
Administrator's Guide

Abstract

This books explains how to create and manage Volt Active Data databases and the clusters
that run them.

V13

Administrator's Guide
V13
Copyright © 2014-2023 Volt Active Data, Inc.

This document is published under copyright by Volt Active Data, Inc. All Rights Reserved.

The software described in this document is furnished under a license by Volt Active Data, Inc. Your rights to access and use VoltDB features are
defined by the license you received when you acquired the software.

The VoltDB client libraries, for accessing VoltDB databases programmatically, are licensed separately under the MIT license.

Volt Active Data, VoltDB, and Active(N) are registered trademarks of Volt Active Data, Inc.

VoltDB software is protected by U.S. Patent Nos. 9,600,514, 9,639,571, 10,067,999, 10,176,240, and 10,268,707. Other patents pending.

This document was generated on July 22, 2024.

Table of Contents
Preface .. vii

1. Structure of This Book ... vii
2. Related Documents .. vii

1. Managing Volt Active Data Databases .. 1
1.1. Getting Started ... 1
1.2. Understanding the VoltDB Utilities ... 2
1.3. Management Tasks ... 3

2. Preparing the Servers ... 4
2.1. Server Checklist ... 4
2.2. Install Required Software ... 4
2.3. Configure Memory Management ... 5

2.3.1. Disable Swapping ... 5
2.3.2. Disable Transparent Huge Pages ... 5
2.3.3. Enable Virtual Memory Mapping and Overcommit ... 6

2.4. Turn off TCP Segmentation .. 6
2.5. Configure Time Services .. 7
2.6. Increase Resource Limits ... 7
2.7. Configure the Network .. 8
2.8. Assign Network Ports .. 8
2.9. Eliminating Server Process Latency ... 8

3. Starting and Stopping the Database .. 10
3.1. Configuring the Cluster and Database ... 10
3.2. Initializing the Database Root Directory .. 11
3.3. Starting the Database ... 12
3.4. Loading the Database Definition .. 13

3.4.1. Preloading the Schema and Classes When You Initialize the Database 13
3.4.2. Loading the Schema and Classes After the Database Starts 14

3.5. Stopping the Database ... 14
3.6. Restarting the Database .. 14
3.7. Starting and Stopping Individual Servers ... 15

4. Maintenance and Upgrades ... 16
4.1. Backing Up the Database ... 16
4.2. Updating the Database Schema .. 17

4.2.1. Performing Live Schema Updates .. 17
4.2.2. Performing Updates Using Save and Restore ... 17

4.3. Upgrading the Cluster .. 18
4.3.1. Performing Server Upgrades ... 19
4.3.2. Performing Rolling Hardware Upgrades on K-Safe Clusters 19
4.3.3. Adding Servers to a Running Cluster with Elastic Scaling 20
4.3.4. Removing Servers from a Running Cluster with Elastic Scaling 20
4.3.5. Reconfiguring the Cluster During a Maintenance Window 21

4.4. Upgrading Existing VoltDB Installations ... 22
4.4.1. Upgrading the VoltDB Software ... 22
4.4.2. Upgrading VoltDB Using Save and Restore .. 23
4.4.3. Upgrading Older Versions of VoltDB Manually ... 23
4.4.4. Performing an In-Service Upgrade of a Single Cluster 23
4.4.5. Performing an Online Upgrade Using Multiple XDCR Clusters 25
4.4.6. Downgrading, or Falling Back to a Previous VoltDB Version 26

4.5. Updating the VoltDB Software License .. 26
5. Monitoring VoltDB Databases ... 28

5.1. Monitoring Overall Database Activity ... 28

iii

Administrator's Guide

5.1.1. Volt Management Center ... 28
5.1.2. System Procedures .. 28
5.1.3. SNMP Alerts ... 30

5.2. Setting the Database to Read-Only Mode When System Resources Run Low 32
5.2.1. Monitoring Memory Usage .. 33
5.2.2. Monitoring Disk Usage .. 34

5.3. Integrating VoltDB with Prometheus .. 35
6. Logging and Analyzing Activity in a VoltDB Database .. 36

6.1. Introduction to Logging ... 36
6.2. Creating the Logging Configuration File ... 36
6.3. Changing the Timezone of Log Messages ... 38
6.4. Managing VoltDB Log Files ... 39
6.5. Enabling Your Custom Log Configuration When Starting VoltDB 39
6.6. Changing the Configuration on the Fly ... 39

7. What to Do When Problems Arise ... 41
7.1. Where to Look for Answers .. 41
7.2. Handling Errors When Restoring a Database .. 41

7.2.1. Logging Constraint Violations .. 42
7.2.2. Safe Mode Recovery ... 42

7.3. Collecting the Log Files ... 43
A. Server Configuration Options .. 45

A.1. Server Configuration Options ... 45
A.1.1. Network Configuration (DNS) ... 45
A.1.2. Time Configuration .. 46

A.2. Process Configuration Options .. 46
A.2.1. Maximum Heap Size (VOLTDB_HEAPMAX) ... 46
A.2.2. Garbage Collector (VOLTDB_GC_OPTS) ... 46
A.2.3. Other Java Runtime Options (VOLTDB_OPTS) .. 47

A.3. Database Configuration Options .. 47
A.3.1. Sites per Host ... 48
A.3.2. K-Safety ... 48
A.3.3. Network Partition Detection ... 48
A.3.4. Automated Snapshots ... 48
A.3.5. Import and Export .. 49
A.3.6. Command Logging .. 49
A.3.7. Heartbeat .. 49
A.3.8. Temp Table Size ... 50
A.3.9. Query Timeout .. 50
A.3.10. Flush Interval .. 51
A.3.11. Long-Running Process Warning .. 51
A.3.12. Copying Array Parameters ... 52
A.3.13. Transaction Prioritization ... 52
A.3.14. Clock Skew ... 53

A.4. Path Configuration Options .. 53
A.4.1. VoltDB Root ... 53
A.4.2. Snapshots Path .. 54
A.4.3. Export Overflow Path ... 54
A.4.4. Command Log Path ... 54
A.4.5. Command Log Snapshots Path ... 54

A.5. Network Ports .. 54
A.5.1. Client Port .. 55
A.5.2. Admin Port ... 55
A.5.3. Web Interface Port (http) .. 56
A.5.4. Internal Server Port .. 56

iv

Administrator's Guide

A.5.5. Metrics Port .. 56
A.5.6. Replication Port ... 57
A.5.7. Topics Port ... 57
A.5.8. Zookeeper Port .. 57
A.5.9. TLS/SSL Encryption (Including HTTPS) ... 58

B. Volt Active Data Metrics ... 59
B.1. Database Tables and Indexes .. 59
B.2. Transactions, Procedures, and the Planner ... 60
B.3. Memory and CPU Usage ... 61
B.4. Client Connections and I/O .. 62
B.5. High Availability and Durability ... 63
B.6. Streaming Data .. 68
B.7. User-Defined Tasks .. 70
B.8. System and Cluster Status .. 71

C. Snapshot Utilities .. 73
snapshotconvert ... 74
snapshotverifier ... 75

v

List of Tables
1.1. Database Management Tasks .. 3
3.1. Selecting Database Features in the Configuration File .. 10
5.1. SNMP Configuration Attributes ... 30
5.2. SNMP Events ... 31
6.1. VoltDB Components for Logging .. 38
A.1. VoltDB Port Usage ... 55
B.1. Tables and Indexes ... 59
B.2. Transactions and Procedures ... 60
B.3. Planner ... 61
B.4. Memory, Compaction, and Garbage Collection .. 61
B.5. CPU ... 62
B.6. Connections ... 62
B.7. I/O ... 63
B.8. Snapshots .. 63
B.9. Command Logging ... 65
B.10. Active(N) and XDCR .. 65
B.11. Import ... 68
B.12. Export ... 69
B.13. Topics ... 69
B.14. Tasks .. 70
B.15. System .. 71
B.16. Miscellaneous ... 71

vi

Preface
This book explains how to manage Volt Active Data databases and the clusters that host them. It is intended
for database administrators and operators, responsible for the ongoing management and maintenance of
database infrastructure.

1. Structure of This Book
This book is divided into 7 chapters and 3 appendices:

• Chapter 1, Managing Volt Active Data Databases

• Chapter 2, Preparing the Servers

• Chapter 3, Starting and Stopping the Database

• Chapter 4, Maintenance and Upgrades

• Chapter 5, Monitoring VoltDB Databases

• Chapter 6, Logging and Analyzing Activity in a VoltDB Database

• Chapter 7, What to Do When Problems Arise

• Appendix A, Server Configuration Options

• Appendix B, Volt Active Data Metrics

• Appendix C, Snapshot Utilities

2. Related Documents
This book does not describe how to design or develop Volt Active Data databases. For a complete descrip-
tion of the development process for VoltDB and all of its features, please see the accompanying manual
Using VoltDB. For new users, see the VoltDB Tutorial. These and other books describing Volt Active Data
are available on the web from http://docs.voltactivedata.com/.

vii

http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/tutorial/
http://docs.voltactivedata.com/

Chapter 1. Managing Volt Acve Data
Databases

VoltDB is a distributed, in-memory database designed from the ground up to maximize throughput perfor-
mance on commodity servers. The VoltDB architecture provides many advantages over traditional data-
base products while avoiding the pitfalls of NoSQL solutions:

• By partitioning the data and stored procedures, VoltDB can process multiple queries in parallel without
sacrificing the consistency or durability of an ACID-compliant database.

• By managing all data in memory with a single thread for each partition, VoltDB avoids overhead such
as record locking, latching, and device-contention inherent in traditional disk-based databases.

• VoltDB databases can scale up to meet new capacity or performance requirements simply by adding
more nodes to the cluster.

• Partitioning is automated, based on the schema, so there is no need to manually shard or repartition the
data when scaling up as with many NoSQL solutions.

• Finally, VoltDB Enterprise Edition provides features to ensure durability and high availability through
command logging, locally replicating partitions (K-safety), and wide-area database replication.

Each of these features is described, in detail, in the Using VoltDB manual. This book explains how to use
these and other features to manage and maintain a VoltDB database cluster from a database administrator's
perspective.

1.1. Getting Started
Before you set up VoltDB for use in a production environment, you need to make four decisions:

• What database features to use — Which features you want to use are defined in the configuration file
and set with the voltdb init command.

• Physical structure of the cluster — The number and addresses of the nodes in the cluster, which you
specify when you start the cluster with the voltdb start command.

• Logical structure of the database — The logical structure of the database tables and views, otherwise
known as the schema, is defined in standard SQL statements and can be applied to the database using
the sqlcmd command line utility.

• Stored procedures — The schema declares stored procedures. The procedures themselves execute
transactions against the data and are written as Java classes. You load the stored procedures as JAR files
using the sqlcmd command line utility.

To initialize a VoltDB database cluster, you need a configuration file. The configuration file lets you enable
and configure various database options including availability, durability, and security. The configuration
file also defines certain attributes of the database on the current server, in particular the paths for disk-
based files created by the database such as command logs and snapshots. All nodes in the cluster must
specify the same cluster configuration file when they initialize the database root directory with the voltdb
init command.

When you actually start the database cluster, using the voltdb start command, you declare the size the
cluster by specifying the number of nodes in the cluster and one or more of the nodes as potential hosts.
VoltDB selects one of the specified nodes as the "leader" to coordinate startup.

1

https://docs.voltactivedata.com/UsingVoltDB/

Managing Volt Active Data Databases

When using the VoltDB Enterprise Edition, you will also need a license file, often called license.xml.
VoltDB automatically looks for the license file in the user's current working directory, the home directory,
or the voltdb/ subfolder where VoltDB is installed. If you keep the license file in a different directory
or under a different name, you can use to --license argument on the voltdb init command to specify
the license file location.

Finally, to prepare the database for a specific application, you will need the database schema, including
the DDL statements that describe the database's logical structure, and a JAR file containing the stored
procedure class files. In general, the database schema and stored procedures are produced as part of the
database development process, which is described in the Using VoltDB manual.

This book assumes the schema and stored procedures have already been created. The configuration file,
on the other hand, defines the run-time configuration of the cluster. Establishing the correct settings for
the configuration file and physically managing the database cluster is the duty of the administrators who
are responsible for maintaining database operations. This book is written for those individuals and covers
the standard procedures associated with database administration.

1.2. Understanding the VoltDB Utilities
VoltDB provides several command line utilities, each with a different function. Familiarizing yourself with
these utilities and their uses can make managing VoltDB databases easier. The three primary command
line tools for creating, managing, and testing VoltDB databases are:

voltdb Starts the VoltDB database process. The voltdb command can also collect log files
for analyzing possible system errors (see Section 7.3, “Collecting the Log Files” for
details).

The voltdb command runs locally and does not require a running database.

voltadmin Issues administrative commands to a running VoltDB database. You can use voltad-
min to save and restore snapshots, pause and resume admin mode, and to shutdown
the database, among other tasks.

The voltadmin command can be run remotely, performs cluster-wide operations
and requires a running database to connect to.

sqlcmd Lets you issue SQL queries and invoke stored procedures interactively. The sqlcmd
command is handy for testing database access without having to write a client ap-
plication.

The sqlcmd command can be run remotely and requires a running database to con-
nect to.

In addition to the preceding general-purpose tools, VoltDB provides several other tools for specific tasks:

csvloader, jd-
bcloader, and
kafkaloader

These utilities load data from external sources into an existing VoltDB database.
They let you load data from CSV or text-based data files, JDBC data sources, or
Apache Kafka streams. These commands can be run remotely and require a running
database to connect to.

snapshotconvert Converts native snapshot files to csv or tabbed text files. The snapshotconvert com-
mand is useful when exporting a snapshot in native format to text files for import
into another data utility. (This utility is provided for legacy purposes. It is now pos-
sible to write snapshots directly to CSV format without post-processing, which is
the recommended approach.)

2

https://docs.voltactivedata.com/UsingVoltDB/

Managing Volt Active Data Databases

The snapshotconvert command runs locally and does not require a running data-
base.

snapshotverify Verifies that a set of native snapshot files are complete and valid.

The snapshotverify command runs locally and does not require a running database.

Finally, VoltDB includes a browser-based management console — VoltDB Management Center — for
monitoring databases in real time. See Section 5.1.1, “Volt Management Center” for more information
about using the Management Center.

1.3. Management Tasks
Database administration responsibilities fall into five main categories, as described in Table 1.1, “Database
Management Tasks”. The following chapters are organized by category and explain how to perform each
task for a VoltDB database.

Table 1.1. Database Management Tasks

Preparing the Servers Before starting the database, you must make sure that the server hardware and
software is properly configured. This chapter provides a checklist of tasks to
perform before starting VoltDB.

Basic Database Opera-
tions

The basic operations of initializing, starting, and stopping the database. This
chapter describes the procedures needed to handle these fundamental tasks.

Maintenance and Up-
grades

Over time, both the cluster and the database may require maintenance — either
planned or emergency. This chapter explains the procedures for performing
hardware and software maintenance, as well as standard maintenance, such
as backing up the database and upgrading the hardware, the software, and the
database schema.

Performance Monitoring Another important role for many database administrators is monitoring data-
base performance. Monitoring is important for several reasons:

• Performance Analysis

• Load Balancing

• Fault Detection

This chapter describes the tools available for monitoring VoltDB databases.

Problem Reporting &
Analysis

If an error does occur and part or all of the database cluster fails, it is not only
important to get the database up and running again, but to diagnose the cause
of the problem and take corrective actions. VoltDB produces a number of log
files that can help with problem resolution. This chapter describes the different
logs that are available and how to use them to diagnose database issues.

3

Chapter 2. Preparing the Servers
VoltDB is designed to run on commodity servers, greatly reducing the investment required to operate
a high performance database. However, out of the box, these machines are not necessarily configured
for optimal performance of a dedicated, clustered application like VoltDB. This is especially true when
using cloud-based services. This chapter provides best practices for configuring servers to maximize the
performance and stability of your VoltDB installation.

2.1. Server Checklist
The very first step in configuring the servers is making sure you have sufficient memory, computing power,
and system resources such as disk space to handle the expected workload. The VoltDB Planning Guide
provides detailed information on how to size your server requirements.

The next step is to configure the servers and assign appropriate resources for VoltDB tasks. Specific server
features that must be configured for VoltDB to perform optimally are:

• Install required software

• Configure memory management

• Turn off TCP Segmentation

• Configure the time synchronization services

• Increase resource limits

• Define network addresses for all nodes in the cluster

• Assign network ports

2.2. Install Required Software
To start, VoltDB requires a recent release of the Linux operating system. The supported operating systems
for running production VoltDB databases are:

• Red Hat (RHEL) 8.6 or later, including 9.0 and subsequent releases

• Rocky Linux 8.6 or later, including 9.0 and subsequent releases

• Ubuntu 20.04, and 22.04

It may be possible to run VoltDB on other versions of Linux and Macintosh OS X 11.0 and later is sup-
ported for development purposes. However, the preceding operating system versions are the only fully
tested and supported base platforms for running VoltDB in production.

In addition to the base operating system, VoltDB requires the following software at a minimum:

• Java 11, 17, or 21

• Time synchronization services, such as NTP or chrony

• Python 3.9 or later

4

http://docs.voltactivedata.com/PlanningGuide/

Preparing the Servers

Oracle Java SDK 11, 17, or 21 is recommended, but OpenJDK 11, 17, or 21 are also supported.

VoltDB works best when the system clocks on all cluster nodes are synchronized to within 100 millisec-
onds or less. However, the clocks are allowed to differ by up to 200 milliseconds before VoltDB refuses to
start. NTP, the Network Time Protocol, or chrony are recommended for achieving the necessary synchro-
nization. NTP is installed and enabled by default on many operating systems. However, the configuration
may need adjusting (see Section 2.5, “Configure Time Services” for details) and in cloud instances where
hosted servers are run in a virtual environment, a time service may not be installed or enabled by default.
Therefore you need to do this manually.

Finally, VoltDB implements its command line interface through Python. Python 3.9 or later is required
to use the VoltDB shell commands.

2.3. Configure Memory Management
Because VoltDB is an in-memory database, proper memory management is vital to the effective operation
of VoltDB databases. Three important aspects of memory management are:

• Swapping

• Memory Mapping (Transparent Huge Pages)

• Virtual memory

The following sections explain how best to configure these features for optimal performance of VoltDB.

2.3.1. Disable Swapping
Swapping is an operating system feature that optimizes memory usage when running multiple processes
by swapping processes in and out of memory. However, any contention for memory, including swapping,
will have a very negative impact on VoltDB performance and functionality. You should disable swapping
when using VoltDB.

To disable swapping on Linux systems, use the swapoff command. Alternately, you can set the kernel
parameter vm.swappiness to zero.

2.3.2. Disable Transparent Huge Pages
Transparent Huge Pages (THP) are another operating system feature that optimizes memory usage for
systems with large amounts of memory. THP changes the memory mapping to use larger physical pages.
This can be helpful for general-purpose computing running multiple processes. However, for memory-in-
tensive applications such as VoltDB, THP can actually negatively impact performance.

Therefore, it is important to disable Transparent Huge Pages on servers running VoltDB. The following
commands, run as root or from another privileged account, disable THP:

$ echo never >/sys/kernel/mm/transparent_hugepage/enabled
$ echo never >/sys/kernel/mm/transparent_hugepage/defrag

Or:

$ echo madvise >/sys/kernel/mm/transparent_hugepage/enabled
$ echo madvise >/sys/kernel/mm/transparent_hugepage/defrag

5

Preparing the Servers

For RHEL systems (including CentOS), replace "transparent_hugepage" with "redhat_transparen-
t_hugepage".

Note, however, that these commands disable THP only while the server is running. Once the server reboots,
the default setting will return. Therefore, we recommend you disable THP permanently as part of the
startup process. For example, you can add the following commands to a server startup script (such as /
etc/rc.local):

#!/bin/bash
for f in /sys/kernel/mm/*transparent_hugepage/enabled; do
 if test -f $f; then echo never > $f; fi
done
for f in /sys/kernel/mm/*transparent_hugepage/defrag; do
 if test -f $f; then echo never > $f; fi
done

THP are enabled by default in Ubuntu 14.04 and later as well as RHEL 6.x and 7.x. To see if they are
enabled on your current system, use either of the following pair of commands:

$ cat /sys/kernel/mm/transparent_hugepage/enabled
$ cat /sys/kernel/mm/transparent_hugepage/defrag

$ cat /sys/kernel/mm/redhat_transparent_hugepage/enabled
$ cat /sys/kernel/mm/redhat_transparent_hugepage/defrag

If THP is disabled, the output from the preceding commands should be either “always madvise [never]”
or “always [madvise] never”.

2.3.3. Enable Virtual Memory Mapping and Overcommit
Although swapping is bad for memory-intensive applications like VoltDB, the server does make use of
virtual memory (VM) and there are settings that can help VoltDB make effective use of that memory.
First, it is a good idea to enable VM overcommit. This avoids VoltDB encountering unnecessary limits
when managing virtual memory. This is done on Linux by setting the system parameter vm.overcom-
mit_memory to a value of "1".

$ sysctl -w vm.overcommit_memory=1

Second, for large memory systems, it is also a good idea to increase the VM memory mapping limit. So
for servers with 64 Gigabytes or more of memory, the recommendation is to increase VM memory map
count to 1048576. You do this on Linux with the system parameter max_map_count. For example:

$ sysctl -w vm.max_map_count=1048576

Remember that for both overcommit and the memory map count, the parameters are only active while the
system is running and will be reset to the default on reboot. So be sure to add your new settings to the file
/etc/sysctl.conf to ensure they are in effect when the system is restarted.

2.4. Turn off TCP Segmentation
Under certain conditions, the use of TCP segmentation offload (TSO) and generic receive offload (GRO)
can cause nodes to randomly drop out of a cluster. These settings let the system to batch network packets,
producing unnecessary latency and interfering with the necessary communication between VoltDB cluster
nodes. The symptoms of this problem are that nodes timeout — that is, the rest of the cluster thinks they

6

Preparing the Servers

have failed — although the node is still running and no other network issues (such as a network partition)
are the cause.

Disabling TSO and GRO is recommended for any VoltDB clusters that experience such instability. The
commands to disable offloading are the following, where N is replaced by the number of the ethernet card:

ethtool -K ethN tso off
ethtool -K ethN gro off

Note that these commands disable offloading temporarily. You must issue these commands every time the
node reboots or, preferably, put them in a startup configuration file.

It is also a good idea to check that TCP_RETRIES2 has not been altered. Setting TCP_RETRIES2 too low
(below 8) can cause similar unpredictable timeouts. See the description of the VoltDB heartbeat timeout
setting in Section A.3.7, “Heartbeat” for details.

2.5. Configure Time Services
To orchestrate activities between the cluster nodes, VoltDB relies on the system clocks being synchro-
nized. Many functions within VoltDB — such as cluster start up, nodes rejoining, and schema updates
among others — are sensitive to variations in the time values between nodes in the cluster. Therefore, it
is important to keep the clocks synchronized within the cluster. Specifically:

• The server clocks in the cluster must be synchronized to within 200 milliseconds of each other when
the cluster starts. (Ideally, skew between nodes should be kept under 10 milliseconds.)

• Time must not move backwards

The easiest way to achieve these goals is to install and configure a time service such as NTP (Network Time
Protocol) or chrony to use a common time host server for synchronizing the servers. NTP is often installed
by default but may require additional configuration to achieve acceptable synchronization. Specifically,
listing only one time server (and the same one for all nodes in the cluster) ensures minimal skew between
servers. You can even establish your own time server to facilitate this. All nodes in the cluster should
also list each other as peers. For example, the following NTP configuration file uses a local time server
(myntpsvr) and establishes all nodes in the cluster as peers:

server myntpsvr burst iburst minpoll 4 maxpoll 4

peer voltsvr1 burst iburst minpoll 4 maxpoll 4
peer voltsvr2 burst iburst minpoll 4 maxpoll 4
peer voltsvr3 burst iburst minpoll 4 maxpoll 4

server 127.127.0.1

See the chapter on Configuring NTP in the Guide to Performance and Customization for an example of
configuring a time service for optimal performance when running VoltDB.

2.6. Increase Resource Limits
There are several resource limits managed by the operating system where per-user default values are opti-
mized for time-sharing systems but can be too restrictive for dedicated applications like VoltDB. In partic-
ular, although VoltDB is an in-memory database, process threads require large numbers of file descriptors,
to the point where the file descriptor limit can interfere with VoltDB operations.

7

https://docs.voltactivedata.com/PerfGuide/ChapNtp.php
https://docs.voltactivedata.com/PerfGuide/

Preparing the Servers

It is recommended that you increase the process and file descriptor limits for the process starting the
VoltDB server. You can do this with the ulimit shell command prior to starting VoltDB. The recommended
minimum limits for processes and file descriptors are 8192 and 16384, respectively. Note that these are top
limits, so on dedicated servers there are no drawbacks to setting these values even higher. For example,
the following commands set the limits to 10,000 and 40,000 before starting the server:

$ ulimit -u 10000
$ ulimit -n 40000
$ voltdb start

To set the limits permanently, you can set the limits as part of the system initialization. See your operation
system documentation on ulimit and init.d for more information.

2.7. Configure the Network
It is also important to ensure that the network is configured correctly so all of the nodes in the VoltDB
cluster recognize each other. If the DNS server does not contain entries for all of the servers in the cluster,
an alternative is to add entries in the /etc/hosts file locally for each server in the cluster. For example:

12.24.48.101 voltsvr1
12.24.48.102 voltsvr2
12.24.48.103 voltsvr3
12.24.48.104 voltsvr4
12.24.48.105 voltsvr5

2.8. Assign Network Ports
VoltDB uses a number of network ports for functions such as internal communications, client connections,
rejoin, database replication, and so on. For these features to perform properly, the ports must be open and
available. Review the following list of ports to ensure they are open and available (that is, not currently
in use).

Function Default Port
Number

Client Port 21212

Admin Port 21211

Web Interface Port (httpd) 8080

Internal Server Port 3021

Replication Port 5555

Zookeeper port 7181

Alternately, you can reassign the port numbers that VoltDB uses. See Section A.5, “Network Ports” for
a description of the ports and how to reassign them.

2.9. Eliminating Server Process Latency
The preceding sections explain how to configure your servers and network to maximize the performance of
VoltDB. The goal is to avoid server functions, such as swapping or Java garbage collection, from disrupting
the proper operation of the VoltDB process.

8

Preparing the Servers

Any latency in the scheduling of VoltDB threads can impact the performance of your database. These
delays result in corresponding latency in the database transactions themselves. But equally important,
prolonged latency can interrupt intra-cluster communication as well, to the point where the cluster may
incorrectly assume a node has failed and drop it as a member. If server latency causes a node not to respond
to network messages beyond the heartbeat timeout setting, the rest of the cluster will drop the node as a
"dead host".

Therefore, in addition to the configuration settings described earlier in this chapter, the following are some
known causes of latency you should watch out for:

• Other applications — Clearly, running other applications on the same servers as VoltDB can result
in unpredictable resource conflicts for memory, CPU, and disk access. Running VoltDB on dedicated
servers is always recommended for production environments.

• Frequent snapshots — Initiating snapshots consumes resources. Especially on a database under heavy
load, this can result in latency spikes. Although it is possible to run both automated snapshots and
command logging (which performs its own snapshots), they are redundant and can cause unnecessary
delays. Also, when using command logging on a busy database, consider increasing the size of the
command log segments if snapshots are occurring too frequently.

• I/O contention — Contention for disk resources can interfere with the effective processing of VoltDB
durability features. This can be avoided by allocating separate devices for individual disk-based activity.
For example, wherever possible locate command logs and snapshots on separate devices.

• JVM statistics collection — Enabling Java Virtual Machine (JVM) statistics can produce erratic latency
issues for memory-intensive applications like VoltDB. Disabling JVM stats is strongly recommended
when running VoltDB servers. You can disable JVM stats by issuing the following command before
starting the VoltDB process:

export VOLTDB_OPTS='-XX:+PerfDisableSharedMem'

Alternately, you can write the JVM stats to an in-memory virtual disk, such as /tmpfs.

• Hardware power saving options — Beware of hardware options that attempt to conserve energy by
putting "idle" processes or resources into a reduced or sleep state. Resuming quiesced resources takes
time and the requesting process is blocked for that period. Make sure power saving options are disabled
for the resources you need (such as CPUs and disks).

Although not specific to server resources, perhaps the most common cause of latency is queries that require
a sequential scan of extremely large tables of data. Any query that must read through every record in a
table will perform badly in proportion to the size of the table. Be sure to review the execution plans for key
transactions to ensure indexes are used as expected and add indexes to avoid sequential scans wherever
possible.

9

Chapter 3. Starng and Stopping the
Database

The fundamental operations for database administration are starting and stopping the database. But before
you start the database, you need to decide what database features you want to enable and how they should
work. These features include attributes such as the amount of replication you want to use to increase
availability in case of server failure and what level of durability is required for those cases where the
database itself stops. These and other settings are defined in the configuration file, which you specify on
the command line when you initialize the root directory for the database on each server.

This chapter explains how to configure the cluster's physical structure and features in the configuration
file and how to initialize the root directory and start and stop the database.

3.1. Configuring the Cluster and Database
You specify the cluster configuration and what features to use in the configuration file, which is an XML
file that you can create and edit manually. In the simplest case, the configuration file specifies how many
partitions to create on each server, and what level of availability (K-safety) to use. For example:

<?xml version="1.0"?>
<deployment>
 <cluster sitesperhost="12"
 kfactor="1"
 />
</deployment>

• The sitesperhost attribute specifies the number of partitions (or "sites") to create on each server.
Set to eight by default, it is possible to optimize the number of sites per host in relation to the number
of processors per machine. The optimal number is best determined by performance testing against the
expected workload. See the chapter on "Benchmarking" in the VoltDB Planning Guide for details.

• The kfactor attribute specifies the K-safety value to use. The higher the K-safety value, the more
node failures the cluster can withstand without affecting database availability. However, increasing the
K-safety value increases the number of copies of each unique partition. High availability is a trade-
off between replication to protect against node failure and the number of unique partitions, therefore
throughput performance. See the chapter on availability in the Using VoltDB manual for more informa-
tion on determining an optimal K-safety value.

In addition to the sites per host and K-safety, you can use the configuration file to enable and configure
specific database features such as export, command logging, and so on. The following table summarizes
some of the key features that are settable in the configuration file.

Table 3.1. Selecting Database Features in the Configuration File

Feature Example

Command Logging — Command logging
provides durability by logging transactions to
disk so they can be replayed during a recov-
ery. You can configure the type of command
logging (synchronous or asynchronous), the

<commandlog enabled="true"
 synchronous="false">
 <frequency time="300"
 transactions="1000"/>
</commandlog>

10

http://docs.voltactivedata.com/PlanningGuide/ChapBenchmark.php
http://docs.voltactivedata.com/PlanningGuide/
https://docs.voltactivedata.com/UsingVoltDB/ChapKSafety.php
https://docs.voltactivedata.com/UsingVoltDB/

Starting and Stopping the Database

Feature Example

log file size, and the frequency of the logs (in
terms of milliseconds or number of transac-
tions).

Snapshots — Automatic snapshot provide an-
other form of durability by creating snapshots
of the database contents, that can be restored
later. You can configure the frequency of the
snapshots, the unique file prefix, and how
many snapshots are kept at any given time.

<snapshot enabled="true"
 frequency="30m"
 prefix="mydb"
 retain="3" />

Export — Export allows you to write select-
ed records from the database to one or more
external targets, which can be files, another
database, or another service. VoltDB provides
different export connectors for each protocol.
You can configure the type of export for each
stream as well as other properties, which are
specific to the connector type. For example,
the file connector requires a specific type (or
format) for the files and a unique identifier
called a "nonce".

<export>
 <configuration target="dblog" type="file">
 <property name="type">csv</property>
 <property name="nonce">dblog</property>
 </configuration>
</export>

Security & Accounts — Security lets you
protect your database against unwanted ac-
cess by requiring all connections authenticate
against known usernames and passwords. In
the deployment file you can define the user ac-
counts and passwords and what role or roles
each user fulfills. Roles define what permis-
sions the account has. Roles are defined in the
database schema.

<security enabled="true"/>
<users>
 <user name="admin"
 password="superman"
 roles="administrator"/>
 <user name="mitty"
 password="thurber"
 roles="user,writer"/>
</users>

File Paths — Paths define where VoltDB
writes any files or other disc-based content.
You can configure specific paths for each type
of service, such as snapshots, command logs,
export overflow, etc.

<paths>
 <exportoverflow path="/tmp/overflow" />
 <snapshots path="/opt/archive" />
</paths>

3.2. Initializing the Database Root Directory
Once you create the configuration file, you are ready to initialize the database root directory, using the
voltdb init command. You issue this command on each node of the cluster, specifying the location for
the root directory, the configuration file, license, and schema and stored procedure class files. There are
defaults for each argument. But if you do specify the configuration, license, schema or classes you must
specify the same values on every node of the cluster. For example:

$ voltdb init --dir=~/database \
 --config=deployment.xml \
 --license=~/license.xml \
 --schema=myschema.sql \
 --classes=myprocs.jar

On the command line, you can specify up to five arguments:

11

Starting and Stopping the Database

The location where the root directory will be created
The configuration file, which enables and sets attributes for specific VoltDB features
The license file (when using the VoltDB Enterprise Edition)
One or more SQL DDL files
One or more JAR files containing stored procedure classes

When you initialize the root directory, VoltDB:

1. Creates the root directory (voltdbroot) as a subfolder of the specified parent directory

2. Saves the configuration and license, plus any schema and class files to preload, in the new root directory

Note that you only need to initialize the root directory once. Once the root directory is initialized, you can
start and stop the database as needed. VoltDB uses the root directory to manage the current configuration
options and backups of the data — if those features are selected — in command logs and snapshots. If you
do not specify a license on the command line, VoltDB looks for a license in the current working directory,
your home directory, or in the directory where the VoltDB software is installed and copies it into the root
directory if it finds one.

If the root directory already exists or has been initialized before, you cannot re-initialize the directory
unless you include the --force argument. This is to protect you against accidentally deleting data from a
previous database session.

Important

Volt uses the root directory to store files vital to the operation and recovery of the database in
case of failure. Many product features rely on information stored within the root directory and its
subfolders. Do not manually add new or modify existing files within the directory structure. You
can, judiciously, delete files as a maintenance activity (such as old log files or snapshots archived
in numbered subfolders if and when you reinitialize an existing root directory). But even these
activities are best handled automatically by setting the appropriate retention properties for each
feature in the database configuration.

3.3. Starting the Database
Once you initialize the root directory, you are ready to start the database using the voltdb start command.
You issue this command, specifying the location of the root directory, the number of servers required, and
one or more server addresses to use as "host" to manage the initial formation of the cluster. You issue the
same command on every node in the cluster. For example:

$ voltdb start --dir=~/database \
 --count=5 \
 --host=svr1,svr2

On the command line, you specify four arguments:

The location of the root directory
The number of servers in the cluster
One or more nodes from the cluster to use as the "host", to coordinate the initial startup of the cluster

You must specify the same number of servers and hosts (listed in exactly the same order) on all nodes of
the cluster. You can, optionally, specify all nodes of the cluster in the --host argument. In which case, you
can leave off the --count argument and VoltDB assumes the number of hosts is the total number of servers.

12

Starting and Stopping the Database

When you start the database, all nodes select one of the servers from the host list as the "host". The host
then:

1. Waits until the necessary number of servers (as specified by the count) are connected

2. Creates the network mesh between the servers

3. Verifies that the configuration options match for all nodes

At this point, the cluster is fully initialized and the "host" ends its special role and becomes a peer to
all the other nodes. If the database was run before and command logs or automated snapshots exist, the
cluster now recovers the data from the previous session. All nodes in the cluster then write an informational
message to the console verifying that the database is ready:

Server completed initialization.

3.4. Loading the Database Definition
Stored procedures are compiled into classes and then packaged into a JAR file, as described in the section
on installing stored procedures in the Using VoltDB manual. To fully load the database definition you
will need one or more JAR files of stored procedure classes and a text file containing the data definition
language (DDL) statements that declare the database schema.

Responsibility for loading the database schema and stored procedures varies from company to company.
In some cases, operators and administrators are only responsible for initiating the database; developers
may load and modify the schema themselves. In other cases, the administrators are responsible for both
starting the cluster and loading the correct database schema as well.

If the schema and stored procedures are predefined, you can include them when you initialize the database
root directory and VoltDB will preload them when the database starts for the first time. Otherwise, you
can load the schema and class files using the sqlcmd utlity after the database starts. The following sections
describe each approach.

3.4.1. Preloading the Schema and Classes When You Initial-
ize the Database

If the database schema is predefined, you can include it when you initialize the database root directory,
using the --schema and --classes arguments to the voltdb init command. The --schema flag lets
you specify one or more text files containing SQL DDL statements and the --classes flag lets you
specify one or more JAR files containing the classes associated with any stored procedures you want to
declare.

Note that DDL statements and Java classes can be order-dependent. For example, a stored procedure
definition can depend on the existence of a table definition to define its partitioning column. VoltDB loads
any classes before loading the schema file. However, you should be sure to specify the individual schema
files or JAR files in the order you want them loaded.

Also, you must specify the same files, in the same order, when initializing all nodes of the cluster. For
example:

$ voltdb init --dir=~/db \
 --schema=tables.sql,streams.sql,procs.sql \
 --classes=globalprocs.jar,myprocs.jar

13

http://docs.voltactivedata.com/UsingVoltDB/designappprocinstall.php
http://docs.voltactivedata.com/UsingVoltDB/

Starting and Stopping the Database

3.4.2. Loading the Schema and Classes After the Database
Starts

If you are responsible for defining the correct schema once the database is running, or modifying an existing
schema, you can do this using the sqlcmd utility. The following example assumes the schema is contained
in two files: storedprocs.jar and dbschema.sql. Once the database cluster has started, you can
start the sqlcmd utility and load the files at the sqlcmd prompt using the sqlcmd load classes and file
directives:

$ sqlcmd
1> load classes storedprocs.jar;
2> file dbschema.sql;

Note that when loading the schema, you should always load the stored procedures first, so the class files
are available for any CREATE PROCEDURE statements within the schema.

3.5. Stopping the Database
How you choose to stop a VoltDB depends on what features you have enabled. If you are using command
logging (which is enabled by default in the VoltDB Enterprise Edition), it is a good idea to perform an
orderly shutdown when stopping the database to ensure that all active client queries have a chance to
complete and return their results (and no new queries start) before the shutdown occurs.

To perform an orderly shutdown you can use the voltadmin shutdown command:

$ voltadmin shutdown

As with all voltadmin commands, you can use them remotely by specifying one of the cluster servers on
the command line:

$ voltadmin shutdown --host=voltsvr2

If security is enabled, you will also need to specify a username and password for a user with admin per-
missions:

$ voltadmin shutdown --host=voltsvr2 -u root -p Suda51

If you are not using command logging, you want to make sure you perform a snapshot before shutting
down. You can do this manually using the voltadmin save command. Or you can simply add the --save
argument to the voltadmin shutdown command:

$ voltadmin shutdown --save

The most recent snapshot saved to the database snapshots directory (by the voltadmin save command to
the default location, automated snapshots, or voltadmin shutdown --save) will automatically be restored
by the next voltdb start command.

3.6. Restarting the Database
Restarting a VoltDB database is done the same way as starting the database for the first time, except there
is no need to initialize the root directory. You simply issue the same voltdb start command you did when
you started it for the first time. For example:

$ voltdb start --dir=~/database \

14

Starting and Stopping the Database

 --count=5 \
 --host=svr1,svr2

If you are using command logging, or you created a snapshot in the default snapshots directory, VoltDB
automatically reinstates the data once the cluster is established. After the schema is loaded and all data is
restored, the database enables client access.

3.7. Starting and Stopping Individual Servers
When using K-safety, it is possible for one or more nodes in a cluster to stop without stopping the database
itself. (See the chapter on availability in the Using VoltDB manual for a complete description of K-safety.)
If a server stops — either intentionally or accidentally — you can start the server and have it rejoin the
cluster using the same voltdb start command used to start the cluster. For example:

$ voltdb start --dir=~/database \
 --count=5 \
 --host=svr1,svr2

The start command will check to see if the cluster is still running, based on the list of servers in the --
host argument. If so, the server will rejoin the cluster.

Note that if there are multiple servers listed in the --host argument, the server can rejoin even if it is
one of the listed hosts. If you only list one host and that is the server that stopped, you will need to list
a different server in the --host argument — any server that is still an active member of the running
cluster. (This is why listing multiple nodes in the --host argument is beneficial: you can use exactly the
same start command in multiple situations.)

If you want to stop a single node in a K-safe cluster — for example, to perform maintenance on the
hardware — you can do this using the voltadmin stop command. The voltadmin stop command stops a
single node, as long as the cluster has enough K-safety to remain viable after the nodes stops. (If not, the
stop command is rejected.) For example to stop svr2, you can issue the following command:

$ voltadmin stop --host=svr1 svr2

Note that the stop command does not have to issued on the server that is being stopped. You can issue
the command on any active server in the cluster. See Chapter 4, Maintenance and Upgrades for more
information about performing maintenance tasks.

15

Chapter 4. Maintenance and Upgrades
Once the database is running, it is the administrator's role to keep it running. This chapter explains how
to perform common maintenance and upgrade tasks, including:

• Database backups

• Schema and stored procedure updates

• System and hardware upgrades

• VoltDB software upgrades

• License updates

4.1. Backing Up the Database
It is a common safety precaution to backup all data associated with computer systems and store copies off-
site in case of system failure or other unexpected events. Backups are usually done on a scheduled basis
(every day, every week, or whatever period is deemed sufficient).

VoltDB provides several options for backing up the database contents. The easiest option is to save a
native snapshot then backup the resulting snapshot files to removable media for archiving. The advantage
of this approach is that native snapshots contain both a complete copy of the data and the schema. So
in case of failure the snapshot can be restored to the current or another cluster using a single voltadmin
restore command.

The key thing to remember when using native snapshots for backup is that each server saves its portion
of the database locally. So you must fetch the snapshot files for all of the servers to ensure you have a
complete set of files. The following example performs a manual snapshot on a five node cluster then uses
scp to remotely copy the files from each server to a single location for archiving.

$ voltadmin save --blocking --host=voltsvr3 \
 /tmp/voltdb backup
$ scp -l 100 'voltsvr1:/tmp/voltdb/backup*' /tmp/archive/
$ scp -l 100 'voltsvr2:/tmp/voltdb/backup*' /tmp/archive/
$ scp -l 100 'voltsvr3:/tmp/voltdb/backup*' /tmp/archive/
$ scp -l 100 'voltsvr4:/tmp/voltdb/backup*' /tmp/archive/
$ scp -l 100 'voltsvr5:/tmp/voltdb/backup*' /tmp/archive/

Note that if you are using automated snapshots or command logging (which also creates snapshots), you
can use the automated snapshots as the source of the backup. However, the automated snapshots use a
programmatically generated file prefix, so your backup script will need some additional intelligence to
identify the most recent snapshot and its prefix.

The preceding example also uses the scp limit flag (-l 100) to constrain the bandwidth used by the copy
command to 100kbits/second. Use of the -l flag is recommended to avoid the copy operation blocking the
VoltDB server process and impacting database performance.

Finally, if you wish to backup the data in a non-proprietary format, you can use the voltadmin save --for-
mat=csv command to create a snapshot of the data as comma-separated value (CSV) formatted text files.
The advantage is that the resulting files are usable by more systems than just VoltDB. The disadvantage is
that the CSV files only contain the data, not the schema. These files cannot be read directly into VoltDB,

16

Maintenance and Upgrades

like a native snapshot can. Instead, you will need to initialize and start a new database, load the schema,
then use the csvloader utility to load individual files into each table to restore the database completely.

4.2. Updating the Database Schema
As an application evolves, the database schema often needs changing. This is particularly true during
the early stages of development and testing but also happens periodically with established applications,
as the database is tuned for performance or adjusted to meet new requirements. In the case of VoltDB,
these updates may involve changes to the table definitions, to the indexes, or to the stored procedures. The
following sections explain how to:

• Perform live schema updates

• Change unique indexes and partitioning using save and restore

4.2.1. Performing Live Schema Updates
There are two ways to update the database schema for a VoltDB database: live updates and save/restore
updates. For most updates, you can update the schema while the database is running. To perform this
type of live update, you use the DDL CREATE, ALTER, and DROP statements to modify the schema
interactively as described in the section on modifying the schema in the Using VoltDB manual.

You can make any changes you want to the schema as long as the tables you are modifying do not contain
any data. The only limitations on performing live schema changes are that you cannot:

• Add or broaden unique constraints (such as indexes or primary keys) on tables with existing data

• Reduce the datatype size of columns on tables with existing data (for example, changing the datatype
from INTEGER to TINYINT)

These limitations are in place to guarantee that the schema change will succeed without any pre-existing
data violating the constraint. If you know that the data in the database does not violate the new constraints
you can make these changes using the save and restore commands, as described in the following section.

4.2.2. Performing Updates Using Save and Restore
If you need to add unique indexes or reduce columns to database tables with existing data, you must use
the voltadmin save and restore commands to perform the schema update. This requires shutting down
and restarting the database to allow VoltDB to validate the existing data against the new constraints.

To perform a schema update using save and restore, use the following steps:

1. Create a new schema file containing the updated DDL statements.

2. Pause the database (voltadmin pause).

3. Save a snapshot of the database contents to an specific location (voltadmin save --blocking {path}
{file-prefix}).

4. Shutdown the database (voltadmin shutdown).

5. Re-initialize and restart the database starting in admin mode (voltdb init --force and voltdb start --
pause).

6. Load the stored procedures and new schema (using the sqlcmd LOAD CLASSES and FILE directives)

17

http://docs.voltactivedata.com/UsingVoltDB/SchemaModify.php
http://docs.voltactivedata.com/UsingVoltDB/

Maintenance and Upgrades

7. Restore the snapshot created in Step #3 (voltadmin restore {path} {file-prefix}).

8. Return the database to normal operations (voltadmin resume).

For example:

$ # Issue once
$ voltadmin pause
$ voltadmin save --blocking /opt/archive/ mydb
$ voltadmin shutdown

$ # Issue next two commands on all servers
$ voltdb init --dir=~/mydb --config=deployment.xml --force
$ voltdb start --dir=~/mydb --host=svr1,svr2 --count=5

$ # Issue only once
$ sqlcmd
1> load classes storedprocs.jar;
2> file newschema.sql;

3> exit
$ voltadmin restore /opt/archive mydb
$ voltadmin resume

The key point to remember when adding new constraints is that there is the possibility that the restore
operation will fail if existing records violate the new constraint. This is why it is important to make sure
your database contents are compatible with the new schema before performing the update.

4.3. Upgrading the Cluster
Sometimes you need to update or reconfigure the server infrastructure on which the VoltDB database is
running. Server upgrades are one example. A server upgrade is when you need to fix or replace hardware,
update the operating system, or otherwise modify the underlying system.

Server upgrades usually require stopping the VoltDB database process on the specific server being ser-
viced. However, if your database cluster uses K-safety for enhanced availability, it is possible to complete
server upgrades without any database downtime by performing a rolling hardware upgrade, where each
server is upgraded in turn using the voltadmin stop and start commands.

Another type of upgrade is when you want to reconfigure the cluster as a whole. Reasons for reconfiguring
the cluster are because you want to add or remove servers from the cluster or you need to modify the
number of partitions per server that VoltDB uses.

Adding and removing servers from the cluster can happen without stopping the database. This is called
elastic scaling. Changing the K-Safety factor or number of sites per host requires restarting the cluster
during a maintenance window.

The following sections describe five methods of cluster upgrade:

• Performing server upgrades

• Performing rolling upgrades on K-safe clusters

• Adding servers to a running cluster through elastic scaling

• Removing servers from a running cluster through elastic scaling

18

Maintenance and Upgrades

• Reconfiguring the cluster with a maintenance window

4.3.1. Performing Server Upgrades
If you need to upgrade or replace the hardware or software (such as the operating system) of the individual
servers, this can be done without taking down the database as a whole. As long as the server is running
with a K-safety value of one or more, it is possible to take a server out of the cluster without stopping the
database. You can then fix the server hardware, upgrade software (other than VoltDB), even replace the
server entirely with a new server, then bring the server back into the cluster.

To perform a server upgrade:

1. Stop the VoltDB server process on the server using the voltadmin stop command. As long as the cluster
is K-safe, the rest of the cluster will continue running.

2. Perform the necessary upgrades.

3. Have the server rejoin the cluster using the voltdb start command.

The start command starts the database process on the server, contacts the database cluster, then copies the
necessary partition content from other cluster nodes so the server can then participate as a full member of
the cluster, While the server is rejoining, the other database servers remain accessible and actively process
queries from client applications.

When rejoining a cluster you can use the same start command used when starting the cluster as a whole. If,
however, you need to replace the server (say, for example, in the case of a disk failure), you will also need
to initialize a root directory for the database process on the new machine. You do this using the current
configuration file for the cluster. For example:

$ voltdb init --dir=~/database --config=deployment.xml
$ voltdb start --dir=~/database --host=svr1,svr2

If no changes have been made, you can use the same configuration file used to initialize the other servers.
If you have used voltadmin update to change the configuration or changed settings using the Volt Man-
agement Center (VMC), you can download a copy of the latest configuration from VMC.

If the cluster is not K-safe — that is, the K-safety value is 0 — then you must follow the instructions in
Section 4.3.5, “Reconfiguring the Cluster During a Maintenance Window” to upgrade the servers.

4.3.2. Performing Rolling Hardware Upgrades on K-Safe
Clusters

If you need to upgrade all of the servers in a K-safe cluster (for example, if you are upgrading the operating
system), you can perform a rolling hardware upgrade by stopping, upgrading, then rejoining each server
one at a time. Using this process the entire cluster can be upgraded without suffering any downtime of
the database. Just be sure to wait until the rejoining server has become a full member of the cluster before
removing and upgrading the next server in the rotation. Specifically, wait until the following message
appears in the log or on the console for the rejoining server:

Node rejoin completed.

Alternately, you can attempt to connect to the server remotely — for example, using the sqlcmd command
line utility. If your connection is rejected, the rejoin has not finished. If you successfully connect to the
client port of the rejoining node, you know the rejoin is complete:

19

Maintenance and Upgrades

$ sqlcmd --servers=myserver
SQL Command :: myserver:21212
1>

Note

You cannot update the VoltDB software itself using the rolling hardware upgrade process, only
the operating system, hardware, or other software. See Section 4.4, “Upgrading Existing VoltDB
Installations” for information about minimizing downtime during a VoltDB software upgrade.

4.3.3. Adding Servers to a Running Cluster with Elastic Scal-
ing

If you want to add servers to a VoltDB cluster — usually to increase performance and/or capacity — you
can do this without having to restart the database. You add servers to the cluster using the voltdb start
command with the --add flag. Note, as always, you must initialize a root directory before issuing the
start command. For example:

$ voltdb init --dir=~/database --config=deployment.xml
$ voltdb start --dir=~/database --host=svr1,svr2 --add

The --add flag specifies that if the cluster full — that is, all of the specified number of servers are currently
active in the cluster — the joining node can be added to elastically expand the cluster. You must elastically
add a full complement of servers to match the K-safety value (K+1) before the servers can participate as
active members of the cluster. For example, if the K-safety value is 2, you must add 3 servers before they
actually become part of the cluster and the cluster rebalances its partitions.

When you add servers to a VoltDB database, the cluster performs the following actions:

1. The new servers are added to the cluster configuration and sent copies of the schema, stored procedures,
and deployment file.

2. Once sufficient servers are added, copies of all replicated tables and their share of the partitioned tables
are sent to the new servers.

3. As the data is rebalanced, the new servers begin processing transactions for the partition content they
have received.

4. Once rebalancing is complete, the new servers are full members of the cluster.

If the cluster is not at its full complement of servers when you issue a voltdb start --add command, the
added server will join the cluster as a replacement for a missing node rather than extending the cluster.
Once the cluster is back to its full complement of nodes, the next voltdb start --add command will extend
the cluster.

4.3.4. Removing Servers from a Running Cluster with Elastic
Scaling

Just as you can add nodes to a running cluster to add capacity, you can remove nodes from a running cluster
to reduce capacity. Obviously, you want to make sure that the smaller cluster has sufficient resources, such
as memory, for your data and workload. If you are using K-safety, you also need to be sure the current
cluster is large enough to remove nodes and still meet the requirements for your specific K-safety setting.

20

Maintenance and Upgrades

To remove nodes from a running cluster, you use the voltadmin resize command. The first step is to verify
that the cluster has enough nodes to reduce in size. You do this with the voltadmin resize --test command:

$ voltadmin resize --test

The voltadmin resize --test command checks the cluster to make sure there are enough nodes to still be
operational after the reduction and it reports which nodes will be removed as a result of the operation.
The number of nodes that will be removed is calculated as the smallest number that allows the cluster to
maintain K-safety. Without K-Safety, that is one node. With K-Safety, that is at least K+1, but possibly
more depending on the cluster configuration. The remaining node count and configuration must satisfy
the requirement that the number of nodes and the total number of partitions are both divisible by K+1.

Once you are ready to start reducing the cluster size, issue the voltadmin resize command without any
arguments:

$ voltadmin resize

This command verifies that the cluster can be resized, reports which nodes will be removed, asks you to
confirm that you want to begin, and then starts the resize operation. Because resizing the cluster involves
reorganizing and rebalancing the partitions, it can take a significant amount of time, depending on the
size of the database and the ongoing workload. You can track the progress of the resize operation using
the voltadmin status command. You can also adjust the priority between rebalancing the partitions and
ongoing client transactions by setting the duration and throughput of the rebalance operation. See the
section on "Configuring How VoltDB Rebalances Nodes During Elastic Scaling" in the Using VoltDB
manual for details.

Note that once resizing starts, you cannot cancel the operation. So be certain you want to reduce the size
of the cluster before beginning. If for any reason the resize operation fails unexpectedly, you can use the
voltadmin resize --retry command to restart the cluster reduction.

4.3.5. Reconfiguring the Cluster During a Maintenance Win-
dow

If you want to modify the cluster configuration, such as the number of sites per host or K-Safety factor,
you need to restart the database cluster as a whole. You can also choose to add or remove nodes from the
cluster during this operation. Stopping the database temporarily to reconfigure the cluster is known as a
maintenance window.

The steps for reconfiguring the cluster with a maintenance window are:

1. Place the database in admin mode (voltadmin pause).

2. Perform a manual snapshot of the database (voltadmin save --blocking).

3. Shutdown the database (voltadmin shutdown).

4. Make the necessary changes to the configuration file.

5. Reinitialize the database root directory on all nodes specifying the edited configuration file (voltdb
init --force).

6. Start the new database in admin mode (voltdb start --pause)

7. Restore the snapshot created in Step #2 (voltadmin restore).

21

https://docs.voltactivedata.com/UsingVoltDB/UpdateHw.php#UpdateRebalance
https://docs.voltactivedata.com/UsingVoltDB/

Maintenance and Upgrades

8. Return the database to normal operations (voltadmin resume).

4.4. Upgrading Existing VoltDB Installations
As new versions of VoltDB become available, you will want to upgrade the VoltDB software on your
database cluster. The simplest approach for upgrading recent versions of VoltDB — V6.8 or later — is
to perform an orderly shutdown saving a final snapshot, upgrade the software on all servers, then re-start
the database. (If you are upgrading from earlier versions of the software, you can still upgrade using a
snapshot. But you will need to perform the save and restore operations manually.)

However, upgrading using snapshots involves downtime while the software is being updated. Two alter-
natives for upgrading VoltDB without downtime are in-service upgrades — upgrading nodes of the cluster
one at a time — and using cross data center replication (XDCR) to upgrade clusters.

An in-service upgrade (a separately licensable feature of VoltDB) lets you upgrade a single running cluster
by removing individual nodes, upgrading the VoltDB software, then rejoining the node to the cluster. The
cluster continues to process transactions throughout the upgrade process, During the upgrade, the cluster
operates as the older version software. Once all of the nodes are upgraded, the cluster transitions to the
new version.

Using cross data center replication (XDCR), it is possible to use two or more clusters to perform an online
upgrade, where there is no downtime and the database is accessible throughout the upgrade operation.
If two or more clusters are already active participants in an XDCR environment, you can shutdown and
upgrade the clusters, one at a time, to perform the upgrade leaving at least one cluster available at all times.

The following sections describe four approaches to upgrading existing VoltDB installations, starting with
how to replace the software itself:

• Upgrading the VoltDB Software

• Upgrading VoltDB Using Save and Restore

• Upgrading Older Versions of VoltDB Manually

• Performing an In-Service Upgrade of a Single Cluster

• Performing an Online Upgrade Using Multiple XDCR Clusters

4.4.1. Upgrading the VoltDB Software
Updating the VoltDB software is very simple. However, you must make sure you perform this step at the
right stage in the upgrade process, as described in the following sections. The product comes as a .tar.gz
file. When the time comes to upgrade the software, you unpack the tar file and move the resulting folder
to replace your current installation. For example, if you have the VoltDB software installed as /var/voltdb,
the software installation looks like the following, where you delete the previous version and replace it
with the new one:

$ tar -zxvf voltdb-ent-n.n.n-xxxx.tar.gz -C /var
$ cd /var
$ rm -vr voltdb
$ mv voltdb-ent-n.n.n-xxxx voltdb

Remember, when upgrading an existing installation with a running database, you need to upgrade both
the software and the database itself. Which means you must make sure you perform the update steps in

22

Maintenance and Upgrades

the correct order. The following sections explain the different options for updating existing installations,
including at what stage in the process you should replace the software.

4.4.2. Upgrading VoltDB Using Save and Restore
Upgrading the VoltDB software on a single database cluster is easy. All you need to do is perform an
orderly shutdown saving a final snapshot, upgrade the VoltDB software on all servers in the cluster, then
restart the database. The steps to perform this procedure are:

1. Shutdown the database and save a final snapshot (voltadmin shutdown --save).

2. Upgrade the VoltDB software on all cluster nodes (instructions).

3. Restart the database (voltdb start).

This process works for any recent (V6.8 or later) release of VoltDB.

4.4.3. Upgrading Older Versions of VoltDB Manually
To upgrade older versions of VoltDB software (prior to V6.8), you must perform the save and restore
operations manually. The steps when upgrading from older versions of VoltDB are:

1. Place the database in admin mode (voltadmin pause).

2. Perform a manual snapshot of the database (voltadmin save --blocking).

3. Shutdown the database (voltadmin shutdown).

4. Upgrade the VoltDB software on all cluster nodes (instructions).

5. Re-initialize the root directory on all nodes (voltdb init --force).

6. Start a new database in admin mode (voltdb start --pause).

7. Restore the snapshot created in Step #2 (voltadmin restore).

8. Return the database to normal operations (voltadmin resume).

4.4.4. Performing an In-Service Upgrade of a Single Cluster
Normally, when upgrading the VoltDB software, you must shutdown the cluster (for example, with the
voltadmin shutdown --save command) and restart the entire cluster using the new software. Downtime
can be avoided by performing an in-service upgrade. An in-service upgrade allows a K-safe cluster to
be upgraded one node at a time, rather than the entire cluster all at once. This means the cluster, and the
business processes it supports, remain available throughout the upgrade procedure.

The requirements for performing an in-service upgrade are:

• The cluster has the appropriate license for VoltDB that includes the In-Service Upgrade feature.

• The cluster must be K-safe. That is, the cluster has a K-safety factor of one or more. This is required so
individual nodes can be stopped without crashing the cluster.

• The cluster must be running VoltDB V13.1.0 or later.

23

Maintenance and Upgrades

• The new version falls within the parameters allowed by in-service upgrades, as described in Sec-
tion 4.4.4.1, “The Scope of In-Service Upgrades”.

To perform an in-service upgrade on bare metal servers, you upgrade the VoltDB software on each node
consecutively. Specifically:

1. Stop one of the cluster nodes, using the voltadmin stop node command

2. Once the server process stops, replace the VoltDB software with the new version.

3. Restart the node using the voltdb start command, specifying one or more of the other nodes in the
cluster as hosts.

4. Once the rejoin process is finished and the cluster is complete, repeat the process for the next node
until all nodes are upgraded.

During the upgrade process, you can determine which nodes have been updated using the @SystemIn-
formation system procedure with the OVERVIEW selector and looking for the VERSION keyword. For
example, in the following command output, the first column is the host ID and the last column is the cur-
rently installed software version for that host. Once all hosts report using the upgraded software version,
the upgrade is complete.

$ echo "exec @SystemInformation overview" | sqlcmd | grep VERSION
 2 VERSION 13.1.2
 1 VERSION 13.1.2
 0 VERSION 13.1.3

Until the upgrade process is complete, all nodes in the cluster maintain the functionality of the lower
version, even for those nodes that have already upgraded to the higher version software. Once the upgrade
is complete and all nodes are running on the newer version, the cluster switches to operating with the
higher version functionality. In other words, if the new software contains any new function or behavior,
that feature will not be accessible until the entire in-service upgrade process is complete.

If the upgrade fails for any reason, or you choose to stop the upgrade midway, you can revert to the original
version by reversing the process: removing a node that has been upgraded, replace the VoltDB software
with the original version, rejoin the node and repeat for all nodes that were upgraded. Once the upgrade
process is complete, the in-service upgrade is over. At which point, you can longer return to the previous
version through an in-service upgrade and must perform a full cluster restart to downgrade.

4.4.4.1. The Scope of In-Service Upgrades
There are limits to which software versions can use in-service upgrades. The following table describes the
rules for which releases can be upgraded with an in-service upgrade and which releases cannot.

✔ Patch Releases You can upgrade between any two patch releases. That is, any two releases
where only the third and final number of the version identifier changes. For
example, upgrading from 13.1.1 to 13.1.4.

✔ Minor Releases You can also use in-service upgrades to upgrade between two consecutive mi-
nor releases. That is where the second number in the version identifier differ.
For example, you can upgrade from V13.2.0 to V13.3.0. You can also upgrade
between any patch releases within those minor releases. For example, upgrad-
ing from V13.2.3 to V13.3.0.

You cannot use in-service upgrades to upgrade more than one minor version at
a time. In other words, you can upgrade from V13.2.0 to V13.3.0 but you cannot

24

Maintenance and Upgrades

perform an in-service upgrade from V13.2.0 to V13.4.0. To transition across
multiple minor releases your options are to perform consecutive in-service up-
grades (for example, from V13.2.0 to V13.3.0, then from V13.3.0 to V13.4.0) or
to perform a regular upgrade where all cluster nodes are upgrading at one time.

✖ Major Releases You cannot use in-service upgrades between major versions of VoltDB. That
is, where the first number in the version identifier is different. For example, you
must perform a full cluster upgrade when migrating from V13.x.x to V14.0.0
or later.

4.4.5. Performing an Online Upgrade Using Multiple XDCR
Clusters

It is also possible to upgrade the VoltDB software using cross data center replication (XDCR), by simply
shutting down, upgrading, and then re-initalizing each cluster, one at a time. This process requires no
downtime, assuming your client applications are already designed to switch between the active clusters.

Use of XDCR for upgrading the VoltDB software is easiest if you are already using XDCR because it
does not require any additional hardware or reconfiguration. The following instructions assume that is the
case. Of course, you could also create a new cluster and establish XDCR replication between the old and
new clusters just for the purpose of upgrading VoltDB. The steps for the upgrade outlined in the following
sections are the same. But first you must establish the cross data center replication between the two (or
more) clusters. See the chapter on Database Replication in the Using VoltDB manual for instructions on
completing this initial step.

Once you have two clusters actively replicating data with XCDCR (let's call them clusters A and B), the
steps for upgrading the VoltDB software on the clusters is as follows:

1. Pause and shutdown cluster A (voltadmin pause --wait and shutdown).

2. Clear the DR state on cluster B (voltadmin dr reset).

3. Update the VoltDB software on cluster A.

4. Start a new database instance on A, making sure to use the old deployment file so the XDCR connections
are configured properly (voltdb init --force and voltdb start).

5. Load the schema on Cluster A so replication starts.

6. Once the two clusters are synchronized, repeat steps 1 through 4 for cluster B.

Note that since you are upgrading the software, you must create a new instance after the upgrade (step
#3). When upgrading the software, you cannot recover the database using just the voltdb start command;
you must use voltdb init --force first to create a new instance and then reload the existing data from the
running cluster B.

Also, be sure all data has been copied to the upgraded cluster A after step #4 and before proceeding to
upgrade the second cluster. You can do this by checking the @Statistics system procedure selector DR-
CONSUMER on cluster A. Once the DRCONSUMER statistics State column changes to "RECEIVE",
you know the two clusters are properly synchronized and you can proceed to step #5.

4.4.5.1. Falling Back to a Previous Version
In extreme cases, you may decide after performing the upgrade that you do not want to use the latest
version of VoltDB. If this happens, it is possible to fall back to the previous version of VoltDB.

25

https://docs.voltactivedata.com/UsingVoltDB/ChapReplication.php
https://docs.voltactivedata.com/UsingVoltDB/

Maintenance and Upgrades

To "downgrade" from a new version back to the previous version, follow the steps outlined in Section 4.4.5,
“Performing an Online Upgrade Using Multiple XDCR Clusters” except rather than upgrading to the new
version in Step #2, reinstall the older version of VoltDB. This process is valid as long as you have not
modified the schema or deployment to use any new or changed features introduced in the new version.

4.4.6. Downgrading, or Falling Back to a Previous VoltDB
Version

The section describing the upgrade process for active XDCR explains how to fall back to the previous
version of VoltDB in case of emergency. This section explains how to fall back, or downgrade, when
using the standard save and restore process described in Section 4.4.2, “Upgrading VoltDB Using Save
and Restore”.

The following process works if you are reverting between two recent versions of VoltDB and you do
not use any new features between the upgrade and the downgrade. There are no guarantees an attempt
to downgrade will succeed if the two software versions are more than one major version apart or if you
utilize a new feature from the higher version software prior to downgrading.

With those caveats, the most reliable way to fall back to a previous VoltDB version is:

1. Extract the database schema and stored procedure classes

2. Pause the database, save a snapshot, and shutdown

3. Re-install the previous version of VoltDB

4. Initialize a new database root directory, using the extracted schema and classes

5. Start the new database instance (in pause mode) using the older version of VoltDB

6. Manually restore the data from the snapshot created in Step #2

7. Resume normal operations

This process ensures that only the schema, stored procedures, and data are returned to the older version of
the software, and new software features will not impact your restore process. For example:

$ voltdb get schema -D ~/db/new --output=/tmp/mydb.sql
$ voltdb get classes -D ~/db/new --output=/tmp/mydb.jar
$ voltadmin pause
$ voltadmin save /tmp mydata
$ voltadmin shutdown

[downgrade VoltDB software . . .]

$ voltdb init -f -D ~/db/old --schema=/tmp/mydb.sql --classes=/top/mydb.jar
$ voltdb start -D ~/db/old --pause &
$ voltadmin restore /tmp mydata
$ voltadmin resume

4.5. Updating the VoltDB Software License
The VoltDB Enterprise Edition is licensed software. Once the license expires, you will not be able to restart
your database cluster without a new license. So it is a good idea to update the license before it expires to
avoid any interruption to your service.

26

Maintenance and Upgrades

You can use the voltadmin show license command to see information about your current license, including
the expiration date. You can then use the voltadmin license command to replace the current license with
a new license file.

$ voltadmin license newlicense.xml
INFO: The license is updated successfully.
 . . .

When you issue the show license command, VoltDB verifies that the license file is valid and the terms of
the license are sufficient to support the current database configuration. Once verified, the license is applied
to all nodes of the cluster and information about the new license is displayed.

If a node fails to get updated (for example, if a node fails during the license update), you will need to
update that node independently when bringing it back into the cluster. You can do this by including the
new license file on the command line when you restart the node. For example:

$ voltdb start -D ~/mydb --license newlicense.xml
Initializing VoltDB...

27

Chapter 5. Monitoring VoltDB Databases
Monitoring is an important aspect of systems administration. This is true of both databases and the infra-
structure they run on. The goals for database monitoring include ensuring the database meets its expected
performance target as well as identifying and resolving any unexpected changes or infrastructure events
(such as server failure or network outage) that can impact the database. This chapter explains:

• How to monitor overall database health and performance using VoltDB

• How to automatically pause the database when resource limits are exceeded

• How to integrate VoltDB monitoring with Prometheus

5.1. Monitoring Overall Database Activity
VoltDB provides several tools for monitoring overall database activity. The following sections describe
the three primary monitoring tools within VoltDB:

• Volt Management Center

• System Procedures

• SNMP Alerts

5.1.1. Volt Management Center
http://voltserver:8080/

The Volt Management Center provides a graphical display of key aspects of database performance, in-
cluding throughput, memory usage, query latency, and partition usage. To use the Management Center,
connect to one of the cluster nodes using a web browser, specifying the HTTP port (8080 by default) as
shown in the example URL above. The Management Center shows graphs for cluster throughput and la-
tency as well as CPU and memory usage for the current server. You can also use the Management Center
to examine the database schema and to issue ad hoc SQL queries.

5.1.2. System Procedures
VoltDB provides callable system procedures that return detailed information about the usage and perfor-
mance of the database. In particular, the @Statistics system procedure provides a wide variety of informa-
tion depending on the selector keyword you give it. Some selectors that are particularly useful for moni-
toring include the following:

• MEMORY — Provides statistics about memory usage for each node in the cluster. Information includes
the resident set size (RSS) for the server process, the Java heap size, heap usage, available heap memory,
and more. This selector provides the type of information displayed by the Process Memory Report,
except that it returns information for all nodes of the cluster in a single call.

• PROCEDUREPROFILE — Summarizes the performance of individual stored procedures. Informa-
tion includes the minimum, maximum, and average execution time as well as the number of invocations,
failures, and so on. The information is summarized from across the cluster as whole. This selector re-
turns information similar to the latency graph in Volt Management Center.

• TABLE — Provides information about the size, in number of tuples and amount of memory consumed,
for each table in the database. The information is segmented by server and partition, so you can use

28

Monitoring VoltDB Databases

it to report the total size of the database contents or to evaluate the relative distribution of data across
the servers in the cluster.

When using the @Statistics system procedure with the PROCEDUREPROFILE selector for monitoring,
it is a good idea to set the second parameter of the call to "1" so each call returns information since the
last call. In other words, statistics for the interval since the last call. Otherwise, if the second parameter is
"0", the procedure returns information since the database started and the aggregate results for minimum,
maximum, and average execution time will have little meaning.

When calling @Statistics with the MEMORY or TABLE selectors, you can set the second parameter to
"0" since the results are always a snapshot of the memory usage and table volume at the time of the call. For
example, the following Python script uses @Statistics with the MEMORY and PROCEDUREPROFILE
selectors to check for memory usage and latency exceeding certain limits. Note that the call to @Statistics
uses a second parameter of 1 for the PROCEDUREPROFILE call and a parameter value of 0 for the
MEMORY call.

import sys
from voltdbclient import *

nano = 1000000000.0
memorytrigger = 4 * (1024*1024) # 4gbytes
avglatencytrigger = .01 * nano # 10 milliseconds
maxlatencytrigger = 2 * nano # 2 seconds

server = "localhost"
if (len(sys.argv) > 1): server = sys.argv[1]

client = FastSerializer(server, 21212)
stats = VoltProcedure(client, "@Statistics",
 [FastSerializer.VOLTTYPE_STRING,
 FastSerializer.VOLTTYPE_INTEGER])

Check memory
response = stats.call(["memory", 0])
for t in response.tables:
 for row in t.tuples:
 print 'RSS for node ' + row[2] + "=" + str(row[3])
 if (row[3] > memorytrigger):
 print "WARNING: memory usage exceeds limit."

Check latency
response = stats.call(["procedureprofile", 1])
avglatency = 0
maxlatency = 0
for t in response.tables:
 for row in t.tuples:
 if (avglatency < row[4]): avglatency = row[4]
 if (maxlatency < row[6]): maxlatency = row[6]
print 'Average latency= ' + str(avglatency)
print 'Maximum latency= ' + str(maxlatency)
if (avglatency > avglatencytrigger):
 print "WARNING: Average latency exceeds limit."
if (maxlatency > maxlatencytrigger):
 print "WARNING: Maximum latency exceeds limit."

29

Monitoring VoltDB Databases

client.close()

The @Statistics system procedure is the the source for many of the monitoring options discussed in this
chapter. Two other system procedures, @SystemCatalog and @SystemInformation, provide general in-
formation about the database schema and cluster configuration respectively and can be used in monitoring
as well.

The system procedures are useful for monitoring because they let you customize your reporting to whatever
level of detail you wish. The other advantage is that you can automate the monitoring through scripts or
client applications that call the system procedures. The downside, of course, is that you must design and
create such scripts yourself. As an alternative for custom monitoring, you can consider integrating VoltDB
with existing third party monitoring applications, as described in Section 5.3, “Integrating VoltDB with
Prometheus”. You can also set the database to automatically pause if certain system resources run low,
as described in the next section.

5.1.3. SNMP Alerts
In addition to monitoring database activity on a "as needed" basis, you can enable VoltDB to proactively
send Simple Network Management Protocol (SNMP) alerts whenever important events occur within the
cluster. SNMP is a standard for how SNMP agents send messages (known as "traps") to management
servers or "management stations".

SNMP is a lightweight protocol. SNMP traps are sent as UDP broadcast messages in a standard format that
is readable by SNMP management stations. Since they are broadcast messages, the sending agent does not
wait for a confirmation or response. And it does not matter, to the sender, whether there is a management
server listening to receive the message or not. You can use any SNMP-compliant management server to
receive and take action based on the traps.

When you enable SNMP in the deployment file, VoltDB operates as an SNMP agent sending traps when-
ever management changes occur in the cluster. You enable SNMP with the <snmp> element in the de-
ployment file. You configure how and where VoltDB sends SNMP traps using one or more of the attributes
listed in Table 5.1, “SNMP Configuration Attributes”.

Table 5.1. SNMP Configuration Attributes

Attribute Default Value Description

target (none) Specifies the IP address or host name of the SNMP manage-
ment station where traps will be sent in the form {IP-or-host-
name}[:port-number]. If you do not specify a port number, the
default is 162. The target attribute is required.

community public Specifies the name of the "community" the VoltDB agent be-
longs to.

username (none) Specifies the username for SNMP V3 authentication. If you do
not specify a username, VoltDB sends traps in SNMP V2c for-
mat. If you specify a username, VoltDB uses SNMP V3 and the
following attributes let you configure the authentication mech-
anisms used.

authprotocol SHA
(SNMP V3 only)

Specifies the authentication protocol for SNMP V3. Allowable
options are:

• SHA
• MD5
• NoAuth

30

Monitoring VoltDB Databases

Attribute Default Value Description

authkey voltdbauthkey
(SNMP V3 only)

Specifies the authentication key for SNMP V3 when the pro-
tocol is other than NoAuth.

privacyprotocol AES
(SNMP V3 only)

Specifies the privacy protocol for SNMP V3. Allowable op-
tions are:

• AES
• DES
• NoPriv
• 3DES*

• AES192*

• AES256*

privacykey voltdbprivacykey
(SNMP V3 only)

Specifies the privacy key for SNMP V3 when the privacy pro-
tocol is other than NoPriv.

*Use of 3DES, AES192, or AES256 privacy requires the Java Cryptography Extension (JCE) be installed on the system. The JCE
is specific to the version of Java you are running. See the the Java web site for details.

SNMP is enabled by default when you include the <snmp> element in the deployment file. Alternately,
you can explicitly enable and disable SNMP using the enabled={true|false} attribute to the ele-
ment. For example, the following deployment file entry enables SNMP alerts, sending traps to mgtsvr.my-
company.com using SNMP V3 with the username "voltdb":

<snmp enabled="true"
 target="mgtsvr.mycompany.com"
 username="voltdb"
/>

Once SNMP is enabled, VoltDB sends alerts for the events listed in Table 5.2, “SNMP Events”.

Table 5.2. SNMP Events

Name Severity Description

crash FATAL When a server or cluster crashes.

clusterPaused INFO When the cluster pauses and enters admin mode.

clusterResume INFO When the cluster exits admin mode and resumes normal oper-
ation.

hostDown ERROR When a server shuts down or is recognized as having left the
cluster.

hostUp INFO When a server joins the cluster.

streamBlocked WARN When an export stream is blocked due to data missing from the
export queue and all cluster nodes are running.

statisticsTrigger WARN When certain operational states are compromised. Specifical-
ly:

• When a K-safe cluster loses one or more nodes
• When using database replication, the connection to the re-

mote cluster is broken

resourceTrigger WARN When certain resource limits are exceeded. Specifically

• Memory usage
• Disk usage

31

http://www.oracle.com/technetwork/java/index.html

Monitoring VoltDB Databases

Name Severity Description

See Section 5.2, “Setting the Database to Read-Only Mode
When System Resources Run Low” for more information
about configuring SNMP alerts for resources.

resourceClear INFO When resource limits return to levels below the trigger value.

For the latest details about each event trap, see the VoltDB SNMP Management Information Base (MIB),
which is installed with the VoltDB server software in the file /tools/snmp/VOLTDB-MIB in the in-
stallation directory.

5.2. Setting the Database to Read-Only Mode
When System Resources Run Low

VoltDB, like all software, uses system resources to perform its tasks. First and foremost, as an in-memory
database, VoltDB relies on having sufficient memory available for storing the data and processing queries.
However, it also makes use of disk resources for snapshots and caching data for other features, such as
export and database replication.

If system resources run low, one or more nodes may fail impacting availability, or worse, causing a service
interruption. The best solution for this situation is to plan ahead and provision sufficient resources for your
needs. The goal of the VoltDB Planning Guide is to help you do this.

However, even with the best planning, unexpected conditions can result in resource shortages or overuse.
In these situations, you want the database to protect itself against all-out failure.

You can do this by setting resource limits in the VoltDB deployment file. System resource limits are set
within the <systemsettings> and <resourcemonitor> elements. For example:

<systemsettings>
 <resourcemonitor frequency="30">
 <memorylimit size="70%" alert="60%"/>
 <disklimit>
 <feature name="snapshots" size="75%" alert="60%"/>
 <feature name="droverflow" size="60%"/>
 </disklimit>
 </resourcemonitor>
</systemsettings>

The deployment file lets you set limits on two types of system resources:

• Memory Usage

• Disk Usage

For each resource type you can set the maximum size and, optionally, the level at which an alert is sent if
SNMP is enabled. In all cases, the allowable amount of the resource to be used can be specified as either a
value representing a number of gigabytes or a percentage of the total available. If the limit set by the alert
attribute is exceeded and SNMP is enabled, an SNMP alert is sent. If the limit set by the size attribute is
exceeded, the database will be "paused", putting it into read-only mode to avoid using any further resources
or possibly failing when the resource becomes exhausted. When the database pauses, an error message is
written to the log file (and the console) reporting the event. This allows you as the system administrator
to correct the situation by reducing memory usage or deleting unnecessary files. Once sufficient resources
are freed up, you can return the database to normal operation using the voltadmin resume command.

32

http://docs.voltactivedata.com/PlanningGuide/

Monitoring VoltDB Databases

The resource limits are checked every 60 seconds by default. However, you can adjust how frequently
they are checked — to accommodate the relative stability or volatility of your resource usage — using
the frequency attribute of the <resourcemonitor> tag. In the preceding example, the frequency
has been reduced to 30 seconds.

Of course, the ideal is to catch excessive resource use before the database is forced into read-only mode.
Use of SNMP and system monitors such as Nagios and New Relic to generate alerts at limits lower than
the VoltDB resource monitor are strongly recommended. And you can integrate other VoltDB monitoring
with these monitoring utilities as described in Section 5.3, “Integrating VoltDB with Prometheus”. But
the resource monitor size limit is provided as a last resort to ensure the database does not completely
exhaust resources and crash before the issue can be addressed.

The following sections describe how to set limits for the individual resource types.

5.2.1. Monitoring Memory Usage
You specify a memory limit in the deployment file using the <memorylimit> element and specifying
the maximum allowable resident set size (RSS) for the VoltDB process in the size attribute. You can
express the limit as a fixed number of gigabytes or as a percentage of total available memory. Use a percent
sign to specify a percentage.

In addition to pausing the database, you can specify that it runs a full compaction of table data to recover
whatever unused space is available due to fragmentation. This is the equivalent of running the voltadmin
defrag --full command manually. By setting the compact attribute to true, when the memory limit is
exceeded, the database will pause, defragment all table data on the affected node, and if enough space is
recovered to bring memory usage down under the limit, the database will automatically resume normal
operation. See the chapter on "Understanding Memory Usage" in the Volt Performance and Customization
guide for more information about memory compaction.

For example, the following setting will cause the VoltDB database to go into read-only mode and perform
a full compaction if the RSS size exceeds 10 gigabytes on any of the cluster nodes.

<systemsettings>
 <resourcemonitor>
 <memorylimit size="10" compact="true"/>
 </resourcemonitor>
</systemsettings>

Whereas the following example sets the limit at 70% of total available memory but does not automatically
compact memory used for table data.

<systemsettings>
 <resourcemonitor>
 <memorylimit size="70%"/>
 </resourcemonitor>
</systemsettings>

You can also set a trigger value for SNMP alerts — assuming SNMP is enabled — using the alert
attribute. For instance, the following example sets the SNMP trigger value to 60%.

<systemsettings>
 <resourcemonitor>
 <memorylimit size="70%" alert="60%"/>
 </resourcemonitor>
</systemsettings>

33

https://docs.voltactivedata.com/PerfGuide/ChapMemoryUsage.php
https://docs.voltactivedata.com/PerfGuide/

Monitoring VoltDB Databases

If you do not specify a limit in the deployment file, VoltDB automatically sets a maximum size limit of
80% and an SNMP alert level of 70% by default.

5.2.2. Monitoring Disk Usage
You specify disk usage limits in the deployment file using the <disklimit> element. Within the
<disklimit> element, you use the <feature> element to identify the limit for a device based on the
VoltDB feature that utilizes it. For example, to set a limit on the amount of space used on the device where
automatic snapshots are stored, you identify the feature as "snapshots" and specify the limit as a number
of gigabytes or as a percentage of total space on the disk. The following deployment file entry sets the disk
limit for snapshots at 200 gigabytes and the limit for command logs at 70% of the total available space:

<systemsettings>
 <resourcemonitor>
 <disklimit>
 <feature name="snapshots" size="200"/>
 <feature name="commandlog" size="70%"/>
 </disklimit>
 </resourcemonitor>
</systemsettings>

You can also set a trigger value for SNMP alerts — assuming SNMP is enabled — using the alert at-
tribute. For instance, the following example sets the SNMP trigger value to 150 gigabytes for the snapshots
disk and 60% for the commandlog disk.

<systemsettings>
 <resourcemonitor>
 <disklimit>
 <feature name="snapshots" size="200" alert="150"/>
 <feature name="commandlog" size="70%" alert="60%"/>
 </disklimit>
 </resourcemonitor>
</systemsettings>

Note that you specify the device based on the feature that uses it. However, the limits applies to all data on
that device, not just the space used by that feature. If you specify limits for two features that use the same
device, the lower of the two limits will be applied. So, in the previous example, if snapshots and command
logs both use a device with 250 gigabytes of total space, the database will be set to read-only mode if the
total amount of used space exceeds the command logs limit of 70%, or 175 gigabytes.

It is also important to note that there are no default resource limits or alerts for disks. If you do not explicitly
specify a disk limit, there is no protection against running out of disk space. Similarly, unless you explicitly
set an SNMP alert level, no alerts will be sent for the associated device.

You can identify disk limits and alerts for any of the following VoltDB features, using the specified key-
words:

• Automated snapshots (snapshots)

• Command logs (commandlog)

• Command log snapshots (commandlogsnapshot)

• Database replication overflow (droverflow)

• Export overflow (exportoverflow)

34

Monitoring VoltDB Databases

5.3. Integrating VoltDB with Prometheus
If you use Prometheus to monitor your systems and services, you can enable the collection and reporting of
Prometheus-compliant metrics on the database cluster. You enable Prometheus metrics in the configuration
file when initializing the database by adding the <metrics> element to the Volt configuration file:

<deployment>
 <cluster kfactor="1"/>
 <metrics enabled="true"/>
</deployment>

Next, add the Volt cluster nodes as targets in the Prometheus configuration. Since each node reports its
own data, be sure to include all of the nodes as scraping targets. For example:

global:
 scrape_interval: 15s
 evaluation_interval: 15s

scrape_configs:
 - job_name: volt
 static_configs:
 - targets: ['voltsvr1:11781','voltsvr2:11781','voltsvr3:11781']

Once metrics are enabled, each Volt server reports server-specific information through the Prometheus
endpoint (/metrics) on the metrics port, which defaults to 11781. You can specify an alternate port and/or
network interface using the --metrics qualifier on the voltdb start command.

The Prometheus data format is a readily accessible text format and can be used equally well by other
reporting applications. Applications can either send HTTP requests to the metrics endpoint like Prometheus
or use the @Metrics system procedure, which returns the same data formatted in a sequence of VoltTable
structures. Appendix B, Volt Active Data Metrics lists the metrics values reported VoltDB.

Once Prometheus is scraping the Volt metrics, you can use tools such as Grafana to combine, analyze, and
present the information in meaningful ways. There are example Grafana dashboards in the Volt Github
repository (https://github.com/VoltDB/volt-monitoring) demonstrating some of the visualizations that are
possible.

35

https://github.com/VoltDB/volt-monitoring

Chapter 6. Logging and Analyzing Acvity
in a VoltDB Database

VoltDB uses Log4J as an open source logging service to provide access to information about database
events. In actuality, the library used is Reload4j, which is a drop-in replacement for Log4J that corrects
known security vulnerabilities in the original library while maintaining all of the same package names.
Consequently, the commands, examples, and following documentation continue to refer to the service
itself as "Log4J".

By default, when using the VoltDB shell commands, the console display is limited to warnings, errors, and
messages concerning the status of the current process. A more complete listing of messages (of severity
INFO and above) is written to log files in the subfolder /log, relative to the database root directory.

The advantages of using Log4J are:

• Logging is compiled into the code and can be enabled and configured at run-time.

• Log4J provides flexibility in configuring what events are logged, where, and the format of the output.

• By using an open source logging service with standardized output, there are a number of different ap-
plications, such as Chainsaw, available for filtering and presenting the results.

Logging is important because it can help you understand the performance characteristics of your applica-
tion, check for abnormal events, and ensure that the application is working as expected.

Of course, any additional processing and I/O will have an incremental impact on the overall database
performance. To counteract any negative impact, Log4J gives you the ability to customize the logging to
support only those events and servers you are interested in. In addition, when logging is not enabled, there
is no impact to VoltDB performance. With VoltDB, you can even change the logging profile on the fly
without having to shutdown or restart the database.

The following sections describe how to enable and customize logging of VoltDB using Log4J. This chap-
ter is not intended as a tutorial or complete documentation of the Log4J logging service. For general in-
formation about Log4J, see the Log4J web site at http://wiki.apache.org/logging-log4j/.

6.1. Introduction to Logging
Logging is the process of writing information about application events to a log file, console, or other
destination. Log4J uses XML files to define the configuration of logging, including three key attributes:

• Where events are logged. The destinations are referred to as appenders in Log4J (because events are
appended to the destinations in sequential order).

• What events are logged. VoltDB defines named classes of events (referred to as loggers) that can be
enabled as well as the severity of the events to report.

• How the logging messages are formatted (known as the layout),

6.2. Creating the Logging Configuration File
VoltDB ships with a default Log4J configuration file, voltdb/log4j.xml, in the installation directory. The
VoltDB shell commands use this file to configure logging and it is recommended for new application

36

http://wiki.apache.org/logging-log4j/

Logging and Analyzing Ac-
tivity in a VoltDB Database

development. This default Log4J file lists all of the VoltDB-specific logging categories and can be used
as a template for any modifications you wish to make. Or you can create a new file from scratch.

The following is an example of a Log4J configuration file:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

<appender name="Async" class="org.apache.log4j.AsyncAppender">
 <param name="Blocking" value="true" />
 <appender-ref ref="Console" />
 <appender-ref ref="File" />
</appender>

<appender name="Console" class="org.apache.log4j.ConsoleAppender">
 <param name="Target" value="System.out" />
 <layout class="org.apache.log4j.TTCCLayout" />
</appender>

<appender name="File" class="org.apache.log4j.FileAppender">
 <param name="File" value="/tmp/voltdb.log" />
 <param name="Append" value="true" />
 <layout class="org.apache.log4j.TTCCLayout" />
</appender>

<logger name="AUTH">
<!-- Print all VoltDB authentication messages -->
 <level value="trace" />
</logger>

<root>
 <priority value="debug" />
 <appender-ref ref="Async" />
</root>
</log4j:configuration>

The preceding configuration file defines three destinations, or appenders, called Async, Console, and File.
The appenders define the type of output (whether to the console, to a file, or somewhere else), the location
(such as the file name), as well as the layout of the messages sent to the appender. See the log4J documen-
tation for more information about layout.

Note that the appender Async is a superset of Console and File. So any messages sent to Async are routed
to both Console and File. This is important because for logging of VoltDB, you should always use an
asynchronous appender as the primary target to avoid the processing of the logging messages from blocking
other execution threads.

More importantly, you should not use any appenders that are susceptible to extended delays, blockages,
or slow throughput, This is particularly true for network-based appenders such as SocketAppender and
third-party log infrastructures including logstash and JMS. If there is any prolonged delay in writing to the
appenders, messages can end up being held in memory causing performance degradation and, ultimately,
generating out of memory errors or forcing the database into read-only mode.

The configuration file also defines a root class. The root class is the default logger and all loggers inherit the
root definition. So, in this case, any messages of severity "debug" or higher are sent to the Async appender.

37

Logging and Analyzing Ac-
tivity in a VoltDB Database

Note

This example is for demonstration purposes only. Normally, do not set the severity to either "de-
bug" or "trace" for production systems unless instructed to by VoltDB Support. Trace and debug
logging generate a significant number of messages that can negatively impact performance. They
contain internal information for debugging purposes and provide no additional value otherwise.

Finally, the configuration file defines a logger specifically for VoltDB authentication messages. The logger
identifies the class of messages to log (in this case "AUTH"), as well as the severity ("trace"). VoltDB
defines several different classes of messages you can log. Table 6.1, “VoltDB Components for Logging”
lists the loggers you can invoke.

Table 6.1. VoltDB Components for Logging

Logger Description

ADHOC Execution of ad hoc queries

AUTH Authentication and authorization of clients

COMPILER Interpretation of SQL in ad hoc queries

CONSOLE Informational messages intended for display on the
console

DR Database replication sending data

DRAGENT Database replication receiving data

EXPORT Exporting data

GC Java garbage collection

HOST Host specific events

IMPORT Importing data

ELASTIC Elastic addition of nodes to the cluster

LOADER Bulk loading of data (including as part of import)

NETWORK Network events related to the database cluster

REJOIN Node recovery and rejoin

SNAPSHOT Snapshot activity

SQL Execution of SQL statements

TM Transaction management

TOPICS Streaming data in topics

6.3. Changing the Timezone of Log Messages
By default all VoltDB logging is reported in GMT (Greenwich Mean Time). If you want the logging to be
reported using a different timezone, you can use extensions to the Log4J service to achieve this.

To change the timezone of log messages:

1. Download the extras kit from the Apache Extras for Apache Log4J website, http://logging.a-
pache.org/log4j/extras/.

2. Unpack the kit and place the included JAR file in the /lib/extension folder of the VoltDB instal-
lation directory.

38

http://logging.apache.org/log4j/extras/
http://logging.apache.org/log4j/extras/

Logging and Analyzing Ac-
tivity in a VoltDB Database

3. Update your Log4J configuration file to enable the Log4J extras and specify the desired timezone for
logging for each appender.

You enable the Log4J extras by specifying EnhancedPatternLayout as the layout class for the ap-
penders you wish to change. You then identify the desired timezone as part of the layout pattern. For
example, the following XML fragment changes the timezone of messages written to the file appender to
GMT minus four hours:

<appender name="file" class="org.apache.log4j.DailyMaxRollingFileAppender">
 <param name="file" value="log/volt.log"/>
 <param name="DatePattern" value="'.'yyyy-MM-dd" />
 <layout class="org.apache.log4j.EnhancedPatternLayout">
 <param name="ConversionPattern"
 value="%d{ISO8601}{GMT-4} %-5p [%t] %c: %m%n"/>
 </layout>
</appender>

You can use any valid ISO-8601 timezone specification, including named timezones, such as EST.

6.4. Managing VoltDB Log Files
VoltDB uses a rolling log appender that "rolls" the files, periodically saving the old log files and creating
a new file for subsequent messages. By default, the log files are rolled daily.

VoltDB also automatically "prunes" older log files to help conserve disk space on the server. The appender
specifies the maximum number of files to keep, keeping 30 by default.

You can customize your log configuration to specify a different rolling period and/or a different number
of files to keep. For example, the following Log4J configuration rolls the log files twice a day and keeps
14 files, or a week's worth of logs:

<!-- file appender captures all loggers messages. -->
<appender name="file" class="org.apache.log4j.DailyMaxRollingFileAppender">
 <param name="file" value="log/volt.log"/>
 <param name="MaxBackupIndex" value="14"/>
 <param name="DatePattern" value="'.'yyyy-MM-dd-a" />
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p [%t] %c: %m%n"/>
 </layout>
</appender>

6.5. Enabling Your Custom Log Configuration
When Starting VoltDB

Once you create your Log4J configuration file, you specify which configuration file to use by defining the
variable LOG4J_CONFIG_PATH before starting the VoltDB database. For example:

$ LOG4J_CONFIG_PATH="$HOME/MyLog4jConfig.xml"
$ voltdb start -H svr1,svr2

6.6. Changing the Configuration on the Fly
Once the database has started, you can still start or reconfigure the logging without having to stop and
restart the database. By calling the system procedure @UpdateLogging you can pass the configuration

39

Logging and Analyzing Ac-
tivity in a VoltDB Database

XML to the servers as a text string. For any appenders defined in the new updated configuration, the
existing appender is removed and the new configuration applied. Other existing appenders (those not
mentioned in the updated configuration XML) remain unchanged.

40

Chapter 7. What to Do When Problems
Arise

As with any high performance application, events related to the database process, the operating system, and
the network environment can impact how well or poorly VoltDB performs. When faced with performance
issues, or outright failures, the most important task is identifying and resolving the root cause. VoltDB
and the server produce a number of log files and other artifacts that can help you in the diagnosis. This
chapter explains:

• Where to look for log files and other information about the VoltDB server process

• What to do when recovery fails

• How to collect the log files and other system information when reporting a problem to VoltDB

7.1. Where to Look for Answers
The first place to look when an unrecognized problem occurs with your VoltDB database is the console
where the database process was started. VoltDB echoes key messages and errors to the console. For exam-
ple, if a server becomes unreachable, the other servers in the cluster will report an error indicating which
node has failed. Assuming the cluster is K-safe, the remaining nodes will then re-establish a quorum and
continue, logging this event to the console as well.

However, not all messages are echoed on the console.1 A more complete record of errors, warnings, and
informational messages is written to a log file, log/volt.log, inside the voltdbroot directory. So, for
example, if you start the database using the command voltdb start --dir=~/db, the log file is ~/db/
voltdbroot/log/volt.log.) The volt.log file can be extremely helpful for identifying unex-
pected but non-fatal events that occurred earlier and may identify the cause of the current issue.

If VoltDB encounters a fatal error and exits, shutting down the database process, it also attempts to write
out a crash file in the current working directory. The crash file name has the prefix "voltdb_crash" followed
by a timestamp identifying when the file is created. Again, this file can be useful in diagnosing exactly
what caused the crash, since it includes the last error message, a brief profile of the server and a dump of
the Java threads running in the server process before it crashed.

To summarize, when looking for information to help analyze system problems, three places to look are:

1. The console where the server process was started.

2. The log file in log/volt.log

3. The crash file named voltdb_crash{timestamp}.txt in the server process's working directory

7.2. Handling Errors When Restoring a Database
After determining what caused the problem, the next step is often to get the database up and running again
as soon as possible. When using snapshots or command logs, this is done using the voltdb start command
described in Section 3.6, “Restarting the Database”. However, in unusual cases, the restart itself may fail.

1Note that you can change which messages are echoed to the console and which are logged by modifying the Log4j configuration file. See the
chapter on logging in the Using VoltDB manual for details.

41

https://docs.voltactivedata.com/UsingVoltDB/ChapLogging.php
https://docs.voltactivedata.com/UsingVoltDB/

What to Do When Problems Arise

There are several situations where an attempt to recover a database — either from a snapshot or command
logs — may fail. For example, restoring data from a snapshot to a schema where a unique index has been
added can result in a constraint violation. In this case, the restore operation continues but any records that
caused a constraint violation are saved to a CSV file.

Or when recovering command logs, the log may contain a transaction that originally succeeded but fails
and raises an exception during playback. In this situation, VoltDB issues a fatal error and stops the database
to avoid corrupting the contents.

Although protecting you from an incomplete recovery is the appropriate default behavior, there may be
cases where you want to recover as much data as possible, with full knowledge that the resulting data
set does not match the original. VoltDB provides two processes for performing partial recoveries in case
of failure:

• Logging constraint violations during snapshot restore

• Performing command log recovery in safe mode

The following sections describe these procedures.

Warning

It is critically important to recognize that the techniques described in this section do not produce
a complete copy of the original database or resolve the underlying problem that caused the initial
recovery to fail. These techniques should never be attempted without careful consideration and
full knowledge and acceptance of the risks associated with partial data recovery.

7.2.1. Logging Constraint Violations
There are several situations that can cause a snapshot restore to fail because of constraint violations. Rather
than have the operation fail as a whole, VoltDB continues with the restore process and logs the constraint
violations to a file instead. This way you can review the tuples that were excluded and decide whether to
ignore or replace their content manually after the restore completes.

By default, the constraint violations are logged to one or more files (one per table) in the same directory
as the snapshot files. In a cluster, each node logs the violations that occur on that node. If you know there
are going to constraint violations and want to save the logged constraints to a different location, you can
use a special JSON form of the @SnapshotRestore system procedure. You specify the path of the log
files in a JSON attribute, duplicatePaths. For example, the following commands perform a restore
of snapshot files in the directory /var/voltdb/snapshots/ with the unique identifier myDB. The
restore operation logs constraint violations to the directory /var/voltdb/logs.

$ sqlcmd
1> exec @SnapshotRestore '{ "path":"/var/voltdb/snapshots/",
 "nonce":"myDB",
 "duplicatesPath":"/var/voltdb/logs/" }';
2> exit

Constraint violations are logged as needed, one file per table, to CSV files with the name {table}-
duplicates-{timestamp}.csv.

7.2.2. Safe Mode Recovery
On rare occasions, recovering a database from command logs may fail. This can happen, for example, if
a stored procedure introduces non-deterministic content. If a recovery fails, the specific error is known.

42

What to Do When Problems Arise

However, there is no way for VoltDB to know the root cause or how to continue. Therefore, the recovery
fails and the database stops.

When this happens, VoltDB logs the last successful transaction before the recovery failed. You can then
ask VoltDB to restart up to but not including the failing transaction by performing a recovery in safe mode.

You request safe mode by adding the --safemode switch to the voltdb start command, like so:

$ voltdb start --safemode --dir=~/mydb

When VoltDB recovers from command logs in safe mode it enables two distinct behaviors:

• Snapshots are restored, logging any constraint violations

• Command logs are replayed up to the last valid transaction

This means that if you are recovering using an automated snapshot (rather than command logs), you can
recover some data even if there are constraint violations during the snapshot restore. Also, when recovering
from command logs, VoltDB will ignore constraint violations in the command log snapshot and replay all
transactions that succeeded in the previous attempt.

It is important to note that to successfully use safe mode with command logs, you must perform a regular
recovery operation first — and have it fail — so that VoltDB can determine the last valid transaction. Also,
if the snapshot and the command logs contain both constraint violations and failed transactions, you may
need to run recovery in safe mode twice to recover as much data as possible. Once to complete restoration
of the snapshot, then a second time to recover the command logs up to a point before the failed transaction.

7.3. Collecting the Log Files
VoltDB includes a utility that collects all of the pertinent logs for a given server. The log collector retrieves
the necessary system and process files from the server and saves them in a single compressed archive file.
For customers requesting support from VoltDB, your support contact will often provide instructions on
how and when to use the log collector and where to submit the files.

Note that the database does not need to be running to use the log collector. It can find and collect the log
files based solely on the location of the VoltDB root directory where the database was run.

To collect the log files, use the voltdb collect command with the same directory specification you would
use to initialize or start the database:

$ voltdb collect --prefix=mylogs -D /home/db

When you run the command you must specify the location of the root directory for the database with the
--dir or -D flag. Otherwise, the default is the current working directory. The archive file that the collect
command generates is also created in your current working directory unless you use the --output flag
to specify an alternate location and filename.

The collect command has optional arguments that let you control what data is collected and the name of
the resulting archive file. In the preceding example the --prefix flag specifies the prefix for the archive
file name. The --skip-heap-dump flag excludes the heap dump, which can be significantly larger
than any other collection artifact, from the resulting archive. For example:

$ voltdb collect --dir=/home/db \
 --prefix=mylogs \
 --skip-heap-dump

43

What to Do When Problems Arise

Note that the voltdb collect command collects log files for the current system only. To collect logs for all
servers in a cluster, you will need to issue the voltdb collect command locally on each server separately.
See the voltdb collect documentation in the Using VoltDB manual for details.

44

https://docs.voltactivedata.com/UsingVoltDB/clivoltdb.php
https://docs.voltactivedata.com/UsingVoltDB/

Appendix A. Server Configuraon Opons
There are a number of system, process, and application options that can impact the performance or be-
havior of your VoltDB database. You control these options when initializing and/or starting VoltDB. The
configuration options fall into five main categories:

• Server configuration

• Process configuration

• Database configuration

• Path configuration

• Network ports used by the database cluster

This appendix describes each of the configuration options, how to set them, and their impact on the result-
ing VoltDB database and application environment.

A.1. Server Configuration Options
VoltDB provides mechanisms for setting a number of options. However, it also relies on the base operating
system and network infrastructure for many of its core functions. There are operating system configuration
options that you can adjust to to maximize your performance and reliability, including:

• Network configuration

• Time configuration

A.1.1. Network Configuration (DNS)
VoltDB creates a network mesh among the database cluster nodes. To do that, all nodes must be able to
resolve the IP address and hostnames of the other server nodes. Make sure all nodes of the cluster have
valid DNS entries or entries in the local hosts files.

For servers that have two or more network interfaces — and consequently two or more IP addresses — it
is possible to assign different functions to each interface. VoltDB defines two sets of ports:

• External ports, including the client and admin ports. These are the ports used by external applications
to connect to and communicate with the database.

• Internal ports, including all other ports. These are the ports used by the database nodes to communicate
among themselves. These include the internal port, the zookeeper port, and so on. (See Section A.5,
“Network Ports” for a complete listing of ports.)

You can specify which network interface the server expects to use for each set of ports by specifying the
internal and external interface when starting the database. For example:

$ voltdb start --dir=~/mydb \
 --externalinterface=10.11.169.10 \
 --internalinterface=10.12.171.14

Note that the default setting for the internal and external interface can be overridden for a specific port by
including the interface and a colon before the port number when specifying a port on the command line.
See Section A.5, “Network Ports” for details on setting specific ports.

45

Server Configuration Options

A.1.2. Time Configuration
Keeping VoltDB cluster nodes in close synchronization is important for the ongoing performance of your
database. At a minimum, use of a time service such as NTP or chrony to synchronize time across the cluster
is recommended. If the time difference between nodes is too large (greater than 200 milliseconds) VoltDB
refuses to start. It is also important to avoid having nodes adjust time backwards, or VoltDB will pause
while it waits for time to "catch up" to its previous setting.

A.2. Process Configuration Options
In addition to system settings, there are configuration options pertaining to the VoltDB server process
itself that can impact performance. Runtime configuration options are set as command line options when
starting the VoltDB server process.

The key process configuration for VoltDB is the Java maximum heap size. It is also possible to specify
which garbage collector to use and to pass other arguments to the Java Virtual Machine directly.

A.2.1. Maximum Heap Size (VOLTDB_HEAPMAX)
The heap size is a parameter associated with the Java runtime environment. Certain portions of the VoltDB
server software use the Java heap. In particular, the part of the server that receives and responds to stored
procedure requests uses the Java heap.

Depending upon how many transactions your application executes a second, you may need additional heap
space. The higher the throughput, the larger the maximum heap needed to avoid running out of memory.

In general, a maximum heap size of two gigabytes (2048) is recommended. For production use, a more
accurate measurement of the needed heap size can be calculated from the size of the schema (number of
tables), number of sites per host, and what durability and availability features are in use. See the VoltDB
Planning Guide for details.

It is important to remember that the heap size is not directly related to data storage capacity. Increasing the
maximum heap size does not provide additional data storage space. In fact, quite the opposite. Needlessly
increasing the maximum heap size reduces the amount of memory available for storage.

To set the maximum heap size when starting VoltDB, define the environment variable VOLTDB_HEAP-
MAX as an integer value (in megabytes) before issuing the voltdb start command. For example, the fol-
lowing commands start VoltDB with a 3 gigabyte heap size (the default is 2 gigabytes):

$ export VOLTDB_HEAPMAX="3072"
$ voltdb start --dir=~/mydb -H serverA

A.2.2. Garbage Collector (VOLTDB_GC_OPTS)
The Java garbage collector (GC) intermittently frees up unused memory. Different garbage collectors use
different algorithms for choosing when and how to do garbage collection. They also can have specific
variables to further refine the garbage collection process.

Because Java processing can pause while the collector recycles memory, it can impact your application's
latency. By default, for Java versions 8 and 11, VoltDB uses the following settings:

• ConcMarkSweepGC
• ClassUnloadingEnabled

46

http://docs.voltactivedata.com/PlanningGuide/
http://docs.voltactivedata.com/PlanningGuide/

Server Configuration Options

• InitiatingOccupancyFraction=75
• InitiatingOccupancyOnly
• MaxAbortablePrecleanTime=120000
• ParallelRemarkEnabled
• ScavengeBeforeRemark
• WaitDuration=12000

For Java version 17, VoltDB uses the G1GC garbage collector with default settings. You can choose an
alternate Java garbage collector by specifying your choice using the standard Java syntax in the VOLTD-
B_GC_OPTS environment variable before starting the database process. You can include any other GC-
related options at the same time. For example:

$ export VOLTDB_GC_OPTS="-XX+useG1GC -XX+UseStringDeduplication"
$ voltdb start --dir=~/mydb -H serverA

See the Java documentation for your current Java implementation for more information on garbage col-
lection and GC settings.

Warning

VoltDB does not validate the correctness of the arguments you specify using VOLTDB_GC_OP-
TS or their appropriateness for use with VoltDB. This feature is intended for experienced users
only and should be used with extreme caution.

A.2.3. Other Java Runtime Options (VOLTDB_OPTS)
VoltDB sets the Java options — such as heap size and classpath — that directly impact VoltDB. There are
a number of other configuration options available in the Java Virtual machine (JVM).

VoltDB provides a mechanism for passing arbitrary options directly to the JVM. If the environment vari-
able VOLTDB_OPTS is defined, its value is passed as arguments to the Java command line. Note that
the contents of VOLTDB_OPTS are added to the Java command line on the current server only. In other
words, you must define VOLTDB_OPTS on each server to have it take effect for all servers.

Warning

VoltDB does not validate the correctness of the arguments you specify using VOLTDB_OPTS
or their appropriateness for use with VoltDB. This feature is intended for experienced users only
and should be used with extreme caution.

A.3. Database Configuration Options
Runtime configuration options are set either as part of the configuration file or as command line options
when starting the VoltDB server process. These database configuration options are only summarized here.
See the Using VoltDB manual for a more detailed explanation. The configuration options include:

• Sites per host

• K-Safety

• Network partition detection

• Automated snapshots

47

http://docs.voltactivedata.com/UsingVoltDB/

Server Configuration Options

• Import and export

• Command logging

• Heartbeat

• Temp table size

• Query timeout

• Flush Interval

• Long-running process warning

• Copying array parameters

• Transaction Prioritization

• Clock skew

A.3.1. Sites per Host
Sites per host specifies the number of unique VoltDB "sites" that are created on each physical database
server. The section on "Determining How Many Sites per Host" in the Using VoltDB manual explains how
to choose a value for sites per host.

You set the value of sites per host using the sitesperhost attribute of the <cluster> tag in the
configuration file.

A.3.2. K-Safety
K-safety defines the level of availability or durability that the database can sustain, by replicating individual
partitions to multiple servers. K-safety is described in detail in the "Availability" chapter of the Using
VoltDB manual.

You specify the level of K-safety that you want in the configuration file using the kfactor attribute of
the <cluster> tag.

A.3.3. Network Partition Detection
Network partition detection protects a VoltDB cluster in environments where the network is susceptible
to partial or intermittent failure among the server nodes. Partition detection is described in detail in the
"Availability" chapter of the Using VoltDB manual.

Use of network partition detection is strongly recommended for production systems and therefore is en-
abled by default. You can enable or disable network partition detection in the configuration file using the
<partition-detection> tag.

A.3.4. Automated Snapshots
Automated snapshots provide ongoing protection against possible database failure (due to hardware or
software issues) by taking periodic snapshots of the database's contents. Automated snapshots are de-
scribed in detail in the section on "Scheduling Automated Snapshots" in the Using VoltDB manual.

48

https://docs.voltactivedata.com/UsingVoltDB/RunClusterConfig.php#RunCalculateSites
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/ChapKSafety.php
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/ChapKSafety.php
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/SaveSnapshotAuto.php
http://docs.voltactivedata.com/UsingVoltDB/

Server Configuration Options

You enable and configure automated snapshots with the <snapshot> tag in the configuration file.

Snapshot activity involves both processing and disk I/O and so may have a noticeable impact on perfor-
mance (in terms of throughput and/or latency) on a very busy database. You can control the priority of
snapshots activity using the <snapshot> tag within the <systemsettings> element of the deploy-
ment file. The snapshot priority is an integer value between 0 and 10, with 0 being the highest priority
and 10 being the lowest. The closer to 10, the longer snapshots take to complete, but the less they can
affect ongoing database work.

Warning

Setting snapshot priority directly as described is deprecated. If transaction prioritization is not
enabled, this method continues to work for backwards compatibility. However, the recommended
method for setting snapshot priority is to enable transaction prioritization and set the snapshot
priority as a child of <priorities>, described in Section A.3.13, “Transaction Prioritization”.

Note that snapshot priority affects all snapshot activity, including automated snapshots, manual snapshots,
and command logging snapshots.

A.3.5. Import and Export
The import and export functions let you automatically import and/or export selected data between your
VoltDB database and another database or distributed service at runtime. These features are described in
detail in the chapter on "Importing and Exporting Live Data" in the Using VoltDB manual.

You enable and disable import and export using the <import> and <export> tags in the configuration
file.

A.3.6. Command Logging
The command logging function saves a record of each transaction as it is initiated. These logs can then be
"replayed" to recreate the database's last known state in case of intentional or accidental shutdown. This
feature is described in detail in the chapter on "Command Logging and Recovery" in the Using VoltDB
manual.

To enable and disable command logging, use the <commandlog> tag in the configuration file.

A.3.7. Heartbeat
The database servers use a "heartbeat" to verify the presence of other nodes in the cluster. If a heartbeat is
not received within a specified time limit, that server is assumed to be down and the cluster reconfigures
itself with the remaining nodes (assuming it is running with K-safety). This time limit is called the "heart-
beat timeout" and is specified as a integer number of seconds.

For most situations, the default value for the timeout (90 seconds) is appropriate. However, if your cluster
is operating in an environment that is susceptible to network fluctuations or unpredictable latency, you
may want to increase the heartbeat timeout period.

You can set an alternate heartbeat timeout using the <heartbeat> tag in the configuration file.

Note

Be aware that certain Linux system settings can override the VoltDB heartbeat messages. In
particular, lowering the setting for TCP_RETRIES2 may result in the system network timeout

49

http://docs.voltactivedata.com/UsingVoltDB/ChapExport.php
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/

Server Configuration Options

interrupting VoltDB's heartbeat mechanism and causing timeouts sooner than expected. Values
lower than 8 for TCP_RETRIES2 are not recommended.

A.3.8. Temp Table Size
VoltDB uses temporary tables to store intermediate table data while processing transactions. The default
temp table size is 100 megabytes. This setting is appropriate for most applications. However, extremely
complex queries or many updates to large records could cause the temporary space to exceed the maximum
size, resulting in the transaction failing with an error.

In these unusual cases, you may need to increase the temp table size. You can specify a different size for
the temp tables using the <systemsettings> and <temptables> tags in the configuration file and
specifying the maxsize attribute as a whole number of megabytes. For example:

<systemsettings>
 <temptables maxsize="200"/>
</systemsettings>

Note: since the temp tables are allocated as needed, increasing the maximum size can result in a Java out-
of-memory error at runtime if the system is memory-constrained. Modifying the temp table size should
be done with caution.

A.3.9. Query Timeout
In general, SQL queries execute extremely quickly. But it is possible, usually by accident, to construct
a query that takes an unexpectedly long time to execute. This usually happens when the query is overly
complex or accesses extremely large tables without the benefit of an appropriate filter or index.

You have the option to set a query timeout limit cluster-wide, for an interactive session, or per transaction.
The query limit sets a limit on the length of time any read-only query (or batch of queries in the case of
the voltExecuteSQL() method in a stored procedure) is allowed to run. You specify the timeout limit in
milliseconds.

To set a cluster-wide query limit you use the <systemsettings> and <query timeout="{lim-
it}"> tags in the configuration file. To set a limit for an interactive session in the sqlcmd utility, you use
the --query-timeout flag when invoking sqlcmd. To specify a limit when invoking a specific stored
procedure, you use the callProcedureWithTimeout method in place of the callProcedure method.

The cluster-wide limit is set when you initialize the database root directory. By default, the system-wide
limit is 10 seconds. You can set a different timeout in the configuration file. Or It can be adjusted using
the voltadmin update command to modify the configuration settings while the database is running. If
security is enabled, any user can set a lower query limit on a per session or per transaction basis. However,
the user must have the ADMIN privilege to set a query limit longer than the cluster-wide setting.

The following example configuration file sets a cluster-wide query timeout value of three seconds:

<systemsettings>
 <query timeout="3000"/>
</systemsettings>

If any query or batch of queries exceeds the query timeout, the query is interrupted and an error returned
to the calling application. Note that the limit is applied to read-only ad hoc queries or queries in read-
only stored procedures only. In a K-Safe cluster, queries on different copies of a partition may execute at
different rates. Consequently the same query may timeout in one copy of the partition but not in another.

50

Server Configuration Options

To avoid possible non-deterministic changes, VoltDB does not apply the time out limit to any queries or
procedures that may modify the database contents.

A.3.10. Flush Interval
VoltDB features that interact with external systems, including database replication (DR) and export, limit
their activity to balance I/O latency against potentially competing with ongoing database work. These
features trigger I/O based on two factors: batch size and a flush interval. In other words, data is written
when enough records are received to match the batch size or, if input is sporadic, data is written when the
flush interval is reached to avoid small amounts of data be held indefinitely.

There are two different settings that control how frequently data is flushed from the queues. There is a
feature-specific flush setting and a system-wide minimum value. You can set different flush intervals with
individual features. For example, you might set the DR flush interval to 500 milliseconds to reduce the
latency of database replication, while setting the export flush interval to 4 seconds if export latency is
not critical.

The system-wide minimum defines how often flush intervals are checked. So no buffers can be written
more frequently than the system-wide minimum. And since the minimum check event and the feature-spe-
cific intervals may not line up exactly, actual writes occur at some incremental time after the defined in-
terval. For example, if you set both the minimum and the DR interval at 500 milliseconds, the actual buffer
writes might occur anywhere between 500 and 1000ms apart.

You set both the system-wide minimum and feature-specific intervals in the configuration file using the
<systemsettings> and <flushinterval> tags. You set the system-wide minimum in the min-
imum attribute of the <flushinterval> tag and you set the feature-specific intervals using the <dr>
and <export> sub-elements. All values are specified in milliseconds. For example:

<systemsettings>
 <flushinterval minimum="500">
 <export interval="4000" />
 <dr interval="500" />
 </flushinterval>
</systemsettings>

The default system-wide minimum is one second (1000). The default flush intervals for DR and export
are one second (1000) and four seconds (4000), respectively.

A.3.11. Long-Running Process Warning
You can avoid runaway read-only queries using the query timeout setting. But you cannot stop read-
write procedures or other computational tasks, such as automated snapshots. These processes must run to
completion. However, you may want to be notified when a process is blocking an execution queue for an
extended period of time.

By default, VoltDB writes an informational message into the log file whenever a task runs for more than
ten seconds in any of the execution sites. These tasks may be stored procedures, procedure fragments (in
the case of multi-partitioned procedures), or operational tasks such as snapshot creation. You can adjust
the limit when these messages are written by specifying a value, in milliseconds in the loginfo attribute
of the <procedure> tag in the configuration file. For example, the following configuration file entry
changes the threshold after which a message is written to the log to three seconds:

<systemsettings>
 <procedure loginfo="3000"/>

51

Server Configuration Options

</systemsettings>

Note that in a cluster, the informational message is written only to the log of the server that is hosting the
affected queue, not to all server logs.

A.3.12. Copying Array Parameters
You can send mutable datatypes, most notably arrays, as arguments to a VoltDB stored procedure. By
default, when this happens on a cluster with K=1 or more, VoltDB makes a copy of the array before using
it in a transactional statement, to ensure that the execution of the statement is deterministic. However,
copying the contents of the array consumes additional memory, which can add up if procedures are called
frequently with large arrays.

The alternative, if the procedures do not modify the contents of the array, is to tell VoltDB not to copy
array parameters on K-safe clusters by setting the copyparameters attribute of the <procedure>
element to "false":

<systemsettings>
 <procedure copyparameters="false"/>
</systemsettings>

Warning

Only disable copying of parameters if you are sure the stored procedures do not modify any array
parameters. If a stored procedures does modify an array when arrays are not being copied, the
transaction can result in non-deterministic behavior, including possible data corruption and/or
crashing the database.

A.3.13. Transaction Prioritization
By default, all transactions are treated equally and executed in a first in, first out basis. However, you can
enable transaction priorities where individual transactions (or groups of transactions) are given higher or
lower priority.

To use transaction priorities, you must enable them in the configuration file by adding <priorities> as
a child of the <systemsettings> element. If the <priorities> element is present, priorities are enabled.
Or you can explicitly enable or disable them. For example:

<systemsettings>
 <priorities enabled="true"/>
</systemsettings>

You can also set a priority for database replication and/or snapshot transactions using corresponding
subelements and specifying a priority between 1 and 8 (1 being the highest priority, 8 being the lowest):

<systemsettings>
 <priorities enabled="true">
 <dr priority="3"/>
 <snapshot priority="6"/>
</systemsettings>

You can adjust the effects of prioritization by setting the maxwait attribute on the <priorities> el-
ement. The maxwait attribute specifies the maximum number of milliseconds a task remains in a priority
queue before it gets scheduled for execution regardless of its pioritization. This helps avoid high priority

52

Server Configuration Options

transactions essentially blocking lower priority tasks from getting scheduled. The default wait time is 1000
milliseconds. Setting maxwait to zero (0) means that prioritization is always in effect. The following
example reduces the maximum wait time to half a second:

<systemsettings>
 <priorities enabled="true" maxwait="500" />
</systemsettings>

A.3.14. Clock Skew
Certain database operations (such as initiating snapshots) depend on synchronizing the nodes of the cluster
based on their system clocks. If the clocks are too far apart, it delays the activities and interrupts normal
database operations. Which is why the database checks to make sure the clocks are within a minimal level
of variation (100 milliseconds) when it starts.

It is also possible for clocks to "drift" over time. So the servers also check the clock skew periodically to
make sure they stay within the allowable range. You can see the latest clock skew calculation using the
@Statistics system procedure with the CLOCKSKEW selector. By default, clock skew is checked every
hour. You can configure the interval between checks using the <clockskew> element under <sys-
temsettings> in the database configuration file, specifying the interval as an whole number of min-
utes. For example, the following configuration sets the clock skew interval to every half hour:

<systemsettings>
 <clockskew interval="30"/>
</systemsettings>

The interval value can be any positive integer. If you set it to zero (0), clock skew will not be checked
once the system starts.

A.4. Path Configuration Options
The running database uses a number of disk locations to store information associated with runtime features,
such as export, network partition detection, and snapshots. You can control which paths are used for these
disk-based activities. The path configuration options include:

• VoltDB root

• Snapshots path

• Export overflow path

• Command log path

• Command log snapshots path

A.4.1. VoltDB Root
VoltDB defines a root directory for any disk-based activity which is required at runtime. This directory
also serves as a root for all other path definitions that take the default or use a relative path specification.

If you do not specify a location for the root directory on the command line, VoltDB uses the current working
directory as a default. Normally, you specify the location of the root directory using the --dir flag on the
voltdb init and voltdb start commands. The root directory is then the subdirectory voltdbroot within

53

Server Configuration Options

the specified location. (If the subfolder does not exist, VoltDB creates it.) See the section on "Configuring
Paths for Runtime Features" in the Using VoltDB manual for details.

A.4.2. Snapshots Path
The snapshots path specifies where automated and network partition snapshots are stored. The default
snapshots path is the "snapshots" subfolder of the VoltDB root directory. You can specify an alternate
path for snapshots using the <snapshots> child element of the <paths> tag in the configuration file.

A.4.3. Export Overflow Path
The export overflow path specifies where overflow data is stored for the export streams. The default export
overflow path is the "export_overflow" subfolder of the VoltDB root directory. You can specify an
alternate path using the <exportoverflow> child element of the <paths> tag in the configuration
file.

See the chapter on "Exporting Live Data" in the Using VoltDB manual for more information on export
overflow.

A.4.4. Command Log Path
The command log path specifies where the command logs are stored when command logging is enabled.
The default command log path is the "command_log" subfolder of the VoltDB root directory. However,
for production use, it is strongly recommended that the command logs be written to a dedicated device,
not the same device used for snapshotting or export overflow. You can specify an alternate path using the
<commandlog> child element of the <paths> tag in the configuration file.

See the chapter on "Command Logging and Recovery" in the Using VoltDB manual for more information
on command logging.

A.4.5. Command Log Snapshots Path
The command log snapshots path specifies where the snapshots created by command logging are stored.
The default path is the "command_log_snapshot" subfolder of the VoltDB root directory. (Note that
command log snapshots are stored separately from automated snapshots.) You can specify an alternate
path using the <commandlogsnapshot> child element of the <paths> tag in the configuration file.

See the chapter on "Command Logging and Recovery" in the Using VoltDB manual for more information
on command logging.

A.5. Network Ports
A VoltDB cluster opens network ports to manage its own operation and to provide services to client ap-
plications. The network ports are configurable as part of the command that starts the VoltDB database
process. You can specify just a port number or the network interface and the port number, separated by
a colon.

Table A.1, “VoltDB Port Usage” summarizes the ports that VoltDB uses and their default value. The
following sections describe each port in more detail and how to set them. Section A.5.9, “TLS/SSL En-
cryption (Including HTTPS)” explains how to enable TLS encryption for the web and the programming
interface ports, client and admin.

54

https://docs.voltactivedata.com/UsingVoltDB/RunClusterConfig.php#RunConfigPaths
https://docs.voltactivedata.com/UsingVoltDB/RunClusterConfig.php#RunConfigPaths
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/ChapExport.php
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/

Server Configuration Options

Table A.1. VoltDB Port Usage

Port Default Value

Client Port 21212

Admin Port 21211

Web Interface Port (httpd) 8080

Web Interface Port (with TSL/SSL enabled) 8443

Internal Server Port 3021

Metrics Port 11781

Replication Port 5555

Topics Port 9092

Zookeeper port 7181

A.5.1. Client Port
The client port is the port VoltDB client applications use to communicate with the database cluster nodes.
By default, VoltDB uses port 21212 as the client port. You can change the client port. However, all client
applications must then use the specified port when creating connections to the cluster nodes.

To specify a different client port on the command line, use the --client flag when starting the VoltDB
database. For example, the following command starts the database using port 12345 as the client port:

$ voltdb start --dir=~/mydb --client=12345

If you change the default client port, all client applications must also connect to the new port. The client
interfaces for Java and C++ accept an additional, optional argument to the createConnection method for
this purpose. The following examples demonstrate how to connect to an alternate port using the Java and
C++ client interfaces.

Java
org.voltdb.client.Client voltclient;
voltclient = ClientFactory.createClient();
voltclient.createConnection("myserver",12345);

C++
boost::shared_ptr<voltdb::Client> client = voltdb::Client::create();
client->createConnection("myserver", 12345);

A.5.2. Admin Port
The admin port is similar to the client port, it accepts and processes requests from applications. However,
the admin port has the special feature that it continues to accept write requests when the database enters
admin, or read-only, mode.

By default, VoltDB uses port 21211 on the default external network interface as the admin port. You can
change the port assignment on the command line using the --admin flag. For example, the following
command sets the admin port to 2222:

55

Server Configuration Options

$ voltdb start --dir=~/mydb --admin=2222

A.5.3. Web Interface Port (hp)
The web interface port is the port that VoltDB listens to for web-based connections. This port is used for
both the JSON programming interface and access to the Volt Management Center.

By default, VoltDB uses port 8080 on the default external network interface as the web port. You can
change the port assignment on the command line using the --http flag. For example, the following
command sets the port to 8888:

$ voltdb start --dir=~/mydb --http=8888

If you change the port number, be sure to use the new port number when connecting to the cluster using
either the Volt Management Center or the JSON interface. For example, the following URL connects to
the JSON interface using the reassigned port 8888:

http://athena.mycompany.com:8888/api/2.0/?Procedure=@SystemInformation

If you do not want to use the http port of the features it supports (the JSON API and Volt Management
Center) you can disable the port in the configuration file. For example, for following configuration option
disables the default http port:

<httpd enabled="false"/>

If the port is not enabled, neither the JSON interface nor the Management Center are available from the
cluster. By default, the web interface is enabled.

Another aspect of the http port, when it is enabled, is whether the port transmits using http or https. You
can enable TLS (Transport Layer Security) encryption on the web interface so that all interaction uses the
HTTPS protocol. When TLS is enabled, the default port changes to 8443. See Section A.5.9, “TLS/SSL
Encryption (Including HTTPS)” for information on enabling encryption in the configuration file.

A.5.4. Internal Server Port
A VoltDB cluster uses ports to communicate among the cluster nodes. This port is internal to VoltDB and
should not be used by other applications.

By default, the internal server port is port 3021 for all nodes in t1he cluster1. You can specify an alternate
port using the --internal flag when starting the VoltDB process. For example, the following command
starts the VoltDB process using an internal port of 4000:

$ voltdb start --dir=~/mydb --internal=4000

A.5.5. Metrics Port
When metrics are enabled, the database uses the metrics port to return statistical data about the state of
the database to calling applications, such as Prometheus. By default, the metrics port is 11781. You can
specify a different port using the --metrics flag when starting the database server. For example:

$ voltdb start --dir=~/mydb --metrics=9090

1In the special circumstance where multiple VoltDB processes are started for one database, all on the same server, the internal server port is
incremented from the initial value for each process.

56

Server Configuration Options

A.5.6. Replication Port
During database replication, producer databases (that is, the master database in passive DR and all clusters
in XDCR) use a dedicated port to share data to their consumers. By default, the replication port is port
5555. You can use a different port by specifying a different port number on the voltdb command line using
the --replication flag. For example, the following command changes the replication port:

$ voltdb start --dir=~/mydb --replication=6666

Note that if you set the replication port on the producer to something other than the default, you must notify
the consumers of this change. The replica or other XDCR clusters must specify the port along with the
network address or hostname in the src attribute of the <connection> element when configuring the
DR relationship. For example, if the server nyc2 has changed its replication port to 3333, another cluster
in the XDCR relationship might have the following configuration:

<dr id="1" role="xdcr" >
 <connection source="nyc1,nyc2:3333" />
</dr>

Finally, in some cloud environments, such as Kubernetes, remote clusters may not be able to access the
producer cluster by its internal network interface. Consumers can specify the location of the producer in
the DR configuration using a remapped IP address. But once they initialize contact with the producer,
the producer sends a list of IP addresses to use for ongoing replication. By default, these are the internal
addresses the producer cluster knows about.

You can tell the producer to advertise a different interface (and port) for this second phase by specifying the
alternate interface using the --drpublic argument in the voltdb start command. If you do not specify
a port on the --drpublic argument, the internal replication port is used. For example:

$ voltdb start --drpublic=some.external.addr

A.5.7. Topics Port
When topics are enabled, the database uses the topics port to send and receive data to consumers and pro-
ducers. By default, the topics port is port 9092. You can specify a different port using the --topicsport
flag when starting the database server. For example, the following command changes the topics port:

$ voltdb start --dir=~/mydb --topicsport=9900

In cases where the server's external interface is not directly accessible by outside services and you set up
the necessary port forwarding to an alternative public interface for those services to use, you can identify
that alternative port to the server using the --topicspublic flag. For example:

$ voltdb start --dir=~/mydb --topicspublic=myexternalserver:9092

A.5.8. Zookeeper Port
VoltDB uses a version of Apache Zookeeper to communicate among supplementary functions that require
coordination but are not directly tied to database transactions. Zookeeper provides reliable synchroniza-
tion for functions such as command logging without interfering with the database's own internal commu-
nications.

VoltDB uses a network port bound to the local interface (127.0.0.1) to interact with Zookeeper. By default,
7181 is assigned as the Zookeeper port for VoltDB. You can specify a different port number using the

57

Server Configuration Options

--zookeeper flag when starting the VoltDB process. It is also possible to specify a different network
interface, like with other ports. However, accepting the default for the zookeeper network interface is
recommended where possible. For example:

$ voltdb start --dir=~/mydb --zookeeper=2288

A.5.9. TLS/SSL Encryption (Including HTTPS)
VoltDB lets you enable Transport Layer Security (TLS) — the recommended upgrade from Secure Socket
Layer (SSL) encryption — for all of its externally-facing interfaces: the web port, client port, admin port,
and replication (DR) port. When you enable TLS, you automatically enable encryption for the web port.
You can then optionally enable encryption for the external ports (client and admin) and/or the replication
port.

To enable TLS encryption you need an appropriate certificate. How you configure TLS depends on whether
you create a local certificate or receive one from an authorized certificate provider, such as VeriSign,
GeoTrust and others. If you use a commercial certificate, you only need to identify the certificate as the key
store. If you create your own, you must specify both the key store and the trust store. (See the section on
using TLS/SSL for security in the Using VoltDB manual for an example of creating your own certificate.)

You enable TLS encryption in the deployment file using the <ssl> element. Within <ssl> you specify the
location and password for the key store and, for locally generated certificates, the trust store in separate
elements like so:

<ssl>
 <keystore path="/etc/mydb/keystore" password="twiddledee"/>
 <truststore path="/etc/mydb/truststore" password="twiddledum"/>
</ssl>

When you enable the <ssl> element in the configuration file, TLS encryption is enabled for the web port
and all access to the httpd port and JSON interface must use the HTTPS protocol. When you enable TLS,
the default web port changes from 8080 to 8443.

You can explicitly enable or disable TLS encryption by including the enable attribute. (For example, if
you want to include the key store and trust store in the configuration but not turn on TLS during testing,
you can include enabled="false".) You can specify that the client and admin API ports are also
TLS encrypted by adding the external attribute and setting it to true. Similarly, you can enable TLS
encryption for the DR port by adding the dr attribute. For example, the following configuration sample,
explicitly enables TLS for all externally-facing ports:

<ssl enabled="true" external="true" dr="true">
 <keystore path="/etc/mydb/keystore" password="twiddledee"/>
 <truststore path="/etc/mydb/truststore" password="twiddledum"/>
</ssl>

Note that you cannot disable TLS encryption for the web port separately. TLS is always enabled for the
web port if you enable encryption for any ports.

58

https://docs.voltactivedata.com/UsingVoltDB/SecuritySSL.php
https://docs.voltactivedata.com/UsingVoltDB/

Appendix B. Volt Acve Data Metrics
Volt Active Data provides metrics in Prometheus format that you can use to track and monitor database
activity and status. This appendix provides a list of all the metrics values available from Volt, including
a description of their type and purpose. The metrics are grouped according to the particular aspect of the
product they report on, including:

• Database Tables and Indexes

• Transactions, Procedures, and the Planner

• Memory and CPU Usage

• Client Connections and I/O

• High Availability and Durability

• Streaming Data

• User-Defined Tasks

• System and Cluster Status

B.1. Database Tables and Indexes
The following table describes the metrics available for monitoring the database content, such as tables
and indexes. This information can be used for determining the number, size, and distribution of tables in
the database.

Table B.1. Tables and Indexes

Metrics Type Description

voltdb_index_entry_count_total Gauge The number of index entries in the partition.

voltdb_index_memory_estimate_
bytes

Gauge The estimated amount of memory consumed by the index entries.

voltdb_table_allocated_memory_
bytes

Gauge The total size of memory allocated for storing inline data asso-
ciated with this table in this partition. For streams, the amount
of memory in use to queue export data (both in memory and as
export overflow) prior to its being passed to the export target.

voltdb_table_data_memory_bytes Gauge The total memory used for storing inline data associated with this
table in this partition.

voltdb_table_string_data_memory_
bytes

Gauge The total memory used for storing non-inline variable length da-
ta (VARCHAR, VARBINARY, and GEOGRAPHY) associated
with this table in this partition.

voltdb_table_tuple_total Gauge The number of rows stored for this table in the current partition.
For streams, the cumulative total number of rows inserted into
the stream.

voltdb_ttl_failed_total Counter Total number of times TTL failed to be processed.

voltdb_ttl_last_execution_
timestamp_seconds

Gauge The timestamp when the last round of TTL processing occurred.

59

Volt Active Data Metrics

Metrics Type Description

voltdb_ttl_rows_deleted_total Counter The total number of rows expired and deleted by the TTL at-
tribute.

voltdb_ttl_rows_remaining_total Gauge The number of expired rows not deleted during the last TTL pro-
cessing due to batch size limits. If TTL processing is keeping up
with the throughput, this value should tend towards zero.

B.2. Transactions, Procedures, and the Planner
The following tables describe the metrics available for measuring the volume, frequency, and performance
of transactions, procedures, and the planner used for precessing ad hoc queries.

Table B.2. Transactions and Procedures

Metrics Type Description

voltdb_idle_time_pauses_seconds Histogram The distribution of the amount of time the execution site had to
wait for a new task.

voltdb_initiator_procedure_aborted_
total

Counter The number of times the procedure was aborted.

voltdb_initiator_procedure_failed_
total

Counter The number of times the procedure failed unexpectedly.

voltdb_initiator_procedure_invoked_
total

Counter The number of times the stored procedure has been invoked by
this connection on this host node.

voltdb_initiator_procedure_invoked_
time_seconds

Histogram The distribution of length of time it took to execute the stored
procedure.

voltdb_procedure_aborted_total Counter The number of times the procedure was aborted.

voltdb_procedure_bad_input_total Counter The total number of times this procedure was run with a wrong
set of arguments (may only happen for NT procedure).

voltdb_procedure_failed_total Counter The number of times the procedure failed unexpectedly.

voltdb_procedure_forwarded_total Counter -

voltdb_procedure_invoked_total Counter The total number of invocations of this procedure at this site.

voltdb_procedure_invoked_time_
seconds

Histogram The length of time it took to execute the stored procedure.

voltdb_procedure_params_size_bytes Counter The cumulative size of the parameters passed as input to the pro-
cedure.

voltdb_procedure_result_size_bytes Counter The total size of the results returned by the procedure.

voltdb_procedure_sampled_total Counter Number of invocations of procedures for which all measure-
ments (such as execution time) were captured.

voltdb_procedure_statement_failed_
total

Counter The number of times this procedure statement failed unexpect-
edly.

voltdb_procedure_statement_
invoked_total

Counter The total number of invocations of this statement as part of given
procedure at this site.

voltdb_procedure_statement_
invoked_time_seconds

Histogram The length of time it took to execute the statement.

60

Volt Active Data Metrics

Metrics Type Description

voltdb_procedure_statement_
params_size_bytes

Counter The total size of the parameters passed as input to the statement.

voltdb_procedure_statement_result_
size_bytes

Counter The total size (in bytes) of the results returned by the statement.

voltdb_procedure_timeout_total Counter The number of times the procedure timed out.

Table B.3. Planner

Metrics Type Description

voltdb_planner_cache1_hits_total Counter The number of queries that matched and reused a plan in the level
1 cache.

voltdb_planner_cache1_level_total Gauge The number of query plans in the level 1 cache.

voltdb_planner_cache2_hits_total Counter The number of queries that matched and reused a plan in the level
2 cache.

voltdb_planner_cache2_level_total Gauge The number of query plans in the level 2 cache. Gauge.

voltdb_planner_cache_misses_total Counter The number of queries that had no match in the cache and had
to be planned from scratch.

voltdb_planner_failures_total Counter The number of times planning for an ad hoc query failed.

voltdb_planner_plan_time_seconds Histogram The distribution of length of time (with nanoseconds accuracy)
it took to complete the planning of an ad hoc query.

B.3. Memory and CPU Usage
The following tables describe the metrics monitoring memory and CPU usage, including memory com-
paction triggered by Volt and garbage collection triggered by Java.

Table B.4. Memory, Compaction, and Garbage Collection

Metrics Type Description

voltdb_compaction_execution_
seconds

Histogram The amount of time it took for compaction to complete.

voltdb_compaction_fragmented_
percent

Gauge The current fragmentation percentage.

voltdb_compaction_invoked_total Counter Number of times compaction was performed.

voltdb_compaction_relocated_total Histogram The number of tuples relocated during compaction.

voltdb_gc_count_total Counter The number of times garbage collection was performed. Tags:

• GC_TYPE - (e.g. CMS, G1), example gc_type="G1 Young
Generation".

voltdb_gc_time_seconds Counter Cumulative run time of garbage collection. Tags:

• GC_TYPE - (e.g. CMS, G1), example gc_type="G1 Young
Generation".

voltdb_memory_indexmemory_bytes Gauge The amount of memory in use for storing database indexes.

voltdb_memory_javamaxheap_bytes Gauge The maximum heap size of the Java runtime environment.

61

Volt Active Data Metrics

Metrics Type Description

voltdb_memory_javaused_bytes Gauge The amount of memory allocated by Java and in use by VoltDB.

voltdb_memory_nio_total_buffer_
count_total

Gauge An estimate of the number of buffers in the NIO pool.

voltdb_memory_nio_total_size_bytes Gauge An estimate of the total capacity of all the buffers in the NIO
pool.

voltdb_memory_nio_used_bytes Gauge An estimate of the memory that the Java virtual machine is using
for the NIO pool which resides outside the regular Java heap.

voltdb_memory_physicalmemory_
bytes

Gauge The total size of physical memory on the server.

voltdb_memory_pooledmemory_
total

Gauge The total size of memory allocated for tasks other than database
records, indexes, and strings.

voltdb_memory_rss_bytes Gauge The resident set size. That is, the total amount of memory allo-
cated to the VoltDB processes on the server.

voltdb_memory_stringmemory_bytes Gauge The amount of memory in use for storing string, binary, and
geospatial data that is not stored in-line in the database record.

voltdb_memory_tupleallocated_bytes Gauge The amount of memory allocated for the storage of database
records (including free space).

voltdb_memory_tuplecount_total Gauge The total number of database records in memory.

voltdb_memory_tupledata_bytes Gauge The amount of memory in use for storing database records.

voltdb_memory_undo_log_size_
bytes

Gauge -

voltdb_memory_undo_pool_size_
bytes

Gauge The total size of memory allocated for the undo pool - memory
used to store information needed to "undo" database changes if
a transaction needs to rollback.

Table B.5. CPU

Metrics Type Description

voltdb_cpu_load_percent Gauge The percentage of CPU used by the database server process.
0-100.

B.4. Client Connections and I/O
The following tables describe the metrics for client connections and the I/O between clients and the cluster.

Table B.6. Connections

Metrics Type Description

voltdb_accepted_connections_total Gauge The total number of client connections opened since the server
started, including connections that are now closed.

voltdb_client_connections_limit_
total

Gauge The maximum number of client connections allowed for the
server.

voltdb_client_connections_open_
total

Gauge The number of client connections open on the server.

62

Volt Active Data Metrics

Metrics Type Description

voltdb_dropped_connections_total Gauge The total number of connections that were rejected because the
connection limit had been reached.

Table B.7. I/O

Metrics Type Description

voltdb_io_message_handled_total Counter The number of individual messages sent from the client to the
host.

voltdb_io_message_written_total Counter The number of individual messages sent from the host to the
client.

voltdb_io_network_inbound_queue_
time_seconds

Histogram The distribution of the time tasks were waiting in the queue for
the execution on the remote node, initiated by this connection.

voltdb_io_network_outstanding_
request_bytes_bytes

Gauge The number of bytes of data sent from the client pending on the
host.

voltdb_io_network_procedure_
round_trip_time_seconds

Histogram The distribution of the time taken to receive acknowledgment of
the execution of the stored procedures on the leader node, initi-
ated by this connection.

voltdb_io_network_read_bytes Counter The number of bytes of data sent from the client to the host.

voltdb_io_network_read_error_total Counter Number of times request has failed.

voltdb_io_network_replication_
round_trip_time_seconds

Histogram The distribution of the time it took to receive acknowledgment
from the replica.

voltdb_io_network_write_bytes Counter The number of bytes of data sent from the host to the client.

voltdb_io_outstanding_messages_
total

Gauge The number of messages on the host queue waiting to be re-
trieved by the client.

voltdb_io_outstanding_response_
messages_total

Gauge Number of message scheduled to be sent to the client.

voltdb_io_tls_decryption_latency_
seconds

Histogram The distribution of decryption times.

voltdb_io_tls_encryption_latency_
seconds

Histogram The distribution of encryption times.

voltdb_io_tls_messages_decrypted_
total

Counter The number of messages decrypted with TLS.

voltdb_io_tls_messages_encrypted_
total

Counter The number of messages encrypted with TLS.

B.5. High Availability and Durability
The following tables describe the metrics related to Volt features that provide high availability and dura-
bility for the database, including snapshots, command logging, and Active(N) cross datacenter replication.

Table B.8. Snapshots

Metrics Type Description

voltdb_snapshot_site_summary_info Metadata Informational metric. One for every snapshot file in the recent
snapshots performed on the cluster. Tags:

63

Volt Active Data Metrics

Metrics Type Description

• SNAPSHOT_NONCE - The unique identifier for the snap-
shot.

• TABLE_NAME - The name of the database table whose data
the file contains.

• SNAPSHOT_COLLECTION_ITERATIONS - .
• SNAPSHOT_COLLECTION_TIME - The length of time (in

seconds) it took to complete the snapshot.
• SNAPSHOT_WRITE_TIME - The length of time (in sec-

onds) it took to complete write stage of snapshot operation.

voltdb_snapshot_summary_info Metadata Informational metric. One for every snapshot file in the recent
snapshots performed on the cluster. Tags:

• SNAPSHOT_NONCE - The unique identifier for the snap-
shot.

• SNAPSHOT_TXN_ID - The transaction ID of the snapshot.
• SNAPSHOT_TYPE - String value indicating how the snap-

shot was initiated. Possible values are: "Auto" - an automated
snapshot as defined by the configuration file; "Commandlog"
- a command log snapshot; "Manual" - a manual snapshot ini-
tiated by a user.

• SNAPSHOT_PATH - The directory path where the snapshot
file resides.

• SNAPSHOT_START_TIME - The timestamp when the snap-
shot began (in milliseconds).

• SNAPSHOT_END_TIME - The timestamp when the snap-
shot was completed (in milliseconds).

• SNAPSHOT_BYTES_WRITTEN - Total number of bytes
written to the file so far.

• SNAPSHOT_PROGRESS - For snapshots currently in
progress, the percent complete at the time of the call (0-100).

• SNAPSHOT_RESULT - Value indicating whether the writing
of the snapshot file was successful ("Success") or not ("Fail-
ure").

voltdb_snapshot_table_summary_
info

Metadata Informational metric. One for every snapshot file in the recent
snapshots performed on the cluster. Tags:

• SNAPSHOT_NONCE - The unique identifier for the snap-
shot.

• SNAPSHOT_TXN_ID - The transaction ID of the snapshot.
• TABLE_NAME - The name of the database table whose data

the file contains.
• TABLE_FILENAME - The file name.
• SNAPSHOT_BYTES_WRITTEN - The total size, in bytes,

of the file.
• SNAPSHOT_RESULT - Value indicating whether the writing

of the snapshot file was successful ("Success") or not ("Fail-
ure").

64

Volt Active Data Metrics

Table B.9. Command Logging

Metrics Type Description

voltdb_commandlog_fsync_interval_
seconds

Gauge The average interval between the last 10 fsync system calls.

voltdb_commandlog_in_use_
segment_count_total

Gauge The total number of segment files in use for command logging.

voltdb_commandlog_outstanding_
bytes_bytes

Gauge The size, in bytes, of pending command log data. For synchro-
nous logging, this value is always zero.

voltdb_commandlog_outstanding_
txns_total

Gauge The number of transactions that have been initiated for which the
log has yet to be written to disk. For synchronous logging, this
value is always zero.

voltdb_commandlog_segment_
count_total

Gauge The number of segment files allocated, including currently un-
used segments.

Table B.10. Active(N) and XDCR

Metrics Type Description

voltdb_dr_conflicts_count_total Counter The total number of conflicts that have been recorded for this
table in this partition.

voltdb_dr_constraint_violation_
count_total

Counter The number of constraint violation conflicts that occurred.

voltdb_dr_consumer_info Metadata Tags:

• DR_STATE - A text string indicating the current state of repli-
cation. Possible values are:

• UNINITIALIZED - DR has not begun yet or has stopped
• INITIALIZE - DR is enabled and the consumer is attempting

to contact the producer
• SYNC - DR has started and the consumer is synchronizing by

receiving snapshots of existing data from the master
• RECEIVE - DR is underway and the consumer is receiving

binary logs from the master
• DISABLE - DR has been canceled for some reason and the

consumer is stopping DR.

voltdb_dr_consumer_bytes_
replicated_bytes

Counter Total number of bytes this consumer received.

voltdb_dr_consumer_partition_info Metadata Tags:

• IS_COVERED - Boolean value indicating whether this parti-
tion is currently connected to and receiving data from a match-
ing partition on the producer cluster.

• COVERING_HOST - The host name of the server in the pro-
ducer cluster that is providing DR data to this partition. If
IS_COVERED is "false", this label is empty.

• IS_PAUSED - Boolean indicating whether this partition is
paused. A partition "pauses" when the schema of the DR ta-
bles on the producer change to no longer match the consumer
and all binary logs prior to the change have been processed.

• CONSUMER_LIMIT_TYPE - The type of limit on the DR
queue. The response is either BYTES or BUFFERS.

65

Volt Active Data Metrics

Metrics Type Description

• LAST_APPLIED_DR_PROTOCOL - The current DR proto-
col version of binary logs being received and applied for this
partition.

voltdb_dr_consumer_partition_
available_buffers_total

Gauge The number of free buffers left in the DR queue.

voltdb_dr_consumer_partition_
available_buffer_bytes_bytes

Gauge The number of free bytes left in the DR queue.

voltdb_dr_consumer_partition_
duplicate_buffers_total

Gauge The number of repeated buffers received after the initial packets
were dropped because the queue was full.

voltdb_dr_consumer_partition_
ignored_buffers_total

Gauge The number of buffers received but dropped because the queue
was full.

voltdb_dr_consumer_partition_last_
applied_timestamp_seconds

Gauge The timestamp of the last transaction successfully applied to this
partition on the consumer.

voltdb_dr_consumer_partition_last_
received_timestamp_seconds

Gauge The timestamp of the last transaction received from the producer.

voltdb_dr_consumer_remote_
creation_timestamp_seconds

Gauge The timestamp when the remote cluster started for the first time.

voltdb_dr_divergence_count_total Counter The number of conflicts that may have resulted in divergence
between the clusters, which is a subset of the total conflicts.

voltdb_dr_last_conflict_timestamp_
seconds

Gauge The timestamp of the last conflict.

voltdb_dr_missing_row_count_total Counter The number of missing row conflicts that occurred.

voltdb_dr_producer_cluster_info Metadata Informational metric, presents cluster level metadata. Tags:

• DR_STATE - The current state of the DR relationship. Possi-
ble values are the following: "Disabled", "Pending", "Active",
"Stopped".

• LAST_APPLIED_DR_PROTOCOL - The current DR proto-
col version of binary logs being received and applied for this
partition.

• SUPPORTED_DR_PROTOCOL - The highest version of DR
protocol this cluster is capable of using to send data to con-
sumers.

voltdb_dr_producer_node_info Metadata Informational metric, presents node level metadata. Tags:

• DR_STATE - The current state of the DR relationship. Possi-
ble values are the following: "Disabled", "Pending", "Active",
"Stopped".

• DR_SYNC_SNAPSHOT_STATE - The current state of the
synchronization snapshot that begins replication. During nor-
mal operation, this value is "None" indicating either that repli-
cation is not active or that transactions are actively being repli-
cated. If a synchronization snapshot is in progress, this value
provides additional information about the specific activity un-
derway.

voltdb_dr_producer_node_remote_
creation_timestamp_seconds

Gauge The timestamp (in seconds) when the remote cluster started for
the first time.

66

Volt Active Data Metrics

Metrics Type Description

voltdb_dr_producer_node_rows_
acked_for_sync_snapshot_total

Gauge

voltdb_dr_producer_node_rows_in_
sync_snapshot_total

Gauge

voltdb_dr_producer_node_tasks_
queue_depth_total

Gauge The number of DR tasks waiting to be processed.

voltdb_dr_producer_partition_info Metadata Informational metric. Tags:

• DR_STREAM_TYPE - The type of stream, which can either
be "Transactions" or "Snapshot".

• DR_LAST_QUEUED_ID - The ID of the last transaction
queued for transmission to the consumer.

• DR_LAST_ACK_ID - The ID of the last transaction acknowl-
edged by the consumer.

• DR_IS_SYNCED - Indicates whether the database is cur-
rently being replicated. If replication has not started, or the
overflow capacity has been exceeded (that is, replication has
failed), the value of ISSYNCED is "false". If replication is
currently in progress, the value is "true".

• DR_MODE - Indicates whether this particular partition
is replicating data to the consumer ("NOrmal") or not
("Paused"). Only one copy of each logical partition actually
sends data during replication. So for clusters with a K-safety
value greater than zero, not all physical partitions will report
"Normal" even when replication is in progress.

• DR_CONNECTION_STATUS - Indicates whether the con-
nection to the consumer is operational ("UP") or not
("DOWN").

• CONSUMER_LIMIT_TYPE - The type of limit on the DR
queue. The response is either BYTES or BUFFERS.

• CURRENT_DR_PROTOCOL - The DR protocol version cur-
rently in use when sending data to consumers.

• SUPPORTED_DR_PROTOCOL - The highest version of DR
protocol this cluster is capable of using to send data to con-
sumers.

voltdb_dr_producer_partition_
available_to_send_buffers_total

Gauge The number of buffers waiting to be sent to the consumer.

voltdb_dr_producer_partition_
available_to_send_total_bytes

Gauge The number of bytes waiting to be sent to the consumer.

voltdb_dr_producer_partition_
buffers_waiting_for_ack_total

Gauge The total number of buffers in this partition waiting for acknowl-
edgement from the consumer.

voltdb_dr_producer_partition_last_
ack_timestamp_seconds

Gauge The total number of bytes currently queued for transmission to
the consumer.

voltdb_dr_producer_partition_last_
queued_timestamp_seconds

Gauge The timestamp of the last transaction queued for transmission to
the consumer.

voltdb_dr_producer_partition_
queued_in_memory_total_bytes

Gauge The total number of bytes of queued data currently held in mem-
ory. If the amount of total bytes is larger than the amount in mem-
ory, the remainder is kept in overflow storage on disk.

67

Volt Active Data Metrics

Metrics Type Description

voltdb_dr_producer_partition_
queued_total_bytes

Gauge The total number of bytes currently queued for transmission to
the consumer.

voltdb_dr_producer_partition_
queue_gap_total

Gauge The number of missing transactions between those already ac-
knowledged by the consumer and the next available for trans-
mission. Under normal operating conditions, this value is zero.

voltdb_dr_producer_partition_
round_trip_time_seconds

Histogram The distribution of time it took to receive acknowledgement from
the consumer.

voltdb_dr_role_info Metadata Informational metric. Tags:

• DR_ROLE_NAME - The role of the current cluster in a DR
relationship. Possible values are NONE, MASTER, REPLI-
CA, and XDCR.

• DR_STATE - The current state of the DR relationship.
DISABLED, PENDING, ACTIVE, STOPPED.

• REMOTE_CLUSTER_ID - The DR ID of the other DR clus-
ter, or -1 if not available (for example, when DR is disabled
or communication has not begun).

• SUPPORTED_DR_PROTOCOL - The highest version of DR
protocol this cluster is capable of using to send data to con-
sumers.

voltdb_dr_row_timestamp_
mismatch_count_total

Counter The number of timestamp mismatch conflicts that occurred.

voltdb_dr_schema_change_info Metadata Informational metric containing metadata. Tags:

• SITE_ID - Numeric ID of the execution site on the host node.
• TABLE_TYPE - The type of the table. E.g. "PersistentTable"

for normal data tables.
• TABLE_NAME - The name of the database table for which

schema was mismatched.
• CLUSTER_ID - The numeric ID of the current cluster.
• REMOTE_CLUSTER_ID - The numeric ID of the remote

cluster.
• DR_SCHEMA_CHANGE_MATCH - A text string of "true"

or "false" indicating whether the schema for the table matches
on the two clusters.

voltdb_dr_schema_change_tuple_
count_total

Counter The total number of tuples exchanged for this tuple while the
schema did not match.

B.6. Streaming Data
The following tables describe the metrics related to streaming data into and out of Volt, including import,
export, and topics.

Table B.11. Import

Metrics Type Description

voltdb_importer_failure_total Counter The number of import transactions that failed.

voltdb_importer_outstanding_
requests_total

Gauge The number of records read from the import stream and waiting
to be inserted into the database.

68

Volt Active Data Metrics

Metrics Type Description

voltdb_importer_retries_total Counter The number of attempts to replay failed transactions.

voltdb_importer_success_total Counter The number of import transactions that succeeded.

Table B.12. Export

Metrics Type Description

voltdb_export_info Metadata Informational metric that contains metadata. Tags:

• EXPORT_IS_ACTIVE - "True" if is enabled and not blocked
and is master.

• EXPORT_STATUS - The current status of the export connec-
tion.

• "Active" - Queue is currently exporting to the target;
• "Blocked" - There is a gap in the queue and export is waiting

to see if the missing records become available when a missing
node rejoins;

• "Dropped" - either the source stream has been dropped from
the schema or the export configuration has been removed from
the configuration and queue is draining any remaining records.

voltdb_export_last_acked_
timestamp_seconds

Gauge The timestamp when the last tuple was acknowledged as re-
ceived by the target.

voltdb_export_last_queued_
timestamp_seconds

Gauge The timestamp when the most recent tuple was added to the ex-
port queue for this partition.

voltdb_export_latency_seconds Histogram The distribution of time between when records are inserted, and
then acknowledged by the target.

voltdb_export_queue_gap_total Gauge The number of records missing from the queue for the current
stream and partition.

voltdb_export_tuple_count_total Counter The total number of records queued to the export target since the
queue was created.

voltdb_export_tuple_pending_total Gauge The number of records still waiting to be written to or acknowl-
edged by the target.

Table B.13. Topics

Metrics Type Description

voltdb_topic_info Metadata Informational metric with topic metadata. Tags:

• TOPIC_STATUS -
• "Stable" - The queue is complete;
• "Backfilling" - records are missing but are being retrieved

from other servers;
• "Blocked" - records are missing from all copies of the parti-

tion;
• "Orphaned" - the queue is no longer being served by this parti-

tion, but is saved in case other copies of the queue are blocked
or backfilling and need the data. This is a transitional state and
the queue is deleted as soon as no other copies need its records.

• TOPIC_RETENTION_POLICY - The retention policy for
this topic.

69

Volt Active Data Metrics

Metrics Type Description

• TOPIC_IS_MASTER - "True" or "False" indicating whether
the current site is the master for the logical partition.

voltdb_topic_bytes_fetched_bytes Gauge The size of data sent to consumers for this partition and topic.

voltdb_topic_bytes_on_disk_bytes Gauge The size of data stored on disk for this partition and topic.

voltdb_topic_error_offset Gauge If an error occurs while encoding a message for consumers, an
error is returned to the consumer, the offset of the message is
recoded here.

voltdb_topic_first_offset Gauge The value of the first offset currently available in the topic.

voltdb_topic_first_offset_timestamp_
seconds

Gauge The timestamp when the first offset was inserted into the queue.

voltdb_topic_last_offset Gauge The value of the last offset in the topic.

voltdb_topic_last_offset_timestamp_
seconds

Gauge The timestamp when the most recent message (the last offset)
was inserted into the queue.

voltdb_topic_skipped_rows_total Gauge The number of skipped rows that otherwise would cause an error.
Only applies if the topic's option consumer.skip.errors is true.

B.7. User-Defined Tasks
The following tables describe the metrics for measuring and monitoring user-defined tasks.

Table B.14. Tasks

Metrics Type Description

voltdb_scheduler_action_status_info Metadata Informational metric with scheduler metadata. Tags:

• PARTITION_ID - The numeric ID for the logical partition
running the task procedure. Directed procedures run on each
logical partition. Multi-partition procedures run on the mul-
ti-partition initiator.

• TASK_NAME - The name of the task.
• TASK_STATUS - The current status of the task. Possible val-

ues include: RUNNING - The task is enabled and running
normally; DISABLED - The task is disabled and not running.
ERROR - The task returned an error and was stopped due to
the ON ERROR STOP attribute. PAUSED - The database is
paused or is running on a DR replica, so the task is not cur-
rently running but will restart when the database resumes or
is promoted.

• TASK_ORIGIN - "System" or "User".
• TASK_SCOPE - The execution scope of the task, which

matches the RUN ON attribute. Possible values are "Data-
base", "Hosts", or "Partitions".

voltdb_scheduler_procedure_
execution_time_seconds

Histogram The distribution of time the task took to execute.

voltdb_scheduler_procedure_failure_
total

Counter The number of times the procedure generated an error when
run.Tags:

• same as above.

70

Volt Active Data Metrics

Metrics Type Description

voltdb_scheduler_procedure_
invocation_total

Counter The total number of invocations of the task's procedure.

voltdb_scheduler_procedure_wait_
time_seconds

Histogram The distribution of time between when the procedure was sched-
uled to run and when it was invoked.

voltdb_scheduler_task_execution_
time_seconds

Histogram The distribution of the amount of time taken to schedule an in-
stance of the task.

voltdb_scheduler_task_invocation_
total

Counter The total number of invocations of the task's schedule.

voltdb_scheduler_task_wait_time_
seconds

Histogram The distribution of the difference between when the task was
scheduled to run and when the scheduler was invoked.

voltdb_task_priority_queue_depth_
total

Gauge The number of tasks in the queue.

voltdb_task_priority_queue_poll_
count_total

Counter The number of tasks that left the queue.

voltdb_task_priority_queue_wait_
time_seconds

Histogram The distribution of the length of time tasks were waiting in the
queue.

voltdb_task_queue_depth_total Gauge The number of tasks in the queue.

voltdb_task_queue_poll_count_total Counter The number of tasks that left the queue (and started executing)
in the past five seconds.

voltdb_task_queue_wait_time_
seconds

Histogram The distribution of time tasks were waiting in the queue.

B.8. System and Cluster Status
The following tables describe the metrics that report the status of the cluster and the individual systems
within it, as well as additional metrics not covered by other categories.

Table B.15. System

Metrics Type Description

voltdb_clockskew_seconds Gauge The number of milliseconds difference between the system clock
time of the current host and the remote host.

voltdb_file_descriptors_count_total Gauge The number of file descriptors open in the process.

voltdb_file_descriptors_limit_total Gauge The maximum number of file descriptors allowed for the process
running the server.

Table B.16. Miscellaneous

Metrics Type Description

voltdb_balance_partitions_info Metadata Reports the status of recent rebalancing operations. Information-
al metric. Tags:

• BALANCE_MOVED_ROWS - The number of rows of data
that have been moved.

• BALANCE_PERCENTAGE_MOVED - The percentage of
the total segments that have already been moved.

71

Volt Active Data Metrics

Metrics Type Description

• BALANCE_ROWS_PER_SECOND - The average number
of rows moved per second.

• BALANCE_ESTIMATED_REMAINING - The estimated
time remaining until the rebalance is complete.

• BALANCE_MEGABYTES_PER_SECOND - The average
volume of data moved per second, measured in megabytes.

• BALANCE_CALLS_PER_SECOND - The average number
of rebalance work units, or transactions, executed per second.

• BALANCE_CALLS_LATENCY - The average total time be-
tween start and finish of rebalance operations. (TODO: in mil-
lis? should be in seconds)

• BALANCE_CALLS_TIME - The average execution time for
rebalance transactions. (TODO: in millis? should be in sec-
onds)

• BALANCE_CALLS_TRANSFER_TIME - The average time
spent transferring data during rebalance transactions. (TODO:
in millis? should be in seconds)

voltdb_partition_count_total Gauge Number of unique partitions in the cluster (not including MP par-
tition).

voltdb_xdcr_readiness_info Metadata -

72

Appendix C. Snapshot Ulies
VoltDB provides two utilities for managing snapshot files. These utilities verify that a native snapshot
is complete and usable and convert the snapshot contents to a text representation that can be useful for
uploading or reloading data in case of severe errors.

It is possible, as the result of a design flaw or failed program logic, for a database application to become
unusable. However, the data is still of value. In such emergency cases, it is desirable to extract the data
from the database and possibly reload it. This is the function that save and restore perform within VoltDB.

But there may be cases when you want to use the data created by a VoltDB snapshot elsewhere. The goal
of the utilities is to assist in that process. The snapshot utilities are:

• snapshotconvert converts a snapshot (or part of a snapshot) into text files, creating one file for each
table in the snapshot.

• snapshotverifier verifies that a VoltDB snapshot is complete and usable.

To use the snapshotconvert and snapshotverifier commands, be sure that the voltdb /bin
directory is in your PATH, as described in the section on "Setting Up Your Environment" in the Using
VoltDB manual. The following sections describe how to use these two commands.

73

http://docs.voltactivedata.com/UsingVoltDB/SetUpEnv.php
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/

Snapshot Utilities

snapshotconvert
snapshotconvert — Converts the tables in a VoltDB snapshot into text files.

Syntax
snapshotconvert {snapshot-id} --type {csv|tsv} \

--table {table} [...] [--dir {directory}]... \
[--outdir {directory}]

snapshotconvert --help

Description
SnapshotConverter converts one or more tables in a valid snapshot into either comma-separated (csv) or
tab-separated (tsv) text files, creating one file per table.

Where:

{snapshot-id} is the unique identifier specified when the snapshot was created. (It is also the name
of the .digest file that is part of the snapshot.) You must specify a snapshot ID.

{csv|tsv} is either "csv" or "tsv" and specifies whether the output file is comma-separated or
tab-separated. This argument is also used as the filetype of the output files.

{table} is the name of the database table that you want to export to text file. You can spec-
ify the --table argument multiple times to convert multiple tables with a single
command.

{directory} is the directory to search for the snapshot (--dir) or where to create the resulting
output files (--outdir). You can specify the --dir argument multiple times to
search multiple directories for the snapshot files. Both --dir and --outdir are
optional; they default to the current directory path.

Example
The following command exports two tables from a snapshot of the flight reservation example used in the
Using VoltDB manual. The utility searches for the snapshot files in the current directory (the default) and
creates one file per table in the user's home directory:

$ snapshotconvert flightsnap --table CUSTOMER --table RESERVATION \
 --type csv -- outdir ~/

74

http://docs.voltactivedata.com/UsingVoltDB/

Snapshot Utilities

snapshotverifier
snapshotverifier — Verifies that the contents of one or more snapshot files are complete and usable.

Syntax
snapshotverifier [snapshot-id] [--dir {directory}] ...

snapshotverifier --help

Description
SnapshotVerifier verifies one or more snapshots in the specified directories.

Where:

[snapshot-id] is the unique identifier specified when the snapshot was created. (It is also the name
of the .digest file that is part of the snapshot.) If you specify a snapshot ID, only
snapshots matching that ID are verified. If you do not specify an ID, all snapshots
found will be verified.

{directory} is the directory to search for the snapshot. You can specify the --dir argument
multiple times to search multiple directories for snapshot files. If you do not specify
a directory, the default is to search the current directory.

Examples
The following command verifies all of the snapshots in the current directory:

$ snapshotverifier

This example verifies a snapshot with the unique identifier "flight" in either the directory /etc/volt-
db/save or ~/mysaves:

$ snapshotverifier flight --dir /etc/voltdb/save/ --dir ~/mysaves

75

	Administrator's Guide
	Table of Contents
	Preface
	1. Structure of This Book
	2. Related Documents

	Chapter 1. Managing Volt Active Data Databases
	1.1. Getting Started
	1.2. Understanding the VoltDB Utilities
	1.3. Management Tasks

	Chapter 2. Preparing the Servers
	2.1. Server Checklist
	2.2. Install Required Software
	2.3. Configure Memory Management
	2.3.1. Disable Swapping
	2.3.2. Disable Transparent Huge Pages
	2.3.3. Enable Virtual Memory Mapping and Overcommit

	2.4. Turn off TCP Segmentation
	2.5. Configure Time Services
	2.6. Increase Resource Limits
	2.7. Configure the Network
	2.8. Assign Network Ports
	2.9. Eliminating Server Process Latency

	Chapter 3. Starting and Stopping the Database
	3.1. Configuring the Cluster and Database
	3.2. Initializing the Database Root Directory
	3.3. Starting the Database
	3.4. Loading the Database Definition
	3.4.1. Preloading the Schema and Classes When You Initialize the Database
	3.4.2. Loading the Schema and Classes After the Database Starts

	3.5. Stopping the Database
	3.6. Restarting the Database
	3.7. Starting and Stopping Individual Servers

	Chapter 4. Maintenance and Upgrades
	4.1. Backing Up the Database
	4.2. Updating the Database Schema
	4.2.1. Performing Live Schema Updates
	4.2.2. Performing Updates Using Save and Restore

	4.3. Upgrading the Cluster
	4.3.1. Performing Server Upgrades
	4.3.2. Performing Rolling Hardware Upgrades on K-Safe Clusters
	4.3.3. Adding Servers to a Running Cluster with Elastic Scaling
	4.3.4. Removing Servers from a Running Cluster with Elastic Scaling
	4.3.5. Reconfiguring the Cluster During a Maintenance Window

	4.4. Upgrading Existing VoltDB Installations
	4.4.1. Upgrading the VoltDB Software
	4.4.2. Upgrading VoltDB Using Save and Restore
	4.4.3. Upgrading Older Versions of VoltDB Manually
	4.4.4. Performing an In-Service Upgrade of a Single Cluster
	4.4.4.1. The Scope of In-Service Upgrades

	4.4.5. Performing an Online Upgrade Using Multiple XDCR Clusters
	4.4.5.1. Falling Back to a Previous Version

	4.4.6. Downgrading, or Falling Back to a Previous VoltDB Version

	4.5. Updating the VoltDB Software License

	Chapter 5. Monitoring VoltDB Databases
	5.1. Monitoring Overall Database Activity
	5.1.1. Volt Management Center
	5.1.2. System Procedures
	5.1.3. SNMP Alerts

	5.2. Setting the Database to Read-Only Mode When System Resources Run Low
	5.2.1. Monitoring Memory Usage
	5.2.2. Monitoring Disk Usage

	5.3. Integrating VoltDB with Prometheus

	Chapter 6. Logging and Analyzing Activity in a VoltDB Database
	6.1. Introduction to Logging
	6.2. Creating the Logging Configuration File
	6.3. Changing the Timezone of Log Messages
	6.4. Managing VoltDB Log Files
	6.5. Enabling Your Custom Log Configuration When Starting VoltDB
	6.6. Changing the Configuration on the Fly

	Chapter 7. What to Do When Problems Arise
	7.1. Where to Look for Answers
	7.2. Handling Errors When Restoring a Database
	7.2.1. Logging Constraint Violations
	7.2.2. Safe Mode Recovery

	7.3. Collecting the Log Files

	Appendix A. Server Configuration Options
	A.1. Server Configuration Options
	A.1.1. Network Configuration (DNS)
	A.1.2. Time Configuration

	A.2. Process Configuration Options
	A.2.1. Maximum Heap Size (VOLTDB_HEAPMAX)
	A.2.2. Garbage Collector (VOLTDB_GC_OPTS)
	A.2.3. Other Java Runtime Options (VOLTDB_OPTS)

	A.3. Database Configuration Options
	A.3.1. Sites per Host
	A.3.2. K-Safety
	A.3.3. Network Partition Detection
	A.3.4. Automated Snapshots
	A.3.5. Import and Export
	A.3.6. Command Logging
	A.3.7. Heartbeat
	A.3.8. Temp Table Size
	A.3.9. Query Timeout
	A.3.10. Flush Interval
	A.3.11. Long-Running Process Warning
	A.3.12. Copying Array Parameters
	A.3.13. Transaction Prioritization
	A.3.14. Clock Skew

	A.4. Path Configuration Options
	A.4.1. VoltDB Root
	A.4.2. Snapshots Path
	A.4.3. Export Overflow Path
	A.4.4. Command Log Path
	A.4.5. Command Log Snapshots Path

	A.5. Network Ports
	A.5.1. Client Port
	A.5.2. Admin Port
	A.5.3. Web Interface Port (http)
	A.5.4. Internal Server Port
	A.5.5. Metrics Port
	A.5.6. Replication Port
	A.5.7. Topics Port
	A.5.8. Zookeeper Port
	A.5.9. TLS/SSL Encryption (Including HTTPS)

	Appendix B. Volt Active Data Metrics
	B.1. Database Tables and Indexes
	B.2. Transactions, Procedures, and the Planner
	B.3. Memory and CPU Usage
	B.4. Client Connections and I/O
	B.5. High Availability and Durability
	B.6. Streaming Data
	B.7. User-Defined Tasks
	B.8. System and Cluster Status

	Appendix C. Snapshot Utilities
	snapshotconvert
	snapshotverifier

