure latency as
the time from when the client issues a transaction request until the response is received, or from when the
database server receives the request until it queues the response.

The former measurement, latency from the client application's perspective, is perhaps the most accurate
"real world" metric. However, this metric includes both database latency and any network latency between
the client and the server. The latter measurement, latency from the database perspective, is a more accurate
measurement of the technology's capability. This metric includes the time required to process the transac-
tion itself (that is, the stored procedures and the database queries it contains) as well as time the request
spends in the queue waiting to be executed.

5.1.1. Designing Your Benchmark Application
There is a relationship between throughput, latency, and system configuration. Throughput is a combina-
tion of the amount of time it takes to execute a transaction (which is part of latency) and the number of
transactions that can be run in parallel (that is, the percentage of single-partitioned transactions plus the
number of unique partitions, which is a combination of sites per host and number of servers).

This is why it is important that benchmarking for performance be done in conjunction with benchmarking
for server configuration (as discussed later). Different configurations will result in different values for
throughput and latency.

16

Benchmarking

Your benchmark results are also affected by the design of the application itself.

5.1.1.1. Good Application Design
As mentioned before, throughput and latency are not abstract numbers. They are a consequence of the
schema, stored procedures, application, and server configuration in use. As with any VoltDB solution, to
affectively benchmark performance you must start with a well-designed application. Specifically:

• Partition all tables (except those that are small and primarily read-only)

• Make all frequent transactions single-partitioned

• Use asynchronous procedure calls

See Chapter 2, Proof of Concept for more information on writing effective VoltDB applications.

It is common practice to start benchmarking with the proof of concept, since the POC includes an initial
schema and the key transactions required by the solution. If you decide to proceed with development, it
is also a good idea to benchmark the application periodically throughout the process to make sure you
understand how the additional functions impact your overall performance targets.

However, before benchmarking the POC, it is important to decide how you are going to measure perfor-
mance. The following sections provide useful information for determining what and how to measure per-
formance in a VoltDB application.

5.1.1.2. Rate Limiting
Latency and throughput are related. To measure throughput, your test application can make stored proce-
dure calls as fast as it can and then measure how many are completed in a second (TPS). However, if the
test application invokes more transactions that the server can complete in that time frame, the additional
invocations must wait in the queue before being processed. The time these transactions wait in the queue
will result in the latency measurement suddenly spiking.

There is an optimal throughput for any given application and system configuration. As the rate of invoca-
tions from the client application increases, there is a direct increase in TPS while latency stays relatively
flat. However, as the invocation rate approaches and surpasses the optimal throughput (the limit of what
the current configuration can process), latency increases dramatically and TPS may even drop, as shown
in Figure 5.1, “Determining Optimal Throughput and Latency”.

Figure 5.1. Determining Optimal Throughput and Latency

17

Benchmarking

If your test application "fire hoses" the database server — that is, it sends invocations as fast as it can
— all you can measure is the misleading throughput and latency on the right side of the preceding chart.
To determine the optimal rate, you need to be able control the rate at which your benchmark application
submits transaction requests. This process is called rating limiting.

At its simplest, rate limiting is constraining the number of invocations issued by the application. For ex-
ample, the following program loop, constrains the application to invoking the SignIn stored procedure
a maximum of 10 times per millisecond, or 10,000 times per second.

boolean done = false;
long maxtxns = 10;
while (!done) {
 long txns = 0;
 long millisecs = System.currentTimeMillis();
 while (millisecs == System.currentTimeMillis()) {
 if (txns++ < maxtxns } {
 myClient.callProcedure(new SignInCallback(),
 "SignIn",
 id, millisecs);
 }
 }
}

You could use a command line argument to parameterize the rate limit value maxtxns and then use
multiple runs of the application to create a graph similar to Figure 5.1, “Determining Optimal Throughput
and Latency”. An even better approach is to use a limit on latency to automatically control the invocation
rate and let the application close in on the optimal throughput value.

How rate limiting based on latency is done is to have a variable for the target latency as well as a variable for
maximum allowable throughput (such as maxtxns in the preceding example). The application measures
both the average throughput and latency for a set period (every 1 to 5 seconds, for example). If the average
latency exceeds the goal, reduce the maximum transactions per second, then repeat. After the same period,
if the latency still exceeds the goal, reduce the maximum transaction rate again. If the latency does meet
the goal, incrementally increase the maximum transaction rate.

By using this mix of rate limiting and automated adjustment based on a latency goal, the test application
will eventually settle on an optimal throughput rate for the current configuration. This is the method used
by the sample applications (such as voter and Voltkv) that are provided with the VoltDB software.

5.1.2. How to Measure Throughput
Normally for benchmarking it is necessary to "instrument" the application. That is, add code to measure
and report on the benchmark data. Although it is possible (and easy) to instrument a VoltDB application,
it is not necessary.

The easiest way to measure throughput for a VoltDB database is to monitor the database while the bench-
mark application is running. You can monitor a database using the VoltDB Management Console, which
is available from any VoltDB server and provides a graphical display of the overall throughput for the
database cluster.

For more detailed information, you can instrument your application by using a variable to track the number
of completed transactions (incrementing the variable in the asynchronous procedure callback). You then
periodically report the average TPS by dividing the number of transactions by the number of seconds since
the last report. This approach lets you configure the reporting to whatever increment you choose.

18

Benchmarking

See the voter sample application for an example of an instrumented benchmarking application. The
README for the voter application explains how to customize the reporting through the use of command
line arguments.

5.1.3. How to Measure Latency
It is also possible to get a sense of the overall latency without instrumenting your application using the
VoltDB Management Console. The latency graph provided by the Management Console shows the average
latency, measured every few seconds, as reported by the server. At times, this method can produce a
dramatic sawtooth graph with extreme highs and lows. In this case, the best way to interpret the overall
latency of the application is to imagine a line drawn across the high points of the graph.

For a more accurate benchmark, you can use latency metrics built into the VoltDB system procedures
and Java client interface. To instrument your client application, you can use the ClientResponse interface
returned by stored procedures invocations to measure latency. Part of the ClientResponse class are the
getClientRoundTrip() and getClusterRoundTrip() methods. Both methods return an integer value repre-
senting the number of milliseconds required to process the transaction. The getClientRoundTrip() method
reports total latency, including the network round trip from the client application to the server. The get-
ClusterRoundTrip() method reports an estimate of the latency associated with the database only.

It is easy to use these methods to collect and report custom latency information. For example, the following
code fragment captures information about the minimum, maximum, and combined latency during each
procedure callback.

static class PocCallback implements ProcedureCallback {
 @Override
 public void clientCallback(ClientResponse response) {

 txncount++;
 int latency = response.getClusterRoundTrip();
 if (latency < minlatency) minlatency = latency;
 if (latency > maxlatency) maxlatency = latency;
 sumlatency += latency;
 .
 .
 .

The benchmarking application can then use this information to periodically report specific latency values,
like so:

if (System.currentTimeMillis() >= nextreport) {
 // report latency
 printf("Min latency: %d\n" +
 "Max latency: %d\n" +
 "Average latency: %d\n",
 minlatency, maxlatency, sumlatency/txncount);
 // reset variables
 txncount=0;
 minlatency = 5000;
 maxlatency = 0;
 sumlatency = 0;
 // report every 5 secsonds
 nextreport = System.currentTimeMillis() + 5000;
}

19

Benchmarking

5.2. Determining Sites Per Host
Another important goal for benchmarking is determining the optimal number of sites per host. Each Volt-
DB server can host multiple partitions, or "sites". The ideal number of sites per host is related to the number
of processor cores available on the server. However, it is not an exact one-to-one relationship. Usually,
the number of sites is slightly lower than the number of cores.

The equation becomes even more complex with hyperthreading, which "virtualizes" multiple processors
for each physical core. Hyperthreading can improve the number of sites per host that a VoltDB server can
support. But again, not in direct proportion to a non-hyperthreaded server.

Important

In general, VoltDB performs best with between 4 and 16 sites per host. However, you should
never exceed 24 sites per host, even if the number of processor cores might support more, because
the processing required to manage so many sites begins to conflict with the data processing.

The easiest way to determine the optimal number of sites per host is by testing, or benchmarking, against
the target application. The process for determining the correct number of sites for a specific hardware
configuration is as follows:

1. Create a benchmark application that measures the optimal throughput, as described in Section 5.1,
“Benchmarking for Performance”.

2. Run the benchmark application multiple times, each time increasing the number of sites per host for
the database.

3. Make note of the optimal throughput for each run and graph the optimal TPS against the number of
sites per host.

As the number of sites per host increases, the optimal throughput increases as well. However, at some
point, the number of sites exceeds the number of threads that the hardware can support, at which point the
throughput levels out, or even decreases, as contention occurs in the processor. Figure 5.2, “Determining
Optimal Sites Per Host” shows the results graph of a hypothetical benchmark of sites per host for a quad
core server. In this case, the optimal number of sites per host turned out to be three.

Figure 5.2. Determining Optimal Sites Per Host

By graphing the relationship between throughput and partitions using a benchmark application, it is pos-
sible to maximize database performance for the specific hardware configuration you will be using.

20

	Planning Guide
	Table of Contents
	Preface
	1. Organization of this Manual
	2. Other Resources

	Chapter 1. The Planning Process
	Chapter 2. Proof of Concept
	2.1. Effective Partitioning
	2.2. Designing the Stored Procedures

	Chapter 3. Choosing Hardware
	3.1. The Dimensions of Hardware Sizing
	3.2. Sizing for Throughput
	3.3. Sizing for Capacity
	3.4. Sizing for Durability

	Chapter 4. Sizing Memory
	4.1. Planning for Database Capacity
	4.1.1. Sizing Database Tables
	4.1.2. Sizing Database Indexes
	4.1.3. An Example of Database Sizing

	4.2. Distributing Data in a Cluster
	4.2.1. Data Memory Usage in Clusters
	4.2.2. Memory Requirements for High Availability (K-Safety)

	4.3. Planning for the Server Process (Java Heap Size)
	4.3.1. Attributes that Affect Heap Size
	4.3.2. Guidelines for Determining Java Heap Size

	Chapter 5. Benchmarking
	5.1. Benchmarking for Performance
	5.1.1. Designing Your Benchmark Application
	5.1.1.1. Good Application Design
	5.1.1.2. Rate Limiting

	5.1.2. How to Measure Throughput
	5.1.3. How to Measure Latency

	5.2. Determining Sites Per Host

