YOLT

ACTIVE DATA

Administrator's Guide

Abstract

This books explains how to create and manage Volt Active Data databases and the clusters
that run them.

V13

Administrator's Guide

V13
Copyright © 2014-2023 Volt Active Data, Inc.

This document is published under copyright by Volt Active Data, Inc. All Rights Reserved.

The software described in this document is furnished under alicense by Volt Active Data, Inc. Your rights to access and use VoltDB features are
defined by the license you received when you acquired the software.

The VoltDB client libraries, for accessing VoltDB databases programmatically, are licensed separately under the MIT license.
Volt Active Data, VoltDB, and Active(N) are registered trademarks of Volt Active Data, Inc.

VoltDB software is protected by U.S. Patent Nos. 9,600,514, 9,639,571, 10,067,999, 10,176,240, and 10,268,707. Other patents pending.

This document was generated on July 22, 2024.

Table of Contents

P B AR . et e a e Vii
1. Structure of ThiS BOOKoiiiiiiieiiiiie et Vii

2. REIGLEA DOCUMENESceiiteeeeit ettt ettt e et e et e e e e et e e e e ena s Vii

1. Managing Volt Active Data Datahasesuieeeriieiiiiie et 1
1.1, GELLING SEAMEH ...ttt et e e e et e 1

1.2. Understanding the VOItDB ULHITIESiiiiiiiiiiiii e 2

1.3, MANAGEMENT TESKS ... eeietiieeeeii ettt ettt e et e et et e e e et eeeena s 3

2. Preparing the SEIVENS ... et 4
2.1, SEIVEr CRECKIISE ...eeeei et 4

2.2. Install ReqUIred SOFtWEIEceeeii i 4

2.3. Configure Memory ManagemeNtooeeeuueiiiiiie et e e e e e 5
2.3.1. DiSAhl@ SWADPING ... eeeetieeeeiii ettt ettt 5

2.3.2. Disable Transparent HUQE PagesSviieiiiieiiiiie et 5

2.3.3. Enable Virtual Memory Mapping and OVErcommitccuuoveeeirinneierineenennnnn. 6

2.4, Turn off TCP SEgMENTALIONcouviiiiii e 6

2.5, ConfiguIre TIME SEIVICESuuiiiiiiii ettt ettt et e e e e eeaans 7

2.6. INCrease RESOUICE LiMItSiiiiiiiiiiii e 7

2.7. Configure the NEIWOIKcoouuiiii e 8

2.8. ASSIGN NEIWOIK POITS ...t e r e e e eenes 8

2.9. Eliminating Server ProCeSS LAENCYcveeuuueiiiiiieieii ettt e ettt e e 8

3. Starting and Stopping the DalaDaseocveeeiiiiii e 10
3.1. Configuring the Cluster and Databaseoceeuuiiiiiiiiieiee e 10

3.2. Initializing the Database ROOL DIFECLOIYcccvvuieiiiiiie et 11

3.3, Starting the DAaDaseuuueiiiii e 12

3.4. Loading the Database Definitioncc.uiiiiiiiiiiiii e 13
3.4.1. Preloading the Schema and Classes When Y ou Initialize the Database 13

3.4.2. Loading the Schema and Classes After the Database StartSccoovvvvieeenneenn. 14

3.5. StopPiNg the DELADASEcieeii et 14

3.6. Restarting the Datahaseccuuuiiiii e 14

3.7. Starting and Stopping INdividual SEIVErScoouuiiiiiiiii e 15

4. MaintenanCe and UPGratdesu i oieeuieiiii ettt ettt 16
4.1. Backing Up the Datalasevvieiiiiiiii e 16

4.2. Updating the Database SChemaoiiieiiiii e 17
4.2.1. Performing Live Schema Updatesccouvuiiiiiiiiiiiiii e 17

4.2.2. Performing Updates Using Save and RESOreooevviviiieiiiiiiieeciieeeciie 17

4.3. Upgrading the CIUSLENcoouiiieiiii et 18
4.3.1. Performing Server UPGradesuuieiiiiiieeiii et 19

4.3.2. Performing Rolling Hardware Upgrades on K-Safe Clustersccoovveeevvieees 19

4.3.3. Adding Servers to a Running Cluster with Elastic Scalingcccoovveevviiiieeens 20

4.3.4. Removing Servers from a Running Cluster with Elastic Scaling 20

4.3.5. Reconfiguring the Cluster During a Maintenance Windowc.c.cccoeveeunne. 21

4.4. Upgrading Existing VOItDB INStallationsoeeieuiiiieiiiiieeeei e 22
4.4.1. Upgrading the VOItDB SOftWaIeccuuiiiiiiiieiiiie et 22

4.4.2. Upgrading VoltDB Using Save and ReStOreoceviviiieiiiiiieiiiiieeceiineeees 23

4.4.3. Upgrading Older Versions of VoItDB Manuallyccceiiiiiiiiiniiiiiiinneeennnn, 23

4.4.4. Performing an In-Service Upgrade of a Single Clusterccviiviiiiiinieeinnnnnn. 23

4.4.5. Performing an Online Upgrade Using Multiple XDCR CIUStEYScoeevevennne.. 25

4.4.6. Downgrading, or Falling Back to a Previous VoItDB Versioncccceeeeeenee. 26

4.5. Updating the VOItDB SOftWare LICENSEcviuuieiiiii et 26

5. Monitoring VOItDB Datahasescuuuueiiiiiieiiiiie ettt 28
5.1. Monitoring Overall Datalase ACHVITYcoeevunieiiiiiiieiiiii e 28

Administrator's Guide

5.1.1. VoIt Management CaMtercouuiiiiieeiii e e e e e e e e e e e e e aens 28
5.1.2. SYStEM PrOCEAUIEScevniiiii e e e e e e e e e e e e e eees 28
5.1.3. SNIMP ALEITS ..ot r e aaan 30

5.2. Setting the Database to Read-Only Mode When System Resources Run Low 32
5.2.1. Monitoring Memory USAQEc.ueiuuieiiiiieii e ieee e e e e e e e et e e e e e eens 33
5.2.2. MONItoring Disk USBgEccvviiiiiiiiii et e et e e e e eans 34

5.3. Integrating VoltDB with Prometheusccoiviiiiiii e 35
6. Logging and Analyzing Activity in aVoItDB Databasecc.ceeviieiiiniiiiiiccieeeceee e, 36
6.1. INtroducCtion 10 LOGUINGuievneiiieii i e e e e e e e e e e e e e e e e e et eeaaneeaanaees 36
6.2. Creating the Logging Configuration Fileccoiiiiiiiiiiic e 36
6.3. Changing the Timezone of LOg MESSAJEScccvuiiiiiiiiiieiiieeiie e e e e e e e e 38
6.4. Managing VOItDB Log FilEScouniiiiicii e 39
6.5. Enabling Y our Custom Log Configuration When Starting VoItDBccoccevevnne. 39
6.6. Changing the Configuration onthe FlIycoiiiiiiiii e, 39
7. What t0 DO When Problems ATISE ... 41
7.1 Where t0 LOOK fOr ANSIWEIS .. .ceeiiiieiieii ettt e e e e eaa e e eeees 41
7.2. Handling Errors When Restoring a Databaseccuovevviiiiiiiiin e, 41
7.2.1. Logging Constraint ViolationSc.vviiiiiiiiiiciie e e e e 42
7.2.2. SAE MOUE RECOVEIY .. ceviciiiiei e e e e e 42

7.3. Collecting the LOg FlESuu.iiei e 43
A. Server Configuration OPLIONSoiiiuiieiie e e e e e e e e e e e e aanas 45
A.L Server Configuration OPLIONSc.uuiiiiiiiiii e e e e e e e e e eees 45
A.L1 Network Configuration (DNS)couuiiiiiiiiiiiicii e e 45
A.L2. TimMe CONfIQUIALiONccuuiiiiieiie e e e e e e e e e e e e e e e et eea e eees 46

A.2. Process Configuration OPLiONSccuuiiiiieiiiieeiir e e e e e e e e e e e eaenas 46
A.2.1. Maximum Heap Size (VOLTDB_HEAPMAX) ...cuuiiiiieiiiiiiiiiie e 46
A.2.2. Garbage Collector (VOLTDB_GC_OPTS)cuvvuiiiieeiiriiiiiiieeeeeeeeeiiiiinnne e 46
A.2.3. Other Java Runtime Options (VOLTDB_OPTYS)ccovviiiiiiiiiieeei e, 47

A.3. Database Configuration OPLIONSeeiiiiiiieiie e e e e e e e e anes 47
YN T S) (= o=l 0 P 48

F R T LS 1Y P 48
A.3.3. Network Partition DELECHIONuiieiiiiiieeiiiiiie e 48
A.3.4. Automated SNaPShOLScvviiiiii e 48
A.3.5. IMPOrt anNd EXPOItcouneiiiicee e 49
A.3.6. COMMANA LOGGING - .vvvnerineiiiieii et e e e e e e e e e e e e et e et e e et e e eeanaes 49
AB7. HEBMDEAL ..ooevvviiii e 49
A.38. TEMP TaADIE SIZE ..t 50
A.3.9. QUENY TIMEOUL ...uuiiiteiii e e e e e e e e e e e e e e e e et e e e e e et e e eanaeeeas 50
A.3.10. FIUSN INEEIVAL o.oviiiiii e e e e e e et e e e e e e eeanes 51
A.3.11. Long-Running Process Warningccccceeiiiiieiiiieeiii e eeeiiee s e e e e eeens 51
A.3.12. Copying Array ParameterScc.uieiiinieiiieeiiii et e e e e e e e e e e eaeeeees 52
A.3.13. Transaction Prioritizationcoouuiiiiiiiiiieiiie e 52
A.BLA, ClOCK SKEW ..ottt e et e e 53

A.4. Path Configuration OPLIONSoiiuiiiiie e e e e e e e e e e e aaeees 53
A AL VOIDB ROOLcvvveitiiieeeiieiiii et e e et s s e e e e e et e s e e e e e e eaaaaeseeeaaeessnnes 53
A4.2. SNAPSNOLS Pathciiiiii e 54
A.4.3. EXport OVerflow Pathc.ooiiiiiii e 54
A.44. Command Log Pathcooiiiiiii e 54
A.4.5. Command Log Snapshots Path ..., 54

AL INEEWOTK POITS ... e e e et e et e e e e b 54
N O 1 1= L o PRI 55
A2 AAMIN PO ettt e e e et aae 55
A.5.3. Web Interface Port (NttP)vveveeiiiieii e e e 56
A4 INterNal SEIVEN POI ..ouuiieiiii e 56

Administrator's Guide

YT Y = (g oSl o o 56

YN == o [T = o o P 57

YT A o o x0T N 57

A.5.8. ZOOKEEPEY POI .. cviiiii e 57

A.5.9. TLSYSSL Encryption (Including HTTPS)oiviiiiiiiiie e, 58

B. VOIt ACHVE DAl IMEITICS ...uiiiiiciiii e e e e e e e e e e et e et e e e e eanas 59
B.1. Database Tables and INAEXEScovuiiiiiii e e 59

B.2. Transactions, Procedures, and the Plannercccooeviiiiiiicii e 60

B.3. MemMOry and CPU USAJE ... ccvuiiiiiiiiii i ceee et e e e e e e e e e e e e e et e e et e e aaeeeanaes 61

B.4. Client Connections and /Ocoouiiiiiiii e e 62

B.5. High Availability and DUrabilitycooeieeeiiiiiiiiiiiii e e e e e e e e e e eanees 63

SN G == 0011 DT - N 68

B.7. USEr-DEfiNEA TaSKS ...evuiiiiiiiie et e e e e e e e e e e et e e e eaaas 70

B.8. System and ClIUSLEr SEAEUSuivrniiiiiieiieee e e e e e e e e e e e e e e e et e e e e eanas 71

LGRS 001 oo B U = 73
LS 4= 01 10 (0 1Y/ = o (PPN 74

LS 4 01 01010V 1 75

List of Tables

1.1. Database ManagemMENt TaSKSiieeuu it e et e et e et e et e et et e e e e e enaa s 3
3.1. Selecting Database Features in the Configuration File ... 10
5.1. SNMP Configuration ATIHDULESiiiiiei e 30
5.2, SNIMP EVENES ...ttt ettt 31
6.1. VOItDB ComPONeNnts fOr LOGOINGccevvueieentneieiiiieeeeii e eeeti e et e e e e een e e enni e eennes 38
AL VOIDB PO USBOE ...ttt ettt e e e 55
B.1. TahIES 8N INUEXESottt e e et e e et eenaans 59
B.2. Transactions and PrOCEAUIESuuuiiiiiii ettt e e 60
B3, PlaNNE .t et 61
B.4. Memory, Compaction, and Garbage Coll€CtioNocovviiiiiiiiiiii e 61
B LD, CPU e et 62
B.B. COMNECTIONS ...t eeeeet ettt ettt ettt ettt ettt et et r e et et e e e et r e e e eba e e ennans 62
B 7. 1/ s 63
B.8. SNADSNOLS ...t 63
B.9. COMMENG LOGGING -+t eetertneeeett ettt ettt e ettt e e et e et e e et e et s e e e et r e e e et e e e e naa e eennes 65
B.10. ACtiVE(N) @O XDCR ...ttt ettt e e 65
I O 1y T 1 PP 68
B2, EXPOIT ..ottt 69
0 T o o ot T PP PT T 69
= A I S PP PPPT 70
I LTS L= 1 O PSP PT TP PP PR 71
B.16. MISCEIIBNEOUScoiiiiieiiit ettt et e et e e et e e e et e e e ent e eeees 71

Vi

Preface

Thisbook explains how to manage V olt Active Data databases and the clustersthat host them. Itisintended
for database administrators and operators, responsible for the ongoing management and maintenance of
database infrastructure.

1. Structure of This Book

Thisbook is divided into 7 chapters and 3 appendices:

Chapter 1, Managing Volt Active Data Databases

Chapter 2, Preparing the Servers

Chapter 3, Sarting and Stopping the Database

Chapter 4, Maintenance and Upgrades

Chapter 5, Monitoring VoltDB Databases

Chapter 6, Logging and Analyzing Activity in a VoltDB Database
Chapter 7, What to Do When Problems Arise

Appendix A, Server Configuration Options

Appendix B, Volt Active Data Metrics

Appendix C, Shapshot Utilities

2. Related Documents

Thisbook does not describe how to design or develop Volt Active Data databases. For acomplete descrip-

tion of the development process for VoltDB and all of its features, please see the accompanying manual

Using VolItDB. For new users, seethe VoltDB Tutorial. These and other books describing Volt Active Data
are available on the web from http://docs.voltactivedata.con/.

Vii

http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/tutorial/
http://docs.voltactivedata.com/

Chapter 1. Managing Volt Active Data
Databases

VoltDB isadistributed, in-memory database designed from the ground up to maximize throughput perfor-
mance on commodity servers. The VoltDB architecture provides many advantages over traditional data-
base products while avoiding the pitfalls of NoSQL solutions:

By partitioning the data and stored procedures, VoltDB can process multiple queriesin parallel without
sacrificing the consistency or durability of an ACID-compliant database.

» By managing all datain memory with a single thread for each partition, VoltDB avoids overhead such
as record locking, latching, and device-contention inherent in traditional disk-based databases.

» VoltDB databases can scale up to meet new capacity or performance requirements simply by adding
more nodes to the cluster.

* Partitioning is automated, based on the schema, so thereis no need to manually shard or repartition the
data when scaling up as with many NoSQL solutions.

 Finally, VoltDB Enterprise Edition provides features to ensure durability and high availability through
command logging, locally replicating partitions (K-safety), and wide-area database replication.

Each of these featuresis described, in detail, in the Using VoltDB manual. This book explains how to use
these and other features to manage and maintain aVoltDB database cluster from a database administrator's
perspective.

1.1. Getting Started

Before you set up VoltDB for use in a production environment, you need to make four decisions:

» What databasefeaturesto use— Which features you want to use are defined in the configuration file
and set with the voltdb init command.

e Physical structure of the cluster — The number and addresses of the nodes in the cluster, which you
specify when you start the cluster with the voltdb start command.

» Logical structure of the database — Thelogical structure of the database tables and views, otherwise
known as the schema, is defined in standard SQL statements and can be applied to the database using
the sglemd command line utility.

» Stored procedures — The schema declares stored procedures. The procedures themselves execute
transactions against the data and are written as Java classes. Y ou |load the stored procedures as JAR files
using the sqlcmd command line utility.

ToinitializeaV oltDB database cluster, you need aconfiguration file. The configuration fileletsyou enable
and configure various database options including availability, durability, and security. The configuration
file aso defines certain attributes of the database on the current server, in particular the paths for disk-
based files created by the database such as command logs and snapshots. All nodes in the cluster must
specify the same cluster configuration file when they initialize the database root directory with the voltdb
init command.

When you actually start the database cluster, using the voltdb start command, you declare the size the
cluster by specifying the number of nodes in the cluster and one or more of the nodes as potential hosts.
VoltDB selects one of the specified nodes as the "leader" to coordinate startup.

https://docs.voltactivedata.com/UsingVoltDB/

Managing Volt Active Data Databases

When using the VoltDB Enterprise Edition, you will also need alicensefile, oftencaled| i cense. xmi .
VoltDB automatically looksfor the licensefilein the user's current working directory, the home directory,
or thevol t db/ subfolder where VoltDB isinstalled. If you keep the license file in a different directory
or under adifferent name, you can useto - - | i cense argument on the voltdb init command to specify
the licensefile location.

Finally, to prepare the database for a specific application, you will need the database schema, including
the DDL statements that describe the database's logical structure, and a JAR file containing the stored
procedure class files. In general, the database schema and stored procedures are produced as part of the
database devel opment process, which is described in the Using VoltDB manual.

This book assumes the schema and stored procedures have already been created. The configuration file,
on the other hand, defines the run-time configuration of the cluster. Establishing the correct settings for
the configuration file and physically managing the database cluster is the duty of the administrators who
are responsible for maintaining database operations. This book iswritten for those individuals and covers
the standard procedures associated with database administration.

1.2. Understanding the VoltDB Utilities

VoltDB provides several command line utilities, each with adifferent function. Familiarizing yourself with
these utilities and their uses can make managing VoltDB databases easier. The three primary command
line tools for creating, managing, and testing VoltDB databases are:

voltdb Starts the VVoltDB database process. The voltdb command can also collect log files
for analyzing possible system errors (see Section 7.3, “ Collecting the Log Files’ for
details).

The voltdb command runs locally and does not require a running database.

voltadmin I ssues administrative commandsto arunning VoltDB database. Y ou can use voltad-
min to save and restore snapshots, pause and resume admin mode, and to shutdown
the database, among other tasks.

The voltadmin command can be run remotely, performs cluster-wide operations
and requires a running database to connect to.

sglemd Letsyouissue SQL queriesand invoke stored proceduresinteractively. The sglcmd
command is handy for testing database access without having to write a client ap-
plication.

The sqlcmd command can be run remotely and requires a running database to con-
nect to.

In addition to the preceding general -purpose tools, VoltDB provides several other tools for specific tasks:

csvloader, jd- These utilities load data from external sources into an existing VoltDB database.
bcloader, and They let you load data from CSV or text-based data files, JDBC data sources, or
kafkal oader Apache K afka streams. These commands can be run remotely and require arunning

database to connect to.

snapshotconvert Convertsnative snapshot filesto csv or tabbed text files. The snapshotconvert com-
mand is useful when exporting a snapshot in native format to text files for import
into another data utility. (This utility isprovided for legacy purposes. It is now pos-
sible to write snapshots directly to CSV format without post-processing, which is
the recommended approach.)

https://docs.voltactivedata.com/UsingVoltDB/

Managing Volt Active Data Databases

The snapshotconvert command runs locally and does not require a running data-
base.

snapshotverify Verifiesthat a set of native snapshot files are complete and valid.

The snapshotverify command runslocally and does not require arunning database.

Finally, VoltDB includes a browser-based management console — VoltDB Management Center — for
monitoring databases in real time. See Section 5.1.1, “Volt Management Center” for more information
about using the Management Center.

1.3. Management Tasks

Database administration responsibilitiesfall into five main categories, asdescribedin Table 1.1, “ Database
Management Tasks”. The following chapters are organized by category and explain how to perform each
task for a VoltDB database.

Table 1.1. Database Management Tasks

Preparing the Servers Before starting the database, you must make sure that the server hardware and
software is properly configured. This chapter provides a checklist of tasks to
perform before starting VoltDB.

Basic Database Opera- | The basic operations of initializing, starting, and stopping the database. This
tions chapter describes the procedures needed to handle these fundamental tasks.

Maintenance and Up- | Over time, both the cluster and the database may require maintenance— either
grades planned or emergency. This chapter explains the procedures for performing
hardware and software maintenance, as well as standard maintenance, such
as backing up the database and upgrading the hardware, the software, and the
database schema.

Performance Monitoring | Another important role for many database administrators is monitoring data-
base performance. Monitoring is important for several reasons:

¢ Performance Analysis
« Load Balancing
* Fault Detection

This chapter describes the tools available for monitoring VoltDB databases.

Problem Reporting & If an error does occur and part or all of the database cluster fails, it is not only
Anaysis important to get the database up and running again, but to diagnose the cause
of the problem and take corrective actions. VoltDB produces a number of log
filesthat can help with problem resolution. This chapter describesthe different
logs that are available and how to use them to diagnose database issues.

Chapter 2. Preparing the Servers

VoltDB is designed to run on commodity servers, greatly reducing the investment required to operate
a high performance database. However, out of the box, these machines are not necessarily configured
for optimal performance of a dedicated, clustered application like VoltDB. This is especially true when
using cloud-based services. This chapter provides best practices for configuring servers to maximize the
performance and stability of your VoltDB installation.

2.1. Server Checklist

Thevery first stepin configuring the serversis making sureyou have sufficient memory, computing power,
and system resources such as disk space to handle the expected workload. The VoltDB Planning Guide
provides detailed information on how to size your server requirements.

The next step isto configure the servers and assign appropriate resources for VoltDB tasks. Specific server
features that must be configured for VoltDB to perform optimally are:

* Install required software

» Configure memory management

* Turn off TCP Segmentation

 Configure the time synchronization services

* Increase resource limits

 Define network addresses for all nodesin the cluster

» Assign network ports

2.2. Install Required Software

To start, VoltDB requires arecent rel ease of the Linux operating system. The supported operating systems
for running production VoltDB databases are:

» Red Hat (RHEL) 8.6 or later, including 9.0 and subsequent releases
» Rocky Linux 8.6 or later, including 9.0 and subsequent releases
» Ubuntu 20.04, and 22.04

It may be possible to run VoltDB on other versions of Linux and Macintosh OS X 11.0 and later is sup-
ported for development purposes. However, the preceding operating system versions are the only fully
tested and supported base platforms for running VoltDB in production.

In addition to the base operating system, VoltDB requires the following software at a minimum:
* Javall, 17,0r 21
» Time synchronization services, such as NTP or chrony

e Python 3.9 or later

http://docs.voltactivedata.com/PlanningGuide/

Preparing the Servers

Oracle Java SDK 11, 17, or 21 is recommended, but OpenJDK 11, 17, or 21 are also supported.

VoltDB works best when the system clocks on all cluster nodes are synchronized to within 100 millisec-
onds or less. However, the clocks are allowed to differ by up to 200 milliseconds before VoltDB refusesto
start. NTP, the Network Time Protocol, or chrony are recommended for achieving the necessary synchro-
nization. NTPisinstalled and enabled by default on many operating systems. However, the configuration
may need adjusting (see Section 2.5, “ Configure Time Services’ for details) and in cloud instances where
hosted servers are runin avirtual environment, atime service may not be installed or enabled by default.
Therefore you need to do this manually.

Finally, VoltDB implements its command line interface through Python. Python 3.9 or later is required
to use the VoltDB shell commands.

2.3. Configure Memory Management

2.3.1.

2.3.2.

Because VoltDB isan in-memory database, proper memory management isvital to the effective operation
of VoltDB databases. Three important aspects of memory management are:

» Swapping
» Memory Mapping (Transparent Huge Pages)
* Virtual memory

The following sections explain how best to configure these features for optimal performance of VoltDB.

Disable Swapping

Swapping is an operating system feature that optimizes memory usage when running multiple processes
by swapping processesin and out of memory. However, any contention for memory, including swapping,
will have avery negative impact on VoltDB performance and functionality. Y ou should disable swapping
when using VoltDB.

To disable swapping on Linux systems, use the swapof f command. Alternately, you can set the kernel
parameter vm swappi ness to zero.

Disable Transparent Huge Pages

Transparent Huge Pages (THP) are another operating system feature that optimizes memory usage for
systems with large amounts of memory. THP changes the memory mapping to use larger physical pages.
This can be helpful for general-purpose computing running multiple processes. However, for memory-in-
tensive applications such as VoltDB, THP can actually negatively impact performance.

Therefore, it isimportant to disable Transparent Huge Pages on servers running VoltDB. The following
commands, run as root or from another privileged account, disable THP:

$ echo never >/sys/kernel/nmitransparent_hugepage/ enabl ed
$ echo never >/sys/kernel/nmitransparent_hugepage/ defrag

Or:

$ echo madvi se >/sys/kernel /m transparent _hugepage/ enabl ed
$ echo madvi se >/sys/kernel /m transparent _hugepage/ defrag

Preparing the Servers

2.3.3.

For RHEL systems (including CentOS), replace "transparent _hugepage" with "redhat_transparen-
t_hugepage”.

Note, however, that these commands disable THP only whilethe server isrunning. Oncethe server reboots,
the default setting will return. Therefore, we recommend you disable THP permanently as part of the
startup process. For example, you can add the following commands to a server startup script (such as/
etc/rc.local):

#1/ bi n/ bash

for f in /sys/kernel/mi*transparent hugepage/ enabl ed; do
if test -f $f; then echo never > $f; fi

done

for f in /sys/kernel/mi*transparent hugepage/ defrag; do
if test -f $f; then echo never > $f; fi

done

THP are enabled by default in Ubuntu 14.04 and later as well as RHEL 6.x and 7.x. To seeif they are
enabled on your current system, use either of the following pair of commands:

$ cat /sys/kernel/mmtransparent_hugepage/ enabl ed
$ cat /sys/kernel/mmtransparent_hugepage/ defrag

$ cat /sys/kernel/mmredhat _transparent_hugepage/ enabl ed
$ cat /sys/kernel/mnredhat _transparent_hugepage/ defrag

If THP is disabled, the output from the preceding commands should be either “always madvise [never]”
or “aways [madvise] never”.

Enable Virtual Memory Mapping and Overcommit

Although swapping is bad for memory-intensive applications like VoltDB, the server does make use of
virtual memory (VM) and there are settings that can help VoltDB make effective use of that memory.
First, it is a good idea to enable VM overcommit. This avoids VoltDB encountering unnecessary limits
when managing virtual memory. Thisis done on Linux by setting the system parameter vm over cont

mt_menory toavaueof "1".

$ sysctl -w vmovercomit_nenory=1

Second, for large memory systems, it is also a good idea to increase the VM memory mapping limit. So
for servers with 64 Gigabytes or more of memory, the recommendation is to increase VM memory map
count to 1048576. Y ou do this on Linux with the system parameter max_nap_count . For example:

$ sysctl -w vm max_map_count =1048576

Remember that for both overcommit and the memory map count, the parameters are only active while the
system is running and will be reset to the default on reboot. So be sure to add your new settings to the file
/etc/sysctl.conf toensurethey arein effect when the system is restarted.

2.4. Turn off TCP Segmentation

Under certain conditions, the use of TCP segmentation offload (TSO) and generic receive offload (GRO)
can cause nodes to randomly drop out of a cluster. These settings | et the system to batch network packets,
producing unnecessary latency and interfering with the necessary communication between VoltDB cluster
nodes. The symptoms of this problem are that nodes timeout — that is, the rest of the cluster thinks they

Preparing the Servers

have failed — although the node is till running and no other network issues (such as a network partition)
are the cause.

Disabling TSO and GRO is recommended for any VoltDB clusters that experience such instability. The
commands to disable offloading are the following, where N isreplaced by the number of the ethernet card:

ethtool -K ethN tso off
ethtool -K ethN gro off

Note that these commands disable offloading temporarily. Y ou must issue these commands every time the
node reboots or, preferably, put them in a startup configuration file.

Itisalso agood ideato check that TCP_RETRIES?2 has not been altered. Setting TCP_RETRIES2 too low
(below 8) can cause similar unpredictable timeouts. See the description of the VVoltDB heartbeat timeout
setting in Section A.3.7, “Heartbeat” for details.

2.5. Configure Time Services

To orchestrate activities between the cluster nodes, VoltDB relies on the system clocks being synchro-
nized. Many functions within VoltDB — such as cluster start up, nodes rejoining, and schema updates
among others — are sensitive to variations in the time values between nodes in the cluster. Therefore, it
isimportant to keep the clocks synchronized within the cluster. Specifically:

e The server clocks in the cluster must be synchronized to within 200 milliseconds of each other when
the cluster starts. (Ideally, skew between nodes should be kept under 10 milliseconds.)

* Time must not move backwards

Theeasiest way to achievethesegoasistoinstall and configure atime servicesuchasNTP (Network Time
Protocol) or chrony to use acommon time host server for synchronizing the servers. NTPis often installed
by default but may require additional configuration to achieve acceptable synchronization. Specifically,
listing only one time server (and the same one for all nodes in the cluster) ensures minimal skew between
servers. You can even establish your own time server to facilitate this. All nodes in the cluster should
also list each other as peers. For example, the following NTP configuration file uses a local time server
(myntpsvr) and establishes all nodes in the cluster as peers:

server myntpsvr burst iburst minpoll 4 maxpoll 4
peer voltsvrl burst iburst minpoll 4 maxpoll 4
peer voltsvr2 burst iburst minpoll 4 maxpoll 4
peer voltsvr3 burst iburst minpoll 4 maxpoll 4

server 127.127.0.1

See the chapter on Configuring NTP in the Guide to Performance and Customization for an example of
configuring atime service for optimal performance when running VoltDB.

2.6. Increase Resource Limits

There are several resource limits managed by the operating system where per-user default values are opti-
mized for time-sharing systems but can betoo restrictive for dedicated applicationslike VVoltDB. In partic-
ular, although VoltDB isan in-memory database, process threads require large numbers of file descriptors,
to the point where the file descriptor limit can interfere with VoltDB operations.

https://docs.voltactivedata.com/PerfGuide/ChapNtp.php
https://docs.voltactivedata.com/PerfGuide/

Preparing the Servers

It is recommended that you increase the process and file descriptor limits for the process starting the
VoltDB server. Y ou can do thiswith theulimit shell command prior to starting VV oltDB. The recommended
minimum limitsfor processes and file descriptors are 8192 and 16384, respectively. Note that these are top
limits, so on dedicated servers there are no drawbacks to setting these values even higher. For example,
the following commands set the limits to 10,000 and 40,000 before starting the server:

$ulimt -u 10000
$ulimt -n 40000
$ voltdb start

To set the limits permanently, you can set the limits as part of the system initialization. See your operation
system documentation on ulimit and init.d for more information.

2.7. Configure the Network

It is aso important to ensure that the network is configured correctly so al of the nodes in the VoltDB
cluster recognize each other. If the DNS server does not contain entriesfor all of the serversin the cluster,
an dternative isto add entriesin the /etc/hosts file locally for each server in the cluster. For example:

12.24.48. 101 vol tsvril
12.24. 48. 102 vol tsvr2
12. 24. 48. 103 vol tsvr3
12.24.48. 104 vol tsvr4
12. 24. 48. 105 vol tsvr5

2.8. Assign Network Ports

VoltDB uses anumber of network portsfor functions such asinternal communications, client connections,
rejoin, database replication, and so on. For these features to perform properly, the ports must be open and
available. Review the following list of ports to ensure they are open and available (that is, not currently

in use).

Function Default Port
Number

Client Port 21212

Admin Port 21211

Web Interface Port (httpd) 8080

Internal Server Port 3021

Replication Port 5555

Zookeeper port 7181

Alternately, you can reassign the port numbers that VoltDB uses. See Section A.5, “Network Ports’ for
adescription of the ports and how to reassign them.

2.9. Eliminating Server Process Latency

The preceding sections explain how to configure your servers and network to maximize the performance of
VoltDB. Thegoal isto avoid server functions, such as swapping or Javagarbage collection, from disrupting
the proper operation of the VoltDB process.

Preparing the Servers

Any latency in the scheduling of VoltDB threads can impact the performance of your database. These
delays result in corresponding latency in the database transactions themselves. But equally important,
prolonged latency can interrupt intra-cluster communication as well, to the point where the cluster may
incorrectly assume anode hasfailed and drop it asamember. If server latency causes anode not to respond
to network messages beyond the heartbeat timeout setting, the rest of the cluster will drop the node as a
"dead host".

Therefore, in addition to the configuration settings described earlier in this chapter, the following are some
known causes of latency you should watch out for:

» Other applications — Clearly, running other applications on the same servers as VoltDB can result
in unpredictable resource conflicts for memory, CPU, and disk access. Running VoltDB on dedicated
serversis aways recommended for production environments.

* Frequent snapshots— Initiating snapshots consumes resources. Especially on adatabase under heavy
load, this can result in latency spikes. Although it is possible to run both automated snapshots and
command logging (which performs its own snapshots), they are redundant and can cause unnecessary
delays. Also, when using command logging on a busy database, consider increasing the size of the
command log segments if snapshots are occurring too frequently.

* |/O contention — Contention for disk resources can interfere with the effective processing of VoltDB
durability features. Thiscan be avoided by allocating separate devicesfor individual disk-based activity.
For example, wherever possible locate command logs and snapshots on separate devices.

* JVM gatisticscollection — Enabling JavaVirtual Machine (JV M) statistics can produce erratic latency
issues for memory-intensive applications like VoltDB. Disabling VM stats is strongly recommended
when running VoltDB servers. You can disable VM stats by issuing the following command before
starting the VVoltDB process:

export VOLTDB_OPTS=' - XX: +Per f Di sabl eShar edMeni
Alternately, you can write the VM statsto an in-memory virtua disk, such as/ t npf s.

» Hardware power saving options — Beware of hardware options that attempt to conserve energy by
putting "idle" processes or resources into a reduced or sleep state. Resuming quiesced resources takes
time and the requesting processis blocked for that period. Make sure power saving options are disabled
for the resources you need (such as CPUs and disks).

Although not specific to server resources, perhaps the most common cause of latency isqueriesthat require
a sequential scan of extremely large tables of data. Any query that must read through every record in a
tablewill perform badly in proportion to the size of the table. Be sureto review the execution plansfor key
transactions to ensure indexes are used as expected and add indexes to avoid sequential scans wherever
possible.

Chapter 3. Starting and Stopping the
Database

The fundamental operations for database administration are starting and stopping the database. But before
you start the database, you need to decide what database features you want to enable and how they should
work. These features include attributes such as the amount of replication you want to use to increase
availability in case of server failure and what level of durability is required for those cases where the
database itself stops. These and other settings are defined in the configuration file, which you specify on
the command line when you initialize the root directory for the database on each server.

This chapter explains how to configure the cluster's physical structure and features in the configuration
file and how to initialize the root directory and start and stop the database.

3.1. Configuring the Cluster and Database

Y ou specify the cluster configuration and what features to use in the configuration file, which isan XML
file that you can create and edit manually. In the ssimplest case, the configuration file specifies how many
partitions to create on each server, and what level of availability (K-safety) to use. For example:

<?xm version="1.0"?>
<depl oynent >
<cl uster sitesperhost="12"
kfactor="1"
/>
</ depl oyment >

» Thesit esper host attribute specifies the number of partitions (or "sites") to create on each server.
Set to eight by default, it is possible to optimize the number of sites per host in relation to the number
of processors per machine. The optimal number is best determined by performance testing against the
expected workload. See the chapter on "Benchmarking” in the VoltDB Planning Guide for details.

» Thekf act or attribute specifies the K-safety value to use. The higher the K-safety value, the more
node failures the cluster can withstand without affecting database availability. However, increasing the
K-safety value increases the number of copies of each unique partition. High availability is a trade-
off between replication to protect against node failure and the number of unique partitions, therefore
throughput performance. See the chapter on availability in the Using VoltDB manual for moreinforma-
tion on determining an optimal K-safety value.

In addition to the sites per host and K-safety, you can use the configuration file to enable and configure
specific database features such as export, command logging, and so on. The following table summarizes
some of the key features that are settable in the configuration file.

Table 3.1. Selecting Database Featuresin the Configuration File

Feature Example

Command Logging — Command logging|<conmandl og enabl ed="t rue"

provides durability by logging transactions to synchronous="f al se">
disk so they can be replayed during arecov-| <frequency ti me="300"

ery. You can configure the type of command transacti ons="1000"/>

logging (synchronous or asynchronous), the|</ conmandl og>

10

http://docs.voltactivedata.com/PlanningGuide/ChapBenchmark.php
http://docs.voltactivedata.com/PlanningGuide/
https://docs.voltactivedata.com/UsingVoltDB/ChapKSafety.php
https://docs.voltactivedata.com/UsingVoltDB/

Starting and Stopping the Database

Feature

Example

log file size, and the frequency of thelogs (in
terms of milliseconds or number of transac-
tions).

Snapshots— Automatic snapshot provide an-
other form of durability by creating snapshots
of the database contents, that can be restored
later. Y ou can configure the frequency of the
snapshots, the unique file prefix, and how
many snapshots are kept at any given time.

<snapshot enabl ed="true"
frequency="30nt
prefix="mydb"
retain="3" />

Export — Export allows you to write select-
ed records from the database to one or more
external targets, which can be files, another
database, or another service. VoltDB provides
different export connectors for each protocol.
Y ou can configure the type of export for each
stream as well as other properties, which are
specific to the connector type. For example,
the file connector requires a specific type (or
format) for the files and a unique identifier
called a"nonce".

<export >
<configuration target="dbl og" type="file">
<property name="type">csv</property>
<property name="nonce">dbl og</ property>
</ configuration>
</ export >

Security & Accounts — Security lets you
protect your database against unwanted ac-
cess by requiring all connections authenticate
against known usernames and passwords. In
the deployment file you can define the user ac-
counts and passwords and what role or roles
each user fulfills. Roles define what permis-
sionsthe account has. Roles are defined in the
database schema.

<security enabl ed="true"/>
<users>

<user nane="adm n"
passwor d="super nman"
rol es="adm ni strator"/>
nane="mtty"
passwor d="t hur ber"
rol es="user,witer"/>
</ users>

<user

File Paths — Paths define where VoltDB
writes any files or other disc-based content.
Y ou can configure specific pathsfor each type
of service, such as snapshots, command logs,
export overflow, etc.

<pat hs>
<exportoverflow path="/tnp/overflow' />
<snapshots path="/opt/archive" />

</ pat hs>

3.2. Initializing the Database Root Directory

Once you create the configuration file, you are ready to initialize the database root directory, using the
voltdb init command. Y ou issue this command on each node of the cluster, specifying the location for
the root directory, the configuration file, license, and schema and stored procedure class files. There are
defaults for each argument. But if you do specify the configuration, license, schema or classes you must
specify the same values on every node of the cluster. For example:

- -di r=~/ dat abase \
--config=depl oynment. xm \
--license=~/license.xm \
--schema=nyschena. sql \
--cl asses=nyprocs.j ar

$ voltdb init

0000

On the command line, you can specify up to five arguments:

11

Starting and Stopping the Database

The location where the root directory will be created

The configuration file, which enables and sets attributes for specific VoltDB features
The license file (when using the VVoltDB Enterprise Edition)

One or more SQL DDL files

One or more JAR files containing stored procedure classes

Q0000

When you initialize the root directory, VoltDB:
1. Createstheroot directory (voltdbroot) as a subfolder of the specified parent directory
2. Savestheconfiguration and license, plus any schemaand classfilesto preload, in the new root directory

Note that you only need to initialize the root directory once. Once the root directory isinitialized, you can
start and stop the database as needed. VoltDB uses the root directory to manage the current configuration
options and backups of the data— if those features are selected — in command logs and snapshots. If you
do not specify alicense on the command line, VoltDB looks for alicense in the current working directory,
your home directory, or in the directory where the VoltDB software isinstalled and copies it into the root
directory if it finds one.

If the root directory already exists or has been initialized before, you cannot re-initialize the directory
unless you include the --force argument. This is to protect you against accidentally deleting data from a
previous database session.

I mportant

Volt uses the root directory to store files vital to the operation and recovery of the database in
case of failure. Many product features rely on information stored within the root directory and its
subfolders. Do not manually add new or modify existing fileswithin the directory structure. Y ou
can, judiciously, delete files as a maintenance activity (such asold log files or snapshots archived
in numbered subfolders if and when you reinitialize an existing root directory). But even these
activities are best handled automatically by setting the appropriate retention properties for each
feature in the database configuration.

3.3. Starting the Database

Onceyou initialize the root directory, you are ready to start the database using the voltdb start command.
Y ou issue this command, specifying the location of theroot directory, the number of serversrequired, and
one or more server addresses to use as "host" to manage the initial formation of the cluster. Y ou issue the
same command on every node in the cluster. For example:

$ voltdb start --dir=~/database \ (1]
--count =5 \ (2]
--host=svr1, svr2 (3]

On the command line, you specify four arguments:

© Thelocation of the root directory
® Thenumber of serversin the cluster
©® Oneor more nodesfrom the cluster to use asthe "host", to coordinate the initial startup of the cluster

Y ou must specify the same number of servers and hosts (listed in exactly the same order) on all nodes of
the cluster. Y ou can, optionally, specify all nodes of the cluster in the --host argument. In which case, you
can leave off the --count argument and V oltDB assumes the number of hostsisthetotal number of servers.

12

Starting and Stopping the Database

When you start the database, all nodes select one of the servers from the host list as the "host”. The host
then:

1. Waitsuntil the necessary number of servers (as specified by the count) are connected
2. Creates the network mesh between the servers
3. Verifiesthat the configuration options match for all nodes

At this point, the cluster is fully initialized and the "host" ends its special role and becomes a peer to
all the other nodes. If the database was run before and command logs or automated snapshots exist, the
cluster now recoversthe datafrom the previous session. All nodesin the cluster then write an informational
message to the console verifying that the database is ready:

Server conpleted initialization.

3.4. Loading the Database Definition

Stored procedures are compiled into classes and then packaged into a JAR file, as described in the section
on installing stored procedures in the Using VoltDB manual. To fully load the database definition you
will need one or more JAR files of stored procedure classes and atext file containing the data definition
language (DDL) statements that declare the database schema.

Responsibility for loading the database schema and stored procedures varies from company to company.
In some cases, operators and administrators are only responsible for initiating the database; devel opers
may load and modify the schema themselves. In other cases, the administrators are responsible for both
starting the cluster and loading the correct database schema as well.

If the schema and stored procedures are predefined, you can include them when you initialize the database
root directory and VoltDB will preload them when the database starts for the first time. Otherwise, you
can load the schemaand classfiles using the sglemd utlity after the database starts. The following sections
describe each approach.

3.4.1. Preloading the Schema and Classes When You Initial-
ize the Database

If the database schema is predefined, you can include it when you initialize the database root directory,
usingthe- - schema and - - cl asses argumentsto thevoltdb init command. The- - schema flag lets
you specify one or more text files containing SQL DDL statements and the - - cl asses flag lets you
specify one or more JAR files containing the classes associated with any stored procedures you want to
declare.

Note that DDL statements and Java classes can be order-dependent. For example, a stored procedure
definition can depend on the existence of atable definition to defineits partitioning column. VoltDB loads
any classes before loading the schemafile. However, you should be sure to specify the individual schema
filesor JAR filesin the order you want them |oaded.

Also, you must specify the same files, in the same order, when initializing al nodes of the cluster. For
example:

$ voltdb init --dir=~/db \
--schema=t abl es. sql , streamns. sql , procs. sql \
--cl asses=gl obal procs.jar, nyprocs.j ar

13

http://docs.voltactivedata.com/UsingVoltDB/designappprocinstall.php
http://docs.voltactivedata.com/UsingVoltDB/

Starting and Stopping the Database

3.4.2.
Starts

Loading the Schema and Classes After the Database

If you areresponsiblefor defining the correct schemaoncethe databaseisrunning, or modifying an existing
schema, you can do thisusing the sgqlcmd utility. The following example assumes the schemais contained
intwo files: st or edpr ocs. j ar and dbschema. sql . Once the database cluster has started, you can
start the sglemd utility and load the files at the sglemd prompt using the sglemd load classes and file
directives:

$ sqlcnd
1> | oad cl asses storedprocs.jar;
2> fil e dbschenn. sql ;

Note that when loading the schema, you should always load the stored procedures first, so the class files
are available for any CREATE PROCEDURE statements within the schema.

3.5. Stopping the Database

How you choose to stop aVoltDB depends on what features you have enabled. If you are using command
logging (which is enabled by default in the VoltDB Enterprise Edition), it is a good idea to perform an
orderly shutdown when stopping the database to ensure that all active client queries have a chance to
complete and return their results (and no new queries start) before the shutdown occurs.

To perform an orderly shutdown you can use the voltadmin shutdown command:
$ vol tadni n shut down

Aswith al voltadmin commands, you can use them remotely by specifying one of the cluster serverson
the command line:

$ vol tadm n shutdown --host=vol tsvr2

If security is enabled, you will also need to specify a username and password for a user with admin per-
missions:

$ vol tadm n shutdown --host=voltsvr2 -u root -p Suda5l1

If you are not using command logging, you want to make sure you perform a snapshot before shutting

down. Y ou can do this manually using the voltadmin save command. Or you can simply add the --save
argument to the voltadmin shutdown command:

$ vol tadm n shutdown --save

The most recent snapshot saved to the database snapshots directory (by the voltadmin save command to
the default | ocation, automated snapshots, or voltadmin shutdown --save) will automatically be restored
by the next voltdb start command.

3.6. Restarting the Database

Restarting aVoltDB database is done the same way as starting the database for the first time, except there
isno need to initialize the root directory. Y ou simply issue the same voltdb start command you did when
you started it for the first time. For example:

$ voltdb start --dir=~/database \

14

Starting and Stopping the Database

--count =5 \
--host=svr1l, svr2

If you are using command logging, or you created a snapshot in the default snapshots directory, VoltDB
automatically reinstates the data once the cluster is established. After the schemaisloaded and all datais
restored, the database enables client access.

3.7. Starting and Stopping Individual Servers

When using K-safety, it is possible for one or more nodesin a cluster to stop without stopping the database
itself. (Seethe chapter on availability in the Using VoltDB manual for acomplete description of K-safety.)
If aserver stops — either intentionally or accidentally — you can start the server and have it rejoin the
cluster using the same voltdb start command used to start the cluster. For example:

$ voltdb start --dir=~/database \
--count =5 \
--host=svr1l, svr2

The start command will check to see if the cluster is still running, based on the list of serversin the - -
host argument. If so, the server will rejoin the cluster.

Note that if there are multiple servers listed in the - - host argument, the server can rejoin even if it is
one of the listed hosts. If you only list one host and that is the server that stopped, you will need to list
a different server in the - - host argument — any server that is still an active member of the running
cluster. (Thisiswhy listing multiple nodesinthe- - host argument is beneficial: you can use exactly the
same start command in multiple situations.)

If you want to stop a single node in a K-safe cluster — for example, to perform maintenance on the
hardware — you can do this using the voltadmin stop command. The voltadmin stop command stops a
single node, as long as the cluster has enough K-safety to remain viable after the nodes stops. (If not, the
stop command is rejected.) For example to stop svr2, you can issue the following command:

$ voltadmin stop --host=svrl svr2

Note that the stop command does not have to issued on the server that is being stopped. You can issue
the command on any active server in the cluster. See Chapter 4, Maintenance and Upgrades for more
information about performing maintenance tasks.

15

Chapter 4. Maintenance and Upgrades

Once the database is running, it is the administrator's role to keep it running. This chapter explains how
to perform common maintenance and upgrade tasks, including:

 Database backups
» Schemaand stored procedure updates

» System and hardware upgrades

VoltDB software upgrades

 License updates

4.1. Backing Up the Database

It isacommon safety precaution to backup all data associated with computer systems and store copi es off-
sitein case of system failure or other unexpected events. Backups are usually done on a scheduled basis
(every day, every week, or whatever period is deemed sufficient).

VoltDB provides severa options for backing up the database contents. The easiest option is to save a
native snapshot then backup the resulting snapshot files to removable mediafor archiving. The advantage
of this approach is that native snapshots contain both a complete copy of the data and the schema. So
in case of failure the snapshot can be restored to the current or another cluster using a single voltadmin
restor e command.

The key thing to remember when using native snapshots for backup is that each server saves its portion
of the database locally. So you must fetch the snapshot files for al of the servers to ensure you have a
complete set of files. The following example performs a manual snapshot on afive node cluster then uses
scp to remotely copy the files from each server to asingle location for archiving.

vol tadm n save --bl ocking --host=voltsvr3 \

/trp/ vol tdb backup
scp -1 100 'voltsvrl:/tnp/voltdb/backup*' /tnp/archive/
scp -1 100 'voltsvr2:/tnp/voltdb/backup*' /tnp/archive/
scp -1 100 'voltsvr3:/tnp/voltdb/backup*' /tnp/archive/
scp -1 100 'voltsvr4:/tnp/voltdb/backup*' /tnp/archive/
scp -1 100 'voltsvr5:/tnp/voltdb/backup*' /tnp/archive/

LR ©

Note that if you are using automated snapshots or command logging (which aso creates snapshots), you
can use the automated snapshots as the source of the backup. However, the automated snapshots use a
programmatically generated file prefix, so your backup script will need some additional intelligence to
identify the most recent snapshot and its prefix.

The preceding example also usesthe scp limit flag (-1 100) to constrain the bandwidth used by the copy
command to 100kbits/second. Use of the -I flag is recommended to avoid the copy operation blocking the
VoltDB server process and impacting database performance.

Finally, if you wish to backup the datain a non-proprietary format, you can use the voltadmin save --for -
mat=csv command to create a snapshot of the data as comma-separated value (CSV) formatted text files.
The advantage is that the resulting files are usable by more systemsthan just VoltDB. The disadvantageis
that the CSV files only contain the data, not the schema. These files cannot be read directly into VoltDB,

16

Maintenance and Upgrades

like a native snapshot can. Instead, you will need to initialize and start a new database, load the schema,
then use the csvloader utility to load individual filesinto each table to restore the database completely.

4.2. Updating the Database Schema

4.2.1.

4.2.2.

As an application evolves, the database schema often needs changing. This is particularly true during
the early stages of development and testing but also happens periodically with established applications,
as the database is tuned for performance or adjusted to meet new requirements. In the case of VoltDB,
these updates may involve changesto the table definitions, to the indexes, or to the stored procedures. The
following sections explain how to:

 Perform live schema updates

» Change unique indexes and partitioning using save and restore

Performing Live Schema Updates

There are two ways to update the database schema for a VVoltDB database: live updates and save/restore
updates. For most updates, you can update the schema while the database is running. To perform this
type of live update, you use the DDL CREATE, ALTER, and DROP statements to modify the schema
interactively as described in the section on modifying the schemain the Using VoltDB manual.

Y ou can make any changes you want to the schema as long as the tables you are modifying do not contain
any data. The only limitations on performing live schema changes are that you cannot:

» Add or broaden unique constraints (such as indexes or primary keys) on tables with existing data

» Reduce the datatype size of columns on tables with existing data (for example, changing the datatype
from INTEGER to TINYINT)

These limitations are in place to guarantee that the schema change will succeed without any pre-existing
data violating the constraint. If you know that the data in the database does not violate the new constraints
you can make these changes using the save and r estor e commands, as described in the following section.

Performing Updates Using Save and Restore

If you need to add unique indexes or reduce columns to database tables with existing data, you must use
the voltadmin save and restore commands to perform the schema update. This requires shutting down
and restarting the database to allow VoltDB to validate the existing data against the new constraints.

To perform a schema update using save and restore, use the following steps:
1. Create anew schemafile containing the updated DDL statements.
2. Pause the database (voltadmin pause).

3. Save a snapshot of the database contents to an specific location (voltadmin save --blocking {path}
{file-prefix}).

4. Shutdown the database (voltadmin shutdown).

5. Re-initialize and restart the database starting in admin mode (voltdb init --force and voltdb start --
pause).

6. Load the stored procedures and new schema (using the sglcmd L OAD CLASSESand FIL E directives)

17

http://docs.voltactivedata.com/UsingVoltDB/SchemaModify.php
http://docs.voltactivedata.com/UsingVoltDB/

Maintenance and Upgrades

7. Restore the snapshot created in Step #3 (voltadmin restore {path} {file-prefix}).
8. Return the database to normal operations (voltadmin resume).
For example:

| ssue once

vol tadnmi n pause

vol tadm n save --blocking /opt/archive/ nydb
vol tadm n shut down

$
$
$
$
$ # Issue next two conmands on all servers

$ voltdb init --dir=~/nmydb --config=depl oyment.xm --force
$ voltdb start --dir=~/nmydb --host=svrl,svr2 --count=5

$ # Issue only once

$ sql cnd

1> | oad cl asses storedprocs.jar;

2> file newschema. sql;

3> exit
$ voltadm n restore /opt/archive nmydb
$ voltadnmin resune

The key point to remember when adding new constraints is that there is the possibility that the restore
operation will fail if existing records violate the new constraint. Thisiswhy it isimportant to make sure
your database contents are compatible with the new schema before performing the update.

4.3. Upgrading the Cluster

Sometimes you need to update or reconfigure the server infrastructure on which the VoltDB database is
running. Server upgrades are one example. A server upgrade iswhen you need to fix or replace hardware,
update the operating system, or otherwise modify the underlying system.

Server upgrades usually require stopping the VoltDB database process on the specific server being ser-
viced. However, if your database cluster uses K -saf ety for enhanced availahility, it is possible to complete
server upgrades without any database downtime by performing arolling hardware upgrade, where each
server is upgraded in turn using the voltadmin stop and start commands.

Another type of upgrade iswhen you want to reconfigure the cluster asawhole. Reasonsfor reconfiguring
the cluster are because you want to add or remove servers from the cluster or you need to modify the
number of partitions per server that VoltDB uses.

Adding and removing servers from the cluster can happen without stopping the database. This is called
elastic scaling. Changing the K-Safety factor or number of sites per host requires restarting the cluster
during a maintenance window.

The following sections describe five methods of cluster upgrade:
 Performing server upgrades

 Performing rolling upgrades on K-safe clusters

» Adding serversto arunning cluster through elastic scaling

» Removing servers from arunning cluster through elastic scaling

18

Maintenance and Upgrades

 Reconfiguring the cluster with a maintenance window

4.3.1. Performing Server Upgrades

If you need to upgrade or replace the hardware or software (such as the operating system) of theindividual
servers, this can be done without taking down the database as a whole. As long as the server is running
with a K-safety value of one or more, it is possible to take a server out of the cluster without stopping the
database. Y ou can then fix the server hardware, upgrade software (other than VoltDB), even replace the
server entirely with a new server, then bring the server back into the cluster.

To perform a server upgrade:

1. StoptheVoltDB server processon the server using thevoltadmin stop command. Aslong asthe cluster
isK-safe, therest of the cluster will continue running.

2. Perform the necessary upgrades.
3. Havethe server rgjoin the cluster using the voltdb start command.

The start command starts the database process on the server, contacts the database cluster, then copies the
necessary partition content from other cluster nodes so the server can then participate as a full member of
the cluster, While the server isregjoining, the other database serversremain accessible and actively process
queries from client applications.

When rejoining acluster you can usethe same start command used when starting the cluster asawhole. If,
however, you need to replace the server (say, for example, in the case of adisk failure), you will also need
to initialize a root directory for the database process on the new machine. You do this using the current
configuration file for the cluster. For example:

$ voltdb init --dir=~/database --config=depl oynent. xm
$ voltdb start --dir=~/database --host=svril, svr2

If no changes have been made, you can use the same configuration file used to initialize the other servers.
If you have used voltadmin update to change the configuration or changed settings using the Volt Man-
agement Center (VMC), you can download a copy of the latest configuration from VMC.

If the cluster is not K-safe — that is, the K-safety value is 0 — then you must follow the instructionsin
Section 4.3.5, “Reconfiguring the Cluster During a Maintenance Window” to upgrade the servers.

4.3.2. Performing Rolling Hardware Upgrades on K-Safe
Clusters

If you need to upgrade all of the serversin aK-safe cluster (for example, if you are upgrading the operating
system), you can perform arolling hardware upgrade by stopping, upgrading, then rejoining each server
one at atime. Using this process the entire cluster can be upgraded without suffering any downtime of
the database. Just be sure to wait until the rejoining server has become a full member of the cluster before
removing and upgrading the next server in the rotation. Specifically, wait until the following message
appearsin the log or on the console for the rejoining server:

Node rejoin conpl et ed.

Alternately, you can attempt to connect to the server remotely — for example, using the sglemd command
line utility. If your connection is rejected, the rejoin has not finished. If you successfully connect to the
client port of the rgjoining node, you know the rgjoin is complete:

19

Maintenance and Upgrades

$ sqlcmd --servers=nyserver
SQL Command :: nyserver: 21212
1>

Note

Y ou cannot update the VoltDB software itself using the rolling hardware upgrade process, only
the operating system, hardware, or other software. See Section 4.4, “Upgrading Existing VoltDB
Installations’ for information about minimizing downtime during a VoltDB software upgrade.

4.3.3. Adding Servers to a Running Cluster with Elastic Scal-

ing

If you want to add serversto a VoltDB cluster — usually to increase performance and/or capacity — you
can do this without having to restart the database. Y ou add servers to the cluster using the voltdb start
command with the - - add flag. Note, as always, you must initialize a root directory before issuing the
start command. For example:

$ voltdb init --dir=~/database --config=depl oynment. xmni
$ voltdb start --dir=~/database --host=svri,svr2 --add

The- - add flag specifiesthat if the cluster full —that is, all of the specified number of serversare currently
activein the cluster — the joining node can be added to el astically expand the cluster. Y ou must elastically
add a full complement of servers to match the K-safety value (K+1) before the servers can participate as
active members of the cluster. For example, if the K-safety valueis 2, you must add 3 servers before they
actually become part of the cluster and the cluster rebalances its partitions.

When you add serversto a VoltDB database, the cluster performs the following actions:

1. Thenew serversare added to the cluster configuration and sent copies of the schema, stored procedures,
and deployment file.

2. Once sufficient servers are added, copies of al replicated tables and their share of the partitioned tables
are sent to the new servers.

3. Asthe datais rebalanced, the new servers begin processing transactions for the partition content they
have received.

4. Once rebalancing is complete, the new servers are full members of the cluster.

If the cluster is not at its full complement of servers when you issue avoltdb start --add command, the
added server will join the cluster as a replacement for a missing node rather than extending the cluster.
Oncethe cluster isback toitsfull complement of nodes, the next voltdb start --add command will extend
the cluster.

4.3.4. Removing Servers from a Running Cluster with Elastic
Scaling

Just asyou can add nodesto arunning cluster to add capacity, you can remove nodes from arunning cluster
to reduce capacity. Obviously, you want to make sure that the smaller cluster has sufficient resources, such
as memory, for your data and workload. If you are using K-safety, you also need to be sure the current
cluster islarge enough to remove nodes and still meet the requirements for your specific K-safety setting.

20

Maintenance and Upgrades

4.3.5.
dow

To remove nodesfrom arunning cluster, you use the voltadmin resize command. Thefirst step isto verify
that the cluster has enough nodesto reducein size. Y ou do thiswith the voltadmin resize --test command:

$ voltadmin resize --test

The voltadmin resize --test command checks the cluster to make sure there are enough nodes to still be
operational after the reduction and it reports which nodes will be removed as a result of the operation.
The number of nodes that will be removed is calculated as the smallest number that alows the cluster to
maintain K-safety. Without K-Safety, that is one node. With K-Safety, that is at least K+1, but possibly
more depending on the cluster configuration. The remaining node count and configuration must satisfy
the regquirement that the number of nodes and the total number of partitions are both divisible by K+1.

Once you are ready to start reducing the cluster size, issue the voltadmin resize command without any
arguments:

$ voltadmn resize

This command verifies that the cluster can be resized, reports which nodes will be removed, asks you to
confirm that you want to begin, and then starts the resize operation. Because resizing the cluster involves
reorganizing and rebalancing the partitions, it can take a significant amount of time, depending on the
size of the database and the ongoing workload. Y ou can track the progress of the resize operation using
the voltadmin status command. Y ou can also adjust the priority between rebalancing the partitions and
ongoing client transactions by setting the duration and throughput of the rebalance operation. See the
section on "Configuring How VoltDB Rebalances Nodes During Elastic Scaling” in the Using VoltDB
manual for details.

Note that once resizing starts, you cannot cancel the operation. So be certain you want to reduce the size

of the cluster before beginning. If for any reason the resize operation fails unexpectedly, you can use the
voltadmin resize --retry command to restart the cluster reduction.

Reconfiguring the Cluster During a Maintenance Win-

If you want to modify the cluster configuration, such as the number of sites per host or K-Safety factor,
you need to restart the database cluster as awhole. Y ou can also choose to add or remove nodes from the
cluster during this operation. Stopping the database temporarily to reconfigure the cluster is known as a
mai ntenance window.

The steps for reconfiguring the cluster with a maintenance window are:

1. Place the database in admin mode (voltadmin pause).

2. Perform amanual snapshot of the database (voltadmin save --blocking).

3. Shutdown the database (voltadmin shutdown).

4. Make the necessary changes to the configuration file.

5. Reinitialize the database root directory on all nodes specifying the edited configuration file (voltdb
init --force).

6. Start the new database in admin mode (voltdb start --pause)

7. Restore the snapshot created in Step #2 (voltadmin restore).

21

https://docs.voltactivedata.com/UsingVoltDB/UpdateHw.php#UpdateRebalance
https://docs.voltactivedata.com/UsingVoltDB/

Maintenance and Upgrades

8. Return the database to normal operations (voltadmin resume).

4.4. Upgrading Existing VoltDB Installations

4.4.1.

As new versions of VoltDB become available, you will want to upgrade the VoltDB software on your
database cluster. The simplest approach for upgrading recent versions of VoltDB — V6.8 or later — is
to perform an orderly shutdown saving afinal snapshot, upgrade the software on all servers, then re-start
the database. (If you are upgrading from earlier versions of the software, you can still upgrade using a
snapshot. But you will need to perform the save and restore operations manually.)

However, upgrading using snapshots involves downtime while the software is being updated. Two alter-
nativesfor upgrading VoltDB without downtime are in-service upgrades — upgrading nodes of the cluster
one at atime — and using cross data center replication (XDCR) to upgrade clusters.

Anin-service upgrade (aseparately licensable feature of VoltDB) letsyou upgrade asingle running cluster
by removing individual nodes, upgrading the VVoltDB software, then rejoining the node to the cluster. The
cluster continues to process transactions throughout the upgrade process, During the upgrade, the cluster
operates as the older version software. Once all of the nodes are upgraded, the cluster transitions to the
new version.

Using cross data center replication (XDCR), it is possible to use two or more clustersto perform an online
upgrade, where there is no downtime and the database is accessible throughout the upgrade operation.
If two or more clusters are aready active participants in an XDCR environment, you can shutdown and
upgradethe clusters, one at atime, to perform the upgrade leaving at least one cluster available at all times.

The following sections describe four approaches to upgrading existing VoltDB installations, starting with
how to replace the software itself:

* Upgrading the VoltDB Software

» Upgrading VoltDB Using Save and Restore

Upgrading Older Versions of VoltDB Manually
» Performing an In-Service Upgrade of a Single Cluster

 Performing an Online Upgrade Using Multiple XDCR Clusters

Upgrading the VoltDB Software

Updating the VoltDB software is very simple. However, you must make sure you perform this step at the
right stage in the upgrade process, as described in the following sections. The product comes as a .tar.gz
file. When the time comes to upgrade the software, you unpack the tar file and move the resulting folder
to replace your current installation. For example, if you have the VoltDB software installed as /var/voltdb,
the software installation looks like the following, where you delete the previous version and replace it
with the new one:

$ tar -zxvf voltdb-ent-n.n.n-xxxx.tar.gz -C /var
$ cd /var

$ rm-vr voltdb

$ mv vol tdb-ent-n.n.n-xxxx voltdb

Remember, when upgrading an existing installation with a running database, you need to upgrade both
the software and the database itself. Which means you must make sure you perform the update stepsin

22

Maintenance and Upgrades

4.4.2.

4.4.3.

4.4.4.

the correct order. The following sections explain the different options for updating existing installations,
including at what stage in the process you should replace the software.

Upgrading VoltDB Using Save and Restore

Upgrading the VoltDB software on a single database cluster is easy. All you need to do is perform an
orderly shutdown saving afina snapshot, upgrade the VoltDB software on all serversin the cluster, then
restart the database. The stepsto perform this procedure are:

1. Shutdown the database and save afinal snapshot (voltadmin shutdown --save).

2. Upgrade the VolItDB software on al cluster nodes (instructions).

3. Restart the database (voltdb start).

This process works for any recent (V6.8 or later) release of VoltDB.

Upgrading Older Versions of VoltDB Manually

To upgrade older versions of VoltDB software (prior to V6.8), you must perform the save and restore
operations manually. The steps when upgrading from older versions of VoltDB are:

1. Place the database in admin mode (voltadmin pause).

2. Perform amanual snapshot of the database (voltadmin save --blocking).
3. Shutdown the database (voltadmin shutdown).

4. Upgrade the VoltDB software on all cluster nodes (instructions).

5. Re-initialize the root directory on all nodes (voltdb init --for ce).

6. Start anew database in admin mode (voltdb start --pause).

7. Restore the snapshot created in Step #2 (voltadmin restor€).

8. Return the database to normal operations (voltadmin resume).

Performing an In-Service Upgrade of a Single Cluster

Normally, when upgrading the VoltDB software, you must shutdown the cluster (for example, with the
voltadmin shutdown --save command) and restart the entire cluster using the new software. Downtime
can be avoided by performing an in-service upgrade. An in-service upgrade allows a K-safe cluster to
be upgraded one node at atime, rather than the entire cluster al at once. This means the cluster, and the
business processes it supports, remain available throughout the upgrade procedure.

The requirements for performing an in-service upgrade are:
» The cluster has the appropriate license for VoltDB that includes the In-Service Upgrade feature.

e Thecluster must be K-safe. That is, the cluster has a K-safety factor of one or more. Thisisrequired so
individual nodes can be stopped without crashing the cluster.

e The cluster must be running VoltDB V13.1.0 or later.

23

Maintenance and Upgrades

e The new version falls within the parameters allowed by in-service upgrades, as described in Sec-
tion 4.4.4.1, “The Scope of In-Service Upgrades’.

To perform an in-service upgrade on bare metal servers, you upgrade the VoltDB software on each node
consecutively. Specifically:

1. Stop one of the cluster nodes, using the voltadmin stop node command
2. Once the server process stops, replace the VoltDB software with the new version.

3. Restart the node using the voltdb start command, specifying one or more of the other nodes in the
cluster as hosts.

4. Once the rejoin process is finished and the cluster is complete, repeat the process for the next node
until all nodes are upgraded.

During the upgrade process, you can determine which nodes have been updated using the @Systemin-
formation system procedure with the OVERVIEW selector and looking for the VERSION keyword. For
example, in the following command output, the first column isthe host 1D and the last column is the cur-
rently installed software version for that host. Once all hosts report using the upgraded software version,
the upgrade is compl ete.

$ echo "exec @ysten nformati on overview' | sqlcmd | grep VERSI ON

2 VERSI ON 13.1.2
1 VERSI ON 13.1.2
0 VERSI ON 13.1.3

Until the upgrade process is complete, all nodes in the cluster maintain the functionality of the lower
version, even for those nodes that have already upgraded to the higher version software. Once the upgrade
is complete and all nodes are running on the newer version, the cluster switches to operating with the
higher version functionality. In other words, if the new software contains any new function or behavior,
that feature will not be accessible until the entire in-service upgrade process is complete.

If the upgradefailsfor any reason, or you choose to stop the upgrade midway, you can revert to the original
version by reversing the process: removing a node that has been upgraded, replace the VoltDB software
with the original version, rejoin the node and repeat for all nodes that were upgraded. Once the upgrade
process is complete, the in-service upgrade is over. At which point, you can longer return to the previous
version through an in-service upgrade and must perform afull cluster restart to downgrade.

4.4.4.1. The Scope of In-Service Upgrades

There are limitsto which software versions can use in-service upgrades. The following table describes the
rules for which releases can be upgraded with an in-service upgrade and which rel eases cannot.

O Patch Releases You can upgrade between any two patch releases. That is, any two releases
where only the third and final number of the version identifier changes. For
example, upgrading from 13.1.1 to 13.1.4.

O Minor Releases Y ou can also use in-service upgrades to upgrade between two consecutive mi-
nor releases. That is where the second number in the version identifier differ.
For example, you can upgrade from V13.2.0 to V13.3.0. Y ou can a so upgrade
between any patch releases within those minor releases. For example, upgrad-
ing from V13.2.3 to V13.3.0.

Y ou cannot use in-service upgrades to upgrade more than one minor version at
atime. In other words, you can upgrade from VV13.2.0to V 13.3.0 but you cannot

24

Maintenance and Upgrades

perform an in-service upgrade from V13.2.0 to V13.4.0. To transition across
multiple minor releases your options are to perform consecutive in-service up-
grades (for example, fromV13.2.0to V13.3.0, thenfromVV13.3.0to V13.4.0) or
to perform aregular upgrade where all cluster nodes are upgrading at one time.

O Major Releases Y ou cannot use in-service upgrades between major versions of VoltDB. That
is, wherethefirst number in the version identifier isdifferent. For example, you
must perform a full cluster upgrade when migrating from V13.x.x to V14.0.0
or later.

4.4.5. Performing an Online Upgrade Using Multiple XDCR
Clusters

It is also possible to upgrade the VoltDB software using cross data center replication (XDCR), by simply
shutting down, upgrading, and then re-initalizing each cluster, one at a time. This process requires no
downtime, assuming your client applications are already designed to switch between the active clusters.

Use of XDCR for upgrading the VoltDB software is easiest if you are already using XDCR because it
does not require any additional hardware or reconfiguration. The following instructions assume that isthe
case. Of course, you could also create a new cluster and establish XDCR replication between the old and
new clustersjust for the purpose of upgrading VoltDB. The steps for the upgrade outlined in the following
sections are the same. But first you must establish the cross data center replication between the two (or
more) clusters. See the chapter on Database Replication in the Using VoltDB manual for instructions on
completing thisinitial step.

Once you have two clusters actively replicating data with XCDCR (let's call them clusters A and B), the
steps for upgrading the VoltDB software on the clustersis as follows:

1. Pause and shutdown cluster A (voltadmin pause --wait and shutdown).
2. Clear the DR state on cluster B (voltadmin dr reset).
3. Update the VoltDB software on cluster A.

4. Start anew databaseinstance on A, making sureto usethe old deployment file so the XDCR connections
are configured properly (voltdb init --force and voltdb start).

5. Load the schema on Cluster A so replication starts.
6. Once the two clusters are synchronized, repeat steps 1 through 4 for cluster B.

Note that since you are upgrading the software, you must create a new instance after the upgrade (step
#3). When upgrading the software, you cannot recover the database using just the voltdb start command;
you must use voltdb init --for ce first to create a new instance and then reload the existing data from the
running cluster B.

Also, be sure all data has been copied to the upgraded cluster A after step #4 and before proceeding to
upgrade the second cluster. You can do this by checking the @Statistics system procedure selector DR-
CONSUMER on cluster A. Once the DRCONSUMER statistics St at e column changesto "RECEIVE",
you know the two clusters are properly synchronized and you can proceed to step #5.

4.4.5.1. Falling Back to a Previous Version

In extreme cases, you may decide after performing the upgrade that you do not want to use the latest
version of VoltDB. If this happens, it is possible to fall back to the previous version of VoltDB.

25

https://docs.voltactivedata.com/UsingVoltDB/ChapReplication.php
https://docs.voltactivedata.com/UsingVoltDB/

Maintenance and Upgrades

To"downgrade" from anew version back to the previousversion, follow the stepsoutlined in Section 4.4.5,
“Performing an Online Upgrade Using Multiple XDCR Clusters’ except rather than upgrading to the new
version in Step #2, reinstall the older version of VoltDB. This process is valid as long as you have not
modified the schema or deployment to use any new or changed features introduced in the new version.

4.4.6. Downgrading, or Falling Back to a Previous VoltDB
Version

The section describing the upgrade process for active XDCR explains how to fall back to the previous
version of VolItDB in case of emergency. This section explains how to fall back, or downgrade, when
using the standard save and restore process described in Section 4.4.2, “Upgrading VoltDB Using Save
and Restore”.

The following process works if you are reverting between two recent versions of VoltDB and you do
not use any new features between the upgrade and the downgrade. There are no guarantees an attempt
to downgrade will succeed if the two software versions are more than one major version apart or if you
utilize a new feature from the higher version software prior to downgrading.

With those caveats, the most reliable way to fall back to a previous VoltDB versioniis:
1. Extract the database schema and stored procedure classes

2. Pause the database, save a snapshot, and shutdown

3. Re-ingtall the previous version of VoltDB

4. Initialize anew database root directory, using the extracted schemaand classes

5. Start the new database instance (in pause mode) using the older version of VoltDB
6. Manually restore the data from the snapshot created in Step #2

7. Resume normal operations

This process ensures that only the schema, stored procedures, and data are returned to the older version of
the software, and new software features will not impact your restore process. For example:

vol tdb get schema -D ~/db/ new --out put =/t np/ nydb. sql
vol tdb get classes -D ~/db/new --output=/tnp/nydb.jar
vol tadm n pause

vol tadm n save /tnp nydata

vol tadm n shut down

LSRR T

—

downgrade Vol tDB software . . .]

voltdb init -f -D ~/db/old --schema=/tnp/ nmydb. sql --classes=/top/nydb.jar
voltdb start -D ~/db/old --pause &

voltadm n restore /tnp nydata

vol tadm n resume

4.5. Updating the VoltDB Software License

TheVoltDB Enterprise Editionislicensed software. Oncethelicense expires, you will not be ableto restart
your database cluster without a new license. So it is agood idea to update the license before it expires to
avoid any interruption to your service.

@B R e

26

Maintenance and Upgrades

Y ou can usethevoltadmin show license command to seeinformation about your current license, including
the expiration date. Y ou can then use the voltadmin license command to replace the current license with
anew licensefile.

$ voltadmin |icense newicense. xni
INFO The license is updated successfully.

When you issue the show license command, VoltDB verifies that the license file isvalid and the terms of
thelicense are sufficient to support the current database configuration. Once verified, thelicenseisapplied
to all nodes of the cluster and information about the new license is displayed.

If a node fails to get updated (for example, if a node fails during the license update), you will need to
update that node independently when bringing it back into the cluster. You can do this by including the
new license file on the command line when you restart the node. For example:

$ voltdb start -D ~/nmydb --1icense new icense. xm
Initializing VoltDB...

27

Chapter 5. Monitoring VoltDB Databases

Monitoring is an important aspect of systems administration. Thisis true of both databases and the infra-
structure they run on. The goals for database monitoring include ensuring the database meets its expected
performance target as well as identifying and resolving any unexpected changes or infrastructure events
(such as server failure or network outage) that can impact the database. This chapter explains:

» How to monitor overall database health and performance using VoltDB
» How to automatically pause the database when resource limits are exceeded

» How to integrate VoltDB monitoring with Prometheus

5.1. Monitoring Overall Database Activity

VoltDB provides severa tools for monitoring overall database activity. The following sections describe
the three primary monitoring tools within VVoltDB:

* Volt Management Center
» System Procedures

* SNMP Alerts

5.1.1. Volt Management Center

http://vol tserver: 8080/

The Volt Management Center provides a graphical display of key aspects of database performance, in-
cluding throughput, memory usage, query latency, and partition usage. To use the Management Center,
connect to one of the cluster nodes using a web browser, specifying the HTTP port (8080 by default) as
shown in the example URL above. The Management Center shows graphs for cluster throughput and la
tency aswell as CPU and memory usage for the current server. Y ou can also use the Management Center
to examine the database schema and to issue ad hoc SQL queries.

5.1.2. System Procedures

VoltDB provides callable system procedures that return detailed information about the usage and perfor-
mance of the database. In particular, the @Statistics system procedure provides awide variety of informa-
tion depending on the selector keyword you give it. Some selectors that are particularly useful for moni-
toring include the following:

* MEMORY — Provides statistics about memory usage for each nodeinthe cluster. Information includes
theresident set size (RSS) for the server process, the Java heap size, heap usage, available heap memory,
and more. This selector provides the type of information displayed by the Process Memory Report,
except that it returns information for al nodes of the cluster in asingle call.

* PROCEDUREPROFILE — Summarizes the performance of individual stored procedures. Informa-
tion includes the minimum, maximum, and average execution time aswell asthe number of invocations,
failures, and so on. The information is summarized from across the cluster as whole. This selector re-
turnsinformation similar to the latency graph in Volt Management Center.

e TABLE — Providesinformation about the size, in number of tuples and amount of memory consumed,
for each table in the database. The information is segmented by server and partition, so you can use

28

Monitoring VoltDB Databases

it to report the total size of the database contents or to evaluate the relative distribution of data across
the serversin the cluster.

When using the @Statistics system procedure with the PROCEDUREPROFILE selector for monitoring,
it isagood idea to set the second parameter of the call to "1" so each call returns information since the
last call. In other words, statistics for the interval sincethe last call. Otherwise, if the second parameter is
"0", the procedure returns information since the database started and the aggregate results for minimum,
maximum, and average execution time will have little meaning.

When calling @Statistics with the MEMORY or TABLE selectors, you can set the second parameter to
"0" sincetheresultsare aways a snapshot of the memory usage and table volume at thetime of thecall. For
example, the following Python script uses @Statistics with the MEMORY and PROCEDUREPROFILE
selectorsto check for memory usage and latency exceeding certain limits. Note that the call to @Statistics
uses a second parameter of 1 for the PROCEDUREPROFILE call and a parameter value of O for the
MEMORY call.

i mport sys

fromvol tdbclient inport *

nano = 1000000000. 0

menorytrigger = 4 * (1024*1024) # 4gbytes

avgl atencytrigger = .01 * nano # 10 m | liseconds
max| at encytrigger = 2 * nano # 2 seconds
server = "local host"

if (len(sys.argv) > 1): server = sys.argv[1]

client = FastSerializer(server, 21212)
stats = Vol tProcedure(client, "@statistics",
[FastSerializer. VOLTTYPE_STRI NG,
Fast Seri al i zer. VOLTTYPE_I NTEGER |)

Check nenory
response = stats.call (["nmenory", 0])
for t in response.tables:
for rowin t.tuples:
print 'RSS for node ' + rowf2] + "=" + str(row 3])
if (row 3] > nenorytrigger):
print "WARNI NG menory usage exceeds limt."

Check | atency
response = stats.call (["procedureprofile”, 11])
avglatency = 0
max| atency = 0
for t in response.tables:
for rowin t.tuples:

if (avglatency < row 4]): avglatency = row 4]
if (maxlatency < row 6]): naxlatency = row 6]
print 'Average |atency=" + str(avgl atency)
print ' Maximum | atency=" + str(maxl atency)

if (avglatency > avgl atencytrigger):

print "WARNI NG Average |atency exceeds limt."
i f (maxl atency > maxl atencytrigger):

print "WARNI NG Maxi num | atency exceeds limt."

29

Monitoring VoltDB Databases

client.close()

The @Statistics system procedure is the the source for many of the monitoring options discussed in this
chapter. Two other system procedures, @SystemCatalog and @SystemInformation, provide general in-
formation about the database schemaand cluster configuration respectively and can be used in monitoring
aswell.

The system procedures are useful for monitoring becausethey let you customize your reporting to whatever
level of detail you wish. The other advantage is that you can automate the monitoring through scripts or
client applications that call the system procedures. The downside, of courseg, is that you must design and
create such scriptsyourself. Asan alternative for custom monitoring, you can consider integrating VoltDB
with existing third party monitoring applications, as described in Section 5.3, “Integrating VoltDB with
Prometheus’. Y ou can also set the database to automatically pause if certain system resources run low,
as described in the next section.

5.1.3. SNMP Alerts

In addition to monitoring database activity on a"as needed" basis, you can enable VoltDB to proactively
send Simple Network Management Protocol (SNMP) aerts whenever important events occur within the
cluster. SNMP is a standard for how SNMP agents send messages (known as "traps') to management
servers or "management stations”.

SNMPisalightweight protocol. SNM P traps are sent as UDP broadcast messagesin astandard format that
isreadable by SNM P management stations. Since they are broadcast messages, the sending agent does not
wait for aconfirmation or response. And it does not matter, to the sender, whether there is a management
server listening to receive the message or not. You can use any SNMP-compliant management server to
receive and take action based on the traps.

When you enable SNMP in the deployment file, VoltDB operates as an SNM P agent sending traps when-
ever management changes occur in the cluster. Y ou enable SNMP with the <snnp> element in the de-
ployment file. Y ou configure how and where V oltDB sends SNM P traps using one or more of the attributes
listed in Table 5.1, “SNMP Configuration Attributes’.

Table5.1. SNMP Configuration Attributes

Attribute Default Value Description

target (none) Specifies the IP address or host name of the SNMP manage-
ment station where traps will be sent in the form {IP-or-host-
name}| : port-number]. If you do not specify aport number, the
defaultis162. Thet ar get attribute isrequired.

community public Specifies the name of the "community" the VoltDB agent be-
longsto.
username (none) Specifiesthe usernamefor SNM PV 3 authentication. If you do

not specify ausername, VoltDB sendstrapsin SNMPV2c for-
mat. If you specify ausername, VoltDB uses SNMPV 3 and the
following attributes et you configure the authenti cation mech-
anisms used.

authprotocol SHA Specifiesthe authentication protocol for SNMPV 3. Allowable
(SNMPV3only) |optionsare:

* SHA
» MD5
* NoOAuth

30

Monitoring VoltDB Databases

Attribute Default Value Description
authkey voltdbauthkey Specifies the authentication key for SNMP V3 when the pro-
(SNMPV3only) [tocol isother than NoAuth.
privacyprotocol AES Specifies the privacy protocol for SNMP V3. Allowable op-
(SNMPV3only) |tionsare:
« AES
« DES
* NoPriv
« 3DES
« AES192'
» AES256
privacykey voltdbprivacykey | Specifiesthe privacy key for SNMP V 3 when the privacy pro-
(SNMPV3only) [tocol isother than NoPriv.

"Use of 3DES, AES192, or AES256 privacy requires the Java Cryptography Extension (JCE) be installed on the system. The JCE
is specific to the version of Javayou are running. See the the Javaweb site for details.

SNMP is enabled by default when you include the <snnp> element in the deployment file. Alternately,
you can explicitly enable and disable SNMP using the enabl ed={t r ue| f al se} attribute to the ele-
ment. For example, the following deployment file entry enables SNM P alerts, sending trapsto mgtsvr.my-
company.com using SNMP V3 with the username "voltdb":

<snnmp enabl ed="t rue"
target ="ngt svr. nyconpany. conf
user name="vol t db"

/>

Once SNMP is enabled, VoltDB sends alerts for the events listed in Table 5.2, “SNMP Events’.

Table5.2. SNMP Events

Name Severity Description
crash FATAL When a server or cluster crashes.
clusterPaused INFO When the cluster pauses and enters admin maode.
clusterResume INFO When the cluster exits admin mode and resumes normal oper-
ation.
hostDown ERROR When a server shuts down or is recognized as having left the
cluster.
hostUp INFO When a server joins the cluster.
streamBlocked WARN When an export stream is blocked due to datamissing from the
export queue and all cluster nodes are running.
statisticsTrigger WARN When certain operational states are compromised. Specifical-
ly:
* When aK-safe cluster loses one or more nodes
* When using database replication, the connection to the re-
mote cluster is broken
resourceTrigger WARN When certain resource limits are exceeded. Specifically
¢ Memory usage
» Disk usage

31

http://www.oracle.com/technetwork/java/index.html

Monitoring VoltDB Databases

Name Severity Description

See Section 5.2, “Setting the Database to Read-Only Mode
When System Resources Run Low” for more information
about configuring SNMP alerts for resources.

resourceClear INFO When resource limits return to levels below the trigger value.

For the latest details about each event trap, see the VoltDB SNMP Management Information Base (MIB),
which isinstalled with the VoltDB server softwarein thefile/ t ool s/ snnp/ VOLTDB- M Binthein-
stallation directory.

5.2. Setting the Database to Read-Only Mode
When System Resources Run Low

VoltDB, like al software, uses system resourcesto perform itstasks. First and foremost, as an in-memory
database, VoltDB relies on having sufficient memory available for storing the dataand processing queries.
However, it also makes use of disk resources for snapshots and caching data for other features, such as
export and database replication.

If system resources run low, one or more nodes may fail impacting availability, or worse, causing aservice
interruption. The best solution for this situation isto plan ahead and provision sufficient resourcesfor your
needs. The goal of the VoltDB Planning Guideis to help you do this.

However, even with the best planning, unexpected conditions can result in resource shortages or overuse.
In these situations, you want the database to protect itself against all-out failure.

Y ou can do this by setting resource limits in the VoltDB deployment file. System resource limits are set
withinthe<syst enset t i ngs> and <r esour cenoni t or > elements. For example:

<systensettings>
<resour cenoni tor frequency="30">
<nmenorylimt size="70% alert="60%/>
<di sklimt>
<f eat ure name="snapshots" size="75% alert="60%/>
<f eature name="droverfl ow' size="60%/>
</disklimt>
</ resour cenoni t or >
</ systensettings>

The deployment file lets you set limits on two types of system resources.
* Memory Usage
» Disk Usage

For each resource type you can set the maximum size and, optionally, the level at which an dlert is sent if
SNMPisenabled. In all cases, the allowable amount of the resource to be used can be specified aseither a
valuerepresenting anumber of gigabytes or apercentage of thetotal available. If thelimit set by theal ert
attribute is exceeded and SNMP is enabled, an SNMP alert is sent. If the limit set by thesi ze attributeis
exceeded, thedatabase will be"paused", putting it into read-only modeto avoid using any further resources
or possibly failing when the resource becomes exhausted. When the database pauses, an error message is
written to the log file (and the console) reporting the event. This allows you as the system administrator
to correct the situation by reducing memory usage or del eting unnecessary files. Once sufficient resources
are freed up, you can return the database to normal operation using the voltadmin resume command.

32

http://docs.voltactivedata.com/PlanningGuide/

Monitoring VoltDB Databases

5.2.1.

The resource limits are checked every 60 seconds by default. However, you can adjust how frequently
they are checked — to accommaodate the relative stability or volatility of your resource usage — using
the f r equency attribute of the <r esour cenoni t or > tag. In the preceding example, the frequency
has been reduced to 30 seconds.

Of course, the ideal is to catch excessive resource use before the database is forced into read-only mode.
Use of SNMP and system monitors such as Nagios and New Relic to generate alerts at limits lower than
the VoltDB resource monitor are strongly recommended. And you can integrate other VoltDB monitoring
with these monitoring utilities as described in Section 5.3, “Integrating VoltDB with Prometheus’. But
the resource monitor si ze limit is provided as a last resort to ensure the database does not completely
exhaust resources and crash before the issue can be addressed.

The following sections describe how to set limits for the individual resource types.

Monitoring Memory Usage

Y ou specify amemory limit in the deployment file using the <menor yl i m t > element and specifying
the maximum allowable resident set size (RSS) for the VoltDB process in the si ze attribute. You can
expressthelimit asafixed number of gigabytesor asapercentage of total available memory. Useapercent
sign to specify a percentage.

In addition to pausing the database, you can specify that it runs a full compaction of table data to recover
whatever unused space is available due to fragmentation. Thisis the equivalent of running the voltadmin
defrag --full command manually. By setting the conpact attribute to true, when the memory limit is
exceeded, the database will pause, defragment all table data on the affected node, and if enough spaceis
recovered to bring memory usage down under the limit, the database will automatically resume normal
operation. Seethe chapter on "Understanding Memory Usage" in the Volt Performance and Customization
guide for more information about memory compaction.

For example, the following setting will cause the VoltDB database to go into read-only mode and perform
afull compaction if the RSS size exceeds 10 gigabytes on any of the cluster nodes.

<systensettings>
<r esour cenoni tor >
<menorylimt size="10" conpact="true"/>
</ resour cenoni t or >
</ systensettings>

Whereasthe following example setsthe limit at 70% of total available memory but does not automatically
compact memory used for table data.

<systensettings>
<r esour cenoni tor >
<nmenorylimt size="70%/>
</ resour cenoni t or >
</ systensettings>

You can aso set atrigger value for SNMP aerts — assuming SNMP is enabled — using the al ert
attribute. For instance, the following exampl e sets the SNMP trigger value to 60%.

<systemnsettings>
<resour cenoni t or >
<nenorylimt size="70% alert="60%/>
</ resour cenoni t or >
</ systensettings>

33

https://docs.voltactivedata.com/PerfGuide/ChapMemoryUsage.php
https://docs.voltactivedata.com/PerfGuide/

Monitoring VoltDB Databases

5.2.2.

If you do not specify alimit in the deployment file, VoltDB automatically sets a maximum size limit of
80% and an SNMP aert level of 70% by default.

Monitoring Disk Usage

You specify disk usage limits in the deployment file using the <di skl i m t > element. Within the
<di skl i m t > element, you usethe <f eat ur e> element to identify the limit for a device based on the
VolItDB feature that utilizesit. For example, to set alimit on the amount of space used on the device where
automatic snapshots are stored, you identify the feature as "snapshots' and specify the limit as a number
of gigabytes or as a percentage of total space on the disk. The following deployment file entry setsthe disk
limit for snapshots at 200 gigabytes and the limit for command logs at 70% of the total available space:

<systensettings>
<r esour cenoni t or >
<di sklimt>
<f eat ure name="snapshots" size="200"/>
<f eat ure nanme="commandl| og" size="70% />
</disklimt>
</ resour cenoni t or >
</ systensettings>

You can also set atrigger value for SNMP alerts — assuming SNMP is enabled — using the al ert at-
tribute. For instance, thefollowing example setsthe SNM P trigger valueto 150 gigabytesfor the snapshots
disk and 60% for the commandlog disk.

<systemnsettings>
<r esour cenoni t or >
<di sklimt>
<f eat ure name="snapshots" size="200" al ert="150"/>
<f eat ure nanme="commuandl og" size="70% alert="60%/>
</disklimt>
</ resour cenoni t or >
</ systensettings>

Note that you specify the device based on the feature that usesit. However, the limits appliesto all dataon
that device, not just the space used by that feature. If you specify limits for two features that use the same
device, thelower of thetwo limitswill be applied. So, in the previous example, if snapshots and command
logs both use a device with 250 gigabytes of total space, the database will be set to read-only mode if the
total amount of used space exceeds the command logs limit of 70%, or 175 gigabytes.

Itisalsoimportant to note that there are no default resourcelimits or alertsfor disks. If you do not explicitly
specify adisk limit, thereisno protection against running out of disk space. Similarly, unlessyou explicitly
set an SNMP dert level, no aertswill be sent for the associated device.

Y ou can identify disk limits and alerts for any of the following VoltDB features, using the specified key-
words:

» Automated snapshots (snapshots)

» Command logs (commandlog)

» Command log snapshots (commandl ogsnapshot)
+ Database replication overflow (droverflow)

 Export overflow (exportoverflow)

Monitoring VoltDB Databases

5.3. Integrating VoltDB with Prometheus

If you use Prometheusto monitor your systemsand services, you can enabl e the coll ection and reporting of
Prometheus-compliant metrics on the database cluster. Y ou enable Prometheus metricsin the configuration
file when initializing the database by adding the <met r i cs> element to the VVolt configuration file:

<depl oynent >
<cl uster kfactor="1"/>
<nmetrics enabl ed="true"/>
</ depl oyment >

Next, add the Volt cluster nodes as targets in the Prometheus configuration. Since each node reports its
own data, be sure to include all of the nodes as scraping targets. For example:

gl obal :
scrape_i nterval: 15s
eval uation_interval : 15s

scrape_configs:
- job_name: volt
static_configs:
- targets: ['voltsvr1l:11781',"'voltsvr2:11781"',"'voltsvr3:11781"]

Once metrics are enabled, each Volt server reports server-specific information through the Prometheus
endpoint (/metrics) on the metrics port, which defaultsto 11781. Y ou can specify an alternate port and/or
network interface using the --metrics quaifier on the voltdb start command.

The Prometheus data format is a readily accessible text format and can be used equally well by other
reporting applications. Applications can either send HT TP requeststo the metricsendpoint like Prometheus
or use the @M etrics system procedure, which returns the same data formatted in a sequence of VoltTable
structures. Appendix B, Volt Active Data Metrics lists the metrics values reported VoltDB.

Once Prometheusis scraping the Volt metrics, you can use tools such as Grafanato combine, analyze, and
present the information in meaningful ways. There are example Grafana dashboards in the Volt Github
repository (https://github.com/V oltDB/volt-monitoring) demonstrating some of the visualizationsthat are
possible.

35

https://github.com/VoltDB/volt-monitoring

Chapter 6. Logging and Analyzing Activity
in a VoltDB Database

VolItDB uses Log4J as an open source logging service to provide access to information about database
events. In actuality, the library used is Reload4j, which is a drop-in replacement for Log4J that corrects
known security vulnerabilities in the original library while maintaining all of the same package names.
Consequently, the commands, examples, and following documentation continue to refer to the service
itself as"Log4J".

By default, when using the VVoltDB shell commands, the console display islimited to warnings, errors, and
messages concerning the status of the current process. A more complete listing of messages (of severity
INFO and above) iswritten to log filesin the subfolder / | og, relative to the database root directory.

The advantages of using Log4J are:
» Logging is compiled into the code and can be enabled and configured at run-time.
» Log4J provides flexibility in configuring what events are logged, where, and the format of the output.

» By using an open source logging service with standardized output, there are a number of different ap-
plications, such as Chainsaw, available for filtering and presenting the results.

Logging isimportant because it can help you understand the performance characteristics of your applica-
tion, check for abnormal events, and ensure that the application is working as expected.

Of course, any additional processing and 1/0 will have an incremental impact on the overall database
performance. To counteract any negative impact, Log4J gives you the ability to customize the logging to
support only those events and serversyou are interested in. In addition, when logging is not enabled, there
is no impact to VoltDB performance. With VoltDB, you can even change the logging profile on the fly
without having to shutdown or restart the database.

The following sections describe how to enable and customize logging of VoltDB using Log4J. This chap-
ter is not intended as a tutorial or complete documentation of the Log4J logging service. For general in-
formation about Log4J, see the Log4J web site at http://wiki.apache.org/logging-logdj/.

6.1. Introduction to Logging

Logging is the process of writing information about application events to a log file, console, or other
destination. Log4J uses XML files to define the configuration of logging, including three key attributes:

» Where events are logged. The destinations are referred to as appenders in Log4J (because events are
appended to the destinations in sequential order).

» What events are logged. VoltDB defines named classes of events (referred to as loggers) that can be
enabled as well as the severity of the events to report.

» How the logging messages are formatted (known as the layout),

6.2. Creating the Logging Configuration File

VoltDB ships with a default Log4J configuration file, voltdb/log4j.xml, in the installation directory. The
VoltDB shell commands use this file to configure logging and it is recommended for new application

36

http://wiki.apache.org/logging-log4j/

Logging and Analyzing Ac-
tivity inaVoltDB Database

development. This default Log4J file lists all of the VoltDB-specific logging categories and can be used
as atemplate for any modifications you wish to make. Or you can create a new file from scratch.

Thefollowing is an example of a Log4J configuration file:

<?xm version="1.0" encodi ng="UTF-8" 7>
<! DOCTYPE | 0og4j : configurati on SYSTEM "Il og4j .dtd">

<l og4j:configuration xmns:log4j="http://]jakarta.apache.org/log4j/">

<appender nane="Async" cl ass="org.apache. | og4j.AsyncAppender" >
<par am nane="Bl ocki ng" val ue="true" />
<appender-ref ref="Console" />
<appender-ref ref="File" />

</ appender >

<appender nane="Consol e" cl ass="org. apache. | og4j. Consol eAppender" >
<param nane="Target" val ue="Systemout" />
<l ayout cl ass="org.apache. | og4j.TTCCLayout" />

</ appender >

<appender nane="File" class="org. apache. | og4j. Fil eAppender" >
<param nane="Fi |l e" value="/tnp/voltdb.log" />
<par am nane="Append" val ue="true" />
<l ayout cl ass="org.apache. | og4j.TTCCLayout" />

</ appender >

<l ogger nanme="AUTH'>

<l-- Print all VoltDB authentication nessages -->
<l evel value="trace" />

</l ogger >

<r oot >

<priority val ue="debug" />
<appender-ref ref="Async" />
</ root >
</l og4j:configuration>

The preceding configuration file defines three destinations, or appenders, called Async, Console, and File.
The appenders define the type of output (whether to the console, to afile, or somewhere else), the location
(such asthefile name), aswell asthe layout of the messages sent to the appender. See the log4J documen-
tation for more information about layout.

Note that the appender Async is a superset of Console and File. So any messages sent to Async are routed
to both Console and File. This is important because for logging of VoltDB, you should always use an
asynchronous appender asthe primary target to avoid the processing of thelogging messagesfrom blocking
other execution threads.

More importantly, you should not use any appenders that are susceptible to extended delays, blockages,
or slow throughput, This is particularly true for network-based appenders such as SocketAppender and
third-party log infrastructuresincluding logstash and JIMS. If thereisany prolonged delay in writing to the
appenders, messages can end up being held in memory causing performance degradation and, ultimately,
generating out of memory errors or forcing the database into read-only mode.

Theconfigurationfilealso definesaroot class. Theroot classisthedefault logger and all loggersinherit the
root definition. So, in this case, any messages of severity "debug" or higher are sent to the Async appender.

37

Logging and Analyzing Ac-
tivity inaVoltDB Database

Note

This exampleis for demonstration purposes only. Normally, do not set the severity to either "de-
bug" or "trace" for production systems unlessinstructed to by VoltDB Support. Trace and debug
logging generate asignificant number of messages that can negatively impact performance. They
contain internal information for debugging purposes and provide no additional value otherwise.

Finally, the configuration file defines alogger specifically for VVoltDB authentication messages. Thelogger
identifies the class of messages to log (in this case "TAUTH"), as well as the severity ("trace"). VoltDB
defines several different classes of messages you can log. Table 6.1, “VoltDB Components for Logging”
lists the loggers you can invoke.

Table6.1. VoltDB Componentsfor Logging

L ogger Description
ADHOC Execution of ad hoc queries
AUTH Authentication and authorization of clients
COMPILER Interpretation of SQL in ad hoc queries
CONSOLE Informational messages intended for display on the
console
DR Database replication sending data
DRAGENT Database replication receiving data
EXPORT Exporting data
GC Java garbage collection
HOST Host specific events
IMPORT Importing data
ELASTIC Elastic addition of nodes to the cluster
LOADER Bulk loading of data (including as part of import)
NETWORK Network eventsrelated to the database cluster
REJOIN Node recovery and rejoin
SNAPSHOT Snapshot activity
SQL Execution of SQL statements
™ Transaction management
TOPICS Streaming data in topics

6.3. Changing the Timezone of Log Messages

By default all VoltDB logging isreported in GMT (Greenwich Mean Time). If you want the logging to be
reported using a different timezone, you can use extensions to the Log4J service to achieve this.

To change the timezone of log messages:

1. Download the extras kit from the Apache Extras for Apache Log4J website, http://logging.a
pache.org/logdj/extras/.

2. Unpack the kit and placetheincluded JARfileinthe/ | i b/ ext ensi on folder of the VoltDB instal-
lation directory.

38

http://logging.apache.org/log4j/extras/
http://logging.apache.org/log4j/extras/

Logging and Analyzing Ac-
tivity inaVoltDB Database

3. Update your Log4J configuration file to enable the Log4J extras and specify the desired timezone for
logging for each appender.

Y ou enable the Log4J extras by specifying EnhancedPat t er nLayout asthe layout class for the ap-
penders you wish to change. You then identify the desired timezone as part of the layout pattern. For
example, the following XML fragment changes the timezone of messages written to the file appender to
GMT minus four hours:

<appender nane="file" class="org. apache. | og4j. Dail yMaxRol I i ngFi | eAppender " >
<param nane="file" val ue="log/volt.log"/>
<par am nane="Dat ePattern" val ue=""'."'yyyy- Mt dd" />
<l ayout cl ass="org. apache. | og4j. EnhancedPatternLayout">
<par am nane="Conver si onPatt ern”
val ue="%l{1 SOC8601} { GVIT- 4} %5p [%] %: %Pm"/>
</l ayout >
</ appender >

You can use any valid | SO-8601 timezone specification, including named timezones, such as EST.

6.4. Managing VoltDB Log Files

VoltDB uses arolling log appender that “rolls" the files, periodically saving the old log files and creating
anew file for subsequent messages. By default, the log files arerolled daily.

VoltDB also automatically "prunes’ older log filesto help conserve disk space on the server. The appender
specifies the maximum number of files to keep, keeping 30 by default.

Y ou can customize your log configuration to specify a different rolling period and/or a different number
of files to keep. For example, the following Log4J configuration rolls the log files twice a day and keeps
14 files, or aweek's worth of logs:

<l-- file appender captures all |oggers nessages. -->
<appender name="file" class="org. apache. | og4j. Dail yMaxRol | i ngFi | eAppender ">
<param nane="file" val ue="log/volt.log"/>
<par am nanme="MaxBackupl ndex" val ue="14"/>
<par am nane="Dat ePattern" val ue="'."'yyyy-MMdd-a" />
<l ayout cl ass="org. apache.| og4j.PatternLayout">
<par am nane="Conver si onPatt ern" val ue=" 9%l %5p [%] %: Y%dm"/>
</l ayout >
</ appender >

6.5. Enabling Your Custom Log Configuration
When Starting VoltDB

Once you create your Log4J configuration file, you specify which configuration file to use by defining the
variable LOG4J CONFIG_PATH before starting the VoltDB database. For example:

$ LO®4J_CONFI G_PATH=" $HOVE/ MyLog4j Confi g. xn "
$ voltdb start -H svri,svr2

6.6. Changing the Configuration on the Fly

Once the database has started, you can still start or reconfigure the logging without having to stop and
restart the database. By calling the system procedure @Updatel ogging you can pass the configuration

39

Logging and Analyzing Ac-
tivity inaVoltDB Database

XML to the servers as a text string. For any appenders defined in the new updated configuration, the
existing appender is removed and the new configuration applied. Other existing appenders (those not
mentioned in the updated configuration XML) remain unchanged.

40

Chapter 7. What to Do When Problems
Arise

Aswith any high performance application, eventsrelated to the database process, the operating system, and
the network environment can impact how well or poorly VoltDB performs. When faced with performance
issues, or outright failures, the most important task is identifying and resolving the root cause. VoltDB
and the server produce a number of log files and other artifacts that can help you in the diagnosis. This
chapter explains:

* Whereto look for log files and other information about the VVoltDB server process
» What to do when recovery fails

» How to collect the log files and other system information when reporting a problem to VoltDB

7.1. Where to Look for Answers

The first place to look when an unrecognized problem occurs with your VoltDB database is the console
where the database process was started. VoltDB echoes key messages and errorsto the console. For exam-
ple, if aserver becomes unreachable, the other serversin the cluster will report an error indicating which
node has failed. Assuming the cluster is K-safe, the remaining nodes will then re-establish a quorum and
continue, logging this event to the console as well.

However, not all messages are echoed on the consol el A more complete record of errors, warnings, and
informational messagesiswritten to alogfile, | og/ vol t . | og, inside the voltdbroot directory. So, for
example, if you start the database using the command voltdb start --dir=~/db, the log file is ~/ db/
vol tdbroot/1 og/volt.|og.) Thevol t. | og file can be extremely helpful for identifying unex-
pected but non-fatal events that occurred earlier and may identify the cause of the current issue.

If VoltDB encounters afatal error and exits, shutting down the database process, it also attempts to write
out acrash fileinthe current working directory. The crash file name hasthe prefix "voltdb_crash™ followed
by a timestamp identifying when the file is created. Again, this file can be useful in diagnosing exactly
what caused the crash, since it includes the last error message, a brief profile of the server and a dump of
the Java threads running in the server process before it crashed.

To summarize, when looking for information to help analyze system problems, three placesto look are;
1. The console where the server process was started.

2. Thelogfileinl og/ vol t. | og

3. Thecrashfilenamedvol t db_crash{ti nest anp}. t xt intheserver processsworking directory

7.2. Handling Errors When Restoring a Database

After determining what caused the problem, the next step is often to get the database up and running again
as soon as possible. When using snapshots or command logs, thisis done using the voltdb start command
described in Section 3.6, “Restarting the Database”. However, in unusual cases, the restart itself may fail.

INote that you can change which messages are echoed to the console and which are logged by modifying the Log4j configuration file. See the
chapter on logging in the Using VoltDB manual for details.

41

https://docs.voltactivedata.com/UsingVoltDB/ChapLogging.php
https://docs.voltactivedata.com/UsingVoltDB/

What to Do When Problems Arise

7.2.1.

There are several situationswhere an attempt to recover a database — either from a snapshot or command
logs— may fail. For example, restoring data from a snapshot to a schemawhere a unique index has been
added can result in aconstraint violation. In this case, the restore operation continues but any records that
caused a constraint violation are saved to aCSV file.

Or when recovering command logs, the log may contain a transaction that originally succeeded but fails
and raises an exception during playback. Inthissituation, VoltDB issuesafatal error and stopsthe database
to avoid corrupting the contents.

Although protecting you from an incomplete recovery is the appropriate default behavior, there may be
cases where you want to recover as much data as possible, with full knowledge that the resulting data
set does not match the original. VoltDB provides two processes for performing partial recoveriesin case
of failure:

* Logging constraint violations during snapshot restore
 Performing command log recovery in safe mode

The following sections describe these procedures.
Warning

Itiscritically important to recognize that the techniques described in this section do not produce
acomplete copy of the original database or resolve the underlying problem that caused theinitial
recovery to fail. These techniques should never be attempted without careful consideration and
full knowledge and acceptance of the risks associated with partial data recovery.

Logging Constraint Violations

Thereare severa situationsthat can cause asnapshot restoreto fail because of constraint violations. Rather
than have the operation fail asawhole, VoltDB continues with the restore process and logs the constraint
violations to afile instead. Thisway you can review the tuples that were excluded and decide whether to
ignore or replace their content manually after the restore compl etes.

By default, the constraint violations are logged to one or more files (one per table) in the same directory
as the snapshot files. In a cluster, each node logs the violations that occur on that node. If you know there
are going to constraint violations and want to save the logged constraints to a different location, you can
use a special JSON form of the @SnapshotRestore system procedure. You specify the path of the log
filesin aJSON attribute, dupl i cat ePat hs. For example, the following commands perform a restore
of snapshot filesin the directory / var / vol t db/ snapshot s/ with the unique identifier myDB. The
restore operation logs constraint violations to the directory / var / vol t db/ | ogs.

$ sqlcnd

1> exec @napshot Restore '{ "path":"/var/vol tdb/snapshots/",
"nonce": "nmyDB",
"duplicatesPath":"/var/vol tdb/logs/" }';

2> exit

Constraint violations are logged as needed, one file per table, to CSV files with the name { t abl e} -
dupl i cat es-{ti nestanp}.csv.

7.2.2. Safe Mode Recovery

On rare occasions, recovering a database from command logs may fail. This can happen, for example, if
a stored procedure introduces non-deterministic content. If a recovery fails, the specific error is known.

42

What to Do When Problems Arise

However, there is no way for VoltDB to know the root cause or how to continue. Therefore, the recovery
fails and the database stops.

When this happens, VoltDB logs the last successful transaction before the recovery failed. Y ou can then
ask VoltDB to restart up to but not including the failing transaction by performing arecovery in safe mode.

Y ou request safe mode by adding the --safemode switch to the voltdb start command, like so:
$ voltdb start --safenode --dir=~/nydb

When VoltDB recovers from command logs in safe mode it enables two distinct behaviors:

» Snapshots are restored, logging any constraint violations

» Command logs are replayed up to the last valid transaction

This means that if you are recovering using an automated snapshot (rather than command logs), you can
recover somedataevenif thereare constraint violations during the snapshot restore. Also, when recovering
from command logs, VoltDB will ignore constraint violations in the command log snapshot and replay all
transactions that succeeded in the previous attempt.

It isimportant to note that to successfully use safe mode with command logs, you must perform aregular
recovery operation first — and haveit fail — so that VoltDB can determinethelast valid transaction. Also,
if the snapshot and the command logs contain both constraint violations and failed transactions, you may
need to run recovery in safe mode twice to recover as much data as possible. Once to compl ete restoration
of the snapshot, then asecond time to recover the command logs up to a point before the failed transaction.

7.3. Collecting the Log Files

VoltDB includesadutility that collectsall of the pertinent logsfor agiven server. Thelog collector retrieves
the necessary system and process files from the server and saves them in asingle compressed archivefile.
For customers requesting support from VoltDB, your support contact will often provide instructions on
how and when to use the log collector and where to submit the files.

Note that the database does not need to be running to use the log collector. It can find and collect the log
files based solely on the location of the VoltDB root directory where the database was run.

To collect the log files, use the voltdb collect command with the same directory specification you would
useto initialize or start the database:

$ vol tdb collect --prefix=nylogs -D /honme/db

When you run the command you must specify the location of the root directory for the database with the
- -di r or- Dflag. Otherwise, the default isthe current working directory. The archivefile that the collect
command generates is also created in your current working directory unless you use the - - out put flag
to specify an aternate location and filename.

The collect command has optional arguments that let you control what data is collected and the name of
theresulting archivefile. In the preceding examplethe- - pr ef i x flag specifiesthe prefix for the archive
file name. The - - ski p- heap- dunp flag excludes the heap dump, which can be significantly larger
than any other collection artifact, from the resulting archive. For example:

$ voltdb collect --dir=/home/db \
--prefix=nyl ogs \
- -ski p- heap- dunp

43

What to Do When Problems Arise

Note that the voltdb collect command collectslog files for the current system only. To collect logs for all
serversin acluster, you will need to issue the voltdb collect command locally on each server separately.
See the voltdb collect documentation in the Using VoltDB manual for details.

https://docs.voltactivedata.com/UsingVoltDB/clivoltdb.php
https://docs.voltactivedata.com/UsingVoltDB/

Appendix A. Server Configuration Options

There are a number of system, process, and application options that can impact the performance or be-
havior of your VoltDB database. Y ou control these options when initializing and/or starting VoltDB. The
configuration options fall into five main categories:

 Server configuration

* Process configuration

 Database configuration

* Path configuration

» Network ports used by the database cluster

This appendix describes each of the configuration options, how to set them, and their impact on the result-
ing VoltDB database and application environment.

A.1. Server Configuration Options

A.l1.1.

VoltDB provides mechanismsfor setting anumber of options. However, it also relies on the base operating
system and network infrastructure for many of its core functions. There are operating system configuration
options that you can adjust to to maximize your performance and reliability, including:

* Network configuration

e Time configuration

Network Configuration (DNS)

VoltDB creates a network mesh among the database cluster nodes. To do that, all nodes must be able to
resolve the |P address and hostnames of the other server nodes. Make sure al nodes of the cluster have
valid DNS entries or entriesin the local hostsfiles.

For serversthat have two or more network interfaces — and consequently two or more | P addresses — it
is possible to assign different functions to each interface. VoltDB defines two sets of ports:

» External ports, including the client and admin ports. These are the ports used by external applications
to connect to and communicate with the database.

* Internal ports, including all other ports. These are the ports used by the database nodes to communicate
among themselves. These include the internal port, the zookeeper port, and so on. (See Section A.5,
“Network Ports” for a complete listing of ports.)

Y ou can specify which network interface the server expects to use for each set of ports by specifying the
internal and external interface when starting the database. For example:

$ voltdb start --dir=~/nydb \
--externalinterface=10.11.169. 10 \
--internalinterface=10.12.171. 14

Note that the default setting for the internal and external interface can be overridden for a specific port by
including the interface and a colon before the port number when specifying a port on the command line.
See Section A.5, “Network Ports’ for details on setting specific ports.

45

Server Configuration Options

A.1.2. Time Configuration

Keeping VoltDB cluster nodesin close synchronization isimportant for the ongoing performance of your
database. At aminimum, use of atime service such asNTP or chrony to synchronizetime acrossthe cluster
isrecommended. If the time difference between nodesistoo large (greater than 200 milliseconds) VoltDB
refuses to start. It is also important to avoid having nodes adjust time backwards, or VoltDB will pause
while it waits for time to "catch up" to its previous setting.

A.2. Process Configuration Options

A.21

A.2.2

In addition to system settings, there are configuration options pertaining to the VoltDB server process
itself that can impact performance. Runtime configuration options are set as command line options when
starting the VoltDB server process.

The key process configuration for VoltDB is the Java maximum heap size. It is aso possible to specify
which garbage collector to use and to pass other arguments to the Java Virtual Machine directly.

Maximum Heap Size (VOLTDB_HEAPMAX)

Theheap sizeisaparameter associated with the Javaruntime environment. Certain portions of the VoltDB
server software use the Java heap. In particular, the part of the server that receives and responds to stored
procedure requests uses the Java heap.

Depending upon how many transactions your application executes asecond, you may need additional heap
space. The higher the throughput, the larger the maximum heap needed to avoid running out of memory.

In general, a maximum heap size of two gigabytes (2048) is recommended. For production use, a more
accurate measurement of the needed heap size can be calculated from the size of the schema (number of
tables), number of sites per host, and what durability and availability features are in use. See the VoltDB
Planning Guide for details.

It isimportant to remember that the heap sizeis not directly related to data storage capacity. Increasing the
maximum heap size does not provide additional data storage space. In fact, quite the opposite. Needlessly
increasing the maximum heap size reduces the amount of memory available for storage.

To set the maximum heap size when starting VoltDB, define the environment variable VOLTDB_HEAP-
MAX as aninteger value (in megabytes) before issuing the voltdb start command. For example, the fol-
lowing commands start VoltDB with a 3 gigabyte heap size (the default is 2 gigabytes):

$ export VOLTDB_HEAPMAX="3072"
$ voltdb start --dir=~/mydb -H serverA

Garbage Collector (VOLTDB_GC_OPTYS)

The Java garbage collector (GC) intermittently frees up unused memory. Different garbage collectors use
different algorithms for choosing when and how to do garbage collection. They also can have specific
variablesto further refine the garbage collection process.

Because Java processing can pause while the collector recycles memory, it can impact your application's
latency. By default, for Javaversions 8 and 11, VoltDB uses the following settings:

» ConcMarkSweepGC
* ClassUnloadingEnabled

46

http://docs.voltactivedata.com/PlanningGuide/
http://docs.voltactivedata.com/PlanningGuide/

Server Configuration Options

A.23.

* InitiatingOccupancyFraction=75

* InitiatingOccupancyOnly

» MaxAbortablePrecleanTime=120000
* ParallelRemarkEnabled

» ScavengeBeforeRemark

» WaitDuration=12000

For Java version 17, VoltDB uses the G1GC garbage collector with default settings. Y ou can choose an
alternate Java garbage collector by specifying your choice using the standard Java syntax in the VOLTD-
B_GC_OPTS environment variable before starting the database process. Y ou can include any other GC-
related options at the same time. For example;

$ export VOLTDB_GC_OPTS="- XX+useGLCC - XX+UseSt ri ngDedupl i cati on"
$ voltdb start --dir=~/mydb -H serverA

See the Java documentation for your current Java implementation for more information on garbage col-
lection and GC settings.

Warning

VoltDB does not validate the correctness of the arguments you specify using VOLTDB_GC_OP-
TS or their appropriateness for use with VoltDB. This feature is intended for experienced users
only and should be used with extreme caution.

Other Java Runtime Options (VOLTDB_OPTS)

VolItDB setsthe Java options— such as heap size and classpath — that directly impact VoltDB. There are
anumber of other configuration options available in the Java Virtual machine (JVM).

VoltDB provides a mechanism for passing arbitrary options directly to the VM. If the environment vari-
able VOLTDB_OPTS is defined, its value is passed as arguments to the Java command line. Note that
the contents of VOLTDB_OPTS are added to the Java command line on the current server only. In other
words, you must define VOLTDB_OPTS on each server to have it take effect for all servers.

Warning
VoltDB does not validate the correctness of the arguments you specify using VOLTDB_OPTS

or their appropriateness for use with VoltDB. Thisfeature isintended for experienced users only
and should be used with extreme caution.

A.3. Database Configuration Options

Runtime configuration options are set either as part of the configuration file or as command line options
when starting the VVoltDB server process. These database configuration options are only summarized here.
See the Using VoltDB manual for a more detailed explanation. The configuration options include:

* Sites per host

o K-Sefety

» Network partition detection

e Automated snapshots

47

http://docs.voltactivedata.com/UsingVoltDB/

Server Configuration Options

A3.1

A.3.2

A.3.3

A34

 Import and export

» Command logging

* Heartbeat

e Temptablesize

* Query timeout

* Flush Interval

* Long-running process warning
 Copying array parameters

» Transaction Prioritization

Clock skew

Sites per Host

Sites per host specifies the number of unique VoltDB "sites' that are created on each physical database
server. The section on "Determining How Many Sites per Host" in the Using VoltDB manual explains how
to choose avalue for sites per host.

You set the value of sites per host using the si t esper host attribute of the <cl ust er > tag in the
configuration file.

K-Safety

K-safety definesthelevel of availability or durability that the database can sustain, by replicating individual
partitions to multiple servers. K-safety is described in detail in the "Availability" chapter of the Using
VolItDB manual.

Y ou specify the level of K-safety that you want in the configuration file using the kf act or attribute of
the<cl ust er > tag.

Network Partition Detection

Network partition detection protects a VoltDB cluster in environments where the network is susceptible
to partial or intermittent failure among the server nodes. Partition detection is described in detail in the
"Availability" chapter of the Using VoltDB manual.

Use of network partition detection is strongly recommended for production systems and therefore is en-
abled by default. Y ou can enable or disable network partition detection in the configuration file using the
<partition-detection>tag.

Automated Snapshots

Automated snapshots provide ongoing protection against possible database failure (due to hardware or
software issues) by taking periodic snapshots of the database's contents. Automated snapshots are de-
scribed in detail in the section on " Scheduling Automated Snapshots” in the Using VoltDB manual.

48

https://docs.voltactivedata.com/UsingVoltDB/RunClusterConfig.php#RunCalculateSites
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/ChapKSafety.php
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/ChapKSafety.php
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/SaveSnapshotAuto.php
http://docs.voltactivedata.com/UsingVoltDB/

Server Configuration Options

A.3.5

A.3.6.

A.3.7.

Y ou enable and configure automated snapshots with the <snapshot > tag in the configuration file.

Snapshot activity involves both processing and disk 1/0 and so may have a noticeable impact on perfor-
mance (in terms of throughput and/or latency) on a very busy database. Y ou can control the priority of
snapshots activity using the <snapshot > tag withinthe<syst enset t i ngs> element of the deploy-
ment file. The snapshot priority is an integer value between 0 and 10, with O being the highest priority
and 10 being the lowest. The closer to 10, the longer snapshots take to complete, but the less they can
affect ongoing database work.

Warning

Setting snapshot priority directly as described is deprecated. If transaction prioritization is not
enabled, thismethod continuesto work for backwards compatibility. However, the recommended
method for setting snapshot priority is to enable transaction prioritization and set the snapshot
priority asachildof <pri ori ti es>, describedin Section A.3.13, “ Transaction Prioritization”.

Note that snapshot priority affectsall snapshot activity, including automated snapshots, manual snapshots,
and command logging snapshots.

Import and Export

The import and export functions let you automatically import and/or export selected data between your
VoltDB database and another database or distributed service at runtime. These features are described in
detail in the chapter on "Importing and Exporting Live Data" in the Using VoltDB manual .

Y ou enable and disable import and export using the <i npor t > and <expor t > tagsin the configuration
file.

Command Logging

The command logging function saves arecord of each transaction asit isinitiated. These logs can then be
"replayed"” to recreate the database's last known state in case of intentional or accidental shutdown. This
feature is described in detail in the chapter on "Command Logging and Recovery" in the Using VoltDB
manual.

To enable and disable command logging, use the <commuandl og> tag in the configuration file.

Heartbeat

The database servers use a "heartbeat" to verify the presence of other nodesin the cluster. If aheartbeat is
not received within a specified time limit, that server is assumed to be down and the cluster reconfigures
itself with the remaining nodes (assuming it is running with K-safety). Thistime limit is called the "heart-
beat timeout" and is specified as ainteger number of seconds.

For most situations, the default value for the timeout (90 seconds) is appropriate. However, if your cluster
is operating in an environment that is susceptible to network fluctuations or unpredictable latency, you
may want to increase the heartbeat timeout period.

Y ou can set an alternate heartbeat timeout using the <hear t beat > tag in the configuration file.

Note

Be aware that certain Linux system settings can override the VoltDB heartbeat messages. In
particular, lowering the setting for TCP_RETRIES2 may result in the system network timeout

49

http://docs.voltactivedata.com/UsingVoltDB/ChapExport.php
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/

Server Configuration Options

A.3.8.

A.3.9.

interrupting VoltDB's heartbeat mechanism and causing timeouts sooner than expected. Values
lower than 8 for TCP_RETRIES2 are not recommended.

Temp Table Size

VoltDB uses temporary tables to store intermediate table data while processing transactions. The default
temp table size is 100 megabytes. This setting is appropriate for most applications. However, extremely
complex queries or many updatesto large records could cause the temporary spaceto exceed the maximum
size, resulting in the transaction failing with an error.

In these unusual cases, you may need to increase the temp table size. Y ou can specify a different size for
thetemp tablesusing the <syst enset t i ngs> and <t enpt abl es> tagsin the configuration file and
specifying the maxsi ze attribute as awhole number of megabytes. For example:

<systensettings>
<t enpt abl es naxsi ze="200"/>
</ systensettings>

Note: since the temp tables are alocated as needed, increasing the maximum size can result in a Java out-
of-memory error at runtime if the system is memory-constrained. Modifying the temp table size should
be done with caution.

Query Timeout

In general, SQL queries execute extremely quickly. But it is possible, usualy by accident, to construct
a query that takes an unexpectedly long time to execute. This usually happens when the query is overly
complex or accesses extremely large tables without the benefit of an appropriate filter or index.

Y ou have the option to set aquery timeout limit cluster-wide, for an interactive session, or per transaction.
The query limit sets a limit on the length of time any read-only query (or batch of queriesin the case of
the voltExecuteSQL () method in a stored procedure) is allowed to run. Y ou specify the timeout limit in
milliseconds.

To set acluster-wide query limit you usethe<syst enset ti ngs>and<query ti neout="{lim
i t}">tagsintheconfigurationfile. To set alimit for an interactive session in the sglcmd utility, you use
the- - query-ti meout flagwheninvoking sglcmd. To specify alimit when invoking a specific stored
procedure, you use the callProcedureWithTimeout method in place of the call Procedure method.

The cluster-wide limit is set when you initialize the database root directory. By default, the system-wide
limit is 10 seconds. You can set a different timeout in the configuration file. Or It can be adjusted using
the voltadmin update command to modify the configuration settings while the database is running. If
security isenabled, any user can set alower query limit on aper session or per transaction basis. However,
the user must have the ADMIN privilege to set aquery limit longer than the cluster-wide setting.

The following example configuration file sets a cluster-wide query timeout value of three seconds:

<systensettings>
<query tineout="3000"/>
</ systensettings>

If any query or batch of queries exceeds the query timeout, the query isinterrupted and an error returned
to the calling application. Note that the limit is applied to read-only ad hoc queries or queries in read-
only stored procedures only. In a K-Safe cluster, queries on different copies of a partition may execute at
different rates. Consequently the same query may timeout in one copy of the partition but not in another.

50

Server Configuration Options

To avoid possible non-deterministic changes, VoltDB does not apply the time out limit to any queries or
procedures that may modify the database contents.

A.3.10. Flush Interval

VoltDB features that interact with external systems, including database replication (DR) and export, limit
their activity to balance I/O latency against potentially competing with ongoing database work. These
features trigger 1/0 based on two factors: batch size and a flush interval. In other words, data is written
when enough records are received to match the batch size or, if input is sporadic, datais written when the
flush interval is reached to avoid small amounts of data be held indefinitely.

There are two different settings that control how frequently data is flushed from the queues. Thereis a
feature-specific flush setting and a system-wide minimum value. Y ou can set different flush intervalswith
individual features. For example, you might set the DR flush interval to 500 milliseconds to reduce the
latency of database replication, while setting the export flush interval to 4 seconds if export latency is
not critical.

The system-wide minimum defines how often flush intervals are checked. So no buffers can be written
more frequently than the system-wide minimum. And since the minimum check event and the feature-spe-
cific intervals may not line up exactly, actual writes occur at some incremental time after the defined in-
terval. For example, if you set both the minimum and the DR interval at 500 milliseconds, the actual buffer
writes might occur anywhere between 500 and 1000ms apart.

Y ou set both the system-wide minimum and feature-specific intervals in the configuration file using the
<systemsetti ngs>and<fl ushi nterval >tags. You set the system-wide minimum in them n-

i mumattribute of the <f | ushi nt er val > tag and you set the feature-specific intervals using the <dr >
and <expor t > sub-elements. All values are specified in milliseconds. For example:

<systensettings>
<fl ushi nterval m ni mrum="500">
<export interval ="4000" />
<dr interval ="500" />
</ flushinterval >
</ systensettings>

The default system-wide minimum is one second (1000). The default flush intervals for DR and export
are one second (1000) and four seconds (4000), respectively.

A.3.11. Long-Running Process Warning

You can avoid runaway read-only queries using the query timeout setting. But you cannot stop read-
write procedures or other computational tasks, such as automated snapshots. These processes must run to
completion. However, you may want to be notified when a process is blocking an execution queue for an
extended period of time.

By default, VoltDB writes an informational message into the log file whenever atask runs for more than
ten seconds in any of the execution sites. These tasks may be stored procedures, procedure fragments (in
the case of multi-partitioned procedures), or operational tasks such as snapshot creation. Y ou can adjust
the limit when these messages are written by specifying avalue, in millisecondsinthel ogi nf o attribute
of the <pr ocedur e> tag in the configuration file. For example, the following configuration file entry
changes the threshold after which a message is written to the log to three seconds:

<systensettings>
<pr ocedure | ogi nf o="3000"/>

51

Server Configuration Options

</ systensettings>

Note that in a cluster, the informational message iswritten only to the log of the server that is hosting the
affected queue, not to all server logs.

A.3.12. Copying Array Parameters

You can send mutable datatypes, most notably arrays, as arguments to a VoltDB stored procedure. By
default, when this happens on a cluster with K=1 or more, VoltDB makes a copy of the array before using
it in atransactional statement, to ensure that the execution of the statement is deterministic. However,
copying the contents of the array consumes additional memory, which can add up if procedures are called
frequently with large arrays.

The alternative, if the procedures do not modify the contents of the array, isto tell VoltDB not to copy
array parameters on K-safe clusters by setting the copypar anet er s attribute of the <pr ocedur e>
element to "false":

<systensettings>
<procedure copyparaneters="fal se"/>
</ systensettings>

Warning

Only disable copying of parametersif you are sure the stored procedures do not modify any array
parameters. If a stored procedures does modify an array when arrays are not being copied, the
transaction can result in non-deterministic behavior, including possible data corruption and/or
crashing the database.

A.3.13. Transaction Prioritization

By default, all transactions are treated equally and executed in afirst in, first out basis. However, you can
enable transaction priorities where individua transactions (or groups of transactions) are given higher or
lower priority.

To usetransaction priorities, you must enabletheminthe configurationfileby adding<pri ori ti es>as
achild of the<syst enset t i ngs> element. If the <priorities> element is present, priorities are enabled.
Or you can explicitly enable or disable them. For example:

<systensettings>
<priorities enabled="true"/>
</ systensettings>

You can aso set a priority for database replication and/or snapshot transactions using corresponding
subelements and specifying a priority between 1 and 8 (1 being the highest priority, 8 being the lowest):

<systensettings>
<priorities enabled="true">
<dr priority="3"/>
<snapshot priority="6"/>
</ systensettings>

Y ou can adjust the effects of prioritization by setting the maxwai t attributeonthe<prioriti es>e€-
ement. Themaxwai t attribute specifies the maximum number of milliseconds atask remainsin apriority
gueue before it gets scheduled for execution regardless of its pioritization. This helps avoid high priority

52

Server Configuration Options

transactions essentially blocking lower priority tasks from getting scheduled. The default wait timeis 1000
milliseconds. Setting maxwai t to zero (0) means that prioritization is always in effect. The following
exampl e reduces the maximum wait time to half a second:

<systensettings>
<priorities enabled="true" maxwait="500" />
</ systensettings>

A.3.14. Clock Skew

Certain database operations (such asinitiating snapshots) depend on synchronizing the nodes of the cluster
based on their system clocks. If the clocks are too far apart, it delays the activities and interrupts normal
database operations. Which iswhy the database checks to make sure the clocks are within aminimal level
of variation (100 milliseconds) when it starts.

It isaso possible for clocks to "drift" over time. So the servers also check the clock skew periodically to
make sure they stay within the allowable range. Y ou can see the latest clock skew calculation using the
@Statistics system procedure with the CLOCK SKEW selector. By default, clock skew is checked every
hour. You can configure the interval between checks using the <cl ockskew> element under <sys-

t emset t i ngs> in the database configuration file, specifying the interval as an whole humber of min-
utes. For example, the following configuration sets the clock skew interval to every half hour:

<systensettings>
<cl ockskew i nterval ="30"/ >
</ systensettings>

The interval value can be any positive integer. If you set it to zero (0), clock skew will not be checked
once the system starts.

A.4. Path Configuration Options

A4.1l.

The running database uses anumber of disk | ocationsto storeinformation associated with runtime features,
such as export, network partition detection, and snapshots. Y ou can control which paths are used for these
disk-based activities. The path configuration options include:

» VoItDB root

 Snhapshots path

» Export overflow path

» Command log path

e Command log snapshots path

VoltDB Root

VoltDB defines a root directory for any disk-based activity which is required at runtime. This directory
also serves as aroot for al other path definitions that take the default or use arelative path specification.

If you do not specify alocation for theroot directory onthe command line, VoltDB usesthe current working
directory asadefault. Normally, you specify thelocation of theroot directory using the- - di r flag onthe
voltdb init and voltdb start commands. Theroot directory isthen the subdirectory vol t dbr oot within

53

Server Configuration Options

A4.2.

A4.3.

A4.A4.

AA4.5.

the specified location. (If the subfolder does not exist, VoltDB createsit.) See the section on "Configuring
Paths for Runtime Features' in the Using VoltDB manual for details.

Snapshots Path

The snapshots path specifies where automated and network partition snapshots are stored. The default
snapshots path isthe "snapshot s" subfolder of the VoltDB root directory. Y ou can specify an aternate
path for snapshots using the <snapshot s> child element of the <pat hs> tag in the configuration file.

Export Overflow Path

The export overflow path specifieswhere overflow datais stored for the export streams. The default export
overflow path isthe"export _over f | ow" subfolder of the VoltDB root directory. Y ou can specify an
alternate path using the <export over f | ow> child element of the <pat hs> tag in the configuration
file.

See the chapter on "Exporting Live Data" in the Using VoltDB manual for more information on export
overflow.

Command Log Path

The command log path specifies where the command logs are stored when command logging is enabl ed.
The default command log path isthe"comrand_I| og" subfolder of the VVoltDB root directory. However,
for production use, it is strongly recommended that the command logs be written to a dedicated device,
not the same device used for snapshotting or export overflow. Y ou can specify an alternate path using the
<conmandl| og> child element of the <pat hs> tag in the configuration file.

See the chapter on "Command Logging and Recovery" in the Using VoltDB manual for more information
on command logging.

Command Log Snapshots Path

The command log snapshots path specifies where the snapshots created by command logging are stored.
The default path isthe"comand_| og_snapshot " subfolder of the VoltDB root directory. (Note that
command log snapshots are stored separately from automated snapshots.) Y ou can specify an alternate
path using the <comandl ogsnapshot > child element of the <pat hs> tag in the configuration file.

See the chapter on "Command Logging and Recovery" in the Using VoltDB manual for more information
on command logging.

A.5. Network Ports

A VolItDB cluster opens network ports to manage its own operation and to provide services to client ap-
plications. The network ports are configurable as part of the command that starts the VoltDB database
process. You can specify just a port number or the network interface and the port number, separated by
acolon.

Table A.1, “VoltDB Port Usage” summarizes the ports that VoltDB uses and their default value. The
following sections describe each port in more detail and how to set them. Section A.5.9, “TLS/SSL En-
cryption (Including HTTPS)” explains how to enable TLS encryption for the web and the programming
interface ports, client and admin.

https://docs.voltactivedata.com/UsingVoltDB/RunClusterConfig.php#RunConfigPaths
https://docs.voltactivedata.com/UsingVoltDB/RunClusterConfig.php#RunConfigPaths
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/ChapExport.php
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/

Server Configuration Options

A.5.1.

Java

C++

A.5.2.

TableA.1. VoltDB Port Usage

Port Default Value
Client Port 21212

Admin Port 21211

Web Interface Port (httpd) 8080

Web Interface Port (with TSL/SSL enabled) 8443

Internal Server Port 3021

Metrics Port 11781
Replication Port 5555

Topics Port 9092
Zookeeper port 7181

Client Port

The client port isthe port VVoltDB client applications use to communicate with the database cluster nodes.
By default, VoltDB uses port 21212 asthe client port. Y ou can change the client port. However, al client
applications must then use the specified port when creating connections to the cluster nodes.

To specify adifferent client port on the command line, usethe- - cl i ent flag when starting the VoltDB
database. For example, the following command starts the database using port 12345 as the client port:

$ voltdb start --dir=~/mydb --client=12345

If you change the default client port, all client applications must also connect to the new port. The client
interfaces for Java and C++ accept an additional, optional argument to the createConnection method for
this purpose. The following examples demonstrate how to connect to an alternate port using the Java and
C++ client interfaces.

org.voltdb.client.Client voltclient;
voltclient = dientFactory.createdient();
vol tclient.createConnection("nyserver", 12345);

boost::shared ptr<voltdb::Client> client = voltdb::Cient::create();
client->createConnection("nyserver", 12345);

Admin Port

The admin port is similar to the client port, it accepts and processes requests from applications. However,
the admin port has the special feature that it continues to accept write requests when the database enters
admin, or read-only, mode.

By default, VoltDB uses port 21211 on the default external network interface as the admin port. You can
change the port assignment on the command line using the - - adm n flag. For example, the following
command sets the admin port to 2222:

55

Server Configuration Options

A.5.3.

A.54

A.5.5.

$ voltdb start --dir=~/nmydb --adm n=2222

Web Interface Port (http)

The web interface port is the port that VoltDB listens to for web-based connections. This port is used for
both the JISON programming interface and access to the Volt Management Center.

By default, VoItDB uses port 8080 on the default external network interface as the web port. You can
change the port assignment on the command line using the - - ht t p flag. For example, the following
command sets the port to 8888:

$ voltdb start --dir=~/nmydb --http=8888

If you change the port number, be sure to use the new port number when connecting to the cluster using
either the Volt Management Center or the JSON interface. For example, the following URL connects to
the JSON interface using the reassigned port 8888:

htt p://at hena. myconpany. com 8888/ api / 2. 0/ ?Pr ocedur e=@yst enl nf or mat i on
If you do not want to use the http port of the features it supports (the JSON APl and Volt Management
Center) you can disable the port in the configuration file. For example, for following configuration option
disables the default http port:

<htt pd enabl ed="fal se"/>

If the port is not enabled, neither the JISON interface nor the Management Center are available from the
cluster. By default, the web interface is enabled.

Another aspect of the http port, when it is enabled, is whether the port transmits using http or https. You
can enable TLS (Transport Layer Security) encryption on the web interface so that all interaction uses the
HTTPS protocol. When TLS is enabled, the default port changes to 8443. See Section A.5.9, “TLS/SSL
Encryption (Including HTTPS)” for information on enabling encryption in the configuration file.

Internal Server Port

A VoltDB cluster uses ports to communicate among the cluster nodes. This port isinternal to VoltDB and
should not be used by other applications.

By default, the internal server port is port 3021 for al nodesin tlhecl uster’. You can specify an aternate
portusingthe- - i nt er nal flagwhen starting the VoltDB process. For example, the following command
starts the VoltDB process using an internal port of 4000:

$ voltdb start --dir=~/nmydb --internal =4000

Metrics Port

When metrics are enabled, the database uses the metrics port to return statistical data about the state of
the database to calling applications, such as Prometheus. By default, the metrics port is 11781. You can
specify adifferent port using the - - met r i ¢s flag when starting the database server. For example:

$ voltdb start --dir=~/nydb --netri cs=9090

4n the special circumstance where multiple VoltDB processes are started for one database, al on the same server, the internal server port is
incremented from the initial value for each process.

56

Server Configuration Options

A.5.6.

A.5.7

A.5.8.

Replication Port

During database replication, producer databases (that is, the master database in passive DR and all clusters
in XDCR) use a dedicated port to share data to their consumers. By default, the replication port is port
5555. Y ou can use adifferent port by specifying adifferent port number on the voltdb command lineusing
the- -repl i cati on flag. For example, the following command changes the replication port:

$ voltdb start --dir=~/nmydb --replicati on=6666

Notethat if you set the replication port on the producer to something other than the default, you must notify
the consumers of this change. The replica or other XDCR clusters must specify the port along with the
network address or hostname in the sr ¢ attribute of the <connect i on> element when configuring the
DR relationship. For example, if the server nyc2 has changed its replication port to 3333, another cluster
in the XDCR relationship might have the following configuration:

<dr id="1" rol e="xdcr" >
<connection source="nycl, nyc2: 3333" />
</dr>

Finally, in some cloud environments, such as Kubernetes, remote clusters may not be able to access the
producer cluster by itsinternal network interface. Consumers can specify the location of the producer in
the DR configuration using a remapped |P address. But once they initialize contact with the producer,
the producer sends a list of 1P addresses to use for ongoing replication. By default, these are the internal
addresses the producer cluster knows about.

Y ou cantell the producer to advertise adifferent interface (and port) for this second phase by specifying the
aternate interface using the - - dr publ i ¢ argument in the voltdb start command. If you do not specify
aport onthe- - dr publ i ¢ argument, the internal replication port is used. For example:

$ voltdb start --drpublic=sone. external.addr

Topics Port

When topics are enabled, the database uses the topics port to send and receive data to consumers and pro-
ducers. By default, thetopics port isport 9092. Y ou can specify adifferent port using the- - t opi csport
flag when starting the database server. For example, the following command changes the topics port:

$ voltdb start --dir=~/nydb --topi csport=9900

In cases where the server's external interface is not directly accessible by outside services and you set up
the necessary port forwarding to an alternative public interface for those services to use, you can identify
that alternative port to the server using the - - t opi cspubl i ¢ flag. For example:

$ voltdb start --dir=~/nmydb --topi cspublic=nyexternal server: 9092

Zookeeper Port

VoltDB usesaversion of Apache Zookeeper to communicate among supplementary functionsthat require
coordination but are not directly tied to database transactions. Zookeeper provides reliable synchroniza-
tion for functions such as command logging without interfering with the database's own internal commu-
nications.

VoltDB usesanetwork port bound to thelocal interface (127.0.0.1) to interact with Zookeeper. By defaullt,
7181 is assigned as the Zookeeper port for VoltDB. You can specify a different port number using the

57

Server Configuration Options

A.5.9.

- - zookeeper flag when starting the VoltDB process. It is also possible to specify a different network
interface, like with other ports. However, accepting the default for the zookeeper network interface is
recommended where possible. For example:

$ voltdb start --dir=~/nydb --zookeeper=2288

TLS/SSL Encryption (Including HTTPS)

VoltDB letsyou enable Transport Layer Security (TLS) — the recommended upgrade from Secure Socket
Layer (SSL) encryption — for al of its externally-facing interfaces: the web port, client port, admin port,
and replication (DR) port. When you enable TLS, you automatically enable encryption for the web port.
Y ou can then optionally enable encryption for the external ports (client and admin) and/or the replication
port.

Toenable TL S encryption you need an appropriate certificate. How you configure TL S depends on whether
you create a local certificate or receive one from an authorized certificate provider, such as VeriSign,
GeoTrust and others. If you use acommercial certificate, you only need to identify the certificate asthe key
store. If you create your own, you must specify both the key store and the trust store. (See the section on
using TLS/SSL for security in the Using VoltDB manual for an example of creating your own certificate.)

You enable TLS encryption in the deployment file using the <ssl> element. Within <ssl> you specify the
location and password for the key store and, for locally generated certificates, the trust store in separate
elements like so:

<ssl >
<keyst ore pat h="/etc/ mydb/ keystore" password="tw ddl edee"/ >
<truststore path="/etc/ mydb/truststore" password="tw ddl eduni/>
</ssl >

When you enable the <ss> element in the configuration file, TLS encryption is enabled for the web port
and all access to the httpd port and JSON interface must use the HTTPS protocol. When you enable TLS,
the default web port changes from 8080 to 8443.

Y ou can explicitly enable or disable TLS encryption by including the enabl e attribute. (For example, if
you want to include the key store and trust store in the configuration but not turn on TLS during testing,
you can include enabl ed="f al se".) You can specify that the client and admin APl ports are also
TLSencrypted by adding the ext er nal attribute and setting ittot r ue. Similarly, you can enable TLS
encryption for the DR port by adding the dr attribute. For example, the following configuration sample,
explicitly enables TLSfor all externally-facing ports:

<ssl enabl ed="true" external ="true" dr="true">
<keyst ore pat h="/etc/ mydb/ keystore" password="tw ddl edee"/ >
<truststore path="/etc/ mydb/truststore" password="tw ddl eduni/>
</ssl >

Note that you cannot disable TLS encryption for the web port separately. TLS is always enabled for the
web port if you enable encryption for any ports.

58

https://docs.voltactivedata.com/UsingVoltDB/SecuritySSL.php
https://docs.voltactivedata.com/UsingVoltDB/

Appendix B. Volt Active Data Metrics

Volt Active Data provides metrics in Prometheus format that you can use to track and monitor database
activity and status. This appendix provides a list of al the metrics values available from Volt, including
adescription of their type and purpose. The metrics are grouped according to the particular aspect of the
product they report on, including:

 Database Tables and Indexes
 Transactions, Procedures, and the Planner
» Memory and CPU Usage

* Client Connections and 1/0

» High Availability and Durability

» Streaming Data

* User-Defined Tasks

» System and Cluster Status

B.1. Database Tables and Indexes

The following table describes the metrics available for monitoring the database content, such as tables
and indexes. This information can be used for determining the number, size, and distribution of tablesin
the database.

TableB.1. Tablesand Indexes

Metrics Type Description

voltdb_index_entry count_total Gauge The number of index entriesin the partition.
voltdb_index_memory_estimate Gauge The estimated amount of memory consumed by theindex entries.
bytes

voltdb_table allocated memory Gauge The tota size of memory allocated for storing inline data asso-
bytes ciated with this table in this partition. For streams, the amount

of memory in use to queue export data (both in memory and as
export overflow) prior to its being passed to the export target.

voltdb_table data memory_bytes Gauge Thetotal memory used for storing inline dataassociated with this
table in this partition.

voltdb_table string_data memory | Gauge Thetotal memory used for storing non-inline variable length da-

bytes ta(VARCHAR, VARBINARY, and GEOGRAPHY) associated
with this table in this partition.

voltdb_table tuple total Gauge The number of rows stored for this table in the current partition.
For streams, the cumulative total number of rows inserted into
the stream.

voltdb_ttl failed total Counter Total number of times TTL failed to be processed.

voltdb_ttl last execution_ Gauge The timestamp when the last round of TTL processing occurred.

timestamp_seconds

59

Volt Active Data Metrics

Metrics Type Description

voltdb_ttl_rows deleted total Counter The total number of rows expired and deleted by the TTL at-
tribute.

voltdb_ttl_rows remaining_total Gauge The number of expired rows not deleted during thelast TTL pro-

cessing dueto batch size limits. If TTL processing is keeping up
with the throughput, this value should tend towards zero.

B.2. Transactions, Procedures, and the Planner

Thefollowing tables describe the metrics avail able for measuring the volume, frequency, and performance
of transactions, procedures, and the planner used for precessing ad hoc queries.

Table B.2. Transactions and Procedures

Metrics Type Description

voltdb_idle time pauses seconds Histogram |The distribution of the amount of time the execution site had to
walit for anew task.

voltdb_initiator_procedure_aborted_ | Counter The number of times the procedure was aborted.

total

voltdb_initiator_procedure failed | Counter The number of times the procedure failed unexpectedly.

total

voltdb_initiator_procedure_invoked | Counter The number of times the stored procedure has been invoked by

total this connection on this host node.

voltdb_initiator_procedure invoked |Histogram |The distribution of length of time it took to execute the stored

time_seconds procedure.

voltdb_procedure_aborted_total Counter The number of times the procedure was aborted.

voltdb_procedure bad input_total Counter The total number of times this procedure was run with a wrong
set of arguments (may only happen for NT procedure).

voltdb_procedure failed total Counter The number of times the procedure failed unexpectedly.

voltdb_procedure forwarded total | Counter -

voltdb_procedure_invoked total Counter The total number of invocations of this procedure at this site.

voltdb_procedure_invoked time Histogram | The length of time it took to execute the stored procedure.

seconds

voltdb_procedure params_size bytes

Counter

The cumulative size of the parameters passed asinput to the pro-
cedure.

voltdb_procedure result_size bytes |Counter Thetotal size of the results returned by the procedure.

voltdb_procedure_sampled total Counter Number of invocations of procedures for which all measure-
ments (such as execution time) were captured.

voltdb_procedure_statement_failed | Counter The number of times this procedure statement failed unexpect-

total edly.

voltdb_procedure_statement_ Counter Thetotal number of invocations of this statement as part of given

invoked total procedure at this site.

voltdb_procedure_statement_ Histogram | The length of timeit took to execute the statement.

invoked time_seconds

60

Volt Active Data Metrics

Metrics Type Description

voltdb_procedure_statement_ Counter Thetotal size of the parameters passed as input to the statement.

params_size bytes

voltdb_procedure_statement_result_ | Counter Thetotal size (in bytes) of the results returned by the statement.

size bytes

voltdb_procedure_timeout_total Counter The number of times the procedure timed out.

Table B.3. Planner

Metrics Type Description

voltdb_planner_cachel_hits total Counter The number of queriesthat matched and reused aplaninthelevel
1 cache.

voltdb_planner_cachel level total |Gauge The number of query plansin thelevel 1 cache.

voltdb_planner_cache2_hits total Counter The number of queriesthat matched and reused aplaninthelevel
2 cache.

voltdb_planner_cache?_level total |Gauge The number of query plansin the level 2 cache. Gauge.

voltdb_planner_cache misses total | Counter The number of queries that had no match in the cache and had
to be planned from scratch.

voltdb_planner_failures total Counter The number of times planning for an ad hoc query failed.

voltdb_planner_plan_time_seconds |Histogram |The distribution of length of time (with nanoseconds accuracy)

it took to complete the planning of an ad hoc query.

B.3. Memory and CPU Usage

The following tables describe the metrics monitoring memory and CPU usage, including memory com-
paction triggered by Volt and garbage collection triggered by Java.

Table B.4. Memory, Compaction, and Garbage Collection

Metrics Type Description

voltdb_compaction_execution _ Histogram | The amount of time it took for compaction to complete.

seconds

voltdb_compaction_fragmented Gauge The current fragmentation percentage.

percent

voltdb_compaction_invoked total Counter Number of times compaction was performed.

voltdb_compaction_relocated total |Histogram |The number of tuples relocated during compaction.

voltdb_gc_count_total Counter The number of times garbage collection was performed. Tags:
» GC TYPE - (e.g. CMS, G1), example gc_type="G1 Young

Generation".
voltdb_gc_time_seconds Counter Cumulative run time of garbage collection. Tags:

* GC_TYPE - (e.g. CMS, G1), example gc_type="G1 Young
Generation".

voltdb_memory_indexmemory_bytes

Gauge

The amount of memory in use for storing database indexes.

voltdb_memory_javamaxheap_bytes

Gauge

The maximum heap size of the Java runtime environment.

61

Volt Active Data Metrics

count_total

Metrics Type Description
voltdb_memory_javaused bytes Gauge The amount of memory allocated by Javaand in use by VoltDB.
voltdb_memory_nio_total buffer |Gauge An estimate of the number of buffersin the NIO pooal.

voltdb_memory_nio_total_size bytes|Gauge An estimate of the total capacity of all the buffers in the NIO
pool.

voltdb_memory _nio_used bytes Gauge An estimate of the memory that the Javavirtual machineisusing
for the N1O pool which resides outside the regular Java heap.

voltdb_memory_physicalmemory_ | Gauge Thetotal size of physica memory on the server.

bytes

voltdb_memory_pooledmemory Gauge Thetotal size of memory allocated for tasks other than database

total records, indexes, and strings.

voltdb_memory_rss bytes Gauge The resident set size. That is, the total amount of memory allo-
cated to the VoltDB processes on the server.

voltdb_memory_stringmemory_bytes| Gauge The amount of memory in use for storing string, binary, and
geospatial datathat is not stored in-line in the database record.

voltdb_memory_tupleallocated bytes| Gauge The amount of memory allocated for the storage of database
records (including free space).

voltdb_memory_tuplecount_total Gauge The total number of database records in memory.

voltdb_memory_tupledata bytes Gauge The amount of memory in use for storing database records.

voltdb_memory_undo_log size Gauge -

bytes

voltdb_memory_undo_pool_size |Gauge The total size of memory allocated for the undo pool - memory

bytes used to store information needed to "undo" database changes if
atransaction needs to rollback.

TableB.5. CPU

Metrics Type Description

voltdb_cpu_load percent Gauge The percentage of CPU used by the database server process.

0-100.

B.4. Client Connections and I/0O

Thefollowing tables describe the metricsfor client connections and the /O between clientsand the cluster.

Table B.6. Connections

Metrics Type Description

voltdb_accepted connections total | Gauge The total number of client connections opened since the server
started, including connections that are now closed.

voltdb_client_connections_limit_ Gauge The maximum number of client connections alowed for the

total server.

voltdb_client_connections_open_ Gauge The number of client connections open on the server.

tota

62

Volt Active Data Metrics

Metrics Type Description
voltdb_dropped_connections total | Gauge The total number of connections that were rejected because the
connection limit had been reached.
TableB.7.1/0
Metrics Type Description
voltdb_io_message handled_total Counter The number of individual messages sent from the client to the
host.
voltdb_io_message written_total Counter The number of individual messages sent from the host to the
client.
voltdb_io_network_inbound_queue [Histogram | The distribution of the time tasks were waiting in the queue for
time_seconds the execution on the remote node, initiated by this connection.
voltdb_io_network _outstanding_ Gauge The number of bytes of data sent from the client pending on the
request_bytes bytes host.
voltdb_io_network _procedure Histogram | The distribution of the time taken to receive acknowledgment of
round_trip_time_seconds the execution of the stored procedures on the leader node, initi-
ated by this connection.
voltdb_io_network _read bytes Counter The number of bytes of data sent from the client to the host.
voltdb _io network read error_total |Counter Number of times request has failed.
voltdb_io_network_replication Histogram | The distribution of the time it took to receive acknowledgment
round_trip_time_seconds from the replica
voltdb_io_network_write_bytes Counter The number of bytes of data sent from the host to the client.
voltdb_io_outstanding_messages = |Gauge The number of messages on the host queue waiting to be re-
total trieved by the client.
voltdb_io_outstanding_response Gauge Number of message scheduled to be sent to the client.
messages total
voltdb_io tls decryption latency |Histogram |The distribution of decryption times.
seconds
voltdb_io tls encryption latency |Histogram |The distribution of encryption times.
seconds
voltdb_io_tls messages decrypted | Counter The number of messages decrypted with TLS.
total
voltdb_io_tls messages encrypted | Counter The number of messages encrypted with TLS.

tota

B.5. High Availability and Durability

The following tables describe the metrics related to Volt features that provide high availability and dura
bility for the database, including snapshots, command logging, and Active(N) cross datacenter replication.

Table B.8. Snapshots

Metrics

Type

Description

voltdb_snapshot_site summary_info

Metadata

Informational metric. One for every snapshot file in the recent
snapshots performed on the cluster. Tags:

63

Volt Active Data Metrics

Metrics

Type

Description

SNAPSHOT_NONCE - The unique identifier for the snap-
shot.

TABLE_NAME - The name of the database table whose data
the file contains.
SNAPSHOT_COLLECTION_ITERATIONS-.
SNAPSHOT_COLLECTION_TIME - The length of time (in
seconds) it took to complete the snapshot.

SNAPSHOT _WRITE_TIME - The length of time (in sec-
onds) it took to complete write stage of snapshot operation.

voltdb_snapshot_summary_info

Metadata

Informational metric. One for every snapshot file in the recent
snapshots performed on the cluster. Tags:

SNAPSHOT_NONCE - The unique identifier for the snap-
shot.

SNAPSHOT_TXN_ID - Thetransaction ID of the snapshot.
SNAPSHOT _TYPE - String value indicating how the snap-
shot was initiated. Possible values are: "Auto” - an automated
snapshot as defined by the configuration file; "Commandlog"”
- acommand log snapshot; "Manual" - amanual snapshot ini-
tiated by a user.

SNAPSHOT_PATH - The directory path where the snapshot
fileresides.

SNAPSHOT_START_TIME - Thetimestamp when the snap-
shot began (in milliseconds).

SNAPSHOT_END_TIME - The timestamp when the snap-
shot was completed (in milliseconds).

SNAPSHOT_BYTES WRITTEN - Tota number of bytes
written to the file so far.

SNAPSHOT_PROGRESS - For snapshots currently in
progress, the percent complete at the time of the call (0-100).
SNAPSHOT_RESULT - Valueindicating whether thewriting
of the snapshot file was successful ("Success") or not ("Fail-
ure").

voltdb_snapshot_table summary
info

Metadata

Informational metric. One for every snapshot file in the recent
snapshots performed on the cluster. Tags:

SNAPSHOT_NONCE - The unique identifier for the snap-
shot.

SNAPSHOT_TXN_ID - The transaction ID of the snapshot.
TABLE_NAME - The name of the database table whose data
the file contains.

TABLE_FILENAME - Thefile name.

SNAPSHOT _BYTES WRITTEN - The tota size, in bytes,
of thefile.

SNAPSHOT_RESULT - Valueindicating whether thewriting
of the snapshot file was successful ("Success") or not ("Fail-
ure").

Volt Active Data Metrics

Table B.9. Command L ogging

Metrics Type Description

voltdb_commandlog_fsync_interval_ | Gauge The average interval between the last 10 fsync system calls.

seconds

voltdb_commandliog_in_use Gauge The total number of segment files in use for command logging.

segment_count_total

voltdb_commandlog_outstanding | Gauge The size, in bytes, of pending command log data. For synchro-

bytes bytes nous logging, this value is always zero.

voltdb_commandlog_outstanding_ | Gauge Thenumber of transactionsthat have been initiated for which the

txns_total log has yet to be written to disk. For synchronous logging, this
value is always zero.

voltdb_commandiog_segment_ Gauge The number of segment files allocated, including currently un-

count_total

used segments.

Table B.10. Active(N) and XDCR

Metrics Type Description
voltdb_dr_conflicts count_total Counter The total number of conflicts that have been recorded for this
tablein this partition.
voltdb_dr_constraint_violation Counter The number of constraint violation conflicts that occurred.
count_total
voltdb_dr_consumer_info Metadata |Tags:
» DR_STATE- A text string indicating the current state of repli-
cation. Possible values are:
e UNINITIALIZED - DR has not begun yet or has stopped
* INITIALIZE - DR is enabled and the consumer is attempting
to contact the producer
* SYNC - DR has started and the consumer is synchronizing by
receiving snapshots of existing data from the master
» RECEIVE - DR is underway and the consumer is receiving
binary logs from the master
* DISABLE - DR has been canceled for some reason and the
consumer is stopping DR.
voltdb_dr_consumer_bytes Counter Total number of bytes this consumer received.
replicated bytes
voltdb_dr_consumer_partition_info |Metadata |Tags:

* IS COVERED - Boolean value indicating whether this parti-
tioniscurrently connected to and receiving datafrom amatch-
ing partition on the producer cluster.

¢ COVERING_HOST - The host name of the server in the pro-
ducer cluster that is providing DR data to this partition. If
IS COVERED is"false", thislabel is empty.

e IS PAUSED - Boolean indicating whether this partition is
paused. A partition "pauses’ when the schema of the DR ta-
bles on the producer change to no longer match the consumer
and all binary logs prior to the change have been processed.

e CONSUMER_LIMIT_TYPE - The type of limit on the DR
queue. The response is either BY TES or BUFFERS.

65

Volt Active Data Metrics

Metrics Type Description

 LAST APPLIED_DR_PROTOCOL - The current DR proto-
col version of binary logs being received and applied for this
partition.

voltdb_dr_consumer_partition_ Gauge The number of free buffersleft in the DR queue.

available buffers total

voltdb_dr_consumer_partition_ Gauge The number of free bytes|eft in the DR queue.

available buffer_bytes bytes

voltdb_dr_consumer_partition Gauge The number of repeated buffersreceived after the initial packets

duplicate buffers total were dropped because the queue was full.

voltdb_dr_consumer_partition Gauge The number of buffers received but dropped because the queue

ignored_buffers total was full.

voltdb_dr_consumer_partition last | Gauge Thetimestamp of the last transaction successfully applied to this

applied_timestamp_seconds partition on the consumer.

voltdb_dr_consumer_partition last | Gauge Thetimestamp of thelast transaction received from the producer.

received_timestamp_seconds

voltdb_dr_consumer_remote Gauge The timestamp when the remote cluster started for the first time.

creation_timestamp_seconds

voltdb_dr_divergence count_total Counter The number of conflicts that may have resulted in divergence
between the clusters, which is a subset of the total conflicts.

voltdb_dr_last_conflict_timestamp_ | Gauge The timestamp of the last conflict.

seconds

voltdb_dr_missing_row_count_total | Counter The number of missing row conflicts that occurred.

voltdb_dr_producer_cluster_info Metadata |Informational metric, presents cluster level metadata. Tags:

* DR_STATE - The current state of the DR relationship. Possi-
blevaluesare the following: "Disabled”, "Pending", "Active",
" Stopped".

* LAST_APPLIED_DR_PROTOCOL - The current DR proto-
col version of binary logs being received and applied for this
partition.

* SUPPORTED_DR_PROTOCOL - The highest version of DR
protocol this cluster is capable of using to send data to con-
sumers.

voltdb_dr_producer_node_info Metadata |Informational metric, presents node level metadata. Tags:

* DR_STATE - The current state of the DR relationship. Possi-
blevaluesarethefollowing: "Disabled", "Pending”, "Active",
" Stopped”.

« DR _SYNC _SNAPSHOT_STATE - The current state of the
synchronization snapshot that begins replication. During nor-
mal operation, thisvalueis"None" indicating either that repli-
cationisnot active or that transactions are actively being repli-
cated. If a synchronization snapshot is in progress, this value
provides additional information about the specific activity un-
derway.

voltdb_dr_producer_node remote | Gauge The timestamp (in seconds) when the remote cluster started for

creation_timestamp_seconds

the first time.

66

Volt Active Data Metrics

Metrics Type Description

voltdb_dr_producer_node rows Gauge

acked for_sync_snapshot_total

voltdb_dr_producer_node rows in_ |Gauge

sync_snapshot_total

voltdb_dr_producer_node tasks Gauge The number of DR tasks waiting to be processed.
gueue_depth_total

voltdb_dr_producer_partition_info |Metadata |Informational metric. Tags:

 DR_STREAM_TYPE - The type of stream, which can either
be "Transactions" or " Snapshot”.

e DR_LAST QUEUED_ID - The ID of the last transaction
queued for transmission to the consumer.

e DR _LAST ACK_ID-ThelD of thelast transaction acknowl-
edged by the consumer.

e DR_IS SYNCED - Indicates whether the database is cur-
rently being replicated. If replication has not started, or the
overflow capacity has been exceeded (that is, replication has
failed), the value of ISSYNCED is "false". If replication is
currently in progress, the value is "true".

e DR_MODE - Indicates whether this particular partition
is replicating data to the consumer ("NOrma™) or not
("Paused"). Only one copy of each logical partition actually
sends data during replication. So for clusters with a K-safety
value greater than zero, not all physical partitions will report
"Normal" even when replication isin progress.

* DR_CONNECTION_STATUS - Indicates whether the con-
nection to the consumer is operational ("UP") or not
("DOWN").

e CONSUMER_LIMIT_TYPE - The type of limit on the DR
queue. The response is either BY TES or BUFFERS.

¢ CURRENT_DR_PROTOCOL - The DR protocol version cur-
rently in use when sending data to consumers.

» SUPPORTED_DR_PROTOCOL - The highest version of DR
protocol this cluster is capable of using to send data to con-
sumers.

voltdb_dr_producer_partition_ Gauge The number of buffers waiting to be sent to the consumer.
available to send buffers total

voltdb_dr_producer_partition_ Gauge The number of bytes waiting to be sent to the consumer.
available to _send total bytes

voltdb_dr_producer_partition Gauge Thetotal number of buffersin this partition waiting for acknowl-
buffers waiting_for_ack_total edgement from the consumer.

voltdb_dr_producer_partition last | Gauge The total number of bytes currently queued for transmission to
ack_timestamp_seconds the consumer.

voltdb_dr_producer_partition last | Gauge The timestamp of the last transaction queued for transmission to
queued_timestamp_seconds the consumer.

voltdb_dr_producer_partition Gauge Thetotal number of bytes of queued data currently held in mem-

gueued in_memory_total bytes

ory. If theamount of total bytesislarger than the amount in mem-
ory, the remainder is kept in overflow storage on disk.

67

Volt Active Data Metrics

Metrics

Type

Description

voltdb_dr_producer_partition_
queued total _bytes

Gauge

The total number of bytes currently queued for transmission to
the consumer.

voltdb_dr_producer_partition
queue _gap total

Gauge

The number of missing transactions between those already ac-
knowledged by the consumer and the next available for trans-
mission. Under normal operating conditions, thisvalueis zero.

voltdb_dr_producer_partition
round_trip_time_seconds

Histogram

Thedistribution of timeit took to receive acknowledgement from
the consumer.

voltdb_dr_role_info

Metadata

Informational metric. Tags:

 DR_ROLE_NAME - Therole of the current cluster in a DR
relationship. Possible values are NONE, MASTER, REPLI-
CA, and XDCR.

DR _STATE - The current state of the DR relationship.
DISABLED, PENDING, ACTIVE, STOPPED.

¢ REMOTE_CLUSTER_ID - The DR ID of the other DR clus-
ter, or -1 if not available (for example, when DR is disabled
or communication has not begun).

¢ SUPPORTED_DR_PROTOCOL - Thehighest version of DR
protocol this cluster is capable of using to send data to con-
sumers.

voltdb_dr_row_timestamp_
mismatch_count_total

Counter

The number of timestamp mismatch conflicts that occurred.

voltdb_dr_schema_change _info

Metadata

Informational metric containing metadata. Tags:

« SITE_ID - Numeric ID of the execution site on the host node.

* TABLE_TYPE - Thetype of thetable. E.g. "PersistentTable"
for normal datatables.

« TABLE_NAME - The name of the database table for which
schema was mismatched.

e CLUSTER_ID - The numeric ID of the current cluster.

« REMOTE_CLUSTER_ID - The numeric ID of the remote
cluster.

» DR_SCHEMA_CHANGE_MATCH - A text string of "true"
or "false" indicating whether the schemafor the table matches
on the two clusters.

voltdb_dr_schema change tuple

count_total

Counter

The total number of tuples exchanged for this tuple while the
schema did not match.

B.6. Streaming Data

The following tables describe the metrics related to streaming datainto and out of Volt, including import,

export, and topics.

TableB.11. Import

regquests total

Metrics Type Description
voltdb_importer_failure_total Counter The number of import transactions that failed.
voltdb_importer_outstanding_ Gauge The number of records read from the import stream and waiting

to be inserted into the database.

68

Volt Active Data Metrics

Metrics Type Description

voltdb_importer_retries_total Counter The number of attempts to replay failed transactions.
voltdb_importer_success total Counter The number of import transactions that succeeded.
TableB.12. Export

Metrics Type Description

voltdb_export_info Metadata |Informational metric that contains metadata. Tags:

« EXPORT_IS ACTIVE-"True" if isenabled and not blocked
and is master.

* EXPORT_STATUS- The current status of the export connec-
tion.

» "Active" - Queueis currently exporting to the target;

» "Blocked" - Thereisagap in the queue and export is waiting
to seeif the missing records become available when amissing
node rejoins;

» "Dropped" - either the source stream has been dropped from
the schemaor the export configuration has been removed from
the configuration and queueisdraining any remaining records.

voltdb_export_last_acked Gauge The timestamp when the last tuple was acknowledged as re-

timestamp_seconds ceived by the target.

voltdb_export_last_queued Gauge The timestamp when the most recent tuple was added to the ex-

timestamp_seconds port queue for this partition.

voltdb_export_latency seconds Histogram | The distribution of time between when records are inserted, and
then acknowledged by the target.

voltdb_export_queue gap total Gauge The number of records missing from the queue for the current
stream and partition.

voltdb_export_tuple_count_total Counter Thetotal number of records queued to the export target since the
gueue was created.

voltdb_export_tuple pending total |Gauge The number of records still waiting to be written to or acknowl-
edged by the target.

Table B.13. Topics

Metrics Type Description

voltdb_topic_info Metadata |Informational metric with topic metadata. Tags:

e« TOPIC_STATUS-

e "Stable" - The queue is complete;

» "Backfilling" - records are missing but are being retrieved
from other servers;

» "Blocked" - records are missing from all copies of the parti-
tion;

» "Orphaned" - the queueisno longer being served by this parti-
tion, but is saved in case other copies of the queue are blocked
or backfilling and need the data. Thisisatransitional state and
the queueisdel eted as soon as no other copies need itsrecords.

e TOPIC RETENTION_POLICY - The retention policy for
thistopic.

69

Volt Active Data Metrics

Metrics Type Description
e TOPIC IS MASTER - "True" or "False" indicating whether
the current site is the master for the logical partition.
voltdb_topic_bytes fetched bytes |Gauge The size of data sent to consumers for this partition and topic.
voltdb_topic_bytes on_disk_bytes |Gauge The size of data stored on disk for this partition and topic.
voltdb_topic_error_offset Gauge If an error occurs while encoding a message for consumers, an
error is returned to the consumer, the offset of the message is
recoded here.
voltdb_topic first offset Gauge The value of the first offset currently available in the topic.
voltdb_topic first_offset timestamp_|Gauge The timestamp when the first offset was inserted into the queue.
seconds
voltdb_topic last offset Gauge The value of the last offset in the topic.
voltdb_topic last offset_timestamp_ | Gauge The timestamp when the most recent message (the last offset)
seconds was inserted into the queue.
voltdb_topic_skipped_rows total Gauge The number of skipped rowsthat otherwisewould causean error.

Only appliesif the topic's option consumer.skip.errorsis true.

B.7. User-Defined Tasks

The following tables describe the metrics for measuring and monitoring user-defined tasks.

TableB.14. Tasks

Metrics

Type

Description

voltdb_scheduler_action_status info

Metadata

Informational metric with scheduler metadata. Tags:

* PARTITION_ID - The numeric ID for the logical partition
running the task procedure. Directed procedures run on each
logical partition. Multi-partition procedures run on the mul-
ti-partition initiator.

» TASK_NAME - The name of the task.

* TASK_STATUS- The current status of the task. Possible val-
ues include: RUNNING - The task is enabled and running
normally; DISABLED - Thetask is disabled and not running.
ERROR - The task returned an error and was stopped due to
the ON ERROR STORP attribute. PAUSED - The database is
paused or is running on a DR replica, so the task is not cur-
rently running but will restart when the database resumes or
is promoted.

* TASK_ORIGIN - "System" or "User".

* TASK_SCOPE - The execution scope of the task, which
matches the RUN ON attribute. Possible values are "Data-
base", "Hosts", or "Partitions".

voltdb_scheduler_procedure
execution_time_seconds

Histogram

The distribution of time the task took to execute.

voltdb_scheduler_procedure failure
total

Counter

The number of times the procedure generated an error when
run.Tags.

* same as above.

70

Volt Active Data Metrics

Metrics Type Description

voltdb_scheduler_procedure Counter The total number of invocations of the task's procedure.
invocation_total

voltdb_scheduler_procedure wait_ |Histogram | The distribution of time between when the procedure was sched-
time_seconds uled to run and when it was invoked.

voltdb_scheduler_task execution |Histogram |The distribution of the amount of time taken to schedule an in-
time_seconds stance of the task.

voltdb_scheduler_task invocation | Counter The total number of invocations of the task's schedule.
total

voltdb_scheduler_task wait_time_ |Histogram |The distribution of the difference between when the task was

seconds scheduled to run and when the scheduler was invoked.
voltdb_task priority queue depth |Gauge The number of tasks in the queue.

total

voltdb_task_priority_queue_poll_ Counter The number of tasks that |eft the queue.

count_total

voltdb_task priority queue wait_ Histogram | The distribution of the length of time tasks were waiting in the
time_seconds gueue.

voltdb_task queue depth_total Gauge The number of tasks in the queue.

voltdb_task queue poll_count_total |Counter The number of tasks that left the queue (and started executing)
in the past five seconds.

voltdb_task queue wait_time Histogram | The distribution of time tasks were waiting in the queue.
seconds

B.8. System and Cluster Status

The following tables describe the metrics that report the status of the cluster and the individual systems
within it, aswell as additional metrics not covered by other categories.

Table B.15. System

Metrics Type Description

voltdb_clockskew_seconds Gauge The number of milliseconds difference between the system clock
time of the current host and the remote host.

voltdb_file descriptors count_total | Gauge The number of file descriptors open in the process.

voltdb_file descriptors limit_total | Gauge The maximum number of file descriptorsallowed for the process

running the server.

Table B.16. Miscellaneous

Metrics Type Description
voltdb_balance partitions_info Metadata |Reportsthe status of recent rebalancing operations. Information-
al metric. Tags:

e BALANCE_MOVED_ROWS - The number of rows of data
that have been moved.

 BALANCE_PERCENTAGE_MOVED - The percentage of
the total segments that have already been moved.

71

Volt Active Data Metrics

Metrics

Type

Description

BALANCE _ROWS PER SECOND - The average number
of rows moved per second.
BALANCE_ESTIMATED_REMAINING - The estimated
time remaining until the rebalance is compl ete.
BALANCE_MEGABYTES PER_SECOND - The average
volume of data moved per second, measured in megabytes.
BALANCE _CALLS PER SECOND - The average number
of rebalance work units, or transactions, executed per second.
BALANCE_CALLS LATENCY - Theaveragetota timebe-
tween start and finish of rebalance operations. (TODO: in mil-
lis? should be in seconds)

BALANCE_CALLS TIME - The average execution time for
rebalance transactions. (TODO: in millis? should be in sec-
onds)

BALANCE_CALLS TRANSFER_TIME - Theaveragetime
spent transferring data during rebal ance transactions. (TODO:
in millis? should be in seconds)

voltdb_partition_count_total

Gauge

Number of unique partitionsin the cluster (not including MP par-
tition).

voltdb xdcr_readiness info

Metadata

72

Appendix C. Snapshot Utilities

VoltDB provides two utilities for managing snapshot files. These utilities verify that a native snapshot
is complete and usable and convert the snapshot contents to a text representation that can be useful for
uploading or reloading datain case of severe errors.

It is possible, as the result of adesign flaw or failed program logic, for a database application to become
unusable. However, the datais till of value. In such emergency cases, it is desirable to extract the data
from the database and possibly reload it. Thisisthe function that save and restore perform within VoltDB.

But there may be cases when you want to use the data created by a VoltDB snapshot elsewhere. The goal
of the utilitiesisto assist in that process. The snapshot utilities are:

« snapshotconvert converts a snapshot (or part of a snapshot) into text files, creating one file for each
table in the snapshot.

 snapshotverifier verifiesthat aVoltDB snapshot is complete and usable.

To use the snapshot convert and snapshot veri fi er commands, be sure that the voltdb /bin
directory isin your PATH, as described in the section on "Setting Up Y our Environment" in the Using
VoltDB manual. The following sections describe how to use these two commands.

73

http://docs.voltactivedata.com/UsingVoltDB/SetUpEnv.php
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/

Snapshot Utilities

snapshotconvert

snapshotconvert — Converts the tablesin a VoltDB snapshot into text files.

Syntax

shapshotconvert {snapshot-id} --type {csv|tsv}\
--table {table} [...] [--dir {directory}]... \
[--outdir {directory}]

shapshotconvert --help

Description

SnapshotConverter converts one or more tables in a valid snapshot into either comma-separated (csv) or
tab-separated (tsv) text files, creating one file per table.

Where:

{ snapshot-id}
{csvitsv}

{table}

{ directory}

Example

isthe unique identifier specified when the snapshot was created. (It is also the name
of the .digest file that is part of the snapshot.) Y ou must specify a snapshot ID.

iseither "csv" or "tsv" and specifies whether the output file is comma-separated or
tab-separated. This argument is also used as the filetype of the output files.

isthe name of the database table that you want to export to text file. Y ou can spec-
ify the - - t abl e argument multiple times to convert multiple tables with a single
command.

isthe directory to search for the snapshot (- - di r) or where to create the resulting
output files (- - out di r). You can specify the - - di r argument multiple times to
search multiple directories for the snapshot files. Both- - di r and - - out di r are
optional; they default to the current directory path.

The following command exports two tables from a snapshot of the flight reservation example used in the
Using VoltDB manual. The utility searches for the snapshot files in the current directory (the default) and
creates one file per table in the user's home directory:

$ snapshotconvert flightsnap --table CUSTOVER --tabl e RESERVATI ON \

--type csv -- outdir ~/

74

http://docs.voltactivedata.com/UsingVoltDB/

Snapshot Utilities

snapshotverifier

snapshotverifier — Verifies that the contents of one or more snapshot files are complete and usable.

Syntax

snapshotverifier [snapshot-id] [--dir {directory}] ...

shapshotverifier --help

Description

SnapshotVerifier verifies one or more snapshots in the specified directories.

Where:

[snapshot-id] isthe unique identifier specified when the snapshot was created. (It is also the name
of the .digest file that is part of the snapshot.) If you specify a snapshot ID, only
snapshots matching that ID are verified. If you do not specify an ID, all snapshots
found will be verified.

{ directory} is the directory to search for the snapshot. You can specify the - - di r argument
multiple times to search multiple directories for snapshot files. If you do not specify
adirectory, the default is to search the current directory.

Examples

The following command verifies al of the snapshotsin the current directory:
$ snapshotverifier

This example verifies a snapshot with the unique identifier "flight" in either the directory / et ¢/ vol t -
db/ save or ~/ nysaves:

$ snapshotverifier flight --dir /etc/voltdb/save/ --dir ~/mysaves

75

	Administrator's Guide
	Table of Contents
	Preface
	1. Structure of This Book
	2. Related Documents

	Chapter 1. Managing Volt Active Data Databases
	1.1. Getting Started
	1.2. Understanding the VoltDB Utilities
	1.3. Management Tasks

	Chapter 2. Preparing the Servers
	2.1. Server Checklist
	2.2. Install Required Software
	2.3. Configure Memory Management
	2.3.1. Disable Swapping
	2.3.2. Disable Transparent Huge Pages
	2.3.3. Enable Virtual Memory Mapping and Overcommit

	2.4. Turn off TCP Segmentation
	2.5. Configure Time Services
	2.6. Increase Resource Limits
	2.7. Configure the Network
	2.8. Assign Network Ports
	2.9. Eliminating Server Process Latency

	Chapter 3. Starting and Stopping the Database
	3.1. Configuring the Cluster and Database
	3.2. Initializing the Database Root Directory
	3.3. Starting the Database
	3.4. Loading the Database Definition
	3.4.1. Preloading the Schema and Classes When You Initialize the Database
	3.4.2. Loading the Schema and Classes After the Database Starts

	3.5. Stopping the Database
	3.6. Restarting the Database
	3.7. Starting and Stopping Individual Servers

	Chapter 4. Maintenance and Upgrades
	4.1. Backing Up the Database
	4.2. Updating the Database Schema
	4.2.1. Performing Live Schema Updates
	4.2.2. Performing Updates Using Save and Restore

	4.3. Upgrading the Cluster
	4.3.1. Performing Server Upgrades
	4.3.2. Performing Rolling Hardware Upgrades on K-Safe Clusters
	4.3.3. Adding Servers to a Running Cluster with Elastic Scaling
	4.3.4. Removing Servers from a Running Cluster with Elastic Scaling
	4.3.5. Reconfiguring the Cluster During a Maintenance Window

	4.4. Upgrading Existing VoltDB Installations
	4.4.1. Upgrading the VoltDB Software
	4.4.2. Upgrading VoltDB Using Save and Restore
	4.4.3. Upgrading Older Versions of VoltDB Manually
	4.4.4. Performing an In-Service Upgrade of a Single Cluster
	4.4.4.1. The Scope of In-Service Upgrades

	4.4.5. Performing an Online Upgrade Using Multiple XDCR Clusters
	4.4.5.1. Falling Back to a Previous Version

	4.4.6. Downgrading, or Falling Back to a Previous VoltDB Version

	4.5. Updating the VoltDB Software License

	Chapter 5. Monitoring VoltDB Databases
	5.1. Monitoring Overall Database Activity
	5.1.1. Volt Management Center
	5.1.2. System Procedures
	5.1.3. SNMP Alerts

	5.2. Setting the Database to Read-Only Mode When System Resources Run Low
	5.2.1. Monitoring Memory Usage
	5.2.2. Monitoring Disk Usage

	5.3. Integrating VoltDB with Prometheus

	Chapter 6. Logging and Analyzing Activity in a VoltDB Database
	6.1. Introduction to Logging
	6.2. Creating the Logging Configuration File
	6.3. Changing the Timezone of Log Messages
	6.4. Managing VoltDB Log Files
	6.5. Enabling Your Custom Log Configuration When Starting VoltDB
	6.6. Changing the Configuration on the Fly

	Chapter 7. What to Do When Problems Arise
	7.1. Where to Look for Answers
	7.2. Handling Errors When Restoring a Database
	7.2.1. Logging Constraint Violations
	7.2.2. Safe Mode Recovery

	7.3. Collecting the Log Files

	Appendix A. Server Configuration Options
	A.1. Server Configuration Options
	A.1.1. Network Configuration (DNS)
	A.1.2. Time Configuration

	A.2. Process Configuration Options
	A.2.1. Maximum Heap Size (VOLTDB_HEAPMAX)
	A.2.2. Garbage Collector (VOLTDB_GC_OPTS)
	A.2.3. Other Java Runtime Options (VOLTDB_OPTS)

	A.3. Database Configuration Options
	A.3.1. Sites per Host
	A.3.2. K-Safety
	A.3.3. Network Partition Detection
	A.3.4. Automated Snapshots
	A.3.5. Import and Export
	A.3.6. Command Logging
	A.3.7. Heartbeat
	A.3.8. Temp Table Size
	A.3.9. Query Timeout
	A.3.10. Flush Interval
	A.3.11. Long-Running Process Warning
	A.3.12. Copying Array Parameters
	A.3.13. Transaction Prioritization
	A.3.14. Clock Skew

	A.4. Path Configuration Options
	A.4.1. VoltDB Root
	A.4.2. Snapshots Path
	A.4.3. Export Overflow Path
	A.4.4. Command Log Path
	A.4.5. Command Log Snapshots Path

	A.5. Network Ports
	A.5.1. Client Port
	A.5.2. Admin Port
	A.5.3. Web Interface Port (http)
	A.5.4. Internal Server Port
	A.5.5. Metrics Port
	A.5.6. Replication Port
	A.5.7. Topics Port
	A.5.8. Zookeeper Port
	A.5.9. TLS/SSL Encryption (Including HTTPS)

	Appendix B. Volt Active Data Metrics
	B.1. Database Tables and Indexes
	B.2. Transactions, Procedures, and the Planner
	B.3. Memory and CPU Usage
	B.4. Client Connections and I/O
	B.5. High Availability and Durability
	B.6. Streaming Data
	B.7. User-Defined Tasks
	B.8. System and Cluster Status

	Appendix C. Snapshot Utilities
	snapshotconvert
	snapshotverifier

