YOLT

ACTIVE DATA

Upgrade Guide

Abstract

This books explains how to upgrade from one major version of Volt Active Data to another.

V14

Upgrade Guide

V14
Copyright © 2023-2024 Volt Active Data, Inc.

This document is published under copyright by Volt Active Data, Inc. All Rights Reserved.

The software described in this document is furnished under alicense by Volt Active Data, Inc. Your rights to access and use VoltDB features are
defined by the license you received when you acquired the software.

The VoltDB client libraries, for accessing VoltDB databases programmatically, are licensed separately under the MIT license.
Volt Active Data, VoltDB, and Active(N) are registered trademarks of Volt Active Data, Inc.

VoltDB software is protected by U.S. Patent Nos. 9,600,514, 9,639,571, 10,067,999, 10,176,240, and 10,268,707. Other patents pending.

This document was generated on March 27, 2025.

Table of Contents

PrE AR .. e viii
1. Structure of ThiS BOOKiiiiiiiiiiiii et viii

2. REIGLEA DOCUMENESceeitieeeeet ettt ettt e et e et e e e et eeeena s viii

1. Software Releases and Long-Term SUpPOort (LTS) ..oveeeeiiieiieieii et 1
1.1. The Software Release SChedUle ..o 1

1.2, SEAYING CUMTENT ...ttt ettt et e et et e et e e e e e na e e eenanns 2

2. The Software Upgratde PrOCESSuuiiiiiii ettt ettt ettt e ettt e e e et e e e enaaaeeens 3
2.1. Preparing for the Upgradeoouue it e 3

2.2. Upgrading Volt Databases on Managed SEIVESSvvieeuiieiiiiiieiiiie e eeeee 4
2.2.1. Upgrading the VOIIDB SOftWEIEccuuuuiiiiiiiieiiiii e 4

2.2.2. Upgrading VoItDB Using Save and RESLOreoveiviiiiieiiiiiieeeiiie e 5

2.2.3. Performing an In-Service Upgrade of a Single Clusterocovviiiiiiiiineeiennnnnn. 5

2.2.4. Performing an Online Upgrade Using Multiple XDCR Clustersccooeeevenenn. 7

2.3. Upgrading VoIt in KUDEMELESuuiiiiiii e 7
2.3.1. Updating Your HEIM REPOSITONYccovvtiieiiiiieeeeie e 8

2.3.2. Updating the Custom Resource Definition (CRD)cccvuiviiiiiiiniiiiiieeeceiie, 8

2.3.3. Upgrading the VoItDB Operator and SOftWareoocveviiieeiiiinneeiiiiineeceninee. 8

2.3.4. Using In-Service Upgrade to Update the VoltDB Softwarecccoevevneeenneennn. 9

2.3.5. Updating VoItDB for XDCR CIUSLEN'Suuiiiiiiieiiiiieeeee e 11

3. Upgrading to VoIt ACHIVE DAla V8oiiiiiiiieii e e 13
3.1 What's New in VoIt V8.0 ...ttt 13

3.2. Special Considerations for EXisting CUSIOMEN'Suiiiiiiiieeiiiiiieeeere e 13

4. Upgrading t0 VOIt ACHVE DAa VOiiiiiiieiiii et 15
4.1 What's New iN VOIT V.0 ..ceiiiiiiiiiiiiieiii et 15

4.2. Special Considerations for EXisting CUSIOMENSueiiiiiieiiiiiieeeeii e 16

5. Upgrading to VoIt ACHIVE Data V10oiiiiiiiiiiiiie et 18
5.1. What's New in VoIt V10.0 ...coiiiiiiiiii et e e e e 18

5.2. Special Considerations for EXisting CUSIOMEN'Suviiiiiiiieiiiiiieeeeiieeeei e 19

6. Upgrading to VoIt ACHIVE Data VL1oiiiiiiiiiiiii e 20
6.1. What's New in VOIt V11,0 ..coiiiiiiiiiii et 20

6.2. Special Considerations for EXisting CUSIOMEN'Suiiiiiiiiieiiiiieeeee e 21

7. Upgrading to VoIt ACHIVE DA V12coiiiiiiiiiiii e 22
7.1 What's New in VOIt V12,0 ..ot 22

7.2. Special Considerations for EXisting CUSIOMEN'Suuiiiiiiiieeiiiiieeeeie e 23

8. Upgrading to VoIt ACHIVE Data VI3 ... 24
8.1 What's New iN VOIt VL3 ..ottt e et eaaeeeees 24

8.2. Special Considerations for EXisting CUSIOMEN'Suiiiiiiiiieiiiiieeeceie e 25

9. Upgrading t0 VOIt ACHVE DAA VLA ... 26
9.1. What's New in VoIt ACtIVE Data V14ccouuiiiiiiiiiieiiii e 26

9.2. Special Considerations for EXisting CUSIOMEN'Suiiiiiiiieeiiiiieeieiee e 27

A. Configuration File (deployment.Xml)oi i 29
A.L Understanding XML SYNEBXccoovuuiiiiiiieeiii et 29

A.2. The Structure of the XML Configuration Filecccooviiiiiiiiiiiiiie e, 29

B. Using the Original VOItDB Client INtErfaceuuiiiiiiiicii e 35
B.1. Connecting to the VOItDB Databasecc.uuieiiiiiiieiiiiie e 35
B.1.1. Connecting to MUILIPIE SEIVEISoovuiiiiiii e 36

B.1.2. Using the Auto-Connecting ClENtccoouuiiiiiiiiiieiii e 36

B.2. INVOKING SIOred ProCRAUIESiieiiiieiiii ettt 37

B.3. Invoking Stored Procedures ASyNChronoUSIYcoceuuiiiiiiiiiiiiiieeeei e 37

B.4. CloSiNg the CONMNECTIONuiiiiiiie ittt e e e e eeaens 38

B.5. HANAIING EITOS ... ittt ettt e e et e e ettt e e e e n e e eenbaeeees 39

Upgrade Guide

B.5.1. Interpreting EXECULION EFTOIScovviiiiiiii e e

B.5.2. Handling Timeouts

B.5.3. Writing a Status Listener to Interpret Other Errorscccovevveeiiiiiciiineeinnennn,

List of Figures

A.1. Configuration XML Structure

List of Tables

A.1. XML Configuration File Elements and Attributes

Vi

List of Examples

2.1. Process for Upgrading the VOItDB SOftWareooiveiiiiiiiiieeiii e

Vii

Preface

This book helps existing customers upgrade the Volt Active Data software from one major version to
another. New features and improvements that require changes to existing syntax or client applications are
reserved for mgjor releases of the product only (e.g. V8, V9, V10, and so on). To make the upgrade to
these major versions smoother for existing users, this book describes any incompatible changes for each
major version and the steps necessary when migrating to it from previous rel eases.

The best way to use this book is before you upgrade to a new major version, read the chapters for each
of the intervening releases and take the appropriate actions. For example, if you are planning to upgrade
from V8to V11, you should read the chapters on migrating to V9, V10, and V11.

1. Structure of This Book

Thefirst two chapters of thisbook describe the Volt Active Datarel ease strategy and the upgrade process.
The release strategy describes the schedule for specific releases and the role of the Long-Term Support
release for each major version. The upgrade process gives you an overview of the steps to take when
preparing to upgrade to a new major version of Volt Active Data. Subsequent chapters describe specific
tasks for upgrading to each of the major releases. Finally, appendixes describe the old configuration file
syntax used prior to version 14 and the original Client API, for those needing to maintain existing appli-
cations written against the older programming interface for VoltDB.

» Chapter 1, Software Releases and Long-Term Support (LTS)
» Chapter 2, The Software Upgrade Process

» Chapter 3, Upgrading to Volt Active Data V8

» Chapter 4, Upgrading to Volt Active Data V9

» Chapter 5, Upgrading to Volt Active Data V10

» Chapter 6, Upgrading to Volt Active Data V11

» Chapter 7, Upgrading to Volt Active Data V12

» Chapter 8, Upgrading to Volt Active Data V13

» Chapter 9, Upgrading to Volt Active Data V14

» Appendix A, Configuration File (deployment.xml)

» Appendix B, Using the Original VoltDB Client Interface

2. Related Documents

Thisbook does not describe how to design or develop Volt Active Data databases. For acomplete descrip-
tion of the devel opment processfor Volt and all of itsfeatures, please see the accompanying manual Using
VoltDB. For new users, see the VoltDB Tutorial. These and other books describing Volt Active Data are
available on the web from http://docs.voltactivedata.com/.

viii

http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/tutorial/
http://docs.voltactivedata.com/

Chapter 1. Software Releases and Long-
Term Support (LTS)

Volt Active Data provides best-in-class throughput of ACID transactions, enabling intelligent streaming
applications and real-time decision making. To maintain its industry leadership and help customers meet
current and future business goal's, Volt is constantly improving and expanding the its capabilities by adding
new features.

At the same time, it isimportant to provide the most stable software possible for production use. So Volt
provides frequent product updates to ensure timely and proactive solutions to potential issues within the
software. Balancing cutting edge featureswith bug fixesisthe primary goal of theVolt Active Datarelease
strategy and, specifically, its Long-Term Support (LTS) designation as described in the following section.

The Release Schedule Thelatest rel eases of Volt Active Datausually contain acombination of new features
and bug fixes for known issues in previous releases. Releases fall into three categories: Major releases
(V1.0, V2.0, V3.0 etc.) Major releases are normally reserved for significant new features. They are also
where older features are deprecated or removed. In particular, any incompatible or behavioral changes
that require user action to complete the upgrade process are reserved for major releases. Point releases
(V3.1, V3.2, V3.3 etc.) Point releases are normally only applied to the latest version of the software or
LTS releases. On the latest release branch, point releases contain both bug fixes and new features under
development. On LTS branches, point rel eases contain only bug fixes. Long-Term Support releases (LTS)
For each major release, after a few point releases to stabilize the product we announce one point release
asthe Long-Term Support (LTS) release. This means this version will receive all applicable bug fixes for
the full term of its support period, which is three years from its initial release. These bug fixes will be
applied as minor updates to the point release (for example, if V11.4 isthe LTS release, bug fix updates
will beV11.4.1,V11.4.2 etc.). Note that the LTS rel eases receive bug fixes only, they do not receive any
additional new features. New features are applied to the latest release branch only. The goal of the LTS
release isto clearly identify the most stable version available for any major release. If you encounter any
issues with point releases prior to the LTS release, we will ask you to update to the LTS release to receive
the fixes you need.

1.1. The Software Release Schedule

The latest releases of Volt Active Data usually contain a combination of new features and bug fixes for
known issues in previous rel eases. Releases fall into three categories:

* Major releases (V1.0, V2.0, V3.0 etc.) Major releases are normally reserved for significant new fea-
tures. They are also where older features are deprecated or removed. In particular, any incompatible
or behavioral changes that require user action to complete the upgrade process are reserved for major
releases.

* Minor releases (V3.1, V3.2, V3.3 etc.) Minor releases are normally only applied to the latest version
of the software or LTS releases. On the latest release branch, minor releases contain both bug fixes and
new features under development. On LTS branches, point updates to the minor release contain only
bug fixes.

e Long-Term Support releases (LTS) For each major release, after a few minor releases to stabilize
the product we announce one minor release as the Long-Term Support (LTS) release. This means this
version will receive al applicable bug fixes for the full term of its support period, which is three years
fromitsinitial release. These bug fixeswill be applied as point updates to the minor release (for example,
if V11.4isthe LTS release, bug fix updates will be V11.4.1, V11.4.2 etc.). Note that, once named, the

Software Releases and
Long-Term Support (LTS)

LTS releases receive security and bug fixes only, they do not receive any additional new features. New
features are applied to the latest rel ease branch only.

The goal of the LTSrelease isto clearly identify the most stable version available for each mgjor release.
Installing the subseguent point releases ensures you have all the latest bug fixes and security patches for
that LTS release. If you encounter any issues with minor releases prior to the LTS release, Volt Support
will recommend updating to the LTS release to receive the fixes you need.

1.2. Staying Current

For customers who want to take advantage of the latest features of Volt Active Data, we recommend you
install and test the latest version of the software. Y our feedback isinval uable to the continual improvement
of the product. In cases where your business application is dependent on features introduced in the latest
major release, Volt provided timely updatesto the latest version for bug fixesand functional improvements.

For customers focused on stability, we recommend working with the latest LTS release. Even though it
may not be the most recent version, all LTS releases are maintained and patched as necessary to provide
you with the most stable software platform possible. So it isimportant to keep up with the point rel eases of
the LTS you are on to ensure the further stability of your systems. For planning purposes, the best practice
isto install the latest LTS point release on a quarterly basis to receive the latest bug fixes and security
patches available.

For customers who need both stability and cutting edge capabilities, we recommend using LTS releasesin
production and devel oping on the latest version. By doing planning, development and testing on the latest
release, you are ensured you are ready to roll out the latest featuresinto production assoonasanew LTS
release is announced. As an added benefit, you have the opportunity to help influence new features to fit
your business requirements before production starts.

Chapter 2. The Software Upgrade Process

Upgrading from one major version of Volt to another may involve changesto the supported features and/or
configuration of the software. In addition, each cluster must reboot as part of the upgrade process. Which
iswhy it isimportant you plan ahead before starting the upgrade process.

There are essentialy two flavors of the upgrade process. You can upgrade an individua Volt cluster,
which will reguire some minima downtime while the cluster reboots. Or you can use cross datacenter
replication (XDCR) to upgrade each cluster sequentially, so although each cluster must reboot, the service
as awhole remains availabl e throughout the upgrade process. The advantage of an XDCR upgrade is that
your business systems do not incur any interruption.

Once you decide on your approach, there are three steps to the upgrade process:

1. Preparefor the upgrade by reviewing the applicable changesto the V olt software, making any necessary
changes to your business applications and/or schema, saving a copy of your current configuration and
any special settings, and backing up the database.

2. Test the upgrade on adevelopment server to ensure your applications run as expected after the upgrade.
3. Perform the upgrade in the production environment.

Since the process is the same for upgrading a test environment or upgrading production systems, the
process is only described once for each platform in the following sections. However, the process is dif-
ferent for Kubernetes compared to bare metal or servers hosted on generic virtual machines; so there are
separate sections for each platform type.

Finaly, it isagood ideato review your upgrade plans in advance with your Volt Customer Success rep-
resentative. So we strongly encourage you to engage them during the preparation phase where they can
help you evaluate your business solutions for any obsolete coding or features, as well as identifying new
features or improvements that could provide significant benefits to your specific business case.

2.1. Preparing for the Upgrade

Before upgrading the Volt Active Data software to a new major version, you should:
1. Read the upgrade notes (later in the manual) for all major versions included in the update.
. Read the latest release notes for the final version you are upgrading to.

. Update your applications and schema accordingly.

2
3
4. Test your changes on updated development systems to verify they work as expected.
5. Backup your database and schema asaVoltDB snapshot.

6

. Makearecord of your database and server configuration to capture any customisations you have
made to your implementation.

As the product evolves, features are extended to improve performance and enhance their capabilities. At
the same time, old and obsol ete features are sometimes removed from the product. These feature changes
occur primarily at major releases. The later chapters in this book provide notes on such changes in each
of the major versions of VoltDB. So before upgrading, be sure to read the chapters for each of the major
versions involved in the upgrade. For example, if you are upgrading from V9 to V10, read the chapter on
upgrading to V10. If you are upgrading from V9 to V12, read the chapters on upgrading to V10, V11,
and V12.

The Software Upgrade Process

There may be additional improvements found after the initial release of any major version. Which iswhy
you should also read the latest release notes for any minor updates to your target version.

Once you know what product changes need to be addressed, compare the upgrade notes for the major
versions with your current application source code and schema. Be sure to make appropriate revisions
where necessary to avoid obsolete functions and to take advantage of new features where possible.

Once any changes are complete, it is a good ideato test your planned upgrade on a devel opment system
to ensure it works as expected.

When you are ready to start the upgrade, be sure to backup your database as a safety precaution. Y ou can
use the voltadmin save command to take a snapshot of the current database schema and contents.

Y ou should also save a copy of the current database configuration. There are actually two parts to saving
the configuration. While logged onto one of the database servers, you can save the current configuration
file using the voltdb get deployment command?, specifying the location of the database root directory:

$ vol tdb get deployment -D ~/nyvoltserver/ --output=config.xm

Y ou should also make a note of any environment variables or command switches used when starting the
database. In particular, make sure you capture the current settings for the following environment variables
that can significantly impact the server process:

LOG4J CONFIG_PATH
VOLTDB_GC_OPTS
VOLTDB_HEAPMAX
VOLTDB_OPTS

Once you compl ete the preceding steps, you are ready to perform the upgrade.

2.2. Upgrading Volt Databases on Managed
Servers

For customers who manage their own servers, there are three options for upgrading the VoltDB software
for an existing database:

1. Using the voltadmin save and restor e commands before and after shutting down and upgrading the
software.

2. Performing an in-service upgrade by stopping, upgrading, and rejoining nodes in a K-safe cluster one
at atime, without having to shutdown the cluster as awhole.

3. Using two (or more) XDCR clustersto upgrade the clusters one at atime without a service interruption.

The following sections describe how to update the software itself and the three options for upgrading
existing installations.

2.2.1. Upgrading the VoltDB Software

Updating the VoltDB software is very simple. However, you must make sure you perform this step at the
right stage in the upgrade process, as described in the following sections. The product comes as a .tar.gz

IAsof Volt Active Data V14, the configurationissaved in YAML format by default. However, earlier versionswill generate the older XML format
configuration files. This is not a problem because newer versions of the software still accept the older format configuration files for the voltdb
init command.

The Software Upgrade Process

2.2.2.

2.2.3.

file. When the time comes to upgrade the software, you unpack the tar file and move the resulting folder
to replace your current installation. For example, if you have the VoltDB software installed as /var/voltdb,
the software installation looks like the following, where you delete the previous version and replace it
with the new one:

$ tar -zxvf voltdb-ent-n.n.n-xxxx.tar.gz -C /var
$ cd /var

$ rm-vr voltdb

$ nv vol tdb-ent-n.n. n-xxxx vol tdb

Remember, when upgrading an existing installation with a running database, you need to upgrade both
the software and the database itself. Which means you must make sure you perform the update steps in
the correct order. The following sections explain the different options for updating existing installations,
including at what stage in the process you should replace the software.

Upgrading VoltDB Using Save and Restore

Upgrading the VoltDB software on a single database cluster is easy. All you need to do is perform an
orderly shutdown saving afinal snapshot, upgrade the VoltDB software on all serversin the cluster, then
restart the database. The stepsto perform this procedure are:

1. Shutdown the database and save afinal snapshot (voltadmin shutdown --save).
2. Upgrade the VolItDB software on al cluster nodes (instructions).
3. Restart the database (voltdb start).

This process works for any recent (V6.8 or later) release of VoltDB.

Performing an In-Service Upgrade of a Single Cluster

Normally, when upgrading the VoltDB software, you must shutdown the cluster (for example, with the
voltadmin shutdown --save command) and restart the entire cluster using the new software. Downtime
can be avoided by performing an in-service upgrade. An in-service upgrade alows a K-safe cluster to
be upgraded one node at atime, rather than the entire cluster al at once. This means the cluster, and the
business processes it supports, remain available throughout the upgrade procedure.

The requirements for performing an in-service upgrade are:
e Thecluster has the appropriate license for VoltDB that includes the In-Service Upgrade feature.

» Thecluster must be K-safe. That is, the cluster has a K-safety factor of one or more. Thisis required so
individual nodes can be stopped without crashing the cluster.

» The cluster must be running VoltDB V13.1.0 or later.

» The new version falls within the parameters allowed by in-service upgrades, as described in Sec-
tion 2.2.3.1, “The Scope of In-Service Upgrades’.

To perform an in-service upgrade on bare metal servers, you upgrade the VoltDB software on each node
consecutively. Specifically:

1. Stop one of the cluster nodes, using the voltadmin stop node command

2. Once the server process stops, replace the VoltDB software with the new version.

The Software Upgrade Process

3. Restart the node using the voltdb start command, specifying one or more of the other nodes in the
cluster as hosts.

4. Once the rejoin process is finished and the cluster is complete, repeat the process for the next node
until all nodes are upgraded.

During the upgrade process, you can determine which nodes have been updated using the @Systemin-
formation system procedure with the OVERVIEW selector and looking for the VERSION keyword. For
example, in the following command output, the first column isthe host 1D and the last column is the cur-
rently installed software version for that host. Once all hosts report using the upgraded software version,
the upgrade is compl ete.

$ echo "exec @ysten nformati on overview' | sqlcmd | grep VERSI ON

2 VERSI ON 13.1.2
1 VERSI ON 13.1.2
0 VERSI ON 13.1.3

Until the upgrade process is complete, all nodes in the cluster maintain the functionality of the lower
version, even for those nodes that have aready upgraded to the higher version software. Once the upgrade
is complete and al nodes are running on the newer version, the cluster switches to operating with the
higher version functionality. In other words, if the new software contains any new function or behavior,
that feature will not be accessible until the entire in-service upgrade process is complete.

If the upgradefailsfor any reason, or you choose to stop the upgrade midway, you can revert to the original
version by reversing the process: removing a node that has been upgraded, replace the VoltDB software
with the original version, rejoin the node and repeat for all nodes that were upgraded. Once the upgrade
process is complete, the in-service upgrade is over. At which point, you can longer return to the previous
version through an in-service upgrade and must perform afull cluster restart to downgrade.

2.2.3.1. The Scope of In-Service Upgrades

There are limitsto which software versions can use in-service upgrades. The following table describes the
rules for which releases can be upgraded with an in-service upgrade and which releases cannot.

O Patch Releases You can upgrade between any two patch releases. That is, any two releases
where only the third and final number of the version identifier changes. For
example, upgrading from 13.1.1 to 13.1.4.

O Minor Releases Y ou can also use in-service upgrades to upgrade between two consecutive mi-
nor releases. That is where the second number in the version identifier differ.
For example, you can upgrade from V13.2.0 to V13.3.0. Y ou can a so upgrade
between any patch releases within those minor releases. For example, upgrad-
ing from V13.2.3 to V13.3.0.

Y ou cannot use in-service upgrades to upgrade more than one minor version at
atime. In other words, you can upgrade from VV13.2.0to V 13.3.0 but you cannot
perform an in-service upgrade from V13.2.0 to V13.4.0. To transition across
multiple minor releases your options are to perform consecutive in-service up-
grades (for example, fromV13.2.0to V13.3.0, then fromVV13.3.0to V13.4.0) or
to perform aregular upgrade where all cluster nodes are upgrading at one time.

0 Major Releases Y ou cannot use in-service upgrades between major versions of VoltDB. That
is, wherethefirst number in the version identifier is different. For example, you
must perform afull cluster upgrade when migrating from V13.x.x to V14.0.0
or later.

The Software Upgrade Process

2.2.4. Performing an Online Upgrade Using Multiple XDCR
Clusters

It is also possible to upgrade the VoltDB software using cross data center replication (XDCR), by simply
shutting down, upgrading, and then re-initalizing each cluster, one at a time. This process requires no
downtime, assuming your client applications are already designed to switch between the active clusters.

Use of XDCR for upgrading the VoltDB software is easiest if you are already using XDCR because it
does not require any additional hardware or reconfiguration. The following instructions assume that isthe
case. Of course, you could also create a new cluster and establish XDCR replication between the old and
new clustersjust for the purpose of upgrading VoltDB. The steps for the upgrade outlined in the following
sections are the same. But first you must establish the cross data center replication between the two (or
more) clusters. See the chapter on Database Replication in the Using VoltDB manual for instructions on
completing thisinitial step.

Once you have two clusters actively replicating data with XCDCR (let's call them clusters A and B), the
steps for upgrading the VoltDB software on the clustersis as follows:

1. Pause and shutdown cluster A (voltadmin pause --wait and shutdown).
2. Clear the DR state on cluster B (voltadmin dr reset).
3. Update the VoltDB software on cluster A.

4. Start anew databaseinstance on A, making sureto usethe old deployment file so the XDCR connections
are configured properly (voltdb init --force and voltdb start).

5. Load the schema on Cluster A so replication starts.
6. Once the two clusters are synchronized, repeat steps 1 through 4 for cluster B.

Note that since you are upgrading the software, you must create a new instance after the upgrade (step
#3). When upgrading the software, you cannot recover the database using just the voltdb start command;
you must use voltdb init --for ce first to create a new instance and then reload the existing data from the
running cluster B.

Also, be sure all data has been copied to the upgraded cluster A after step #4 and before proceeding to
upgrade the second cluster. You can do this by checking the @Statistics system procedure selector DR-
CONSUMER on cluster A. Once the DRCONSUMER statistics St at e column changesto "RECEIVE",
you know the two clusters are properly synchronized and you can proceed to step #5.

2.3. Upgrading Volt in Kubernetes

For customerswho run Volt Active Datain Kubernetes, the steps for upgrading the database software are:
1. Update your copy of the VoltDB Helm repository.

2. Update the custom resource definition (CRD) for the VoltDB Operator.

3. Upgrade the VoltDB Operator and software.

The following sections explain how to perform each step of this process, including a full example of the
entire process in Example 2.1, “Process for Upgrading the VoltDB Software” However, when upgrading
an XDCR cluster, thereisan additional step required to ensurethe cluster's schemaismaintained during the
upgrade process. Section 2.3.5, “Updating VoltDB for XDCR Clusters’ explains the extra step necessary
for XDCR clusters.

https://docs.voltactivedata.com/UsingVoltDB/ChapReplication.php
https://docs.voltactivedata.com/UsingVoltDB/

The Software Upgrade Process

2.3.1.

2.3.2.

2.3.3.

Updating Your Helm Repository

Thefirst step when upgrading VoltDB is to make sure your local copy of the VoltDB Helm repository is
up to date. Y ou do this using the helm repo update command:

$ hel mrepo update

Updating the Custom Resource Definition (CRD)

The second step is to update the custom resource definition (CRD) for the VoltDB Operator. This allows
the Operator to be upgraded to the latest version.

To update the CRD, you must first save acopy of the latest chart, then extract the CRD from the resulting
tar file. The helm pull command savesthe chart as agzipped tar file and thetar command lets you extract
the CRD. For example:

$ hel mpull vol tdb/voltdb

$1s *.tgz

voltdb-3.1.0.tgz

$ tar --strip-conponents=2 -xzf voltdb-3.1.0.tgz \
vol t db/ crds/ vol t db. com vol t dbcl usters_crd. yam

Note that the file name of the resulting tar file includes the chart version number. Once you have extracted
the CRD asa YAML file, you can use it to replace the CRD in Kubernetes:

$ kubect!l replace -f voltdb.comvoltdbclusters_crd.yan

Upgrading the VoltDB Operator and Software

Once you update the CRD, you are ready to upgrade VoltDB. Y ou do this using the helm upgrade com-
mand and specifying the new software version you wish to use on the command line. What happens when
you issue the helm upgrade command depends on whether you are performing a standard software up-
grade or an in-service upgrade.

For a standard software upgrade, you simply issue the helm upgrade command specifying the software
versioninthegl obal . vol t dbVer si on property. For example:

$ hel m upgrade nmydb vol tdb/voltdb --reuse-val ues \
--set global.voltdbVersion=13.2.1

When you issue the helm upgrade command, the operator saves afinal snapshot, shuts down the cluster,
restarts the cluster with the new version and restores the snapshot. For example, Example 2.1, “Process
for Upgrading the VoltDB Software” summarizes al of the commands used to update a database release
to VoltDB version 13.2.1.

Example 2.1. Processfor Upgrading the VoltDB Software

$ # Update the [ocal copy of the charts

$ hel mrepo update

$ # Extract and replace the CRD

$ hel m pull vol tdb/vol tdb

$1s *.tgz

voltdb-3.1.0.tgz

$ tar --strip-components=2 -xzf voltdb-3.1.0.tgz \

The Software Upgrade Process

vol tdb/ crds/ vol t db. com vol tdbcl usters_crd. yam
$ kubect!| replace -f voltdb.comvol tdbclusters_crd. yanl
$
$ # Upgrade the Qperator and Vol t DB sof tware
$ hel m upgrade nmydb vol tdb/voltdb --reuse-val ues \
--set global.voltdbVersion=13.2.1

2.3.4. Using In-Service Upgrade to Update the VoltDB Soft-

ware

Standard upgrades are convenient and can upgrade across multiple versions of the VVoltDB software. How-
ever, they do require downtime while the cluster is shutdown and restarted. In-Service Upgrades avoid
the need for downtime by upgrading the cluster nodes one at a time, while the database remains active
and processing transactions.

To use in-service upgrades, you must have an appropriate software license (in-service upgrades are a
separately licensed feature), the cluster must be K-safe (that is, have aK-safety factor of one or more), and
the difference between the current software version and the version you are upgrading to must fall within
the limits of in-service upgrades. The following sections describe:

» What versions can be upgraded using an in-service upgrade
» How to perform the in-service upgrade
» How to monitor the upgrade process

» How to rollback an in-service upgrade if the upgrade fails

2.3.4.1. The Scope of In-Service Upgrades

There are limitsto which software versions can use in-service upgrades. The following table describes the
rules for which releases can be upgraded with an in-service upgrade and which rel eases cannot.

O Patch Releases You can upgrade between any two patch releases. That is, any two releases
where only the third and final number of the version identifier changes. For
example, upgrading from 13.1.1 to 13.1.4.

O Minor Releases Y ou can also use in-service upgrades to upgrade between two consecutive mi-
nor releases. That is where the second number in the version identifier differ.
For example, you can upgrade from V13.2.0 to V13.3.0. Y ou can also upgrade
between any patch releases within those minor releases. For example, upgrad-
ing from V13.2.3 to V13.3.0.

Y ou cannot use in-service upgrades to upgrade more than one minor version at
atime. In other words, you can upgrade from VV13.2.0to V 13.3.0 but you cannot
perform an in-service upgrade from V13.2.0 to V13.4.0. To transition across
multiple minor releases your options are to perform consecutive in-service up-
grades (for example, fromV13.2.0to V13.3.0, then fromVV13.3.0to V13.4.0) or
to perform aregular upgrade where all cluster nodes are upgrading at one time.

0 Major Releases Y ou cannot use in-service upgrades between major versions of VoltDB. That
is, wherethefirst number in the version identifier isdifferent. For example, you
must perform afull cluster upgrade when migrating from V13.x.x to V14.0.0
or later.

The Software Upgrade Process

2.3.4.2. How to Perform an In-Service Upgrade

If your cluster meetsthe requirements, you can use thein-service upgrade process to automate the software
update and eliminate the downtime associated with standard upgrades. The procedure for performing an
in-service upgradeis:

1. Settheproperty cl ust er. cl ust er Spec. enabl el nSer vi ceUpgr ade totrueto alow the up-
grade.

2. Set the property gl obal . vol t dbVer si on to the software version you want to upgrade to.
For example, the following command performs an in-service upgrade from V13.1.2 to V13.2.0:

hel m upgrade nmydb voltdb/voltdb --reuse-val ues \
--set cluster.clusterSpec. enabl el nServi ceUpgr ade=t rue \
--set global.voltdbVersion=13.2.0

2.3.4.3. Monitoring the In-Service Upgrade Process

Onceyouinitiate anin-service upgrade, the process proceeds by itself until completion. At ahighlevel you
can monitor the current status of the upgrade using the @SystemlInformation system procedure with the
OVERVIEW selector and looking for the VERSION keyword. For example, in the following command
output, the first column is the host ID and the last column is the currently installed software version for
that host. Once all hosts report using the upgraded software version, the upgrade is complete.

$ echo "exec @ystenm nformati on overview' | sqlcmd | grep VERSI ON

2 VERSI ON 13.1.2
1 VERSI ON 13.1.2
0 VERSI ON 13.1.3

During the upgrade, the Volt Operator reports various stages of the process as events to Kubernetes. So
you can monitor the progression of the upgrade in more detail using the kubectl get events command.
For example, the following is an abbreviated listing of events you might see during an in-service upgrade.
(The messages often contain additional information concerning the pods or the software versions being

upgraded from and to.)
$ kubect!l get events -w
11m Nor mal Rol | i ngUpgrade nydb-voltdb-cluster G acefully term nating pod 2
11m Nor mal Rol | i ngUpgrade nydb-voltdb-cluster Gacefully term nated pod 2
11m Nor mal Rol | i ngUpgrade nydb-voltdb-cluster Recycling Gacefully term nated pod ny

9mi3s Nor mal Rol | i ngUpgrade nydb-voltdb-cluster Recycled pod 2 has rejoined the cluste
9mi2s Nor mal Rol | i ngUpgrade nydb-voltdb-cluster Pod nmydb-voltdb-cluster-2 is now READY
9InB5s Nor mal Rol | i ngUpgrade nydb-voltdb-cluster G acefully term nating pod 1

[.. . 1]
Once the upgrade is finished, the Operator reports this as well:

5nml0s Nor mal Rol | i ngUpgrade nydb-voltdb-cluster RollingUpgrade Done.

2.3.4.4. Recovering if an Upgrade Fails

The in-service upgrade process is automatic on Kubernetes — once you initiate the upgrade, the Volt
Operator handles all of the activities until the upgrade is complete. However, if the upgrade fails for any
reason — for example, if a node fails to rejoin the cluster — you can rollback the upgrade, returning the
cluster to its original software version.

10

The Software Upgrade Process

The Volt Operator detects an error during the upgrade whenever the VoltDB server process fails. The
failure is reported as an appropriate series of events to Kubernetes:

12m Warning Rol i ngUpgrade nmnydb-voltdb-cluster Rolling Upgrade failed upgrading from.
12m Normal RollingUpgrade nmnydb-voltdb-cluster Please update the clusterSpec inmage bac

In addition to monitoring the events, you may wish to use the kubectl commands get events, get pods,
and logs to determine exactly why the node is failing. The next step is to cancel the upgrade by initiating
arollback. Y ou do this by resetting the image tag to the original version number.

Invoking the rollback isamanual task. However, once therollback isinitiated, the Operator automates the
process of returning the cluster toitsoriginal state. Consider the previous examplewhereyou are upgrading
from V13.1.2 to V13.2.0. Let us assume three nodes had upgraded but a fourth was refusing to join the
cluster. You could initiate arollback by resetting the gl obal . vol t dbVer si on property to V13.1.2:

$ hel m upgrade nydb vol tdb/voltdb --reuse-val ues \
--set global.voltdbVersion=13.1.2

Once you initiate the rollback, the Volt Operator stops the node currently being upgraded and restarts it
using the original software version. After that process compl etes, the Operator goes through any node that
had been upgraded, one at a time, downgrading them back to the original software. Once all nodes are
reset and have rejoined the cluster, the rollback is complete.

Note that an in-service rollback can only occur if you initiate the rollback during the upgrade process.
Once the in-service upgrade is complete and all nodes are running the new software version, resetting the
image tag will force the cluster to perform a standard software downgrade, shutting down the cluster as
awhole and restarting with the earlier version.

2.3.5. Updating VoltDB for XDCR Clusters

When upgrading an XDCR cluster, thereis one extra step you must pay attention to. Normally, during the
upgrade, VVoltDB saves and restores a snapshot between versions and so all data and schema information
is maintained. When upgrading an XDCR cluster, the data and schema is deleted, since the cluster will
need to reload the data from another cluster in the XDCR relationship once the upgrade is complete.

L oading the dataiis automatic. But loading the schema depends on the schemabeing stored properly before
the upgrade begins.

If the schema was loaded through the YAML properties cl ust er. confi g. schemas and cl us-
ter.config. cl asses originaly and has not changed, the schema and classes will be restored auto-
matically. However, if the schemawas|oaded manually or has been changed sinceit was originally loaded,
you must make sure a current copy of the schema and classes is available after the upgrade. There are
two waysto do this.

For both methods, the first step is to save a copy of the schema and the classes. Y ou can do this using the
voltdb get schema and voltdb get classes commands. For example, using Kubernetes port forwarding
you can save a copy of the schema and class JAR file to your local working directory:

$ kubect!l port-forward mydb-vol tdb-cluster-0 21212 &
$ voltdb get schema -0 myschena. sql
$ voltdb get classes -0 nyclasses.jar

Once you have copies of the current schema and classfiles, you can either set them as the default schema
and classes for your database release before you upgrade the software or you can set them in the same
command as you upgrade the software. For example, the following commands set the default schema and

11

The Software Upgrade Process

classes first, then upgrade the Operator and server software. Alternately, you could put thetwo - - set -
fil eandtwo--set argumentsinasingle command.

$ hel m upgrade mydb voltdb/voltdb --reuse-val ues \
--set-file cluster.config.schenas. nysqgl =nyschena. sql \
--set-file cluster.config.classes. nyjar=mycl asses.j ar

$ hel m upgrade mydb voltdb/voltdb --reuse-val ues \
--set global.voltdbVersion=12.3.1

12

Chapter 3. Upgrading to Volt Active Data

V8

This chapter describes what new features are introduced in V8.0 and what upgrade tasks may be required
of existing customers.

3.1. What's New in Volt V8.0

Volt 8isamajor release incorporating features from recent point releases plus new capabilities. The major
new featuresin V8 include:

More Network Security — Volt now provides SSL/TLS encryption as an option on all inter-node and
inter-cluster communication, including internal, external, and DR ports. See the chapter on " Security"
in the Using VoltDB manual for details.

User-Defined Functions— It is now possible to define and declare your own functions for usein SQL
statements. User-defined functions are written in Java and declared using the CREATE FUNCTION
statement. See the chapter on " Creating Custom SQL Functions' in the Volt Guide to Performance and
Customization manual for details.

Common Table Expressions— Volt SQL queries can how include common table expressions, using
the WITH clause. Common table expressions help organize complex SQL queries and make them easier
to read. Volt a so supports recursive common table expressions, making it possible to evaluate complex
tree and graph structures within a single statement. See the description of the SELECT statement in the
Using VoltDB manual for details.

K afka Enhancements— Volt now supportsthe latest rel eases of Apache Kafka, by default. The Kafka
export connector continues to support al Kafka versions starting with 0.8.2. For import, the Kafka
import connector and the kafkaloader command line utility now support Kafka 0.10.2 and later, up
through and including the recently released version 1.0.0. For customers still using earlier versions of
Kafka, Kafka 8 support is available as a configurabl e option for both the import connector and alegacy
kafkaloader8 command line tool.

Python V3 APl — Volt now supports the use of Python V3.x for developing client applications. The
Volt Python client library (available from GitHub) supports both Python 2.7 and 3.x.

3.2. Special Considerations for Existing Customers

Most of the new features and capabilitiesin Volt V8.0 do not impact existing applications. However, there
areafew changesthat do require minor changesto the configuration when upgrading from earlier versions.
Existing customers should take note of of the following changes:

Changeto default Kafka versionsfor import

For the kafka import connector and the kafkaloader command line utility, the default Kafka version
has changed from 0.8.2t0 0.10.2 or later. For customers already using Kafka 0.10.2 or later, there are no
changes needed to their configuration, scripts, or applications. For customerswho wish to continue using
theolder Kafkaversion 0.8.2, they will need to add the attributever si on=" 8" to theimport connector
configuration and/or use the command line utility kafkaloader 8 instead of the default kafkaloader .

The" elastic" attributeremoved from <cluster>

13

https://docs.voltactivedata.com/UsingVoltDB/ChapSecurity.php
https://docs.voltactivedata.com/UsingVoltDB
https://docs.voltactivedata.com/PerfGuide/ChapUDF.php
https://docs.voltactivedata.com/PerfGuide/
https://docs.voltactivedata.com/PerfGuide/
https://docs.voltactivedata.com/UsingVoltDB/sqlref_select.php
https://docs.voltactivedata.com/UsingVoltDB
https://github.com/VoltDB/voltdb-client-python

Upgrading to Volt Active DataV8

An artifact of an old feature provided for backwards compatibility, the el asti c attribute of the
<cl ust er > element in the configuration file was disabled and deprecated severa years ago. It has
now been removed. Althoughitisunlikely any still exist, configuration filesthat do includethisattribute
will now fail to parse. Simply remove the attribute and try again.

The <consistency> element removed from the configuration file

The <consi st ency> element was recently deprecated, since "fast" read consistency no longer pro-
vides any significant performanceimprovement over "safe" mode but doesintroduce potential risksdur-
ing failure scenarios. It has now been removed from the allowable configuration file syntax. If you in-
cluded <consi st ency> inyour configuration file, please removeit before starting a\Volt 8.0 cluster.

Old commandsfor starting Volt are no longer supported

Volt 6.6 introduced two new integrated commands, init and start, for starting VVolt servers. At that time
theold commands (add, cr eat e,r ecover ,andr ej oi n) were deprecated. The old commands have
now been removed from the product. If you still use the older commands, please update your scripts to
use the new commands as described in the chapter " Starting the Database" in the Using VoltDB manual.

14

https://docs.voltactivedata.com/UsingVoltDB/ChapStartDB.php
https://docs.voltactivedata.com/UsingVoltDB

Chapter 4. Upgrading to Volt Active Data
V9

This chapter describes what new features are introduced in V9.0 and what upgrade tasks may be required
of existing customers.

4.1. What's New in Volt V9.0

Volt 9.0 isamajor release incorporating features from previous point releases plus new capabilities. The
major new featuresin V9.0 include:

* Automated Deletion of Old Data— Volt 8.4 introduced a new feature, USING TTL ("timeto live"),
that lets you define when records expire and can be deleted. This feature simplifies application design
by automatically removing old data from the database based on settings you definein the table schema.
With Volt 9.0, this feature is extended to include the migration of deleted data to other systems for
archival purposes, as described next.

* New Export Capabilities— The codethat supports export of datato external systemshasbeen rewritten
to provideflexibility, improvereliability, reduce system resource utilization, and support new and future
product features. The new export system reinforcesthe durability of dataqueued to the export connectors
across unexpected system and network failuresand allows export to be extended to add new capabilities.

Thefirst two new capabilities are:

e ALTER STREAM — The ability to modify an existing stream. You can use the new ALTER
STREAM statement to modify the schema of the stream or the target for export without interrupting
any already queued export data. See the description of ALTER STREAM in the Using VoltDB man-
ual for details.

* Automated Data Migration — Y ou can now automate the export of datafrom Volt database tables
to other systems as part of the dataaging process. For tables declared withthe USING TTL clauseyou
cannow add aMIGRATE TO TARGET clause. With MIGRATE TO TARGET, datathat exceedsits
"timetolive" isqueued to the specified export connector. Oncethe datais exported and acknowledged
by the external system, it isthen deleted from the V olt database. This automated process not only au-
tomatesthe archiving of old datait ensuresthat the data staysin the VVolt database until it is confirmed
asreceived by the export target. See the description of the CREATE TABLE statement in the Using
VoltDB manual for more information about the USING TTL and MIGRATE TO TARGET options.

Two important aspects of the new export infrastructure are the effect on the overall export process:

« Export now starts when the stream is defined, not when the target is defined. Previoudly, stream data
was not queued for export until avalid export connector was configured and connected. This meant
data written to a stream might be dropped rather than queued for export if the connector was not
configured correctly. Starting with Volt 9.0, data written to streams declared with the EXPORT TO
TARGET clause are queued for export whether the target is configured or not. Similarly, the queued
datais removed as soon as the stream itself is removed with the DROP STREAM statement.

This change makes the queuing of export data much morereliable, easier to understand, and easier to
control. Datais queued for export as soon as the stream is defined and purged as soon asthe stream is
dropped. The new ALTER STREAM statement further lets you modify the stream definition without
having to clear any existing export queues.

15

https://docs.voltactivedata.com/UsingVoltDB/ddllref_alterstream.php
https://docs.voltactivedata.com/UsingVoltDB
https://docs.voltactivedata.com/UsingVoltDB/ddllref_alterstream.php
https://docs.voltactivedata.com/UsingVoltDB
https://docs.voltactivedata.com/UsingVoltDB

Upgrading to Volt Active DataV9

« Export isnow an enterprise feature. The Volt Community Edition provides access to two streams per
database, so users have access to basic export functionality. But for unlimited access to export and
migration features, the Enterprise Edition is required. (See Special Considerations for more informa-
tion about upgrading community databases that use export.)

» "Live" Schema Updates with Database Replication — Previously, database replication (DR) re-
quired the schema of the cooperating databases to match for all DR tables. So updating the schema
required a pause while all of the affected databases were updated. Starting with 9.0, this limitation has
been loosened. DR continues even if the schema are different. So it is possible to update the schema
without interrupting ongoing transactions.

Of course, it is not possible for Volt to resolve individual transactions if the schema differ. Soif aDR
consumer (either areplica in passive DR or an XDCR cluster in active replication) receives a binary
log where the schema of the affected table(s) does not match, DR will stall and wait for the schema
to be updated to match the incoming data. Therefore, care must be taken when updating the schema
to ensure that no transactions that are affected by the schema change are processed during the interval
when the clusters’ schema do not match. See the sections on updating DR schemafor passive and active
DR for more information.

» Simplified JSON interface— A new version of the Volt JSON API, 2.0, isnow available. Theorigina
JSON interface provides compl ete information about the schema for the data being returned, including
separate entriesfor the data, the column names, and datatypes. The 2.0 API returnsamuch more compact
result set with each row represented by an associative array with each element consisting of the column
name and value.

The 1.0 API is useful if you do not know what data is returned and want to deconstruct the results in
detail. The 2.0 API is more useful for rapidly fetching and using known results. Both versions of the
API accept the same parameters, as described in the section on using the JISON API in the Using VoltDB
manual. So the following calls return the same data except at different levels of detail.

http:// nyserver: 8080/ api/ 1.0/ ?Procedure=@5t ati sti cs&Paranet ers=[" TABLE", 0]
http:// nyserver: 8080/ api/ 2.0/ ?Procedur e=@t ati sti cs&Paranet ers=[" TABLE", 0]

e Support for Java 11 — Volt now supports both Java 8 and Java 11.

4.2. Special Considerations for Existing Customers

Many of the new featuresand capabilitiesin Volt V9.0 do not impact existing applications. However, there
are afew changes that may require action for users upgrading from earlier versions. Existing customers
should take note of of the following changes:

e Changeto how stream data is queued for export

Previoudly, if you defined a stream with the EXPORT TO TARGET clause but no matching target was
configured, any datainserted into the stream was dropped. No data was queued until the specified target
was both configured and successfully connected. With Volt 9.0 export queuing has been simplified: data
is queued as soon as the stream is declared and the queue is deleted as soon as the stream is dropped.

Thismeansthat if you declare astream and it is being written to, but you do not configure the associated
target, thedatainserted into the streamwill bequeuedintheexport _over f | owdirectory, consuming
disk space that would not have been used in earlier versions of the product.

» Changetothereporting of streamsin @Statistics

16

https://docs.voltactivedata.com/UsingVoltDB/DbRepHowToPassive.php#DbRepPassiveUpdateSchema
https://docs.voltactivedata.com/UsingVoltDB/DbRepHowToActive.php#DbRepActiveUpdateSchema
https://docs.voltactivedata.com/UsingVoltDB/ProgLangJson.php
https://docs.voltactivedata.com/UsingVoltDB

Upgrading to Volt Active DataV9

In Volt 8.4, a new @Statistics selector, EXPORT, was introduced to provide improved visibility and
more detail concerning the export lifecycle. At that time, export streams continued to be reported under
the TABLE selector, so as not to disrupt existing scripts or procedures users might have that rely on
that information. With Volt 9.0, export streams have been removed from the TABLE selector results.
Now the TABLE selector only reports on tables and streams that are not associated with an export
target. Information on streams declared with the EXPORT TO TARGET clause is provided under the
EXPORT selector.

Managing export queues during outages

In most cases, Volt manages the export queues even in unusual cases where nodes go down in aK-safe
cluster. If at any time the node managing an export partition finds a gap in the export queue (due to the
current server having been down when that data was written to the stream), the system queries the other
servers to find one with the missing data and export continues. In the rare case where Volt cannot find
the missing records in any of the current server export queues, the export connector for that queue will
stop, waiting for a server that has the data.

Even if servers stop and rejoin frequently, the datawill eventually be found on arejoining node. How-
ever, in the unusual case that, say, failed nodes are replaced by new, initialized servers, it is possible
that the gap in the queue cannot be resolved. Previously, Volt would eventually (once the cluster was at
afull complement of servers) skip the missing dataand restart the connector at the next available export
record. Starting with Volt 9.0, export will not skip over gaps automatically. The queue will stop and
warnings will be logged to the console and reported via SNMP. Y ou must issue the voltadmin export
release command to resume processing of the export connector at the next available record.

Limitson streamsin Community Edition

Export is now an Enterprise Edition feature and the Community Edition is limited to two streams per
database. Thismeansif you try to restore a database from a previous version with more than two streams
using the Volt 9.0 Community Edition, the restore will fail. If this happens when upgrading, you can
initialize a new database root, load the schema without the additional streams, then manually restore
the data.

Support for CentOSand RHEL 6 removed

The officialy supported platforms for Volt have been updated. CentOS and RHEL version 6 are no
longer officially supported. The current list of supported platforms include CentOS and RHEL version
7.0 or later, Ubuntu versions 14.04, 16.04, and18.04, and Macintosh OS X 10.9 or later.

Support for export and import to Kafka 0.8.2 removed
The Kafkaimport and export connectors now require Kafka version 0.10.2 or later.
L ogging name change from JOIN to ELASTIC

Thelog4Jlogger reporting on elastic changesto V olt clusters has been renamed from JOIN to ELASTIC.

17

Chapter 5. Upgrading to Volt Active Data
V10

This chapter describes what new features are introduced in VV10.0. VV10.0 does not require any changes to
client applications or databases prior to upgrading.

5.1. What's New in VoIt V10.0

Volt 10.0 is amajor release incorporating features from recent updates plus new capabilities. The major
new featuresin V10.0 include:

* New Volt Operator for Kubernetes— Volt now offers acomplete solution for running Volt databas-
es in a Kubernetes cloud environment. Volt V10.0 provides managed control of the database startup
process, anew Volt Operator for coordinating cluster activities, and Helm charts for managing therela
tionship between Kubernetes, Volt and the Operator. The Volt Kubernetes solution is available to En-
terprise customers and includes support for al Volt functionality, including cross data center replication
(XDCR). Seethe Volt Kubernetes Administrator's Guide for more information.

* New Prometheus agent for Volt — For customers who use Prometheus to monitor their systems,
Volt now provides a Prometheus agent that can collect statistics from arunning cluster and make them
available to the Prometheus engine. The Prometheus agent is available as a Kubernetes container or as
a separate process that can either run on one of the Volt servers or remotely and makes itself available
through port 1234 by default. See the README filein the/ t ool s/ noni t ori ng/ pr onet heus
folder in the directory where you install Volt for details.

» Enhancementsto Export — Recent updates to export provide significant improvements to reliability
and performance. The key advantages of the new export subsystem are:

« Better throughput — Initial performancetests demonstrate significantly better throughput on export
gueues using the new subsystem over previous versions of Volt.

¢ Adjustable thread pools — The new subsystem let's you set the thread pool size for export as a
whole or to define thread pools for individual connectors.

« Fewer duplicaterows— When cluster nodesfail and rejoin the cluster, the export subsystem resub-
mits certain rows to ensure they are delivered. The new subsystem keeps better track of the acknowl-
edged rows and does not need to send as many duplicates to maintain the same level of durability.

» Improved license management — Starting with Volt V 10.0, specifying the product license has moved
from the voltdb start command to the voltdb init command. In other words, you only have to specify
the license once, when you initialize the database root directory, rather than every time you start the
database. When you do specify the license on the init command, it is stored in the root directory the
same way the configuration is.

The same rules apply about the default location of the license as before. So if you store your license in
your current working directory, your homedirectory, or the/ vol t db subfolder whereVoltisinstalled,
you do not need to include the --license argument when initializing the database. Also note that the --
license argument on the voltdb start command is now deprecated but still operational. So if you have
scripts to start Volt that include --license on the start command, they will continue to work. However,
we recommend you change to the new syntax whenever convenient because support for voltdb start --
license may be removed in some future major release.

18

https://docs.voltdb.com/KubernetesAdmin/

Upgrading to Volt Active DataV 10

e Support for RHEL and CentOS V8 — After interna testing and validation, RHEL and CentOS V8
are now supported platforms for production use of Volt.

5.2. Special Considerations for Existing Customers

Volt 10.0 contains no incompatible changes with Volt V9. All existing Volt V9.x databases and client
applications can be upgraded to V10.0 asis.

19

Chapter 6. Upgrading to Volt Active Data
V11

This chapter describes what new features are introduced in VV11.0 and what upgrade tasks may be required
of existing customers.

6.1. What's New in Volt V11.0

Volt 11 is a major release incorporating features from recent updates plus new capabilities. The major
new featuresin V11 include:

» Volt Topics — Volt Topics provide the intelligent streaming of Volt's existing import and export ca-
pabilities, but with the flexibility of Kafka-like streams. Topics allow for both inbound and outbound
streaming to multiple client producers and consumers. They also use the existing Kafka interface to
simplify integration into existing infrastructure. But most importantly, they allow for intelligent pro-
cessing and manipulation of the data as it passes through the pipeline.

Volt topics, which were released as a beta feature in VV10.2, are now ready for production use. See the
chapter on Streaming Datain the Using VoltDB manual for more information.

» Support for Python 3.6 — The Volt command line tools have been upgraded to use Python version
3. Python 3 is commonly available on modern operating systems and so simplifies the process of con-
figuring platformsfor Volt.

* New Kubernetes capabilities— Upgrades to the Volt Operator for Kubernetes provide two important
new features:

e Multi-cluster XDCR — It isnow possible to create a cross datacenter replication (XDCR) network
with three or more clusters. Additional Helm properties help simplify the management and mainte-
nance of the XDCR clusters. See the chapter on Database Replication in the Volt Kubernetes Admin-
istrator's Guide for details.

< Volt Topic Support — The Operator now provides the properties necessary to configure and start
Volt topicsin clusters running in Kubernetes.

» Volt Java Client improvements— The Volt Java client interface has been updated with the following
improvements:

« Topology Awareness — Previously, there were two options for handling topology changes on the
server, set Reconnect OnConnecti onLoss() andset Topol ogyChangeAwar e() , which
were mutually exclusive. Thislimitation has been removed and set Topol ogyChangeAwar e()
has been enhanced to include reconnection when the last connection is lost, further improving con-
nectivity and resilience.

< Non-Blocking Asynchronous Calls — Normally, the asynchronous callProcedure method returns
an error if the client cannot queue the call because of backpressure. However, it is still possible
for the call to block in certain cases. It is now possible to avoid blocking entirely by setting the
set Nonbl ocki ngAsync() configuration option on the client. See the Javadoc for details.

» Connection timeouts — Handling of connection timeouts by the client has been improved. Now, if
the client is able to detect a timeout before it is sent to the server, the client aborts the transaction
and returns the procedure status GRACEFUL _FAILURE, with a status string of "Procedure call not
gueued: timed out waiting for host connection.”

20

https://docs.voltactivedata.com/UsingVoltDB/ChapExport.php
https://docs.voltactivedata.com/UsingVoltDB/
https://docs.voltactivedata.com/KubernetesAdmin/XdcrChap.php
https://docs.voltactivedata.com/KubernetesAdmin/
https://docs.voltactivedata.com/KubernetesAdmin/

Upgrading to Volt Active DataV11

e Security updates — The Volt Management Center (VMC) web-based console for Volt has been up-
dated to the latest versions of the jQuery libraries to address security vulnerabilities. The current library
versions for VMC are JQuery v3.5.1 and jQuery-Ul v1.12.1.

6.2. Special Considerations for Existing Customers

Most of the new features and capabilitiesin Volt VV11.0 do not impact existing applications. However, there
are afew changes that require action for users upgrading from earlier versions. Also several deprecated
features have now been removed. Existing customers should take note of of the following changes:

» Supported platforms

Ubuntu 16.04 is no longer a supported production platform for Volt. The currently supported operating
systems for running production Volt databases are:

e CentOS and Red Hat (RHEL) V7.0 and later or V8.0 and later

* Ubuntu 18.04 and 20.04
* Python 3.6isnow required

The system requirements for Volt have been changed from Python 2.7 to Python 3.6.
» Support for LIMIT PARTITION ROWS has been removed

The LIMIT PARTITION ROWS clause of the CREATE TABLE statement has been removed. The
USING TTL clause and scheduled tasks are the recommended replacements for this feature.

» The deprecated @SnapshotStatus system procedur e has been removed

The @Snapshot St at us system procedure has been deleted. The @Statistics system procedure with
the SNAPSHOTSUMMARY selector is the recommended replacement.

21

Chapter 7. Upgrading to Volt Active Data
V12

This chapter describes what new features are introduced in VV12.0 and what upgrade tasks may be required
of existing customers.

7.1. What's New in Volt V12.0

Volt 12 isamajor release that includes several key features. First and foremost, the memory management
for the database tabl e data has been rewritten and optimized to reduce certain impedimentsin the previous
implementation. Although this change is primarily internal and transparent to you as a customer, it does
have two direct benefitsin terms of eliminating devel opment and operational roadblocks:

* No Large Compaction Events — As tuples are inserted and deleted, small gaps of unused memory
are created within the larger allocated blocks. Previoudly, if the total amount of allocated but unused
memory hit a specific high watermark, the database would compact all of the table memory before
continuing. As effective as this mechanism was, it could result in unpredictable latency spikes in the
ongoing workload.

Now, defragmentation of data storage is performed incrementally on a per table and per partition basis.
Since the compaction transactions are much smaller, and also partitioned, they have little or no impact
on the ongoing business workload. In addition, you as the database administrator have control over how
large those periodic compaction events are and and how often they occur. See the chapter on memory
management in the Volt Performance and Customization Guide for more information about the new
memory management algorithm.

* NoHash Mismatches Dueto Row Order — In the past, devel opers had to be careful not to introduce
non-deterministic behavior into their stored procedures by performing unordered queries. Theissuewas
that, when using K-Safety, different copies of a partition could return resultsin a different order if you
did not include the appropriate ORDER BY clause.

A key aspect of the memory management scheme introduced in V12.0 is that all copies of a partition
now always return aquery'sresultsin one, deterministic order, even if the query itself isnot sorted. This
means that queries without an appropriate ORDER BY clause will not cause a hash mismatch.

Mind you, including an ORDER BY clause is till recommended so you can depend on the order in
which the results are returned. Although VoltDB now returns results in a deterministic order, you do
not know what that order will be. Also, although the new deterministic row order helps, there are other
practices (such as calling system-specific time functions) that still cause hash mismatches and must
be avoided. See the section on stored procedures and determinism in the Using VoltDB manual for a
reminder of what to watch out for.

Other new features introduced in V12.0 and recent releases include:

» Support for Ubuntu 22.04 and the Rocky OS— Volt Active Data has added Ubuntu 22.04 and Rocky
OS as supported platforms for VoltDB.

e Support for storing TLS/SSL credentialsin Kuber netes secrets— When enabling TLS/SSL in Ku-
bernetes, you can now store your TLS/SSL credentials (including the keystore, truststore, and pass-
words) in a Kubernetes secret. This avoids having to specify passwords on the Helm command line and
simplifies the commands needed to start and update database instances. See the section on configuring
TLS/SSL in the VoIt Kubernetes Administrator's Guide for details.

22

https://docs.voltactivedata.com/PerfGuide/ChapMemoryUsage.php
https://docs.voltactivedata.com/PerfGuide/ChapMemoryUsage.php
https://docs.voltactivedata.com/PerfGuide/
https://docs.voltactivedata.com/UsingVoltDB/DesignProc.php#DesignProcDeterminism
https://docs.voltactivedata.com/UsingVoltDB/
https://docs.voltactivedata.com/KubernetesAdmin/

Upgrading to Volt Active DataV12

» Expiration datesfor user accounts— Y ou can now specify an expiration date for user accountsin the
database configuration file. Once the specified date is past, the associated account can no longer access
the database, until the configuration for the user account is updated. The expiration dateis optional. See
the section on defining users and roles in the Using VoltDB manual for details.

* New LAG() windowing function — The LAG() function accesses previous rows from the window
results using an offset. See the section on windowing functionsin the SELECT reference page for more
information.

* Dedicated pod for VMC and HTTP API in Kubernetes — By default, Volt in Kubernetes now
creates a separate pod for the Volt Management Center (VMC) and HTTP API. This providesasingle
service name for accessing these resources, aswell asasingleinstance for the entire cluster (rather than
separate instancesfor each host). The new pod isavailablefrom the servicename{r el ease- nane} -
vol t db- vt where {release-name} is the name of the Helm release for the database cluster.

7.2. Special Considerations for Existing Customers

Most of the new features and capabilitiesin VoltDB V12.0 do not impact existing applications. However,
there are a few changes that require action for users upgrading from earlier versions. Also several depre-
cated features have now been removed. Existing customers should take note of of the following changes:

e Alicenseisrequired on thevoltdb init command

Starting with V12, the voltdb init command must find and load alicense file or the initialization of the
database root directory will fail. The license file can either be specified explicitly using the-1 or - -
| i cense flag or it can befound in one of the three default |ocations (the current working directory, the
user's home directory, or the vol t db folder where VoltDB isinstalled). It is still possible to specify
alicense file on the voltdb start command — in case you need to change or update the license after
initialization — but alicense must be specified on the voltdb init command first.

* Theutility kafkaloader 10 is now deprecated

To support different versions of the Kafka API, two versions of the kafkal oader utility were provided in
the past; kafkal oader and kafkal oader10. Now that support for older versions of Kafkahasbeen dropped,
the legacy loader, kafkaloader10, has been deprecated and will be removed in afuture release.

» Old deprecated methods removed from the Java client API

Several obsolete methods in the Java client API that were previously deprecated have now been re-
moved. Thosemethodswereset Cl i ent Affi nity,set SendReadsToRepl i cas,andset Re-
connect OnConnecti onLoss.

e Thevoltadmin plan_upgrade command has been removed

The procedure for upgrading the VoltDB software using limited hardware is no longer supported. The
associated command, plan_upgrade, has been removed from the voltadmin utility.

* @Statistics DRCONSUMER column renamed

The results of the @Statistics system procedure DRCONSUMER selector have been altered dightly.
Specifically, the last column of the third results table has been renamed to be more descriptive from
LAST_FAILURE to LAST_FAILURE_CODE.

23

https://docs.voltactivedata.com/UsingVoltDB/SecurityUsersGroups.php
https://docs.voltactivedata.com/UsingVoltDB/
https://docs.voltactivedata.com/UsingVoltDB/sqlref_select.php#sqlSelectWindowFuncs
https://docs.voltactivedata.com/UsingVoltDB/sqlref_select.php

Chapter 8. Upgrading to Volt Active Data
V13

This chapter describes what new features are introduced in vV 13.0 and what upgrade tasks may be required
of existing customers.

8.1. What's New in Volt V13

Volt Active Data V13 is a mgjor release that includes a number of structural enhancements as well as
the general availability for production use of features previewed in earlier releases. New features and
enhancementsin V13.0 include:

* New Prometheus metrics system — Volt V13 announces the general production release of a new
metrics system, where every server in the cluster reports its own data through a Prometheus-compliant
endpoint. You enable Prometheus metrics in the configuration file when initializing the database by
adding the <metrics> element to the Volt configuration file:

<depl oynent >
<netrics enabl ed="true"/>
</ depl oynent >

Once enabled, each Volt server reports server-specific information through the metrics port, which de-
faultsto 11781. The new metrics system repl aces the standal one Prometheus agent, which has now been
deprecated. See the sections on integrating with Prometheusin the Volt Administrator's Guide and Volt
Kubernetes Administrator's Guide.

* New Grafana dashboar ds— To match the new metrics system, Volt provides sample Grafana dash-
boards to help visualize your database's performance and status. There are matching dashboards de-
signed for use with Kubernetes and bare metal:

e Kubernetes dashboards: https://github.com/V oltDB/volt-monitoring/tree/main/dashboards/V ol t-
K8s-13.x/new-metrics

e Bare metal dashboards: https://github.com/V oltDB/volt-monitoring/tree/main/dashboards/V olt-
V13.x/new-metrics

» Support for alternate character sets— Volt providesfull support for international charactersthrough
its use of UTF-8 for storing and displaying textual data. However, there are other character encodings
that may be in use by customers, including both older, established encodings such as Shift_JIS and
newer encodings like the Chinese GB18030-2022 standard. For customers using alternate character en-
codings as the default in their client environment, Volt now provides automatic conversion of character
encodings both interactively and for file input. The sqlcmd utility automatically converts to and from
the terminal session'slocalized character set for input and display. When reading and writing files, you
can use the - - char set qualifier to specify the character encoding of the file, both with the sglcmd
and csvloader utilities.

» Improved command line interface for the sqgimd utility — In addition to full character set support,
the sglemd utility has amore complete and consistent set of command line qualifiers. Thenew - - out -
put - fi | e quaifier captures the output of SQL statements; it does not echo the commands or infor-
mational messages. When used withthe- - out put - f or mat =csv qudlifier, - - out put - fi | e now
generates valid CSV files without extraneous lines. Similarly, the- - f i | e qualifier lets you process a

24

https://docs.voltactivedata.com/AdminGuide/MonitorOther.php
https://docs.voltactivedata.com/KubernetesAdmin/MonitorChap.php#OpsMonitorPrometheus
https://docs.voltactivedata.com/KubernetesAdmin/MonitorChap.php#OpsMonitorPrometheus
https://github.com/VoltDB/volt-monitoring/tree/main/dashboards/Volt-K8s-13.x/new-metrics
https://github.com/VoltDB/volt-monitoring/tree/main/dashboards/Volt-K8s-13.x/new-metrics
https://github.com/VoltDB/volt-monitoring/tree/main/dashboards/Volt-V13.x/new-metrics
https://github.com/VoltDB/volt-monitoring/tree/main/dashboards/Volt-V13.x/new-metrics

Upgrading to Volt Active DataV13

file containing any valid sglcmd statements or directives. And if the file contains only data definition
language (DDL) statements, you can use the - - bat ch qualifier to process all of the statement as a
single batch significantly reducing the time required to update the schema. See the sglemd reference
page for these and other improvements to the sglemd utility.

» Beta support for ARM architecture — Beta software kits for running the VoltDB server software
natively on ARM64 architecture are now available. If you are interested in participating in the ARM64
beta program, please contact your Volt Customer Success Manager.

» Support for Kubernetes 1.27 — Volt Active Data now supports version 1.27 of the Kubernetes plat-
form. See the Kuber netes Compatibility Chart for details on what versions of Kubernetes are supported
by each version of VoltDB.

8.2. Special Considerations for Existing Customers

The new features and capabilities in VoltDB V13.0 do not impact existing applications. However, there
are afew changesthat require action for users upgrading from earlier versions. Existing customers should
take note of the following changes:

e Ubuntu 18.04 and CentOS/RHEL V7 areno longer supported

Starting with V13, Ubuntu 18.04, which has reached end of life, and CentOS and Red Hat V7 are no
longer supported as production platforms for Volt Active Data. Although the VoltDB software may
continue to run, we strongly recommend upgrading to either Ubuntu 22.04 or Rocky Linux or REHL
V8.6 or later for production use.

» The standalone Prometheus agent is depr ecated

Support for Prometheus data scraping was originally provided by a separate Prometheus agent (runin
a separate pod on Kubernetes). That original cluster-wide agent has been replaced with a new metrics
system that provides Prometheus endpoints on all of the cluster nodes, each reporting its own data. As
aresult, the standal one Prometheus agent has been deprecated and will be removed in a future release.

25

https://docs.voltactivedata.com/UsingVoltDB/clisqlcmd.phphttps://docs.voltactivedata.com/UsingVoltDB/clisqlcmd.php
https://docs.voltactivedata.com/UsingVoltDB/clisqlcmd.phphttps://docs.voltactivedata.com/UsingVoltDB/clisqlcmd.php
https://docs.voltactivedata.com/ReleaseNotes/compatibility.php

Chapter 9. Upgrading to Volt Active Data
V14

This chapter describes what new features are introduced in VV14.0 and what upgrade tasks may be required
of existing customers.

9.1. What's New in Volt Active Data V14

Volt Active DataV 14 isamajor release that includes aredesign and enhancement to how you configurethe
database, aswell as general cleanup of old and obsolete functions. The key new features and enhancements
inV14.0 include:

» Redesign of Database Configuration — Traditionally, VoltDB has been configured using a single
XML file. Once the database was running, you could update the configuration using the voltadmin
update command and passing it an updated XML file. But that file had to be complete; any options
configured on initialization had to also be set for the update or else the update would fail or options
would be reset to the default. Y ou could not simply specify the one or two options to change.

VoltDB now uses YAML properties for defining the configuration. The use of YAML has multiple
advantages:

e Ease-of-Use: YAML isasimple indented text format that is easier to read and edit than XML.

e Modularity: You are no longer restricted to a single configuration file. You can specify multiple
YAML fileswhen you initialize the database and the contents are merged. This allows you to group
and manage configuration options by category, such as security, export, directory paths, etc. For
example, you could have a single file for configuring two XDCR databases identically and have
separate Y AML files for the XDCR settings, which require aunique ID per cluster:

$ voltdb initialize -C comon. yanm , xdcr _cl uster 1. yan

» Getting and Setting Individual Properties: Y ou can now get and set individual configuration prop-
erties on a running database using the voltadmin get and set commands, rather than having to relist
all of the original properties. For example:

$ vol tadm n set depl oynent. snapshot. frequency=2d

You can also set multiple propertiesin a single set command using a list of dot notation settings or
aYAML file of just those properties you want to change. Of course, you can still use the voltadmin
update command, providing a complete set of propertiesin either YAML or XML.

See the section on understanding Y AML syntax in the Using VoltDB manual for more information on
how to use YAML effectively.

Finally, although XML format for configuring databases is now deprecated in favor of YAML — and
we encourage the use of YAML — XML isstill supported and continuesto work asin previous rel eases
for both the voltdb init and voltadmin update commands. So your existing scripts for starting and/or
updating a database do not have to change at thistime.

* New voltadmin get and set Commands — As mentioned above, there are two new voltadmin com-
mands: get and set. The voltadmin get command letsyou retrieve part or al of the current configuration
settingsin YAML. If you specify "deployment™ as the argument, you get al of the settings. Or you can

26

https://docs.voltactivedata.com/UsingVoltDB/AppxConfigFile.php#AppConfigYamlIntro
https://docs.voltactivedata.com/UsingVoltDB/

Upgrading to Volt Active DataV14

specify a single property or group of properties by specifying the desired settings in dot notation. For
example, you can get just the current K-safety factor with the voltadmin get deployment.cluster k-
factor command or all export settings with voltadmin get deployment.export. See the appendix of
YAML propertiesin the Using VoltDB manual for details.

Similarly, the voltadmin set command lets you modify individual properties. Y ou can either specify an
individual property using dot notion (such as voltadmin set deployment.snapshot.enabled=true) or a
YAML file for setting multiple properties at once (for example, voltadmin set --file=newuser s.yaml)

e Updated results for @Systemlnformation OVERVIEW — The return results for the @Systemin-
formation system procedure OVERVIEW selector have been updated and a new field added to make
it clearer when a cluster is at full K-safety or not. Originally, the field CLUSTERSAFETY could be
misleading because it only reported on whether a hash mismatch had forced the cluster into reduced
K-safety. Its value did not change if one or more nodes had failed for other reasons. To make it less
misleading, CLUSTERSAFETY now reports FULL or REDUCED depending on whether the cluster
is fully functional or nodes are missing for any reason. A new field, REDUCEDSAFETY, reports on
whether K-safety has been intentionally reduced due to a hash mismatch.

» Updated Platform Support — Volt Active Data now supports Kubernetes up through version 1.30,
Ubuntu version 24.04, and Java versions 17 and 21.

» Removing Obsolete Functionality — Over the life cycle of version 13, a number of older features
were deprecated and replaced by improved and enhanced implementations. WIth the release of V14,
these deprecated items are being removed from the product. These include:

» Embedded Volt Management Center (VMC) and HTTP JSON API

 Standalone Prometheus agent

9.2. Special Considerations for Existing Customers

The new featuresin VVoltDB V14.0 add capabilities without altering the behavior of existing applications.
However, there are afew changes that require action for users upgrading from earlier versions. Existing
customers should take note of the following changes:

» Deprecated Features Removed

Several obsolete technol ogiesthat have already been deprecated have now be removed from the product.
Specifically:

e Embedded VM C and HTTP JSON API — The embedded V olt Management Console (VMC) and
HTTP programming interface has been deprecated and replaced with a VMC service that must be
started separately on bare metal. (In Kubernetes, the new VMC service is started by default.) If you
have been depending on VMC or the HTTP API starting automatically on bare metal, you will need
to install and start the VMC service manually. See the Volt Administrator's Guide for information
on running the VMC service.

» Standalone Prometheusagent — The standal one Prometheus agent isno longer included in the Volt
Active Data softwareKkit. Instead, Prometheus metrics are avail able directly from the VoltDB servers,
with each server reporting its own performance metrics. To use the new metrics, be sure to enable
metrics in the database configuration, as described in the Volt Administrator's Guide. For example:

depl oynent :
netrics:
enabl ed: true

27

https://docs.voltactivedata.com/UsingVoltDB/ConfigStructure.php
https://docs.voltactivedata.com/UsingVoltDB/ConfigStructure.php
https://docs.voltactivedata.com/UsingVoltDB/
https://docs.voltactivedata.com/AdminGuide/
https://docs.voltactivedata.com/AdminGuide/MonitorChap.php#MonitorMgtCenter
https://docs.voltactivedata.com/AdminGuide/MonitorOther.php

Upgrading to Volt Active DataV14

e Updated System Requirements

The operating system and software requirementsfor Volt Active Data have been updated to add support
for new releases and to remove productsthat have reached end of life. Specifically, the new requirements
are:

¢ Operating System:

» Red Hat (RHEL) and Rocky version 8.8 or later, including subsequent releases. Version 8.6 isno
longer supported.

» Ubuntu 20.04, 22.04, and 24.04 and subsequent releases. Support for Ubuntu 24.04 has been added.

* Macintosh OS X 13.0 and later (for development only). Support for versions 11 and 12 has been
dropped.

» Javafor VoltDB server: Java 17 or 21. Java 11 is no longer supported for running the Volt server.
(Notethat Java 8, 11, 17, and 21 are all supported for Javaclients.)

¢ Cloud Computing: Kubernetes versions 1.25 through 1.30 are tested and supported, along with sub-
sequent releases.

28

Appendix A. Configuration File
(deployment.xml)

Vote Active Data V 14 introduced the use of YAML for configuring the database. Use of XML for con-
figuration is now deprecated. However, to ensure a smooth transition for existing databases, XML con-
figuration files are till accepted as input for the voltadmin init and update commands. This appendix
describes the syntax for XML configuration files.

A.1. Understanding XML Syntax

XML files consist of a series of nested elementsidentified by beginning and ending "tags'. The beginning
tag is the element name enclosed in angle brackets and the ending tag is the same except that the element
name is preceded by a slash. For example:

<depl oynent >
<cl uster>
</cluster>
</ depl oynent >

Elements can be nested. In the preceding example cl ust er isachild of the element depl oynent .

Elements can also have attributes that are specified within the starting tag by the attribute name, an equals
sign, and its value enclosed in single or double quotes. In the following example the kf act or and
si t esper host attributes of the cluster element are assigned values of "1" and "12", respectively.

<depl oynent >
<cl uster kfactor="1" sitesperhost="12">
</cluster>

</ depl oynent >

Finally, as a shorthand, elements that do not contain any children can be entered without an ending tag by
adding the slash to the end of the initial tag. In the following example, the cl ust er and heart beat
tags use this form of shorthand:

<depl oynent >
<cluster kfactor="1" sitesperhost="12"/>
<heartbeat tinmeout="10"/>

</ depl oyment >

For complete information about the XML standard and XML syntax, see the official XML site at http:/
www.w3.0rg/XML/.

A.2. The Structure of the XML Configuration File

The configuration file starts with the XML declaration. After the XML declaration, the root element of the
configuration file is the deployment element. The remainder of the XML document consists of elements
that are children of the deployment element.

Figure A.1, “Configuration XML Structure” shows the structure of the configuration file. The indentation
indicates the hierarchical parent-child relationships of the elements and an dllipsis (...) shows where an
element may appear multiple times.

29

http://www.w3.org/XML/
http://www.w3.org/XML/

Configuration File (deployment.xml)

Figure A.1. Configuration XML Structure

<deployment>
<cluster/>
<paths>
<commandlog/>
<commandlogsnapshot/>
<exportoverflow/>
<snapshots/>
<voltdbroot/>
</paths>
<commandlog>
<frequency/>
</commandlog>
<dr>
<connection/>
<schemachange/>
<consumerlimit>
<maxbuffers/>
<maxsize/>
</consumerlimit>
</dr>
<export>
<configuration>
<property/>...
</configuration>...
</export>
<heartbeat/>
<httpd/>
<import>
<configuration>
<property/>...
</configuration>...
</import>
<metrics/>
<partition-detection/>
<security>
<ldap>
<group/>...
<ssl>
<truststore/>
</sdl>
</ldap>
<security/>
<snapshot/>
<ssl>
<keystore/>
<truststore/>
</sdl>
<snmp/>
<systemsettings>
<clockskew/>
<compaction/>
<elastic/>

30

Configuration File (deployment.xml)

<flushinterval>
<dr/>
<export/>
</flushinterval>
<procedure/>
<query/>
<resourcemonitor>
<disklimit>
<feature/>...
</disklimit>
<memorylimit/>
</resourcemonitor>
<snapshot/>
<temptables/>
</systemsettings>
<topics>
<broker>
<property/>...
</broker>
<topic/>...
</topics>
<users>
<user/>...
</users>
</deployment>

Table A.1, “XML Configuration File Elements and Attributes’ provides further detail on the elements,
including their relationships (as child or parent) and the allowabl e attributes for each.

Table A.1. XML Configuration File Elements and Attributes

Element Child of Parent of Attributes
deployment* (root element) avro, cluster, com-
mandlog, dr, export,
heartbeat, httpd, im-
port, partition-detec-
tion, paths, security,
snapshot, snmp, sd,
systemsettings, topics,
users
avro deployment registry={url}"
namespace={ text}
prefix={ text}
cluster’ deployment kfactor={int}
sitesperhost={int}
heartbeat deployment timeout={int} "
partition-detection deployment enabled={ truelfal se}
commandlog deployment frequency enabled={ true|fal se}
logsize={int}
synchronous={ truelfal se}
frequency commandlog time={int}

31

Configuration File (deployment.xml)

Element Child of Parent of Attributes
transactions={int}
dr deployment connection, con-|id={int} :
sumerlimit, role={ master|replicalxdcr}
schemachange
connection dr source={ server],...]} ’
connectiontimeout= {int}
enabled={ true|fal se}
preferred-source={int}
receivetimeout= {int}
ssl=[file-path]
consumerlimit dr maxbuffers, maxsize
maxbuffers consumerlimit
maxsize consumerlimit
schemachange dr enabled={ true|fal se}
export deployment configuration
configuration’ export property target={ text} "

enabled={ truelfalse}
exportconnectorclass={ class-name}
type={filg|httpljdbc|kafkajcustom}

property configuration name={ text} "
import deployment configuration
configuration’ import property type={ kafkalcustom}
enabled={ truelfal se}
format={ csv|tsv}
module={ text}
priority={int}
reconnect={int}{ sjm|h}
property configuration name={ text}
httpd deployment enabled={ true|fal se}
metrics deployment enabled={ truelfal se}
interval={int}{sjm|h}
maxbuffersize={int}
paths deployment commandlog, com-
mandlogsnapshot,
droverflow, expor-
toverflow, snapshots,
voltdbroot
commandlog paths path={ directory-path}
commandlogsnapshot | paths path={ directory-path} ’
droverflow paths path={ directory-path} "
exportoverflow paths path={ directory-path}
snapshots paths path={ directory-path}
voltdbroot paths path={ directory-path}

32

Configuration File (deployment.xml)

Element Child of Parent of Attributes
security deployment Idap enabled={ true|fal se}
provider={ hash|kerberos|ldap}
|dap security group, s server={url} "
rootdn={ tex*t}
user={text} .
password={ text}
timeout={ int}

group |dap name={ text}”
role={text}

ssl Idap truststore

truststore s path={ file-path} "
password={ text}

snapshot deployment enabled={ truelfalse}
frequency={int}{ sim|h}
prefix={ text}
retain={int}

s deployment keystore, truststore | enabled={ truejfal se}
externa ={ truejfal se}
internal ={ truejfal se}

keystore ssl path={ file-path}
password={ text}

truststore s path={ file-path} "
password={ text}

snmp deployment target={ | P-address} "
authkey={ text}
authprotocol={ SHA|MD5|NoAuth}
community={ text}
enabled={ truelfalse}
privacykey={ text}
privacyprotocol ={ text}
username={ text}

systemsettings deployment clockskew, com-

paction, elastic, flush-
interval, priorities,
procedure, query, re-
sourcemonitor, snap-
shot, temptables

clockskew systemsettings interval={int}

compaction systemsettings interval={int}
maxcount={ int}

dastic systemsettings duration={int}
throughput={ int}

flushinterval systemsettings dr, export minimum={int}

dr flushinterval interval={int}

export flushinterval interval={int}

priorities systemsettings dr, snapshot batchsize={int}

33

Configuration File (deployment.xml)

Element Child of Parent of Attributes
enabled={ truelfalse}
maxwait={int}

dr priorities priority={int}

snapshot priorities priority={int}

procedure systemsettings loginfo={int}
copyparameters={ truejfal se}

query systemsettings timeout={int} :

resourcemonitor systemsettings disklimit, memo- | frequency={int}

rylimit

disklimit resourcemonitor feature

feature disklimit name={ text} "
size={int[%]}
aert={int[%)]}

memorylimit resourcemonitor size={int[%]} ’
aert={int[%)]}
compact={ truejfal se}

snapshot systemsettings priority={int}

temptables systemsettings maxsize={i nt}*

threadpools deployment pool

pool threadpools name={ text}”
size={text}

topics deployment broker, topic enabled={ truelfal se}
threadpool ={ text}

broker topics property

topic topics property name={ text} "
alow={role-namq[,..]}
format={ avro|csv|json}
opague={ truejfal se}
priority={int}
procedure={ text}
retention={ text}

property broker,topic name={ text}

users deployment user

user users name={ text} :
password={ text}
expires={ date}
roles={role-name],..]}

"Required

Appendix B. Using the Original VoltDB
Client Interface

Volt Active Data has two Java client programming interfaces. Client and Client2. Client2 is a modern
API using the best features and design patterns of the Java programming language. Client is the original
client API. Because of the improvements madeto Client2, Client2 isrecommended for all new application
development and is featured in the documentation. However, the original Client API is still supported and
in usein anumber of existing customer applications.

Which is why this appendix is provided for anyone needing to support applications that use the original
Client API. Thefollowing sections explain how to usetheorigina VoltDB Javaclient interface for runtime
access to VoltDB databases and functions. Please see the Using VoltDB guide for information on writing
new applications using the Client2 API.

B.1. Connecting to the VoltDB Database

The first task for the calling program is to create a connection to the VVoltDB database. Y ou do this with
the following steps:

org.voltdb.client.Client client = null;
CientConfig config = null;

try {
config = new dientConfig("advent", "xyzzy"); (1]
client = dientFactory.createCient(config); (2]
client.createConnection("myserver.xyz.net"); (3]

} catch (java.io.lCOException e) {
e.printStackTrace();
Systemexit(-1);

© Definethe configuration for your connections. Initssimplest form, theCl i ent Conf i g class spec-
ifies the username and password to use. It is not absolutely necessary to create a client configuration
object. For example, if security is not enabled (and therefore a username and password are not need-
ed) a configuration object is not required. But it is a good practice to define the client configuration
to ensure the same credentials are used for all connections against asingle client. It is also possible
to define additional characteristics of the client connections as part of the configuration, such asthe
timeout period for procedure invocations or a status listener. (See Section B.5, “Handling Errors”.)

® Create aninstance of theVoltDB O i ent class.

© Call thecr eat eConnecti on() method. After you instantiate your client object, the argument
tocr eat eConnecti on() specifiesthe database node to connect to. Y ou can specify the server
node as a hostname (as in the preceding example) or as an 1P address. Y ou can also add a second
argument if you want to connect to a port other than the default. For example, the following cr e-
at eConnecti on() call attemptsto connect to the admin port, 21211

client.createConnection("nyserver.xyz.net", 21211);

If security isenabled and the username and password intheCl i ent Conf i g() call do not match a
user defined in the configuration file, the call to cr eat eConnect i on() will throw an exception.

35

http://docs.voltactivedata.com/UsingVoltDB/

Using the Original Volt-
DB Client Interface

B.1.1.

B.1.2.

When you are done with the connection, you should make sure your application callsthecl ose() method
to clean up any memory allocated for the connection. See Section B.4, “ Closing the Connection”.

Connecting to Multiple Servers

Y ou can create the connection to any of the nodes in the database cluster and your stored procedure will
be routed appropriately. In fact, you can create connections to multiple nodes on the server and your
subsequent requests will be distributed to the various connections. For example, the following Java code
creates the client object and then connects to all three nodes of the cluster. In this case, security is not
enabled so no client configuration is needed:

try {
client = dientFactory.createdient();

client.createConnection("serverl.xyz.net");
client.createConnection("server2.xyz.net");
client.createConnection("server3.xyz.net");
} catch (java.io.lCOException e) {
e.printStackTrace();
Systemexit(-1);
}

Creating multiple connections has three major benefits:

» Multiple connections distribute the stored procedure requests around the cluster, avoiding a bottleneck
where all requests are queued through asingle host. Thisis particularly important when using asynchro-
nous procedure calls or multiple clients.

 For Javaapplications, the VoltDB Javaclient library uses client affinity. That is, the client knowswhich
server to send each request to based on the partitioning, thereby eliminating unnecessary network hops.

 Finally, if aserver fails for any reason, when using K-safety the client can continue to submit requests
through connections to the remaining nodes. This avoids a single point of failure between client and
database cluster.

Using the Auto-Connecting Client

An easier way to create connectionsto all of the database serversisto use the "smart" or topology-aware
client. By setting the Java client to be aware of the cluster topology, you only need to connect to one server
and the client automatically connectsto all of the serversin the cluster.

An additional advantage of the smart client is that it will automatically reconnect whenever the topology
changes. That is, if a server fails and then rejoins the cluster, or new nodes are added to the cluster, the
client will automatically create connections to the newly available servers.

Y ou enable auto-connecting when you initialize the client object by setting the configuration option before
creating the client object. For example:

org.voltdb.client.Client client = null;

CientConfig config = new dientConfig("","");
confi g. set Topol ogyChangeAwar e(true) ;
try {

client = dientFactory.createdient(config);
client.createConnection("serverl.xyz.net");

36

Using the Original Volt-
DB Client Interface

When set Topol ogyChangeAwar e() issettotrue, theclient library will automatically connect to all
servers in the cluster and adjust its connections any time the cluster topology changes.

B.2. Invoking Stored Procedures

After your client createsthe connection to the database, it isready to call the stored procedures. Y ouinvoke
astored procedure using the cal | Pr ocedur e() method, passing the procedure name and variables as
arguments. For example:

Vol t Tabl e[] results;

try { results = client.callProcedure("LookupFlight", o
origin,
dest,
departtine).get Resul ts(); [2)
} catch (Exception e) { (3]

e.printStackTrace();
Systemexit(-1);

O Thecal | Procedure() method takes the procedure name and the procedure's variables as argu-
ments. The LookupFl i ght () stored procedure requires three variables. the originating airport,
the destination, and the departure time.

® Onceasynchronous call completes, you can evaluate the results of the stored procedure. Thecal | -
Pr ocedur e() methodreturnsaCl i ent Response object, which includesinformation about the
success or failure of the stored procedure. To retrieve the actual return values you use the get Re-
sul t s() method.

©® Notethat sincecal | Procedur e() can throw an exception (such asVol t Abort Except i on)
it isagood practice to perform error handling and catch known exceptions.

B.3. Invoking Stored Procedures Asynchronously

Calling stored procedures synchronously simplifiesthe program logic because your client application waits
for the procedure to complete before continuing. However, for high performance applications looking to
maximize throughput, it is better to queue stored procedure invocations asynchronously.

Asynchronous Invocation

To invoke stored procedures asynchronously, use the cal | Pr ocedur e() method with an additional
first argument, a callback that will be notified when the procedure completes (or an error occurs). For ex-
ample, toinvokeaNewCust omner () stored procedure asynchronously, thecall tocal | Pr ocedur e()
might look like the following:

client.callProcedure(new MyCal | back(),
" NewCust oner ",
firstnane,
| ast nane,
cust | D};

The following are other important points to note when making asynchronous invocations of stored pro-
cedures:

» Asynchronous calls to cal | Procedur e() return control to the calling application as soon as the
procedure call is queued.

37

Using the Original Volt-
DB Client Interface

« |If the database server queueisfull, cal | Procedur e() will block until it is able to queue the proce-
dure call. Thisisacondition known as backpressure. This situation does not normally happen unlessthe
database cluster is not scaled sufficiently for the workload or there are abnormal spikesin the workload.
See Section B.5.3, “Writing a Status Listener to Interpret Other Errors’ for more information.

» Oncethe procedureis queued, any subsequent errors (such as an exception in the stored procedureitself
or loss of connection to the database) are returned as error conditions to the callback procedure.

Callback Implementation

Thecallback procedure (MyCal | back() inthisexample) isinvoked after the stored procedure compl etes
on the server. The following is an example of a callback procedure implementation:

static class MyCal |l back i npl ements ProcedureCall back {
@verride
public void clientCallback(C ientResponse clientResponse) ({
if (clientResponse.getStatus() != CientResponse. SUCCESS) ({
Systemerr.println(clientResponse.getStatusString());
} else {
nmyEval uat eResul t sProc(cli ent Response. get Resul ts());

}
}
}

The callback procedureis passed thesameC i ent Response structurethat isreturned in asynchronous
invocation. C i ent Response contains information about the results of execution. In particular, the
methodsget St at us() andget Resul t s() let your callback procedure determine whether the stored
procedure was successful and evaluate the results of the procedure.

The VoltDB Java client is single threaded, so callback procedures are processed one at a time. Conse-
quently, itisagood practice to keep processing in the callback to aminimum, returning control to themain
thread as soon as possible. If more complex processing is required by the callback, creating a separate
thread pool and spawning worker methods on a separate thread from within the asynchronous callback
is recommended.

B.4. Closing the Connection

When the client application is done interacting with the VoltDB database, it isagood practice to close the
connection. This ensures that any pending transactions are completed in an orderly way. The following
example demonstrates how to close the client connection:

try {
client.drain();

client.close();

} catch (InterruptedException e) {
e.printStackTrace();

}

There are two steps to closing the connection:

1. Cdldrai n() tomakesureal asynchronous calls have completed. Thedr ai n() method pausesthe
current thread until all outstanding asynchronous calls (and their callback procedures) complete. This
call is not necessary if the application only makes synchronous procedure calls. However, there is no
penalty for calling dr ai n() and so it can beincluded for completenessin all applications.

2. Call cl ose() tocloseall of the connections and release any resources associated with the client.

38

Using the Original Volt-
DB Client Interface

B.5. Handling Errors

A special situation to consider when calling VoltDB stored proceduresiserror handling. TheVoltDB client
interface catches most exceptions, including connection errors, errors thrown by the stored procedures
themselves, and even exceptions that occur in asynchronous callbacks. These error conditions are not
returned to the client application as exceptions. However, the application can still receive notification and
interpret these conditions using the client interface.

The following sections explain how to identify and interpret errors that occur when executing stored pro-
cedures and in asynchronous callbacks. These include:

* Interpreting Execution Errors
e Handling Timeouts

» Writing a Status Listener to Interpret Other Errors

B.5.1. Interpreting Execution Errors

If an error occurs in a stored procedure (such as an SQL constraint violation), VoltDB catches the error
and returns information about it to the calling application as part of the Cl i ent Response class. The
C i ent Response class provides several methods to help the calling application determine whether
the stored procedure completed successfully and, if not, what caused the failure. The two most important
methods areget St at us() andget Stat usStri ng() .

static class MyCall back inplenments ProcedureCall back {
@verride
public void clientCallback(d ientResponse clientResponse) {
final byte AppCodeWarm = 1;
final byte AppCodeFuzzy = 2;

if (clientResponse.getStatus() != CientResponse. SUCCESS) (o
Systemerr. println(clientResponse. getStatusString()); 2]
} else {
if (clientResponse. get AppStatus() == AppCodeFuzzy) { (3]

Systemerr.println(clientResponse. get AppStatusString());
1

nmyEval uat eResul t sProc(cli ent Response. get Resul ts());

O Theget St at us() method tells you whether the stored procedure completed successfully and, if
not, what type of error occurred. It is good practice to always check the status of the Cl i ent Re-
sponse before evaluating the results of aprocedure call, because if the status is anything but SUC-
CESS, there will not be any results returned. The possible values of get St at us() are:

« CONNECTION_LOST — Thenetwork connection was|ost beforethe stored procedure returned
statusinformation to the calling application. The stored procedure may or may not have completed
successfully.

¢ CONNECTION_TIMEOUT — The stored procedure took too long to return to the calling ap-
plication. The stored procedure may or may not have completed successfully. See Section B.5.2,
“Handling Timeouts’ for more information about handling this condition.

39

Using the Original Volt-
DB Client Interface

* GRACEFUL_FAILURE — An error occurred and the stored procedure was gracefully rolled
back.

« RESPONSE_UNKNOWN — This is a rare error that occurs if the coordinating node for the
transaction fails before returning a response. The node to which your application is connected
cannot determine if the transaction failed or succeeded before the coordinator was lost. The best
course of action, if you receive this error, is to use a new query to determine if the transaction
failed or succeeded and then take action based on that knowledge.

* SUCCESS — The stored procedure compl eted successfully.

« UNEXPECTED_FAILURE — An unexpected error occurred on the server and the procedure
failed.

« USER_ABORT — The code of the stored procedure intentionally threw a UserAbort exception
and the stored procedure was rolled back.

® Ifaget Status() cal identifiesan error status other than SUCCESS, you can usethe get St a-
tusString() method to return atext message providing moreinformation about the specific error
that occurred.

® If youwant the stored procedure to provide additional information to the calling application, there are
two more methodsto the Cl i ent Response that you can use. The methods get AppSt at us()
andget AppSt at usSt ri ng() actlikeget St at us() andget Stat usStri ng(), but rather
than returning information set by VoltDB, get AppSt at us() and get AppSt at usStri ng()
return information set in the stored procedure code itself.

In the stored procedure, you can use the methods set AppSt at usCode() and set AppSt a-
tusString() to setthe values returned to the calling application by the stored procedure. For
example:

/* stored procedure code */
final byte AppCodeVarm = 1;
final byte AppCodeFuzzy = 2;

set AppSt at usCode(AppCodeFuzzy) ;
set AppStatusString("l'mnot sure about that...");

B.5.2. Handling Timeouts

One particular error that needs special handling isif a connection or a stored procedure call times out. By
default, the client interface only waits a specified amount of time (two minutes) for a stored procedure to
complete. If no responseis received from the server before the timeout period expires, the client interface
returns control to your application, notifying it of the error. For synchronous procedure calls, the client
interface returns the error CONNECTION_TIMEOUT to the procedure call. For asynchronous calls, the
client interface invokes the callback including the error informationinthecl i ent Response object.

It is important to note that CONNECTION_TIMEOUT does not necessarily mean the synchronous pro-
cedurefailed. In fact, it is very possible that the procedure may complete and return information after the
timeout error is reported. The timeout is provided to avoid locking up the client application when proce-
dures are delayed or the connection to the cluster hangs for any reason.

Similarly, if no response of any kind is returned on a connection (even if no transactions are pending)
within the specified timeout period, the client connection will timeout. When this happens, the connec-
tionis closed, any open stored procedures on that connection are closed with areturn status of CONNEC-

40

Using the Original Volt-
DB Client Interface

TION_LOST, and then the client status listener callback method connect i onLost () isinvoked. Un-
like a procedure timeout, when the connection times out, the connection no longer exists, so your client ap-
plication will receive no further notifications concerning pending procedures, whether they succeed or fail.

CONNECTION_LOST does not necessarily mean a pending asynchronous procedure failed. It ispossible
that the procedure completed but was unable to return its status due to a connection failure. The goal of
the connection timeout is to notify the client application of alost connection in atimely manner, even if
there are no outstanding procedures using the connection.

There are several things you can do to address potential timeouts in your application:

» Change the timeout period by calling either or both the methods set Pr ocedur eCal | Ti neout ()
and set Connect i onResponseTi neout () ontheC i ent Confi g object. The default timeout
period is 2 minutesfor both procedures and connections. Y ou specify thetimeout period in milliseconds,
where avalue of zero disables the timeout altogether. For example, the following client code resets the
procedure timeout to 90 seconds and the connection timeout period to 3 minutes, or 180 seconds:

config = new dientConfig("advent", "xyzzy");
confi g. set ProcedureCal | Ti meout (90 * 1000);

confi g. set Connecti onResponseTi neout (180 * 1000);
client = CientFactory.createdient(config);

» Catch and respond to the timeout error as part of the response to a procedure call. For example, the
following code excerpt from a client callback procedure reports the error to the console and ends the
callback:

static class MyCal |l back inplenments ProcedureCallback {

@verride
public void clientCallback(C ientResponse response) {

if (response.getStatus() == dient Response. CONNECTI ON_TI MEQUT) {
Systemout. println("A procedure invocation has tinmed out.");
return,

s

if (response.getStatus() == dient Response. CONNECTI ON_LOST) {
System out. println("Connection | ost before procedure response.");
return,

b

» Set a status listener to receive the results of any procedure invocations that complete after the client
interfacetimesout. Seethefollowing Section B.5.3, “Writing aStatus Listener to I nterpret Other Errors’
for an example of creating a status listener for delayed procedure responses.

B.5.3. Writing a Status Listener to Interpret Other Errors

Certain types of errors can occur that the Cl i ent Response class cannot notify you about immediately.
In these cases, an error happens and is caught by the client interface outside of the normal stored procedure
execution cycle. If you want your application to address these situations, you need to create a listener,
whichisaspecial type of asynchronous callback that the client interface will notify whenever such errors
occur. The types of errorsthat alistener addresses include:

Lost Connection

If a connection to the database cluster is lost or times out and there are outstanding asynchronous
reguests on that connection, the Cl i ent Response for those procedure calls will indicate that the

41

Using the Original Volt-
DB Client Interface

connection failed before areturn status was received. This means that the procedures may or may not
have completed successfully. If no requests were outstanding, your application might not be notified
of the failure under normal conditions, since there are no callbacks to identify the failure. Since the
loss of aconnection can impact the throughput or durability of your application, it isimportant to have
amechanism for general natification of lost connections outside of the procedure callbacks.

Backpressure

If backpressure causes the client interface to wait, the stored procedure is never queued and so your
application does not receive control until after the backpressure is removed. This can happen if the
client applications are queuing stored procedures faster than the database cluster can process them.
The result is that the execution queue on the server gets filled up and the client interface will not let
your application queue any more procedure calls. Two waysto handl e this situation programmatically
areto:

* Let the client pause momentarily to let the queue subside. The asynchronous client interface does
this automatically for you.

* Create multiple connectionsto the cluster to better distribute asynchronous calls acrossthe database
nodes.

Exceptions in a Procedure Callback

Anerror can occur in an asynchronous cal lback after the stored procedure compl etes. These exceptions
are also trapped by the VoltDB client, but occur after the Cl i ent Response is returned to the
application.

Late Procedure Responses

Procedure invocations that time out in the client may later complete on the server and return results.
Sincethe client application can no longer react to thisresponseinline (for example, with asynchronous
procedure calls, the associated callback has already received a connection timeout error) the client
may want away to process the returned results.

For the sake of example, the following status listener does little more than display a message on standard
output. However, in real world applications the listener would take appropriate actions based on the cir-
cumstances.

/*
* Declare the status |istener
*/
Client StatusLi stenerExt nylistener = new Cient StatusLi stenerExt () (1]
{
@verride
public void connectionLost(String hostnane, int port, (2]
i nt connectionsLeft,
Di sconnect Cause cause)
{

}

Systemout.printf("A connection to the database has been |ost."’
+ "There are %l connections renmai ning.\n", connectionsLeft);

@verride
public void backpressure(bool ean st atus)

{

System out. printl n("Backpressure fromthe database
+ "is causing a delay in processing requests.");

42

Using the Original Volt-
DB Client Interface

}
@verride
public void uncaught Excepti on(ProcedureCal | back cal | back,
Cl i ent Response r, Throwabl e e)

{
Systemout.println("An error has occurred in a callback "
+ "procedure. Check the follow ng stack trace for details.");
e.printStackTrace();
}
@verride

public void | ateProcedureResponse(Cl i ent Response response,
String hostname, int port)
{

Systemout.printf("A procedure that tined out on host %: %"
+ " has now responded.\n", hostnane, port);
}
b
/*
* Declare the client configuration, specifying
* a usernane, a password, and the status |istener

*/

CientConfig myconfig = new CientConfig("usernanme", (3]
"password”,
nmyl i stener);

/*

* Create the client using the specified configuration.

*/

Cient nyclient = CientFactory.createCient(nmyconfig); o

By performing the operationsin the order as described here, you ensure that all connectionsto the VoltDB
database cluster use the same credentials for authentication and will notify the status listener of any error
conditions outside of normal procedure execution.

O Declaread i ent St at usLi st ener Ext listener callback. Define the listener before you define
the VoltDB client or open a connection.

® Thed ient StatusLi stener Ext interface has four methods that you can implement, one for
each type of error situation:

e connectionLost ()
e backpressure()
e uncaught Exception()

e | at eProcedur eResponse()
® Definetheclient configuration Cl i ent Conf i g object. After you declareyour Cl i ent St at us-
Li st ener Ext, you definea C i ent Conf i g object to use for all connections, which includes
the username, password, and status listener. This configuration is then used to define the client next.
O Create aclient with the specified configuration.

43

	Upgrade Guide
	Table of Contents
	Preface
	1. Structure of This Book
	2. Related Documents

	Chapter 1. Software Releases and Long-Term Support (LTS)
	1.1. The Software Release Schedule
	1.2. Staying Current

	Chapter 2. The Software Upgrade Process
	2.1. Preparing for the Upgrade
	2.2. Upgrading Volt Databases on Managed Servers
	2.2.1. Upgrading the VoltDB Software
	2.2.2. Upgrading VoltDB Using Save and Restore
	2.2.3. Performing an In-Service Upgrade of a Single Cluster
	2.2.3.1. The Scope of In-Service Upgrades

	2.2.4. Performing an Online Upgrade Using Multiple XDCR Clusters

	2.3. Upgrading Volt in Kubernetes
	2.3.1. Updating Your Helm Repository
	2.3.2. Updating the Custom Resource Definition (CRD)
	2.3.3. Upgrading the VoltDB Operator and Software
	2.3.4. Using In-Service Upgrade to Update the VoltDB Software
	2.3.4.1. The Scope of In-Service Upgrades
	2.3.4.2. How to Perform an In-Service Upgrade
	2.3.4.3. Monitoring the In-Service Upgrade Process
	2.3.4.4. Recovering if an Upgrade Fails

	2.3.5. Updating VoltDB for XDCR Clusters

	Chapter 3. Upgrading to Volt Active Data V8
	3.1. What's New in Volt V8.0
	3.2. Special Considerations for Existing Customers

	Chapter 4. Upgrading to Volt Active Data V9
	4.1. What's New in Volt V9.0
	4.2. Special Considerations for Existing Customers

	Chapter 5. Upgrading to Volt Active Data V10
	5.1. What's New in Volt V10.0
	5.2. Special Considerations for Existing Customers

	Chapter 6. Upgrading to Volt Active Data V11
	6.1. What's New in Volt V11.0
	6.2. Special Considerations for Existing Customers

	Chapter 7. Upgrading to Volt Active Data V12
	7.1. What's New in Volt V12.0
	7.2. Special Considerations for Existing Customers

	Chapter 8. Upgrading to Volt Active Data V13
	8.1. What's New in Volt V13
	8.2. Special Considerations for Existing Customers

	Chapter 9. Upgrading to Volt Active Data V14
	9.1. What's New in Volt Active Data V14
	9.2. Special Considerations for Existing Customers

	Appendix A. Configuration File (deployment.xml)
	A.1. Understanding XML Syntax
	A.2. The Structure of the XML Configuration File

	Appendix B. Using the Original VoltDB Client Interface
	B.1. Connecting to the VoltDB Database
	B.1.1. Connecting to Multiple Servers
	B.1.2. Using the Auto-Connecting Client

	B.2. Invoking Stored Procedures
	B.3. Invoking Stored Procedures Asynchronously
	B.4. Closing the Connection
	B.5. Handling Errors
	B.5.1. Interpreting Execution Errors
	B.5.2. Handling Timeouts
	B.5.3. Writing a Status Listener to Interpret Other Errors

