
Guide to Performance and
Customizaon

Abstract

This book explains how to optimize application performance and customize database fea-
tures using VoltDB.

V13

Guide to Performance and Customization
V13
Copyright © 2008-2023 Volt Active Data, Inc.

The text and illustrations in this document are licensed under the terms of the GNU Affero General Public License Version 3 as published by the
Free Software Foundation. See the GNU Affero General Public License (http://www.gnu.org/licenses/) for more details.

Many of the core VoltDB database features described herein are part of the VoltDB Community Edition, which is licensed under the GNU Affero
Public License 3 as published by the Free Software Foundation. Other features are specific to the VoltDB Enterprise Edition and VoltDB Pro, which
are distributed by Volt Active Data, Inc. under a commercial license.

The VoltDB client libraries, for accessing VoltDB databases programmatically, are licensed separately under the MIT license.

Your rights to access and use VoltDB features described herein are defined by the license you received when you acquired the software.

Volt Active Data, VoltDB, and Active(N) are registered trademarks of Volt Active Data, Inc.

VoltDB software is protected by U.S. Patent Nos. 9,600,514, 9,639,571, 10,067,999, 10,176,240, and 10,268,707. Other patents pending.

This document was generated on September 29, 2023.

http://www.gnu.org/licenses/

Table of Contents
Preface ... ix

1. Organization of this Manual ... ix
2. Other Resources ... ix

1. Introduction .. 1
1.1. What Affects Performance? .. 1
1.2. How to Use This Book .. 1

2. Hello, World! Revisited ... 3
2.1. Optimizing your Application for VoltDB .. 3
2.2. Applying Hello World to a Practical Problem .. 3
2.3. Partitioned vs. Replicated Tables ... 4

2.3.1. Defining the Partitioning Column .. 4
2.3.2. Creating the Stored Procedures ... 5

2.4. Using Asynchronous Stored Procedure Calls ... 6
2.4.1. Understanding Asynchronous Programming .. 7
2.4.2. The Callback Procedure .. 8
2.4.3. Making an Asynchronous Procedure Call ... 9

2.5. Connecting to all Servers ... 9
2.6. Putting it All Together ... 10
2.7. Next Steps ... 12

3. Understanding VoltDB Execution Plans .. 13
3.1. How VoltDB Selects Execution Plans for Individual SQL Statements 13
3.2. Understanding VoltDB Execution Plans .. 13
3.3. Reading the Execution Plan and Optimizing Your SQL Statements 14

3.3.1. Evaluating the Use of Indexes .. 15
3.3.2. Evaluating the Table Order for Joins .. 17

4. Using Indexes Effectively ... 19
4.1. Basic Principles for Effective Indexing ... 19
4.2. Defining Indexes ... 20
4.3. The Goals for Effective Indexing ... 20
4.4. How Indexes Work ... 21
4.5. Summary ... 22

5. Client2, A Modern Java Client Programming Interface (API) .. 24
5.1. Configuring the Client ... 24
5.2. Connecting to the Database .. 25
5.3. Calling Procedures .. 25

5.3.1. Handling Backpressure .. 25
5.3.2. Handling Request Timeouts .. 26
5.3.3. Defining Options on a Per-Call Basis ... 27

6. Prioritizing Transactions ... 28
6.1. How Prioritizing Transactions Works ... 28
6.2. Enabling Prioritized Transactions ... 30
6.3. Prioritizing Transactions at Runtime ... 30
6.4. Prioritizing Other Types of Transactions ... 31

7. Creating Flexible Schemas With JSON ... 33
7.1. Using JSON Data Structures as VoltDB Content .. 33
7.2. Querying JSON Data ... 34
7.3. Updating JSON Data ... 35
7.4. Indexing JSON Fields .. 35
7.5. Summary: Using JSON in VoltDB ... 36

8. Creating Geospatial Applications .. 37
8.1. The Geospatial Datatypes ... 37

iii

Guide to Performance
and Customization

8.1.1. The GEOGRAPHY_POINT Datatype .. 37
8.1.2. The GEOGRAPHY Datatype .. 37
8.1.3. Sizing GEOGRAPHY Columns .. 38
8.1.4. How Geospatial Values are Interpreted ... 39

8.2. Entering Geospatial Data .. 39
8.3. Working With Geospatial Data .. 40

8.3.1. Working With Locations .. 41
8.3.2. Working With Regions .. 42

9. Creating Custom Importers, Exporters, and Formatters ... 44
9.1. Writing a Custom Exporter ... 44

9.1.1. The Structure and Workflow of the Export Client ... 44
9.1.2. How to Use Custom Properties to Configure the Client 46
9.1.3. How to Compile and Install the Client ... 46
9.1.4. How to Configure the Export Client .. 47

9.2. Writing a Custom Importer ... 47
9.2.1. Designing and Coding a Custom Importer ... 48
9.2.2. Packaging and Installing a Custom Importer .. 49
9.2.3. Configuring and Running a Custom Importer ... 50

9.3. Writing a Custom Formatter ... 51
9.3.1. The Structure of the Custom Formatter ... 51
9.3.2. Compiling and Packaging Custom Formatter Bundles 53
9.3.3. Installing and Invoking Custom Formatters ... 54
9.3.4. Using Custom Formatters With the kafkaloader Utility 55

10. Creating Custom SQL Functions .. 57
10.1. Writing a User-Defined Scalar Function .. 57
10.2. Writing a User-Defined Aggregate Function ... 58
10.3. Loading User-Defined Functions into the Database .. 60
10.4. Declaring a User-Defined Function ... 60
10.5. Invoking User-Defined Functions in SQL Statements ... 61

11. Creating Custom Tasks ... 62
11.1. Overview of How Custom Tasks Work ... 62
11.2. Modifying the Procedure Call and Arguments .. 63

11.2.1. Designing a Java Class That Implements ActionGenerator 63
11.2.2. Compiling and Loading the Class into VoltDB ... 65
11.2.3. Declaring the Task .. 66

11.3. Modifying the Interval Between Invocations .. 66
11.3.1. Designing a Java Class That Implements IntervalGenerator 67
11.3.2. Compiling and Loading the Class into VoltDB ... 68
11.3.3. Declaring the Task .. 69

11.4. Modifying Both the Procedure and Interval .. 69
11.4.1. Designing a Java Class That Implements ActionScheduler 70
11.4.2. Compiling and Loading the Class into VoltDB ... 72
11.4.3. Declaring the Task .. 72

12. Using Compound Procedures ... 74
12.1. How Compound Procedures Work ... 74
12.2. Defining the Compound Procedure ... 75
12.3. Compiling and Loading the Compound Procedure ... 78
12.4. Declaring the Compound Procedure .. 78
12.5. Invoking the Compound Procedure ... 79
12.6. Handling Errors .. 79
12.7. Managing Compound Procedures and System Resources .. 80

13. Understanding Memory Usage ... 82
13.1. How the Database Uses Memory ... 82
13.2. Actions that Impact Memory Usage .. 83

iv

Guide to Performance
and Customization

13.3. How the Database Manages Memory .. 85
13.4. How Memory is Allocated and Deallocated ... 86
13.5. Controlling How Memory is Allocated and Used .. 86

13.5.1. Managing the Java Heap .. 87
13.5.2. Controlling the Compaction Process for Table Data 88

13.6. Understanding Memory Usage for Specific Applications .. 89
14. Managing Time ... 91

14.1. The Importance of Time ... 91
14.2. Using NTP to Manage Time ... 91

14.2.1. Basic Configuration ... 91
14.2.2. Troubleshooting Issues with Time .. 92
14.2.3. Correcting Common Problems with Time .. 92
14.2.4. Example NTP Configuration ... 93

14.3. Configuring NTP in a Hosted, Virtual, or Cloud Environment 94
14.3.1. Considerations for Hosted Environments ... 95
14.3.2. Considerations for Virtual and Cloud Environments 95

v

List of Figures
2.1. Synchronous Procedure Calls .. 7
2.2. Asynchronous Procedure Calls .. 7
9.1. Structure of the Custom Export Class ... 45
12.1. Business Logic for Processing Device Messages ... 76
13.1. The Three Types of Memory in VoltDB .. 83
13.2. Details of Memory Usage During and After an SQL Statement .. 84
13.3. Controlling the Java Heap Size .. 87

vi

List of Tables
9.1. Structure of the Custom Importer ... 47

vii

List of Examples
11.1. Custom Task Implementing ActionGenerator ... 64
11.2. Custom Task Implementing IntervalGenerator .. 67
11.3. Custom Task Implementing ActionScheduler ... 71
14.1. Custom NTP Configuration File ... 94

viii

Preface
This book provides details on using VoltDB to optimize the performance of your database application as
well as customize selective features of the Volt Active Data product. Other books — specifically the Volt-
DB Tutorial and Using VoltDB — describe the basic features of VoltDB and how to use them. However,
creating an optimized application requires using those features in the right combination and in the appro-
priate context. What features you use and how depends on your specific application needs. This manual
provides advice on those decisions.

1. Organization of this Manual
This book is divided into 14 chapters:

• Chapter 1, Introduction

• Chapter 2, Hello, World! Revisited

• Chapter 3, Understanding VoltDB Execution Plans

• Chapter 4, Using Indexes Effectively

• Chapter 5, Client2, A Modern Java Client Programming Interface (API)

• Chapter 6, Prioritizing Transactions

• Chapter 7, Creating Flexible Schemas With JSON

• Chapter 8, Creating Geospatial Applications

• Chapter 9, Creating Custom Importers, Exporters, and Formatters

• Chapter 10, Creating Custom SQL Functions

• Chapter 11, Creating Custom Tasks

• Chapter 12, Using Compound Procedures

• Chapter 13, Understanding Memory Usage

• Chapter 14, Managing Time

2. Other Resources
This book provides recommendations for optimizing Volt applications and customizing database features.
It assumes you are already familiar with Volt and its features. If you are new to Volt Active Data, we
suggest you read the following books first:

• VoltDB Tutorial provides a quick introduction to the product and is recommended for new users.

• VoltDB Planning Guide provides guidance for evaluating and sizing VoltDB implementations.

• Using VoltDB provides a complete reference to the features and functions of the VoltDB product.

• VoltDB Administrator's Guide provides information for system operators on setting up and managing
VoltDB databases and the clusters that host them.

ix

http://docs.voltactivedata.com/tutorial/
http://docs.voltactivedata.com/tutorial/
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/tutorial/
http://docs.voltactivedata.com/PlanningGuide/
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/AdminGuide/

Preface

These books and more resources are available on the web from http://docs.voltactivedata.com/.

x

http://docs.voltactivedata.com/

Chapter 1. Introducon
VoltDB is a best-in-class database designed specifically for high volume transactional applications. Other
books describe the individual features and functions of VoltDB. However, getting the most out of any
technology is not just a matter of features; it is using the features effectively, in the right combination,
and in the right context.

The goal of this book is to explain how to achieve maximum performance using VoltDB. Performance is
affected by many different factors, including:

• The design of your database and its stored procedures

• The client applications

• The configuration of the servers that run the database

• The network that connects the servers

Understanding the impact of each factor and the relationship between them can help you both design better
solutions and detect and correct problems in a running system. However, first you must understand the
product itself. If you are new to VoltDB, it is strongly recommended that you read VoltDB Tutorial and
Using VoltDB before reading this book.

1.1. What Affects Performance?
There is no single factor that drives performance or even a single definition for what constitutes "good"
performance. VoltDB is designed to provide exceptional throughput and much of this book is dedicated
to an explanation of how you can maximize throughput in your application design and hardware config-
uration.

However, another aspect of performance that is equally important to database applications is durability:
resilience against — and ability to recover from — hardware failures and other error conditions. VoltDB
has features that enhance database durability. However, these features have their own requirements, par-
ticularly on system sizing and configuration.

All applications are different. There is no single combination of application design, hardware configura-
tion, or database features that can satisfy them all. Your specific requirements drive the trade offs that
need to be made concerning how you configure the database system as a whole. The goal of this book is
to provide you with the facts you need to make an informed decision about those trade offs.

1.2. How to Use This Book
This book is divided into ten more chapters:

• The beginning of the book (chapters 2 and 4) explains how to design your database schema, stored
procedures, and client applications for maximum performance.

• Chapters 5 and 6 explain how to use the latest Java Client API to create a modern, efficient Java appli-
cation using VoltDB and how to use the new client library to prioritize your transactions.

• Chapter 7 explains how to accommodate flexibility in the schema design through the use of JSON
columns and indexes.

1

http://docs.voltactivedata.com/tutorial/
http://docs.voltactivedata.com/UsingVoltDB/

Introduction

• Chapter 8 explains how to use VoltDB's geospatial capabilities for applications that need to combine
standard database content with location-specific information such geographic points and shapes.

• Chapter 9 explains how to create custom connectors for import and export, as well as formatters to be
used by importers.

• Chapter 10 explains how to define your own scalar and aggregate functions for use in SQL statements.

• Chapter 11 explains how to implement custom tasks that execute stored procedures on a specified sched-
ule.

• Chapter 12 explains how to use compound procedures to extend VoltDB and automate business logic
in streaming applications.

• Chapter 13 explains in detail how memory is used by the VoltDB server process.

• Chapter 14 provides guidelines for configuring time services when running a VoltDB cluster.

2

Chapter 2. Hello, World! Revisited
The VoltDB software kit includes a Hello World example in the directory /doc/tutorials/hel-
loworld that shows you how to create a simple VoltDB application, including a schema, stored proce-
dures, and a client application. However, storing five records and doing a single SELECT is not a terribly
interesting database application.

VoltDB is designed to process hundreds of thousands of transactions a second, providing unparalleled
throughput. Hello World does little to demonstrate that. But perhaps we can change it a bit to better em-
ulate real world situations and, in the process, learn how to write applications that maximize the power
of VoltDB.

2.1. Optimizing your Application for VoltDB
VoltDB can be used generically like any other database to insert, select, and update records. But VoltDB
also specializes in:

• Scalability

• Throughput performance

• Durability

Durability is built into the VoltDB database server software through several different functions, including
snapshots, K-Safety, and command logging, features that are described in more detail in the Using VoltDB
manual. Scalability and throughput are related to server configuration (e.g. number of servers, memory
capacity, etc.). However, there are several things that can be done in the design of the database and the
client application to maximize the throughput on any cluster. In particular, this update to the Hello World
tutorial focuses on designing your application to take advantage of:

• Partitioned and replicated tables

• Asynchronous stored procedure calls

• Client connections to all nodes in the database cluster

2.2. Applying Hello World to a Practical Problem
The problem with Hello World is that it doesn't match any real problem, and certainly not one that VoltDB
is designed to solve. However, it is not too hard to think of a practical problem where saying hello could
be useful.

Let's assume we run a system (a website, for example) where users register and log in to use services. We
want to acknowledge when a user logs in by saying hello. Let's further assume that our system is global
in nature. It would be nice if we could say hello in the user's native language.

To support our new user sign in process, we need to store the different ways of saying hello in each
language and we need to record the native language of the user. Then, when they sign in, we can retrieve
their name and the appropriate word for hello.

This means we need two tables, one for the word "hello" in different languages and one for the users. We
can reuse the HELLOWORLD table from our original application for the first table. But we need to add a

3

http://docs.voltactivedata.com/UsingVoltDB/

Hello, World! Revisited

table for user data, including a unique identifier, the user's name, and their language. Often, the best and
easiest unique identifier for an online account is the user's email address. So that is what we will use. Our
schema now looks like this:

CREATE TABLE HELLOWORLD (
 HELLO VARCHAR(15),
 WORLD VARCHAR(15),
 DIALECT VARCHAR(15) NOT NULL,
 PRIMARY KEY (DIALECT)
);

CREATE TABLE USERACCOUNT (
 EMAIL VARCHAR(128) UNIQUE NOT NULL,
 FIRSTNAME VARCHAR(15),
 LASTNAME VARCHAR(15),
 LASTLOGIN TIMESTAMP,
 DIALECT VARCHAR(15) NOT NULL,
 PRIMARY KEY (EMAIL)
);

Oh, by the way, now that you know how to write a basic VoltDB application, you don't need to type in
the sample code yourself anymore. You can concentrate on understanding the nuances that make VoltDB
applications exceptional. The complete sources for the updated Hello World example are available in the
doc/tutorials/helloworldrevisited subfolder when you install the VoltDB software.

2.3. Partitioned vs. Replicated Tables
In the original Hello World example, we partitioned the HELLOWORLD table on dialect to demon-
strate partitioning, which is a key concept for VoltDB. However, there are only so many languages in
the world, and the words for "hello" and "world" are not likely to change frequently. In other words, the
HELLOWORLD table is both small and primarily read-only.

Not all tables need to be partitioned. If a table is small and updated infrequently, it can be replicated.
Copies of a replicated table are stored on every server. This means that the tables can only be updated
with a multi-partition procedure (which is why you shouldn't replicate write-intensive tables). However,
replicated tables can be read from any single-partitioned procedure since there is a copy available to every
partition.

HELLOWORLD is an ideal candidate for replication, so we will replicate it in this iteration of the Hello
World application.

USERACCOUNT, on the other hand, is write-intensive. The table is updated every time a user signs in
and the record count increases as new users register with the system. Therefore, it is important that we
partition this table.

2.3.1. Defining the Partitioning Column
The partitioning column needs to support the key access methods for the table. In the case of registered
users, the table is accessed via the user's unique ID, their email address, when the user signs in. So we will
define the EMAIL column as the partitioning column for the table.

The choice of partitioning column is defined in the database schema. If a table is not listed as being parti-
tioned, it becomes a replicated table by default. So for the updated Hello World example, you can remove

4

Hello, World! Revisited

the PARTITION TABLE statement for the HELLOWORLD table and add one for USERACCOUNT.
The updated schema contains the following PARTITION TABLE statement:

PARTITION TABLE USERACCOUNT ON COLUMN EMAIL;

2.3.2. Creating the Stored Procedures
For the sake of demonstration, we only need three stored procedures for our rewrite of Hello World:

• Insert Language — Loads the HELLOWORLD table, just as in the original Hello World tutorial.

• Register User — Creates a new USERACCOUNT record.

• Sign In — Performs the bulk of the work, looking up the user, recording their sign in, and looking up
the correct word for saying hello.

2.3.2.1. Loading the Replicated Table
To load the HELLOWORLD table, we can reuse the Insert stored procedure from our original Hello World
example. The only change we need to make is, because HELLOWORLD is now a replicated table, remove
the PARTITION ON clause from the CREATE PROCEDURE statement that defines the Insert procedure
in the schema DDL.

2.3.2.2. Registering New Users
To add a new user to the system, the RegisterUser stored procedure needs to add the user's name, language,
and their email address as the unique identifier for the USERACCOUNT table.

Creating a new record can be done with a single INSERT statement. In this way, the RegisterUser proce-
dure is very similar to the Insert procedure for the HELLOWORLD table. The RegisterUser procedure
looks like this:

CREATE PROCEDURE RegisterUser
 AS INSERT INTO USERACCOUNT
 (Email, Firstname, Lastname, Dialect)
 VALUES (?,?,?,?);

The difference is that RegisterUser can and should be single-partitioned so it does not unnecessarily tie
up multiple partitions. Since the table is partitioned on the EMAIL column, the CREATE PROCEDURE
statement should include a PARTITION ON clause like so:

CREATE PROCEDURE RegisterUser
 PARTITION ON TABLE Useraccount COLUMN Email
 AS INSERT INTO USERACCOUNT
 (Email, Firstname, Lastname, Dialect)
 VALUES (?,?,?,?);

2.3.2.3. Signing In
Finally, we need a procedure to sign in the user and retrieve the word for "hello" in their native language.
The key goal for this procedure, since it will be invoked more frequently than any other, is to be performant.
To ensure the highest throughput, the procedure needs to be single-partitioned.

5

Hello, World! Revisited

The user provides their email address as the unique ID when they log in, so we can make the procedure
single-partitioned, specifying the email address as the partitioning value. Within the procedure itself we
perform two actions:

• Join the USERACCOUNT and HELLOWORLD tables based on the Dialect column to retrieve both
the user's name and the appropriate word for "hello"

• Update the user's record with the latest login timestamp.

Because this stored procedure uses two queries, we can write the stored procedure logic as a Java class.
(See Using VoltDB for details on writing Java stored procedures.) We could write custom code to check the
return values from the join of the two tables to ensure that an appropriate user record was found. However,
VoltDB provides predefined expectations for many common query conditions. We can take advantage
of one of these expectations, EXPECTS_ONE_ROW, to verify that we get the results we want. If the
first query, getuser, does not return one row (for example, if no user record is found), VoltDB aborts the
procedure and notifies the calling program that a rollback has occurred.

Expectations provide a way to simplify and standardize error handling in your stored procedures. See the
chapter on simplifying application coding in the Using VoltDB manual for more information.

The resulting SignIn procedure is as follows:

import org.voltdb.*;

public class SignIn extends VoltProcedure {

 public final SQLStmt getuser = new SQLStmt(
 "SELECT H.HELLO, U.FIRSTNAME " +
 "FROM USERACCOUNT AS U, HELLOWORLD AS H " +
 "WHERE U.EMAIL = ? AND U.DIALECT = H.DIALECT;"
);
 public final SQLStmt updatesignin = new SQLStmt(
 "UPDATE USERACCOUNT SET lastlogin=? " +
 "WHERE EMAIL = ?;"
);

 public VoltTable[] run(String id, long signintime)
 throws VoltAbortException {
 voltQueueSQL(getuser, EXPECT_ONE_ROW, id);
 voltQueueSQL(updatesignin, signintime, id);
 return voltExecuteSQL();
 }
}

We also want to declare the procedure and define how it is partitioned in the schema DDL. To do that,
we add the following statement to our schema file:

CREATE PROCEDURE
 PARTITION ON TABLE Useraccount COLUMN Email
 FROM CLASS SignIn;

2.4. Using Asynchronous Stored Procedure Calls
Now we are ready to write the client application. There are two key aspects to taking full advantage of
VoltDB in your client applications. One is make connections to all nodes on the cluster, which we will
discuss shortly. The other is to use asynchronous stored procedure calls.

6

http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/ChapSimplify.php
http://docs.voltactivedata.com/UsingVoltDB/

Hello, World! Revisited

You can call VoltDB stored procedures either synchronously or asynchronously. When you call a stored
procedure synchronously, your client application waits for the call to be processed before continuing. If
you call a procedure asynchronously, your application continues processing once the call has been initiated.
Once the procedure is complete, your application is notified through a callback procedure.

2.4.1. Understanding Asynchronous Programming
Synchronous calls are easy to understand because all processing is linear; your application waits for the
query results. However, after VoltDB processes a transaction — between when VoltDB sends back the
results, your application handles the results, initiates a new procedure call, and the call reaches the VoltDB
server — the VoltDB database has no work to do (assuming there is only one client application). In this
situation whether the stored procedures are single- or multi-partitioned doesn't matter, since you are only
ever asking the cluster to process one procedure at a time.

As shown in Figure 2.1, “Synchronous Procedure Calls”, more time can be spent in the round trip between
transactions (shown in yellow) than in processing the stored procedures themselves.

Figure 2.1. Synchronous Procedure Calls

What you would like to do is queue up as much work (i.e. transactions) as possible so the database always
has work to do as soon as each transaction is complete. This is what asynchronous stored procedure calls do.

As soon as an asynchronous call is initiated, your application continues processing, including making
additional asynchronous calls. These calls are queued up on the servers and processed in the order they
are received. Once a stored procedure is processed, the results are returned to the calling application and
the next queued transaction started. As Figure 2.2, “Asynchronous Procedure Calls” shows, the database
does not need to wait for the next procedure request, it simply takes the next entry off the queue as soon
as the current procedure is complete.

Figure 2.2. Asynchronous Procedure Calls

7

Hello, World! Revisited

2.4.2. The Callback Procedure
For asynchronous procedures calls, you must provide a callback procedure that is invoked when the re-
quested transaction is complete. Your callback procedure notifies the client application that the call is
complete and performs the same logic your client application normally performs following a procedure
call: interpreting the results of the procedure (if any) and making appropriate changes to client application
variables.

For our new Hello World example, when the SignIn procedure completes, we want to display the return
values in a welcome message to the user. So our callback procedure might look like this:

 static class SignInCallback implements ProcedureCallback {
 @Override
 public void clientCallback(ClientResponse response) {

 // Make sure the procedure succeeded.
 if (response.getStatus() != ClientResponse.SUCCESS) {
 System.err.println(response.getStatusString());
 return;
 }

 VoltTable results[] = response.getResults();
 VoltTable recordset = results[0];

 System.out.printf("%s, %s!\n",
 recordset.fetchRow(0).getString("Hello"),
 recordset.fetchRow(0).getString("Firstname"));

 }
 }

The following notes describe the individual components of the callback procedure.

You define the callback procedure as a class that implements (and overrides) the VoltDB Procedure-
Callback class.
Whereas a synchronous procedure call returns the ClientResponse as a return value, an asynchronous
call returns the same ClientResponse object as a parameter to the callback procedure.
In the body of the callback, first we check to make sure the procedure completed successfully. (If
the procedure fails for any reason, for example if a SQL query generates a constraint violation, the
ClientResponse contains information about the failure.) In this case we are only looking for success.
Once we know the procedure succeeded, we perform the same functions we would for a synchronous
call. In this case, we retrieve the appropriate words from the response and use them to construct and
display a greeting to the user.

Since we also want to call the RegisterUser procedure asynchronously, we need to create a callback for that
procedure as well. In the case of registering the user, we do not need to provide feedback, so the callback
procedure is simplified. All that is needed in the body of the callback is to detect and report any errors that
might occur. The RegisterCallback looks like this:

8

Hello, World! Revisited

 static class RegisterCallback implements ProcedureCallback {
 @Override
 public void clientCallback(ClientResponse response) {

 // Make sure the procedure succeeded. If not
 // (for example, account already exists),
 // report the error.
 if (response.getStatus() != ClientResponse.SUCCESS) {
 System.err.println(response.getStatusString());
 }

 }
 }

2.4.3. Making an Asynchronous Procedure Call
Once you define a callback, you are ready to initiate the procedure call. You make asynchronous procedure
calls in the same way you make synchronous procedure calls. The only differences are that you specify
the callback procedure as the first argument to the callProcedure method and you do not need to make an
assignment to a client response, since the response is sent as a parameter to the callback procedure.

The following example illustrates both a synchronous and an asynchronous call to the SignIn procedure
we defined earlier:

 // Synchronous procedure call
ClientResponse response = myApp.callProcedure("SignIn",
 email, currenttime);

 // Asynchronous procedure call
myApp.callProcedure(new SignInCallback(), "SignIn",
 email, currenttime);

If you do not need to verify the results of a transaction, you do not even need to create a unique callback
procedure. Just as you can make a synchronous procedure call and not assign the results to a local object if
they are not needed, you can make an asynchronous procedure call using the default callback procedure,
which does no special processing. For example, the following code calls the Insert procedure to add a
HELLOWORLD record using the default callback:

myApp.callProcedure(new ProcedureCallback(), "Insert",
 "English", "Hello", "World");

2.5. Connecting to all Servers
The final step, once you have optimized the partitioning and the procedure invocations, is to maximize the
bandwidth between your client application and the cluster. You can create connections to any of the servers
in the cluster and that server will coordinate the processing of your transactions with the other nodes.

Each node in the cluster has its own queue of pending transactions. That node is responsible for:

• Receiving the transaction request from the client and returning the results upon completion

• Routing the transaction to the appropriate partition, or initiator, based on the transaction's characteristics.

There is one initiator for each unique partition, and a separate initiator for multi-partition transactions
within the cluster. Once the initiator receives the transaction, it is responsible for:

9

Hello, World! Revisited

• Scheduling the transaction with the other nodes in the cluster

• Distributing the work items for the transaction to the appropriate nodes and partitions and collecting
responses when it is time to execute the transaction

Any node in the cluster can receive transaction requests. However, for maximum performance it is best if
all nodes do their share. Initiators are automatically distributed around the cluster. But if only one node is
interacting with the client application, managing the queue can become a bottleneck and leave the other
nodes in the cluster idle while they wait for work items.

This is why the recommendation is for client applications to create connections to as many nodes in the
cluster as possible. When there are multiple connections, the Java client interface will direct each transac-
tion to the most appropriate server, avoiding extra "hops" within the cluster as requests are redirected to
the corresponding initiator. For other clients that support multiple connections, requests use a round-robin
approach to distribute the procedure calls.

By default, the VoltDB sample applications assume a single server (localhost) and only create a single
connection. This makes the examples easy to read and easy to run for anyone who downloads the kit.
However, in real world examples your client application should create connections to all of the nodes in
the cluster to evenly distribute the work load and avoid network bottlenecks.

The update to the Hello World example demonstrates one method for doing this. Since it is difficult to know
in advance what nodes are used in the cluster, the revised application uses an argument on the command
line to specify what nodes to connect to. (Avoiding hard-coded server names is also a good practice so
you do not have to recode your application if you add or replace servers in the future.)

The first argument on the command line is assumed to be a comma-separated list of server names. This
list is converted to an array, which is used to create connections to each node. If there is no command line
argument, the default server "localhost" is used. The following is the applicable code from the beginning
of the client application. Note that only one client is instantiated but multiple connections are made from
that client object.

public static void main(String[] args) throws Exception {

 /*
 * Expect a comma-separated list of servers.
 * If not, use localhost.
 */
 String serverlist = "localhost";
 if (args.length > 0) { serverlist = args[0]; }
 String[] servers = serverlist.split(",");

 /*
 * Instantiate a client and connect to all servers
 */
 org.voltdb.client.Client myApp = ClientFactory.createClient();
 for (String server: servers) {
 myApp.createConnection(server);
 }

2.6. Pung it All Together
Now that we have defined the schema, created the stored procedures and the callback routines for asyn-
chronous calls, and created connections to all of the nodes in the cluster, we can put together the new and

10

Hello, World! Revisited

improved Hello World application. We start by loading the HELLOWORLD table just as we did in the
previous version. Since this is only done once to initialize the run, we can make them synchronous calls.
Note that we do not need to worry about constraint violations. If the client application is run two or more
times, we can reuse the pre-loaded content.

/*
* Load the database.
*/
try {
 myApp.callProcedure("Insert", language[0], "Hello", "World");
 myApp.callProcedure("Insert", language[1], "Bonjour", "Monde");
 myApp.callProcedure("Insert", language[2], "Hola", "Mundo");
 myApp.callProcedure("Insert", language[3], "Hej", "Verden");
 myApp.callProcedure("Insert", language[4], "Ciao", "Mondo");
} catch (Exception e) {
 // Not to worry. Ignore constraint violations if we
 // load this table more than once.
}

To show off the performance, we then emulate the running system. We need some users. So, again, we
initialize a few user records using the RegisterUser stored procedure. As a demonstration, we use a utility
method for generating pseudo-random email addresses.

/*
* Start by making sure there are at least 5 accounts
*/
while (maxaccountID < 5) {
 String first = firstname[seed.nextInt(10)];
 String last = lastname[seed.nextInt(10)];
 String dialect = language[seed.nextInt(5)];
 String email = generateEmail(maxaccountID);
 myApp.callProcedure(new RegisterCallback(),"RegisterUser",
 email,first,last,dialect);
 maxaccountID++;
}

Finally, we want to repeatedly call the SignIn stored procedure, while occasionally registering a new user
(say, once every 100 sign ins).

11

Hello, World! Revisited

/*
* Emulate a busy system: 100 signins for every 1 new registration.
* Run for 5 minutes.
*/
long countdowntimer = System.currentTimeMillis() + (60 * 1000 * 5);
while (countdowntimer > System.currentTimeMillis()) {

 for (int i=0; i<100; i++) {
 //int id = seed.nextInt(maxaccountID);
 String user = generateEmail(seed.nextInt(maxaccountID));
 myApp.callProcedure(new SignInCallback(), "SignIn",
 user, System.currentTimeMillis());
 }

 String first = firstname[seed.nextInt(10)];
 String last = lastname[seed.nextInt(10)];
 String dialect = language[seed.nextInt(5)];
 String email = generateEmail(maxaccountID);

 myApp.callProcedure(new RegisterCallback(),"RegisterUser",
 email,first,last,dialect);
 maxaccountID++;

}

The completed source code can be found (and run) in the doc/tutorials/helloworldrevisit-
ed/ folder where VoltDB is installed. Give it a try on a single system or on a multi-node cluster.

2.7. Next Steps
Updating the Hello World example demonstrates how to design applications that can maximize the value
of the VoltDB software. However, even with these changes, Hello World is still a very simple application.
Deciding how to partition the database for your specific needs and how to configure a cluster to support the
VoltDB features you want to use requires careful consideration of capabilities and tradeoffs. The following
chapters provide further guidance on this topics.

12

Chapter 3. Understanding VoltDB
Execuon Plans

This chapter explains how VoltDB plans for executing SQL statements, the information it generates about
the plans, and how you can use that information to evaluate and optimize your SQL code.

3.1. How VoltDB Selects Execution Plans for Indi-
vidual SQL Statements

When VoltDB parses a stored procedure definition or an ad hoc query, it reviews possible execution plans
for the SQL statements involved. Based on the schema, the partition columns, and any implicit or explicit
indexes for the tables, VoltDB chooses what it believes is the most efficient plan for executing each state-
ment. The more complex the SQL statement, the more execution plans VoltDB considers.

As part of the compilation process, VoltDB generates explain or execution plans that you can use to un-
derstand what execution order was selected. You can also affect those plans by specifying the order in
which tables are joined as part of your SQL statement declaration.

3.2. Understanding VoltDB Execution Plans
VoltDB stores the execution plans for stored procedures along with the schema in the database. There are
three methods for reviewing these execution plans. You can:

• Call the @Explain or @ExplainProc system procedures

• Use the explain or explainproc directives in sqlcmd

• Review the execution plans in the Volt Management Center Schema tab

The system procedures and sqlcmd directives produce identical output. For example, if you enter the
explainproc directive in sqlcmd with the name of a stored procedure, it displays the execution plan for
every SQL statement defined in the stored procedure. You get the same results calling the @ExplainProc
system procedure. You can see the same information by connecting to the Volt Management Center in a
web browser. The explain directive and @Explain system procedure allow you to review the execution
plan for an ad hoc SQL query by entering the text of the query.

Let's look at the voter sample program as an example. The voter sample has five stored procedures. The
Initialize procedure declares three SQL statements. You can see the execution plans for all three state-
ments by starting the sample application, connecting to the server using sqlcmd and using the explainproc
directive. You can also get the execution plan for an ad hoc count of the votes table using the explain
directive, like so:

$ sqlcmd
1> explainproc Initialize;
 . . .
2> explain select count(*) from votes;
 . . .

In the Volt Management Center, which is available from a web browser via http:://{server-name}:8080
by default, you can see the execution plans by navigating to the Schema tab, clicking on Procedures &

13

Understanding Volt-
DB Execution Plans

SQL, and expanding the stored procedure to see the individual statements. The execution plan is displayed
in the expanded view. The following example shows the execution plan for InsertContestantStmt in the
Initialize stored procedure.

3.3. Reading the Execution Plan and Optimizing
Your SQL Statements

The execution plan is an ordered representation of how VoltDB will execute the statement. Read the plan
from bottom up to understand the order in which the plan is executed. So, for example, looking at the
InsertACSStmt SQL statement in the Voter application's Initialize stored procedure, we see the following
execution plan for inserting an area code into the area_code_state table:

RETURN RESULTS TO STORED PROCEDURE
 LIMIT 1
 RECEIVE FROM ALL PARTITIONS
 SEND PARTITION RESULTS TO COORDINATOR
 INSERT into "AREA_CODE_STATE"
 MATERIALIZE TUPLE from parameters and/or literals

As mentioned before it is easiest to read the plans from the bottom up. So in this instance, how the SQL
statement is executed is by:

• Constructing a record based on input parameters and/or literal values

• Inserting the record into the table

14

Understanding Volt-
DB Execution Plans

• Because this is a multi-partitioned procedure, each partition then sends its results to the coordinator

• The coordinator then rolls up the results, limits the results (that is, the status of the insert) to one row,
and returns that value to the stored procedure

You will notice that the lines of the execution plan are indented to indicate precedence. For example, the
construction of the tuple must happen before it is inserted into the table.

Let's look at another example from the Voter sample. The checkContestantStmt in the Vote stored proce-
dure performs a read operation:

RETURN RESULTS TO STORED PROCEDURE
 INDEX SCAN of "CONTESTANTS" using its primary key index
 uniquely match (CONTESTANT_NUMBER = ?0)

You can see from the plan that the scan of the CONTESTANTS table uses the primary key index. It is
also a partitioned table and procedure so the results can be sent directly back to the stored procedure.

Of course, planning for a SQL statement accessing one table with only one condition is not very difficult.
The execution plan becomes far more interesting when evaluating more complex statements. For example,
you can find a more complex execution plan in the GetStateHeatmap stored procedure:

RETURN RESULTS TO STORED PROCEDURE
 ORDER BY (SORT)
 Hash AGGREGATION ops: SUM(V_VOTES_BY_CONTESTANT_NUMBER_STATE.NUM_VOTES)
 RECEIVE FROM ALL PARTITIONS
 SEND PARTITION RESULTS TO COORDINATOR
 SEQUENTIAL SCAN of "V_VOTES_BY_CONTESTANT_NUMBER_STATE"

In this example you see an execution plan for a multi-partition stored procedure. Again, reading from the
bottom up, the order of execution is:

• At each partition, perform a sequential scan of the votes-per-contestant-and-state table.

• Return the results from each partition to the initiator that is coordinating the multi-partition transaction.

• Use an aggregate function to sum the votes for all partitions by contestant.

• Sort the results

• And finally, return the results to the stored procedure.

3.3.1. Evaluating the Use of Indexes
What makes the execution plans important is that they can help you optimize your database application
by pointing out where the data access can be improved, either by modifying indexes or by changing the
join order of queries. Let's start by looking at indexes.

VoltDB uses information about the partitioning column to determine what partition needs to execute a sin-
gle-partitioned stored procedure. However, it does not automatically create an index for accessing records
in that column. So, for example, in the Hello World example, if we remove the primary key (DIALECT)
on the HELLOWORLD table, the execution plan for the Select statement also changes.

Before:

RETURN RESULTS TO STORED PROCEDURE

15

Understanding Volt-
DB Execution Plans

 INDEX SCAN of "HELLOWORLD" using its primary key index
 uniquely match (DIALECT = ?0)

After:

RETURN RESULTS TO STORED PROCEDURE
 SEQUENTIAL SCAN of "HELLOWORLD"
 filter by (DIALECT = ?0)

Note that the first operation has changed to a sequential scan of the HELLOWORLD table, rather than a
indexed scan. Since the Hello World example only has a few records, it does not take very long to look
through five or six records looking for the right one. But imagine doing a sequential scan of an employee
table containing tens of thousands of records. It quickly becomes apparent how important having an index
can be when looking for individual records in large tables.

There is an incremental cost associated with inserts or updates to tables containing an index. But the
improvement on read performance often far exceeds any cost associated with writes. For example, consider
the flight application that is used as an example in the Using VoltDB manual. The FLIGHT table is a
replicated table with an index on the FLIGHT_ID, which helps for transactions that join the FLIGHT and
RESERVATION tables looking for a specific flight.

However, one of the most common transactions associated with the FLIGHT table is customers looking
for flights during a specific time period; not by flight ID. In fact, looking up flights by time period is
estimated to occur at least twice as often as looking for a specific flight.

The execution plan for the LookupFlight stored procedure using the original schema looks like this:

RETURN RESULTS TO STORED PROCEDURE
 SEQUENTIAL SCAN of "FLIGHT"
 filter by ((((ORIGIN = ?0) AND (DESTINATION = ?1))
 AND (DEPARTTIME > ?2)) AND (DEPARTTIME < ?3))

Clearly, looking through a table of 2,000 flights without an index 10,000 times a second will impact
performance. So it makes sense to add another index to improve this transaction. For example:

CREATE TABLE Flight (
 FlightID INTEGER UNIQUE NOT NULL,
 DepartTime TIMESTAMP NOT NULL,
 Origin VARCHAR(3) NOT NULL,
 Destination VARCHAR(3) NOT NULL,
 NumberOfSeats INTEGER NOT NULL,
 PRIMARY KEY(FlightID)
);
CREATE INDEX flightTimeIdx ON FLIGHT (departtime);

After adding the index, the execution plan changes to use the index:

RETURN RESULTS TO STORED PROCEDURE
 INDEX SCAN of "FLIGHT" using "FLIGHTTIMEIDX"
 range-scan covering from (DEPARTTIME > ?2) while (DEPARTTIME < ?3),
 filter by ((ORIGIN = ?0) AND (DESTINATION = ?1))

Indexes are not required for every database query. For very small tables or infrequent queries, an index
could be unnecessary overhead. However, in most cases and especially frequent queries over large datasets,
not having an applicable index can severely impact performance.

16

http://docs.voltactivedata.com/UsingVoltDB/

Understanding Volt-
DB Execution Plans

When tuning your VoltDB database application, one useful step is to review the schema for any unexpected
sequential (non-indexed) scans. The Volt Management Center makes this easy because it puts the "Scans"
icon in the attributes column for any stored procedures that contain sequential scans.

See the following chapter, Chapter 4, Using Indexes Effectively, for more information on tuning your
database through effective use of indexes.

3.3.2. Evaluating the Table Order for Joins
The other information that the execution plans provides, in addition to the use of indexes, is the order in
which the tables are joined.

Join order often impacts performance. Normally, when joining two or more tables, you want the database
engine to scan the table that produces the smallest number of matching records first. That way, there are
fewer comparisons to evaluate when considering the other conditions. However, at compile time, VoltDB
does not have any information about the potential sizing of the individual tables and must make its best
guess based solely on the table schema, query, and any indexes that are defined.

For example, assume we have a database that correlates employees to departments. There is a DEPART-
MENT table and an EMPLOYEE table, with a DEPT_ID column that acts as a foreign key. But depart-
ments have managers, who are themselves employees. So there is a MANAGER table that also contains
both a DEPT_ID and an EMP_ID column. The relationship of the tables looks like this:

Most transactions look up employees by their employee ID or their department ID. So indexes are created
for those columns. However, say we want to look up all the employees that report to a specific manager.
Now we need to join the MANAGER table (to get the department ID), the DEPARTMENT table (to get
the department name), and the EMPLOYEE table (to get the employees' names). VoltDB does not know,
in advance when compiling the schema, that there will be many more employees than departments or
managers. As a result, the winning plan might look like the following:

RETURN RESULTS TO STORED PROCEDURE
 ORDER BY (SORT)
 NESTLOOP INDEX JOIN
 inline (INDEX SCAN of "DEPARTMENT" using "DEPTIDX" (unique-scan covering))
 NESTLOOP INDEX JOIN
 inline (INDEX SCAN of "MANAGER" using "MGRIDX" (unique-scan covering))
 RECEIVE FROM ALL PARTITIONS

17

Understanding Volt-
DB Execution Plans

 SEND PARTITION RESULTS TO COORDINATOR
 SEQUENTIAL SCAN of "EMPLOYEE"

Clearly, performing a sequential scan of the employees (since the department ID has not been identified
yet) is not going to provide the best performance. What you really want to do is to join the MANAGER
and DEPARTMENT tables first, to identify the department ID before joining the EMPLOYEE table so
the last join can take advantage of the appropriate index.

For cases where you are joining multiple tables and know what the optimal join order would be, VoltDB lets
you specify the join order as part of the SQL statement definition. Normally, you declare a new SQLstmt
class by specifying the SQL query only. However, you can provide a second argument specifying the join
order as a comma-separated list of table names and aliases. For example, the declaration of the preceding
SQL query, including join order, would look like this:

public final SQLStmt FindEmpByMgr = new SQLStmt(
 "SELECT dept.dept_name, dept.dept_id, emp.emp_id, " +
 "emp.first_name, emp.last_name, manager.emp_id " +
 "FROM MANAGER, DEPARTMENT AS Dept, EMPLOYEE AS Emp " +
 "WHERE manager.emp_id=? AND manager.dept_id=dept.dept_id " +
 "AND manager.dept_id=emp.dept_id " +
 "ORDER BY emp.last_name, emp.first_name",
 "manager,dept,emp");

Note that where the query defines an alias for a table — as the preceding example does for the DEPART-
MENT and EMPLOYEE tables — the join order must use the alias name rather than the original table
name. Also, if a query joins six or more tables, you must specify the join order or VoltDB reports an error
when it compiles the project.

Having specified the join order, the chosen execution plan changes to reflect the new sequence of oper-
ations:

RETURN RESULTS TO STORED PROCEDURE
 ORDER BY (SORT)
 RECEIVE FROM ALL PARTITIONS
 SEND PARTITION RESULTS TO COORDINATOR
 NESTLOOP INDEX JOIN
 inline (INDEX SCAN of "EMPLOYEE" using "EMPDEPTIDX" (unique-scan covering))
 NESTLOOP INDEX JOIN
 inline (INDEX SCAN of "DEPARTMENT" using "DEPTIDX" (unique-scan covering))
 SEQUENTIAL SCAN of "MANAGER"

The new execution plan has at least three advantages over the default plan:

• It starts with a sequential scan of the MANAGER table, a table with 10-20 times fewer rows than the
EMPLOYEE table.

• Because MANAGER and DEPARTMENT are replicated tables, all of the initial table scanning and
filtering can occur locally within each partition, rather than returning the full EMPLOYEE data from
each partition to the initiator to do the later joins and sorting.

• Because the join order retrieves the department ID first, the execution plan can utilize the index on that
column to improve the scanning of EMPLOYEE, the largest table.

18

Chapter 4. Using Indexes Effecvely
Indexes provide a classic “space for speed” trade-off. They add to the persistent memory required by your
application data but they make query filtering significantly faster. They also represent a trade-off that
sacrifices incremental write performance for potentially significant read performance, on the assumption
that indexed data is accessed by read queries more frequently than it is modified.

Using the best practices described in the chapter when defining indexes can maximize query performance
in return for minimum investments in memory usage and computation overhead when writing data.

4.1. Basic Principles for Effective Indexing
Here are seven tips to creating effective indexes in VoltDB:

• Avoid indexes that have a column list that is simply a prefix of another index's column list. The index
with the longer column list will usually serve the same queries as the shorter one. If the primary key
of table X is (A, B, C), then an index on (A, B) is of little use. An index on (B, C) may be of use in
this scenario or it may be more effective to define the primary key as (B, C, A) — if B is likely to be
filtered in queries where A is not equality-filtered.

• Avoid "low-cardinality" indexes — An index defined solely on a column that only has a few distinct
values is usually not very effective. Because of its large number of duplicate values, it does little to nar-
row the set of rows to be sequentially filtered by other filters in the query. Such an index can sometimes
cause the planner to fail to select a more effective index for a query or even a more efficient sequential
scan. One way to increase index effectiveness of low cardinality indexes is to add other filtered columns
to the index, keeping in mind that the effectiveness of an index for a query "tops out" at the first column
that has an inequality filter — or before the second column that has an IN filter.

• When deciding how to order columns within an index (or primary key or unique constraint) definition,
columns that are more likely to be filtered with an exact equality (such as A = ?), should be listed before
columns that tend to be range-filtered (B <= ?). Queries that are run the most often or that benefit the
most from indexing (perhaps because they lack filters that can be covered by other indexes) should
weigh more heavily in this decision.

• In some cases, with a roughly equal mix between queries using forms like "WHERE A = ? AND B <= ?"
and other queries using forms like "WHERE A > ? AND B = ?", it may be worthwhile to define indexes
on both permutations — on X(A, B ...) and on X(B, A ...). Otherwise, when two or more columns in
an index tend to both get equality filtered in combination, it is generally better to list a column first if
it also tends to be filtered (without the other) in other queries. A possible exception to this rule is when
the column has low cardinality (to avoid the ineffective use of the index).

• Placing the low-cardinality column later in the index's list prevents the index from being applied as a
low-cardinality indexed filter and favors the selection of a more effective index or sequential scan.

• Any non-unique filter that is listed in the schema report as having no procedures using it is a candidate
for elimination. But first, it may make sense to look for queries that would be expected to use the index
and determine what they are using instead for scans on the table. It may be that the index chosen by the
planner is not actually as effective and that index may be the better candidate for elimination. Also, note
that indexes that are only used to support recalculation of min and max values in materialized views
may be erroneously reported as unused.

• Index optimization is best accomplished iteratively, eliminating or tuning an index on a table and seeing
its effect on statements before making other changes to other competing indexes.

19

Using Indexes Effectively

4.2. Defining Indexes
VoltDB indexes provide multiple benefits. They help to guard against unintended duplication of data. They
help to optimize recalculation of min and max values in materialized views. Tree indexes in particular can
also be used to replace memory- and processor-intensive sorting operations in queries that have ORDER
BY and GROUP BY clauses. This discussion focuses on the benefits of indexes in implementing SQL
WHERE clauses that filter query results.

There are several methods for constructing indexes in SQL:

• PRIMARY KEY column attribute

• UNIQUE or ASSUME UNIQUE column attribute

• PRIMARY KEY table constraint

• UNIQUE or ASSUME UNIQUE table constraint

• CREATE INDEX statement

Any of these methods can be used to define a “UNIQUE” index on a single column. The table constraints
and CREATE INDEX statements can also define a “UNIQUE” index on multiple columns or on expres-
sions that use one or more columns. The CREATE INDEX statement can be used to construct a non-
UNIQUE index on one or more columns or expressions.

All examples in this chapter describe indexes as if they were created by the CREATE INDEX statement,
but the discussion applies generally to indexes defined using any of these methods.

4.3. The Goals for Effective Indexing
The goals of effective indexing are to:

• Eliminate unused indexes

• Minimize redundancy (memory use and overhead for writes) among overlapping indexes on a table

• Minimize sequential scans of large numbers of rows

Sequential filtering always occurs when rows are accessed without the benefit of an index. This is known
as a sequential scan. Sequential filtering can also occur on an indexed scan when there are more filters in
the query than are covered by the index. The cost of sequential filtering is based on several factors. One
factor is the number of filters being applied to each row. A major factor is the number of rows to which
the filters must be applied.

The intent of an index is to use a more streamlined “lookup” algorithm to produce a small set of filtered
rows, eliminating the need to sequentially apply (as many) filters to (as many) rows.

Since there are trade-offs and limitations involved in defining indexes, indexes may not provide complete
coverage for all of the filters in a query. If any filters are not covered by an index, they must be sequentially
applied. The cost of this action is typically reduced compared to a sequential scan of the data because the
index reduces the two major contributing factors: the number of remaining, uncovered filters to apply, and
the number of rows to which they must be applied.

The lookup algorithm used by an index is typically much more efficient than sequential application for
the same set of filters and rows, but it does not have zero cost. It also slightly complicates the process

20

Using Indexes Effectively

of sequentially applying any remaining filters to the remaining rows. In fact, the worst-case scenario for
query filter performance is when an index's lookup algorithm is employed but fails to cover most of a
query's filters and fails to eliminate most of the table's rows. This case can perform significantly worse than
a sequential scan query that uses no index at all and applies all of its filters sequentially. This possibility
calls for the elimination of ineffective indexes from a database.

An ideal set of index definitions minimizes the number of times that any filter is sequentially applied to
any row in any query over the life of the database system. It accomplishes this with a minimum number
of indexes, each of minimum complexity, to reduce persistent memory and data write computation costs.

4.4. How Indexes Work
A key insight into defining indexes is determining which of the filters in a query can be “covered” by a
given index. Filters and combinations of filters qualify for coverage based on different criteria.

Each "scan" in a query, that is, each argument to a FROM clause that is not a subquery, can use up to one
index defined on its table. When a table defines multiple indexes on the same table, these indexes compete
in the query planner for the mission of controlling each scan in each query that uses the table. The query
planner uses several criteria to evaluate which one of the table's indexes that cover one or more filters in
the query is the most likely to be the most efficient.

When indexing a single column, as in "CREATE INDEX INDEX_OF_X_A ON X(A);", a covered filter
can be any of the following:

• "A <op> <constant>", where <op> can be any of "=, <, >, <=, or >="

• "A BETWEEN <constant1> AND <constant2>"

• "A IN <constant-list>"

• A special case of "A LIKE <string-pattern>" where <string-pattern> contains a fixed prefix followed
by a wild-card character

Here, <constant>, <constant1>, and <constant2> can be actual literal constants like 1.0 or 'ABC' or they
can be placeholders (?) that resolve to constants at runtime. <constant-list> can be a list of literals or
literals and parameters like ('ABC', 'BAC', 'BCA', 'ACB', 'CBA', 'BAC') or (1, 2, 3, ?) or (?, ?, ?, ?, ?)
or a single vector-valued placeholder. Each of these "constants" can also be an expression of constants,
such as ((1024*1024)-1).

Depending on the order in which tables are scanned in a query, called the join order, a covered filter can also
be "A <op> <column>" where <column> is a column from another table in the query or any expression of
a column or columns from another table and possibly constants, like B or (B || C) or SUBSTR(B||C , 1 , 4).

The join order dependency works like this: if you had two tables indexed on column A and your query is
as follows, only one table could be indexed:

SELECT * FROM X, Y WHERE X.A = Y.A and X.B = ?;

The first one to be scanned would have to use a sequential table scan. If you also had an index on X.B, X
could be index-scanned on B and Y could then be index-scanned on A, so a table scan would be avoided.

The availability of indexes that cover the scans of a query have a direct effect on the planners selection of
the join order for a query. In this case, the planner would reject the option of scanning Y first, since that
would mean one more sequential scan and one fewer index scan, and the planner prefers more index scans
whenever possible on the assumption that index scans are more efficient.

21

Using Indexes Effectively

When creating an index containing multiple columns, as in "CREATE INDEX INDEX_OF_X_A_B ON
X(A, B);", a covered filter can be any of the forms listed above for coverage by a simpler index “ON
X(A)”, regardless of the presence of a filter on B — this is used to advantage when columns are added to
an index to lower its cardinality, as discussed below.

A multi-column index “ON X(A, B) can be used more effectively in queries with a combination of filters
that includes a filter on A and a filter on B. To enable the more effective filtering, the first filter or prefix
filter on A must specifically have the form of "A = ..." or "A IN ..." — possibly involving column(s) of
other tables, depending on join order — while the filter on B can be any form from the longer list of
covered filters, above.

A specific exception to this rule is that a filter of the form "B IN ..." does not improve the effectiveness of
a filter of the form "A IN ...", but that same filter "B IN ..." can be used with a filter of the specific form "A
= ...". In short, each index is restricted to applying to only one “IN” filter per query. So, when the index
is covering “A IN …”, it will refuse to cover the “B IN …” filter.

This extends to indexes on greater numbers of columns, so an index "ON X(A, B, C)" can generally be
used for all of the filters and filter combinations described above using A or using A and B. It can be
used still more effectively on a combination of prefix filters like "A = ... " (or "A IN ...") AND "B
= ..." (or "B IN ...") with an additional filter on C — but again, only the first "IN" filter improves the
index effectiveness, and other “IN” filters are not covered.

When determining whether a filter can be covered as the first or prefix filter of an index (first or second filter
of an index on three or more columns, etc.), the ordering of the filters always follows the ordering of the
columns in the index definition. So, “CREATE INDEX INDEX_ON_X_A_B ON X(A, B)” is significantly
different from “CREATE INDEX INDEX_ON_X_B_A ON X(B, A)”. In contrast, the orientation of the
filters as expressed in each query does not matter at all, so "A = 1 and B > 10" has the same effect on
indexing as "10 < B and A = 1" etc. The filter “A = 1” is considered the “first” filter in both cases when
the index is “ON (A, B)” because A is first.

Also, other arbitrary filters can be combined in a query with “AND” without disqualifying the covered
filters; these additional filters simply add (reduced) sequential filtering cost to the index scan.

But a top-level OR condition like "A = 0 OR A > 100" will disqualify all filters and will not use any index.

A general pre-condition of a query's filters eligible for coverage by a multi-column index is that the first
key in the index must be filtered. So, if a query had no filter at all on A, it could not use any of the above
indexes, regardless of the filters on B and/or on C. This is the condition that can cause table scans if there
are not enough indexes, or if the indexes or queries are not carefully matched.

This implies that carelessly adding columns to the start of an already useful index's list can make it less
useful and applicable to fewer queries. Conversely, adding columns to the end of an already useful index
(rather than to the beginning) is more likely to make the index just as applicable but more effective in
eliminating sequential filtering. Adding to the middle of the list can cause an index to become either more
or less effective for the queries to which it applies. Any such change should be tested by reviewing the
schema report and/or by benchmarking the affected queries. Optimal index use and query performance
may be achieved either with the original definition of the index, with the changed definition, or by defining
two indexes.

4.5. Summary
To recap, here are the best practices for defining indexes in VoltDB:

• Avoid indexes that have a column list that is simply a prefix of another index's column list. The index
with the longer column list will usually serve the same queries as the shorter one. If the primary key

22

Using Indexes Effectively

of table X is (A, B, C), then an index on (A, B) is of little use. An index on (B, C) may be of use in
this scenario or it may be more effective to define the primary key as (B, C, A) — if B is likely to be
filtered in queries where A is not equality-filtered.

• Avoid "low-cardinality" indexes — An index defined solely on a column that only has a few distinct
values is usually not very effective. Because of its large number of duplicate values, it does little to nar-
row the set of rows to be sequentially filtered by other filters in the query. Such an index can sometimes
cause the planner to fail to select a more effective index for a query or even a more efficient sequential
scan. One way to increase index effectiveness of low cardinality indexes is to add other filtered columns
to the index, keeping in mind that the effectiveness of an index for a query "tops out" at the first column
that has an inequality filter — or before the second column that has an IN filter.

• When deciding how to order columns within an index (or primary key or unique constraint) definition,
columns that are more likely to be filtered with an exact equality (such as A = ?), should be listed before
columns that tend to be range-filtered (B <= ?). Queries that are run the most often or that benefit the
most from indexing (perhaps because they lack filters that can be covered by other indexes) should
weigh more heavily in this decision.

• In some cases, with a roughly equal mix between queries using forms like "WHERE A = ? AND B <= ?"
and other queries using forms like "WHERE A > ? AND B = ?", it may be worthwhile to define indexes
on both permutations — on X(A, B ...) and on X(B, A ...). Otherwise, when two or more columns in
an index tend to both get equality filtered in combination, it is generally better to list a column first if
it also tends to be filtered (without the other) in other queries. A possible exception to this rule is when
the column has low cardinality (to avoid the ineffective use of the index).

• Placing the low-cardinality column later in the index's list prevents the index from being applied as a
low-cardinality indexed filter and favors the selection of a more effective index or sequential scan.

• Any non-unique filter that is listed in the schema report as having no procedures using it is a candidate
for elimination. But first, it may make sense to look for queries that would be expected to use the index
and determine what they are using instead for scans on the table. It may be that the index chosen by the
planner is not actually as effective and that index may be the better candidate for elimination. Also, note
that indexes that are only used to support recalculation of min and max values in materialized views
may be erroneously reported as unused.

• Index optimization is best accomplished iteratively, eliminating or tuning an index on a table and seeing
its effect on statements before making other changes to other competing indexes.

23

Chapter 5. Client2, A Modern Java Client
Programming Interface (API)

VoltDB V11 introduces a new client programming interface. The Client2 interface is similar to the original
Client interface in that you create a configuration object, then create the client itself using the client factory.
After connecting to the database, you can then make either synchronous or asynchronous procedure calls.

However, that is where the similarity ends. Where Client provides a rudimentary interface using gener-
ic callbacks to handle both success and failure, Client2 uses modern Java programming techniques and
smarter defaults to provide a structured and extensible interface, including:

• A "builder" pattern for the Client2Config, with individual methods that can be chained to set configu-
ration options.

• No mandatory settings, all attributes have default values.

• Smarter default behavior to simplify application development.

• Individually configured notifications, set as callbacks on the configuration object, that let the application
decide which events it wants to be notified about and how.

• Use of Java CompletableFutures to handle asynchronous procedure calls, giving the application devel-
oper more structured and precise handling of invocation events.

The following sections describe the individual steps for creating and application using the Client2 API.
For a complete listing of classes and methods, see the VoltDB Client API javadoc.

5.1. Configuring the Client
The first step is to set the configuration options for your client, using Client2Config. You can take the
default options by just creating a new Client2Config object:

Client2Config config = new Client2Config();
Client2 client = ClientFactory.createClient(config);

Or you can specify individual attributes by chaining the associated methods, when you create the config-
uration object:

Client2Config config = new Client2Config().username("john")
 .password("doe");
Client2 client = ClientFactory.createClient(config);

Note that you can set up custom error handling as part of the configuration by defining which events the
application wants to be notified about. For example:

Client2Config config = new Client2Config().username("john")
 .password("doe")
 .connectionDownHandler(..myDropHandler..);
Client2 client = ClientFactory.createClient(config);

The interfaces to the handlers are defined as functional interfaces in the class Client2Notification, allowing
use of method references or lambda expressions.

24

https://docs.voltactivedata.com/javadoc/java-client-api/

Client2, A Modern Java Client
Programming Interface (API)

5.2. Connecting to the Database
Client2 simplifies the process establishing and maintaining connections to the database. By default Client2
automates creating connections to all nodes of the cluster once a single connection is made, and reconnects
as necessary as nodes leave and rejoin the cluster.

So, you can simply connect to one node of the cluster and the Client2 interface will take responsibility
for connecting to other cluster nodes:

client.connectSync("localhost");

Or you can supply a list of nodes and the client will create a connection to the first it can reach, then
establish connections to the rest of the cluster:

String[] servers = ["eeny","meeny","miny"];
client.connectSync(servers);

5.3. Calling Procedures
Once the application connects to the database you are ready to make procedure calls. At its simplest, you
can make a synchronous call that returns the traditional response object:

ClientResponse resp = client.callProcedureSync("AddUser", username, password);

However, asynchronous calls are where the new Client2 excels. Asynchronous calls return a Completable-
Future (a standard Java object) which can then be used to process the response. For example, you can
assign different actions based on the results of the call:

CompletableFuture<ClientResponse> addUserCB;
addUserCB = client.callProcedure("AddUser",username,password);

addUserCB.whenComplete((resp,th) -> processResponse(resp));

Alternately, it is possible to hand off the response to a processing thread:

client.callProcedureAsync("AddUser", username, password)
 .thenAcceptAsync((resp) -> processResponse(resp))
 .exceptionally((th) -> processException(th));

5.3.1. Handling Backpressure
The Client2 interface improves the handling of backpressure; that is, when requests are submitted faster
than they can be processed. It is possible for an application to submit requests faster than the client API or
the VoltDB server can handle them, particularly when using asynchronous calls. To handle this situation,
the API tracks all pending requests: this includes requests queued in the API, requests in the network
layer, and requests sent to the VoltDB cluster but which have not been completed yet. The application can
configure three limits on the number of requests pending in the client:

• A high and low watermark, set using .clientRequestBackpressureWarning. If the number of outstand-
ing requests exceeds the high watermark, the application is notified to slow down. If the number of
outstanding requests then falls below the low watermark, the application is notified that it can resume
normal operation.

25

Client2, A Modern Java Client
Programming Interface (API)

• A maximum number of requests, set using .clientRequestLimit. Once the client reaches this limit, sub-
sequent procedure invocations are rejected until the request count drops below the limit again.

Additionally, there is a configurable limit on the number of transactions that can be outstanding at the
VoltDB cluster, set using .outstandingTransactionLimit. For example:

config.clientRequestBackpressureWarning(2500, 1000)
 .clientRequestLimit(3000)
 .outstandingTransactionLimit(1000);

This example defines the following rules:

• When the number of pending requests goes up to 2500, the application is told to slow down. This is
the high watermark.

• When the number or requests falls to 1000 or below, the application is told it can resume normal oper-
ation. This is the low watermark.

• If the number of pending requests exceeds 3000, callProcedure will refuse to accept any more requests.

• If the number of outstanding requests submitted to the cluster without a response exceeds 1000, the
client automatically adds additional requests to the client queue.

Notifications for the high and low watermarks are delivered to the application via a callback defined as
part of the client configuration with the .requestBackpressureHandler() method:

config.requestBackpressureHandler(myQueueWarning);

If you want to provide additional context to the event handler, you can define the callback as a local function
within a class and use the "this::" syntax, so the callback has access to any context available to the class:

config.requestBackpressureHandler(this::myBackpressureHandler);

The callback itself identifies the particular condition by way of a boolean argument it receives. For ex-
ample:

void myQueueWarning (boolean watermark) {
 if(watermark) { // high watermark
 [...]
 } else { // low watermark
 [...]
 }
}

The argument is true when the request count has risen above the high watermark and false when it subse-
quently drops below the low watermark.

The client interface handles reaching the server limit internally. Once the server limit is reached, calls are
queued locally until the high watermark is reached. Therefore, in the preceding example, the application
can have a total of up to 2000 calls (3000 - 1000) pending transmission before the client refuses to queue
any more.

5.3.2. Handling Request Timeouts
There are configurable limits for how long a request can be queued before it "times out". Requests can time
out at the client before being sent to the server or after being sent. The error responses generated for these
cases each have distinct status codes, allowing the application to easily identify each failure condition.

26

Client2, A Modern Java Client
Programming Interface (API)

5.3.3. Defining Options on a Per-Call Basis
Some invocation attributes defined in the configuration by Client2Config can be overridden on a per-call
basis by means of an options object. You create a new option object with Client2CallOptions, then apply
it to a procedure call as the first argument. For example, the following code sets a call-specific timeout
of 1,234 microseconds and a priority of 3:

Client2CallOptions opts = new Client2CallOptions()
 .clientTimeout(1234, TimeUnit.MICROSECONDS)
 .requestPriority(3);
addUserCB = callProcedureAsync(opts, "AddUser", username, password);

Options that are not specified in Client2CallOptions are defined by the configuration settings (or their
defaults), so the interface is extensible without forcing application code changes.

27

Chapter 6. Priorizing Transacons
By default, VoltDB execution queues operate on a FIFO (first in, first out) basis. Which is sufficient for
many applications, given the high volume of throughput VoltDB can achieve.

However, there are cases where you may want to prioritize certain business critical transactions over oth-
ers. The latest VoltDB Java client programming interface (Client2) allows you to specify a priority for
individual invocations of procedures to ensure that the transactions that are important to you are given the
appropriate attention by the system. This chapter explains:

• How prioritization works

• How to enable prioritization

• How to specify the priority for individual invocations

• How to prioritize classes of transactions, such as import, topics, snapshots, and database replication (DR)

6.1. How Prioritizing Transactions Works
Let's look at the voter sample application included with the VoltDB software to help us understand how
prioritization works. Normally, the transactions execute on a first in, first out basis (see Figure A below).
In the case of the voter application, the critical transactions are the votes being counted by the Vote stored
procedure. If you were to prioritize the transactions you are likely to prioritize Vote over Results, which
is a convenience procedure that simply provides a summary of the voting thus far and does not need
instantaneous response time.

Now, as the application is currently written, the Results procedure does not need prioritizing because it
only runs once every five seconds and has little impact on the voting (see Figure B). However, if you make
the summary report available on request, it is conceivable that people repeatedly refreshing the report,
generating multiple invocations of the Results procedure, could delay processing of the Vote procedure
(see Figure C).

28

Prioritizing Transactions

The solution is to prioritize the transactions, so that the Vote invocations are processed more frequently
than Results invocations. In VoltDB, when you enable prioritized queuing, you can specify a priority from
1 to 8: priority 1 being the most critical and priority 8 being the least.1

Two things happen internally when you prioritize a stored procedure call:

• First, the client itself prioritizes the requests. If the application is making database calls faster than the
server can queue them, the client prioritizes the backlog of requests and sends them to the server(s)
based on the priority assigned to each invocation.

• Once the requests reach the partition on the server, the individual transactions are sorted into separate
queues for each priority value. Then the execution engine processes the transactions based on those
priorities, processing transactions from the high priority queues more frequently than from the lower
priority queues.

Figure D shows how by assigning different priorities to the Vote and Results procedures (1 and 5, respec-
tively), you can ensure more Vote invocations run and ad hoc Results requests cannot overwhelm the sys-
tem.

1There are actually nine priority levels, from zero (0) to eight. The most critical, priority zero, is reserved for system functions and cannot be
specified by the user.

29

Prioritizing Transactions

6.2. Enabling Prioritized Transactions
The first thing you must do to prioritize your transactions is to enable priority queues on the server. You
do this by enabling <priorities> (a child element of <systemsettings>) in the database config-
uration file. For example:

<systemsettings>
 <priorities enabled=”true”/>
</systemsettings>

You must set this property when you initialize the database root directory. You cannot change the queueing
behavior after the database starts.

6.3. Prioritizing Transactions at Runtime
You prioritize an individual transaction by specifying the priority as an option during the procedure call.
Note that you must be using the new Client2 Java client API to do this. For example, to set the priority
for the Vote procedure invocation to one (1), you create a Client2CallOptions object with the priority set
to 1, then include it as the first argument to the procedure call:

Client2CallOptions voteprio = new Client2CallOptions()
 .requestPriority(1);
CompletableFuture<void> votecf;

30

Prioritizing Transactions

votecf = client.callProcedureAsync(voteprio, "Vote",
 phonenum, contestant, maxvotes);

Similarly, if you want to assign the Report procedure a priority of five (5), you specify the priority in that
procedure’s invocation option:

Client2CallOptions resultprio = new Client2CallOptions()
 .requestPriority(5);
CompletableFuture<void> resultcf;

resultcf = client.callProcedureAsync(resultprio, "Results");

Alternately, you can leave off the priority parameter and let the invocation receive a default value. So,
for example, you can set the default priority to five with the .requestPriority method as part of the client
configuration, and use call options to raise the priority of calls to the Vote procedure:

Client2Config config = new Client2Config()
 .requestPriority(5);
Client2 client = ClientFactory.createClient(config);

 [...]

votecf = client.callProcedureAsync(voteprio, "Vote",
 phonenum, contestant, maxvotes);

resultcf = client.callProcedureAsync("Results");

It is important to note that you can and should reuse call options for multiple calls that require the same
options, rather than creating a new Client2Calloptions object for each call.

6.4. Prioritizing Other Types of Transactions
There are many other types of transactions besides just stored procedure calls. There are transactions
associated with database replication (DR) and snapshots, as well as transactions associated with import
and topics. You cannot set a priority for individual instances of these more automated transactions, but
you can set a priority for them as a group or class as part of the database configuration.

You specify the priority for snapshot and DR transactions in the configuration file using subelements of
<systemsettings>/<priorities>. Each subelement takes an attribute, priority, that sets the
priority of that class of transactions. For example, the following configuration sets the priority of DR
transactions to 3 and snapshots to 7:

<systemsettings>
 <priorities enabled=”true”>
 <dr priority="3"/>
 <snapshot priority="7"/>
 </priorities>
</systemsettings>

For import and topics, you can specify a priority for the transactions associated with individual import
configurations and individual topics.You specify the priority as an attribute of the <configuration> or
<topic> element for that target. For example, the following configuration sets the priority for the Kafka
import configuration at 3 and the priority for the alerts and misc topics at 2 and 7, respectively:

<import>

31

Prioritizing Transactions

 <configuration type="kafka" priority="3">
 [...]
 </configuration>
</import>

<topics>
 <topic name="alerts" priority="2" procedure="catchAlerts"/>
 <topic name="misc" priority="7" procedure="grabBag"/>
</topics>

32

Chapter 7. Creang Flexible Schemas
With JSON

A major part of any relational database is the schema: the structure of the data as defined by the tables and
columns. It is possible to change the schema when necessary. However, at any given time, each table has
a set number of columns, each with a specific name and datatype.

It is possible to store unstructured data in a relational database as a "blob" using a VARBINARY or
VARCHAR column. However, the database has no way to operate on your data effectively beyond simply
storing and retrieving it.

Sometimes data is not as strictly organized as a relational database schema requires, but does have structure
within it. For example, a table may have a set of properties, each with a different name and matching value.
But not all records use the same set of properties.

JSON (JavaScript Object Notation) is a light-weight data interchange format that lets you describe data
structures on the fly. JSON-encoded strings are composed of a hierarchy of key-value pairs that can be
as simple or as complex as needed. More importantly, the actual structure of the object is determined at
run-time and does not need to be predefined.

VoltDB gives you the ability to mix the efficiency of the relational schema with the flexibility of JSON.
By using JSON-encoded columns with VoltDB SQL functions and index capabilities, you can work more
naturally with JSON data while maintaining the efficiency and transactional consistency of a relational
database.

7.1. Using JSON Data Structures as VoltDB Con-
tent

JSON processing is easiest to understand by example. For the purposes of this chapter, we will use the
example of a single sign-on (SSO) application using VoltDB. The application needs to store login sessions
for multiple online sites under a common username. Each login session must manage different properties
describing the state of the session, where properties can vary from simple data values to more complex data
structures. Additionally, future enhancements to the application may change what properties are required.
Because of the variability of the data, a good strategy is to store this session information as JSON data
structures.

To store JSON data in VoltDB, you declare the storage as a standard VARCHAR column, large enough
to contain the maximum expected length of the JSON data. For example, the following table declaration
includes a VARCHAR column named session_info with a maximum length of 2048 characters.

CREATE TABLE user_session_table (
 username VARCHAR(200) UNIQUE NOT NULL,
 password VARCHAR(100) NOT NULL,
 global_session_id VARCHAR(200) ASSUMEUNIQUE NOT NULL,
 last_accessed TIMESTAMP,
 session_info VARCHAR(2048)
);
PARTITION TABLE user_session_table ON COLUMN username;

The JSON data is stored as text and it is up to your application to perform the conversion from an in-
memory structure to the textual representation. For example, the VoltDB software kit includes an example,

33

Creating Flexible
Schemas With JSON

json-sessions, that provides a version of the application described here, which uses an open source package
from Google called GSON to convert from plain old Java objects (POJOs) to text and vice versa.

Once you have a text representation of the JSON object, you insert it into the database column using
standard SQL syntax. For example:

INSERT INTO user_session_table (username, password,
 global_session_id,
 last_accessed, session_info)
 VALUES (?, ?, ?, ?, ?);

Note that VoltDB does not validate that the text being inserted into the VARCHAR column is properly
encoded JSON. Validation of the encoding occurs when accessing such columns using the JSON-specific
functions, described next.

7.2. Querying JSON Data
VoltDB provides four functions to help you interact effectively with JSON data stored in VARCHAR
columns. Each function takes a JSON-encoded text string as the first argument, followed by other argu-
ments required for the operation.

Function Description

ARRAY_ELEMENT(json, array-index) Returns the value of a specific element in a JSON
array.

ARRAY_LENGTH(json) Returns the number of elements in a JSON array

FIELD(json, path-name) Returns the value of a specific field in a JSON struc-
ture, where the field is identified by path name.

SET_FIELD(json, path-name, new-value) Returns a JSON structure where the specified field's
value is updated.

In the simple case where the JSON is a flat list of named fields, the FIELD() function can extract the value
of one of the fields:

SELECT username, FIELD(session_info,'website') AS url
 FROM user_session_table WHERE username=?;

The FIELD() can also take a path name for more complex JSON structures. For example, if the properties
field is itself a list of named fields, you can drill down into the structure using a path, like so:

SELECT username, FIELD(session_info,'website') AS url,
 FIELD(session_info,'properties.last_login') AS last_login
 FROM user_session_table WHERE username=?;

For structures containing arrays, you can use ARRAY_ELEMENT() to extract a specific element from the
array by position. For example, the following SELECT statement extracts the first element from a JSON
column named recent_history. (The array index is zero-based.)

SELECT username,
 ARRAY_ELEMENT(recent_history,0) AS most_recent
 FROM user_history WHERE username=?;

Finally, you can nest the functions to perform more complex queries. Say rather than being a separate
column, the named array recent_history is a subelement of the properties field in the session_info column,
the following query retrieves the last element from the recent_history array:

34

Creating Flexible
Schemas With JSON

SELECT username,
 ARRAY_ELEMENT(FIELD(session_info,'properties.recent_history'),
 ARRAY_LENGTH(FIELD(session_info,'properties.recent_history'))-1)
 AS oldest
 FROM user_session_table WHERE username=?;

Note that, as mentioned earlier, VoltDB does not validate the correctness of the JSON-encoded string
on input into a VARCHAR column. Instead, VoltDB validates the data when one of the JSON functions
attempts to parse the encoded string. If the data is not a valid JSON-encoded string, the function will throw
an exception at run-time and rollback the transaction.

7.3. Updating JSON Data
The JSON functions can not only query the JSON-encoded data, they let you modify a JSON-encoded
string in place. The SET_FIELD() function takes JSON data as input and returns the same JSON structure
but with the specified field updated. For example, using the user_session_table described in the previous
section, it is possible to update the last_login property in the JSON column session_info with a single
SQL statement:

UPDATE user_session_table
 SET session_info = SET_FIELD(session_info,'properties.last_login',?)
 WHERE username=? AND global_session_id=?;

Again, the JSON functions can be nested to perform more complex operations. In the following example,
the UPDATE statement takes a full JSON encoded-string as input for the session_info column, but merges
it with the properties value from the existing record.

CREATE PROCEDURE merge_properties AS
 PARTITION ON TABLE user_session_table COLUMN username
 AS
 UPDATE user_session_table
 SET session_inf = SET_FIELD(?,'properties',
 FIELD(session_info,'properties'))
 WHERE username=?;

7.4. Indexing JSON Fields
The JSON functions perform significant string processing to encode and decode the JSON structures. If
the table does not have appropriate indexes, the extra processing required for JSON columns added to the
need to scan all of the records in the table can quickly result in undesirable latency. The solution is to
index the pertinent JSON operations.

To speed up query execution for JSON queries, you can define an index on the commonly accessed fields,
including the commonly used function instances. For example, the following index definitions can signif-
icantly improve the execution time for queries described in the previous sections:

CREATE INDEX session_index_last_login
 ON user_session_table (
 field(session_info, 'properties.last_login'),
 username
);

CREATE INDEX session_index_history
 ON user_session_table (

35

Creating Flexible
Schemas With JSON

 ARRAY_ELEMENT(FIELD(session_info,'properties.recent_history'),
 ARRAY_LENGTH(FIELD(session_info,'properties.recent_history'))-1),
 username
);

These are fully functional SQL indexes. Whenever you create or update a record in the user_session_table
table, VoltDB executes the JSON functions and stores the result inside the index. When you query by that
same function in the future, VoltDB uses the index avoids both the table scan and repeating the JSON
string processing.

7.5. Summary: Using JSON in VoltDB
One of the major benefits of encoding data as JSON is that you do not have to predefine what structure
or shape the data has. Further, the shape of the data can vary from one row to the next. The schema for
JSON columns are defined by the data itself, rather than having to define the structure using SQL ahead
of time. If a new field is needed, you simply create the appropriate data object in whatever programming
language you are using, serialize it to JSON, and store it in VoltDB. This avoids the need to change the
database schema anytime these temporary data structures change.

On the other hand, when using JSON columns you should be aware of the following drawbacks:

• Your application must be intelligent enough to interpret the various structures that appear in the JSON
columns.

• Evaluating JSON data using the VoltDB JSON functions requires additional processing overhead. JSON
is excellent for managing fluid data structures, but it is always significantly faster to used a predefined
SQL schema when possible.

• You must be sensitive to when indexes are needed, should query patterns or the data structures change.
This may, for example, require you to add (or modify) indexes based on the existence of new JSON
fields.

Another point of note is that there is a size limit for JSON values. In VoltDB, the VARCHAR columns
used to store JSON values are limited to one megabyte (1048576 bytes). JSON support lets you augment
the existing relational model within VoltDB. However, it is not intended or appropriate as a replacement
for pure blob-oriented document stores.

36

Chapter 8. Creang Geospaal
Applicaons

VoltDB provides standard datatypes for storing common numeric and textual content. It also provides
support for JSON within VARCHAR columns to handle semi-structured content, as described in the pre-
ceding chapter. But not all application data can be efficiently managed using just the standard datatypes.

One example of an application area requiring special handling is geospatial data — that is, information
about locations and regions on the earth. It is possible to store geospatial data using standard datatypes;
for example, storing longitude and latitude as two separate FLOAT columns. However, by storing the data
in generic datatype columns the information loses its context. For example, using separate columns it is
impossible to tell how far apart two points are or whether those points are part of a larger geometric shape.

To simplify the use of geospatial information, VoltDB includes two geospatial datatypes and a number of
functions that help you evaluate and operate on that data. This chapter describes the new datatypes and
provides basic information on how to input and use that data in stored procedures and SQL queries.

8.1. The Geospatial Datatypes
VoltDB supports two geospatial datatypes:

• GEOGRAPHY

• GEOGRAPHY_POINT

The GEOGRAPHY datatype supports geographical regions defined as polygons. The GEOGRA-
PHY_POINT datatype defines a single point using a pair of longitude and latitude values. Both datatypes
can be represented as text in an industry format known as Well Known Text (WKT) defined by the Open
Geospatial Consortium (OGC). VoltDB provides functions for converting WKT representations to both
GEOGRAPHY and GEOGRPAHY_POINT values. WKT is also how values of these types are displayed
by sqlcmd and the Volt Management Center. Since GEOGRAPHY_POINT is the simpler of the two points,
we will discuss it first.

8.1.1. The GEOGRAPHY_POINT Datatype
A GEOGRAPHY_POINT represents a single point on earth as defined by a longitude and latitude value.
The WKT representation of a GEOGRAPHY_POINT value is the following:

POINT (longitude-value latitude-value)

The longitude is a floating point value between 180 and -180 inclusive. The latitude is a floating point
value between 90 and -90 inclusive.

8.1.2. The GEOGRAPHY Datatype
The GEOGRAPHY datatype defines a bounded region of the earth represented by one or more polygons.
The first polygon, or ring, describes the outer boundary of the region. Subsequent rings within the WKT
representation describe "holes" within the outer region. So, for example, the following shaded region is
described by three rings:

• The outer ring, A

37

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/
http://www.opengeospatial.org/

Creating Geospatial Applications

• Two inner rings, B and C

In the WKT representation, the outer ring must be listed first, with the vertices listed in counter-clockwise
order (e.g. A5, A4, A3, A2, A1). The inner rings, if any, are listed next with the vertices in clockwise order
(e.g. B1, B2, B3). The lines of the rings must not cross or overlap and the description of each ring must
list the starting vertex twice: as both the first and last vertex.

Note that, although the individual rings must not cross and vertices must be in the correct order for the
geospatial functions to generate valid results, the correctness of the polygon is not checked by VoltDB
when the GEOGRAPHY data is inserted. If you are unsure of the correctness of the originating data, you
can use the ISVALID() and ISINVALIDREASON() functions to validate GEOGRAPHY values within
a SQL query.

The WKT representation of a GEOGRAPHY value is the following, where each vertex-list is a com-
ma-separated list of longitude and latitude values describing a single ring:

POLYGON ((vertex-list) [, (vertex-list)]...)

For example, the simplest polygon, which consists of a single outer ring of three vertices, could be rep-
resented like this:

POLYGON ((1.5 3.0, 0.0 0.0, 3.0 0.0, 1.5 3.0))

For a polygon with two inner rings, the WKT might look like the following:

POLYGON ((1.5 3.0, 0.0 0.0, 3.0 0.0, 1.5 3.0),
 (1.0 1.0, 1.5 0.5, 0.5 0.5, 1.0 1.0),
 (2.0 1.0, 2.5 0.5, 1.5 0.5, 2.0 1.0))

8.1.3. Sizing GEOGRAPHY Columns
GEOGRAPHY polygons, unlike GEOGRAPHY_POINT values, do not have a fixed size. The memory
required to store a GEOGRAPHY column varies depending on the number of rings and the number of
vertices in each ring. In this way, GEOGRAPHY columns are treated much like VARCHAR and VAR-
BINARY columns when VoltDB manages their allocation and storage.

For convenience, VoltDB provides a default maximum size for GEOGRAPHY columns. So if you declare
the column without a specific size, it is assigned a maximum size of 32 kilobytes (32768 bytes):

CREATE TABLE Country (
 Name VARCHAR(32),

38

Creating Geospatial Applications

 Border GEOGRAPHY
);

However, for very large polygons, this default size may be too small. Or, if you have GEOGRAPHY
columns mixed with large VARCHAR columns in a single table, the default may be too large because
there is a two megabyte limit for the sum of the columns in a single table.

You can specify your own maximum size for a GEOGRAPHY column, in bytes, by including the maxi-
mum size in parentheses after the datatype keyword, the same way you do for VARCHAR columns. For
example, the following CREATE TABLE statement defines the maximum size of the border column as
1024 bytes:

CREATE TABLE Country (
 Name VARCHAR(32),
 Border GEOGRAPHY(1024)
);

To determine how much space is required to store any polygon, use the following calculation:

• 40 bytes for the polygon

• 43 bytes for every ring

• 24 bytes for every vertex

Note that when counting the vertices, although the starting vertex must be listed twice in the WKT repre-
sentation, it is only stored once and therefore only counted once in the memory allocation. For example,
the memory calculation for a polygon with an outer ring with 10 vertices and 3 inner rings with 8 vertices
each would be the following:

 40 bytes
 172 bytes (43 X 4 rings)
 816 bytes (24 X 34 total vertices)

 1028 bytes total

The largest maximum size you can specify for a GEOGRAPHY column, or any column in VoltDB, is
one megabyte.

8.1.4. How Geospatial Values are Interpreted
The earth itself is not uniformly round. However, measurements accurate enough for most applications
can be achieved by assuming a perfect sphere and mapping the longitude and latitude coordinates onto
that sphere. For calculating distances between locations and areas of regions VoltDB assumes a sphere
with a radius matching the mean radius of the earth, or 6,371,008.8 meters. Although an approximation,
this model provides distance calculations accurate to within three tenths of a percent (0.3%) of other, more
elaborate geospatial models. What this means is, when calculating the distance between two points that
are a kilometer apart, the answer computed by the DISTANCE() function may vary up to 3 meters from
calculations using other techniques.

8.2. Entering Geospatial Data
As mentioned earlier, Well Known Text (WKT) is the standard presentation VoltDB uses for ingesting and
reporting on geospatial data. However, you cannot insert WKT text strings directly as geospatial values.

39

Creating Geospatial Applications

Instead, VoltDB provides SQL functions and Java classes and methods for translating from WKT to the
internal geospatial values.

In SQL statements you can use the POINTFROMTEXT() and POLYGONFROMTEXT() functions to
generate the appropriate geospatial datatypes from WKT. For example, the following SQL statement in-
serts the geographic location of New York City into the GEOGRAPHY_POINT column location:

INSERT INTO CITIES (name, location) VALUES
 ('New York City', POINTFROMTEXT('POINT(-74.0059 40.7127)');

In a Java stored procedure you can generate and store a GEOGRAPHY or GEOGRAPHY_POINT val-
ue from WKT using the classes GeographyValue and GeographyPointValue and the method
.fromWKT(). For example, the following stored procedure takes two Java String objects, converts them
to GEOGRAPHY and GEOGRAPHY_POINT values, then inserts them into a record via placeholders in
the SQL statement:

import org.voltdb.*;
import org.voltdb.types.GeographyValue;
import org.voltdb.types.GeographyPointValue;

public class InsertGeo extends VoltProcedure {

 public final SQLStmt insertrec = new SQLStmt(
 "INSERT INTO region VALUES (?,?,?);");

 public VoltTable[] run(
 String name, String poly, String point)
 throws VoltAbortException {

 GeographyValue g = GeographyValue.fromWKT(poly);
 GeographyPointValue p = GeographyPointValue.fromWKT(point);

 voltQueueSQL(insertrec, name, p, g);
 return voltExecuteSQL();
 }
}

A third option is to use the .fromWKT() method to create instances of GeographyValue and Geography-
PointValue in the client application and pass the data to the stored procedure as native geospatial types.

When retrieving geospatial data from the database, the ASTEXT() SQL function converts from a GE-
OGRAPHY or GEOGRAPHY_POINT value to its textual representation. (You can also use the CAST(
value AS VARCHAR) function). In a stored procedure or Java client application, you can use the
.toString() method of the GeographyValue or GeographyPointValue class.

8.3. Working With Geospatial Data
In addition to the classes, methods, and functions to insert and extract geospatial data from the database,
VoltDB provides other SQL functions to help you manipulate the data. The functions fall into three main
categories:

• Converting to and from WKT representations:

ASTEXT()
POLYGONFROMTEXT()

40

Creating Geospatial Applications

POINTFROMTEXT()
VALIDPOLYGONFROMTEXT()

• Performing geospatial calculations:

AREA()
CENTROID()
CONTAINS()
DISTANCE()
DWITHIN()
LATITUDE()
LONGITUDE()

• Analyzing the structure of a region:

MAKEVALIDPOLYGON()
ISVALID()
ISINVALIDREASON()
NUMINTERIORRINGS()
NUMPOINTS()

The following sections provide examples of using these functions on both locations and regions.

8.3.1. Working With Locations
For geospatial locations, the data is often available as numeric values — longitude and latitude — rather
than as WKT. In this case, you need to convert the numeric data to WKT before converting and inserting
it as a GEOGRAPHY_POINT value.

For example, The VoltDB Tutorial uses data from the US Geographic Names Information Service (GNIS)
to create a database of geographic locations. The original source data also includes the longitude and
latitude of those locations. So it is easy to modify the database schema to add a location for each town:

CREATE TABLE towns (
 town VARCHAR(64),
 state VARCHAR(2),
 state_num TINYINT NOT NULL,
 county VARCHAR(64),
 county_num SMALLINT NOT NULL,
 location GEOGRAPHY_POINT,
 elevation INTEGER
);

However, the incoming data includes two floating point values rather than a GEOGRAPHY_POINT value
or WKT. One solution is to create a simple stored procedure to perform the conversion to WKT and insert
the record using the POINTFROMTEXT() function:

public class InsertTown extends VoltProcedure {

 public final SQLStmt insertrec = new SQLStmt(
 "INSERT INTO TOWNS VALUES (?,?,?,?,?,POINTFROMTEXT(?),?);"
);

 public VoltTable[] run(String t, String s, byte sn,
 String c, short cn,

41

https://docs.voltactivedata.com/tutorial
http://geonames.usgs.gov/domestic/download_data.htm

Creating Geospatial Applications

 double latitude, double longitude,
 long e)
 throws VoltAbortException {
 String wkt = "POINT(" +
 String.valueOf(longitude) + " " +
 String.valueOf(latitude) + ")";
 voltQueueSQL(insertrec, t,s,sn, c, cn, wkt, e);
 return voltExecuteSQL();
 }
}

Once the data is imported into the database, it is possible to use the geospatial functions to perform mean-
ingful queries on the locations, such as determining which town is closest to a specific location (such as
a cell phone user):

SELECT town, state FROM TOWNS
 ORDER BY DISTANCE(location,CAST(? AS GEOGRAPHY_POINT))
 ASC LIMIT 1;

Or which town is furthest north:

SELECT town, state FROM TOWNS ORDER BY LATITUDE(location) DESC LIMIT 1;

8.3.2. Working With Regions
The textual representation for regions, or polygons, are not as easily constructed as geographic points.
Therefore if you do not have region data already in WKT, your client application will need to generate
WKT from whatever source data you are using.

Once you have the WKT representation, you can insert the data using a simple stored procedure similar
to the example given above for locations. Since the data is already in WKT, you can even define the
stored procedure using a CREATE PROCEDURE AS statement. The following example defines a table
for storing information about the names and regions of national parks. It also defines the insert procedure
for ingesting records from existing WKT data:

CREATE TABLE parks (
 park VARCHAR(64),
 park_code VARCHAR(2),
 border GEOGRAPHY
);
CREATE PROCEDURE InsertPark AS
 INSERT INTO parks VALUES (?,?, POLYGONFROMTEXT(?));

As mentioned before, VoltDB does not validate the structure of the GEOGRAPHY polygon on input. So,
if you are not positive the WKT representation meets the rules for a valid polygon, you should use the
ISVALID() function on the GEOGRAPHY value before or after insertion to verify that your data is correct.
For example, the following SQL statement uses the ISVALID() and ISINVALIDREASON() functions to
report on all invalid park regions and the reason for the exception:

SELECT park, park_code, ISINVALIDREASON(border)
 FROM Parks WHERE NOT ISVALID(border) ORDER BY park;

Alternately, you can use the VALIDPOLGYONFROMTEXT() function which combines the POLYGON-
FROMTEXT() and ISVALID() functions into a single function, ensuring that only valid polygons are
generated. The preceding InsertPark can be rewritten to validate the incoming data like so:

42

Creating Geospatial Applications

CREATE PROCEDURE InsertPark AS
 INSERT INTO parks VALUES (?,?, VALIDPOLYGONFROMTEXT(?));

Of course, the rewritten procedure will take incrementally longer because it performs both the conver-
sion and validation. However, it performs these functions in a single step. The VALIDPOLYGONFROM-
TEXT() function will also correct simple errors in the WKT input. Specifically, it will correct any rings
where the vertices are listed in the wrong direction.

Once you know your GEOGRAPHY data is valid, you can use the geospatial SQL functions to perform
meaningful queries on the data. (If the polygons are not valid, the geospatial functions will not generate
an error but will also not produce meaningful results.) The functions that perform calculations on GEOG-
RAPHY values are:

• AREA() — the area of a region

• CENTROID() — the geographic center point of a region

• CONTAINS() — Whether a region contains a given point

• DISTANCE() — distance between a point and a region (or between two points)

For example, the following SQL queries determine the three largest parks, what parks are closest to a given
town, and what towns are contained with the region of a given park:

SELECT park, AREA(border) FROM Parks
 ORDER BY AREA(border) DESC LIMIT 3;

SELECT p.park, DISTANCE(p.border,t.location)
 FROM parks AS P, towns AS T WHERE t.town=?
 ORDER BY DISTANCE(p.border,t.location) ASC LIMIT 5;

SELECT t.town FROM parks AS P, towns AS T
 WHERE p.park=? AND CONTAINS(p.border,t.location);

43

Chapter 9. Creang Custom Importers,
Exporters, and Formaers

VoltDB includes built-in export and import connectors for a number of standard formats, such as CSV
files, JDBC, Kafka topics, and so on. If you have a data source or destination not currently covered by
connectors provided by VoltDB, you could write a custom application to perform the translation. However,
you would then need to manually coordinate the starting and stopping of your application with the starting
and stopping of the database.

A better approach is to create a custom import or export connector. Custom connectors run within the
VoltDB process and use the standard mechanisms in VoltDB for synchronizing the running of the connec-
tor with the database itself. You write custom connectors as Java classes, packaged in a JAR file, which
VoltDB can access at runtime. This chapter provides instructions and sample code for writing, installing,
and configuring custom export and import connectors. It also describes how to write custom formatters
that can be used to interpret the input coming from an import connector.

9.1. Writing a Custom Exporter
Warning

Note that the VoltDB export subsystem has been extensively enhanced and improved and the
original custom export interface is now deprecated, since it no longer supports all the necessary
features. The following sections describe the latest custom interface (introduced in VoltDB V8),
which uses the same method names, but uses different signatures.

To use the new, supported interface, the onBlockStart(), onBlockCompletion(), and processRow()
methods must accept a single exportRow object, as described in the following sections. The older,
deprecated interface where the methods accept no arguments, or in the case of processRow(), two
arguments, will no longer be supported after the next major release.

An export connector, known internally as an ExportClient, is a Java class that receives blocks of row data
when data is inserted into a stream within the database. The export connector is responsible for formatting
and passing those rows to the downstream export target. The following sections describe:

• The Structure and Workflow of the Export Client

• How to Use Custom Properties to Configure the Client

• How to Compile and Install the Client

• How to Configure the Export Client

9.1.1. The Structure and Workflow of the Export Client
The custom export client is declared as a Java subclass extending ExportClientBase. Within the subclass
you can override the configure() method, which receives any properties defined in the export connection
configuration. The subclass must also declare the constructExportDecoder() method, which in turn gen-
erates a subclass of ExportDecoderBase. This extension of ExportDecoderBase is the class that does the
actual work at run time and must override the primary methods sourceNoLongerAdvertised(), onBlockS-

44

Creating Custom Importers,
Exporters, and Formatters

tart(), processRow(), and onBlockCompletion. Figure 9.1, “Structure of the Custom Export Class” illus-
trates the structure of the custom client.

Figure 9.1. Structure of the Custom Export Class

At run time, VoltDB passes data to the export client in blocks that are roughly 2MB in size but do not
align with transactions. A block is guaranteed to contain complete rows — that is, no single SQL INSERT
to an export stream is split across blocks. The handoff from the internal VoltDB producer to the custom
export client follows a simple pattern:

producer -> client.onBlockStart
foreach row in block:
 producer -> client.processRow
producer -> client.onBlockCompletion

Each time the pattern executes, it runs within a single thread. Therefore, it is not necessary to synchronize
accesses to the data structures used in client.onBlockStart, client.processRow, and client.onBlockComple-
tion unless they are used in other threads as well.

For each row of data, the processRow() method is called. The object passed in as an argument contains
a full description of the row, including the column names, types, and values, which your client code can
iterate over. For example:

public boolean processRow(ExportRow row)
 throws RestartBlockException {

 for (int i =0; i < row.values.length; i++) {
 String column_name = row.names.get(i);
 Object column_value = row.values[i];
 // do work . . .
 }

Note that each row starts with six columns of metadata, including the transaction ID and timestamp. If
you do not need this information, you can skip the first six columns. Also, within each block of export
data, the schema is constant. However, it is possible for the schema to change between blocks (if a schema
change is applied to the database while export is active). The custom client can evaluate the ExportRow

45

Creating Custom Importers,
Exporters, and Formatters

object passed into the onBlockStart() or processRow() method to recognize any changes to the schema
and configure the downstream system as necessary to accept the new data.

As a rule, the custom client must balance the requirements to execute and return control quickly, so as not to
block other export threads (since connectors share a limited thread pool), against the need to ensure that the
individual rows are accepted and acknowledged by the downstream system before onBlockCompletion()
returns. If the client fails at onBlockStart, processRow or onBlockCompletion, the export client must throw
a RestartBlockException to prevent VoltDB from acknowledging (ACKing) and dropping the export data
from its durability control. This point deserves repeating: if the custom ExportClient runs onBlockStart,
processRow and onBlockCompletion without throwing the correct exception, VoltDB assumes the data is
remotely durable and that the VoltDB database can discard that export block.

The ExportClient must not return from onBlockCompletion until it ensures the downstream target ac-
knowledges receipt of the data.

9.1.2. How to Use Custom Properties to Configure the Client
Properties, set in the deployment file as part of the export configuration, let you pass information to the
export connector. For example, if the user needs to pass the export connector a file location or IP address
for the export target. What properties are necessary or supported is up to you as the author of the export
client to decide.

The properties specified in the deployment file are passed to the export client as a Properties object argu-
ment to the configure() method every time the connector starts. That is, whenever the database starts with
the connector enabled or whenever the schema or deployment is modified (for example, by a voltadmin
update command).

The configure() method can either iterate over the Properties object or it can look for specific entries as
needed. For example:

public void configure(Properties config) throws Exception {

 // Check for specific property value
 if config.containsKey("filename") {
 filename = config.getProperty("filename");
 }
}

9.1.3. How to Compile and Install the Client
Once your export client code is complete, you need to compile, package, and install the connector on the
appropriate VoltDB servers. You compile the export client like other Java methods. Be sure to include the
VoltDB server jar file in the classpath. For example, if VoltDB is installed in a directory called voltdb in
your home directory, the command could be:

$ javac -cp "$HOME/voltdb/voltdb/*:./" -d obj \
 org.voltdb.exportclient/MyExportClient.java

After compiling the source code, you must package the resulting class into a JAR file, like so:

$ jar cvf myexportclient.jar -C obj .

Finally you must install the JAR file in the lib/extension folder where VoltDB is installed on all servers
in the cluster that will be running the export client. For, example, if you are running a single node cluster

46

Creating Custom Importers,
Exporters, and Formatters

on the current node, where VoltDB has been installed as $HOME/voltdb, you can copy the JAR file with
the following command:

$ cp myexportclient.jar $HOME/voltdb/lib/extension/

9.1.4. How to Configure the Export Client
Once your custom export client is installed you can configure and start it. Custom export clients are con-
figured like any other export connector, by adding a <configure> section to <export> in the de-
ployment file (or configuring it interactively in the Volt Management Center). For custom clients, you
declare the connector type as "custom" and add the exportconnectorclass attribute specifying
the connector's Java classpath. For example:

<export>
 <configuration enabled="true" target="myspecial" type="custom"
 exportconnectorclass="org.voltdb.exportclient.MyExportClient" >
 <property name="filename">myexportfile.txt</property>
 </configuration>
</export>

Any properties listed in the <configuration> ("filename" in this example) are passed to the custom
export client as arguments to the configure() method, as described in Section 9.1.2, “How to Use Custom
Properties to Configure the Client”. See the chapter on "Importing and Exporting Live Data" in the Using
VoltDB manual for more information on configuring export connectors.

9.2. Writing a Custom Importer
An import connector is a set of Java classes that configure the connector and then iteratively retrieve data
from a remote source and pass it into VoltDB by invoking stored procedures. Unlike the export connector,
which is responsible for formatting the data between source and target, the VoltDB import architecture
allows for the use a separate formatter to translate the inbound data into a set of Java objects that can be
passed as parameters to a stored procedure.

Import connectors are packaged as OSGi (Open Service Gateway Initiative) bundles, so they can be started
and stopped easily from within the server process. However, for the purposes of writing a custom importer,
VoltDB handles much of the OSGi infrastructure in the abstract classes associated with the import client.
As a result, your import connector only needs to provide some of the classes normally required for an
OSGi bundle. Specifically, a custom importer must provide the classes and methods described in Table 9.1,
“Structure of the Custom Importer”.

Table 9.1. Structure of the Custom Importer

Class Method Description

class constructor

getFormatterBuilder() Returns the FormatterBuilder method of the
specified format.

getResourceID() Returns a unique resource ID for this im-
porter instance.

implementation of Im-
porterConfig

URI() Returns the URI for the current importer in-
stance.

extension of AbstractIm-
porterFactory

create() Returns an instance of the AbstractImporter
implementation.

47

https://docs.voltactivedata.com/UsingVoltDB/ChapExport.php
http://docs.voltactivedata.com/UsingVoltDB/
http://docs.voltactivedata.com/UsingVoltDB/

Creating Custom Importers,
Exporters, and Formatters

Class Method Description

createImporterConfigura-
tions()

Returns a map of configuration information.

getTypeName() Returns the name of the AbstractImporter
class as a string.

isImporterRunEverywhere() Returns true or false.

getName() Returns the name of the AbstractImporter
class as a string.

accept() Performs the actual data import. Should
check to see if stop() has been called.

stop() Completes the import process.

extension of AbstractIm-
porter

URI() Returns the URI for the current importer in-
stance.

Having all the right parts in place is extremely important, since if the bundle is incomplete or incorrect,
the server process will crash when the importer starts. So the best way to create a new custom importer is
to take an existing example — including the associated ant build script — and modify it as needed. You
can find an example custom importer in the VoltDB public github repository at the following URL:

https://github.com/VoltDB/voltdb/tree/master/src/frontend/org/voltdb/importclient/socket

The following sections describe:

• Writing the custom importer using Java

• Compiling, packaging, and installing the importer

• Configuring and running the importer

9.2.1. Designing and Coding a Custom Importer
One of the most important decisions you must make when planning your custom importer is whether to
run a single importer process for the cluster or to design a run-everywhere importer. A single importer
process ensures only one instance of the importer is running at any given time. That means on a cluster,
only one node will run the import connector process.

The following sections discuss run-everywhere vs. single process and managing the starting and stopping
of the import connector.

9.2.1.1. Run-Everywhere vs. Single Process
A run-everywhere import connector starts a separate import process on each node in the cluster. A run-
everywhere connector can improve performance since it distributes the work across the cluster. However,
it means that the connector must negotiate the distribution of the work to avoid importing duplicate copies
of the data.

Run-everywhere connectors are especially useful where the import process uses a "push" model rather than
a "pull'. That is, if the connector opens a port and accepts data sent to the port, then the data source(s) can
proactively connect and "push" data to that port, making the data source responsible for the distribution
to the multiple servers of the VoltDB cluster.

48

https://github.com/VoltDB/voltdb/tree/master/src/frontend/org/voltdb/importclient/socket

Creating Custom Importers,
Exporters, and Formatters

You specify whether you are creating a single importer process or run-everywhere connector in the isIm-
porterRunEverywhere() method of the Importer class. If the method returns true, importer processes are
created on every server. If the method returns false, only one importer process is created at any given time.

9.2.1.2. Managing the Starting and Stopping of the Import Process
When the custom importer is enabled, the ImporterFactory create() method is invoked, which in turn
creates instances of the ImporterConfig and Importer classes. The VoltDB import infrastructure then calls
the Importer accept() method for each importer process that is created.

The accept() method does the bulk of the work of iteratively fetching data from the appropriate sources,
calling the formatter to structure the content of each row, and invoking the appropriate stored procedure
to insert the data into the database. Two important points to keep in mind:

• If the accept() method fails for any reason of returns to the caller, the importer will stop until the next
time it is initialized. (That is, when the database restarts or is paused and resumed.)

• On each iteration, the accept() method should check to see if the close() method has been called, so it
can clean up any pending imports and then return to the caller.

9.2.2. Packaging and Installing a Custom Importer
Once the custom importer code is ready, you need to compile and package it as an OSGi-compliant JAR
file. There are a number of OSGi properties that need to be set in the JAR file manifest. So it is easiest
to use an ant build file to compile and package the files. The following is an excerpt from an example
build.xml file for a custom importer project:

<!-- Simple build file to build socket stream importer -->
<project name="customimport" basedir="." default="customimporter">
<property name='base.dir' location='.' />
<property name='bundles.dir' location='./bundles' />
<property name='build.dir' location='./obj' />

 <target name="buildbundle" depends="customimporter"/>

 <resources id="default.imports.resource">
 <string>org.osgi.framework;version="[1.6,2)"</string>
 <string>org.voltcore.network</string>
 <string>org.voltdb.importer</string>
 <string>org.voltdb.client</string>
 <string>org.voltdb.importer.formatter</string>
 <string>org.apache.log4j</string>
 <string>org.slf4j</string>
 <string>jsr166y</string>
 <string>org.voltcore.utils</string>
 <string>org.voltcore.logging</string>
 <string>com.google_voltpatches.common.base</string>
 <string>com.google_voltpatches.common.collect</string>
 <string>com.google_voltpatches.common.net</string>
 <string>com.google_voltpatches.common.io</string>
 <string>com.google_voltpatches.common.util.concurrent</string>
 </resources>

 <pathconvert property="default.imports"
 refid="default.imports.resource" pathsep=","/>

49

Creating Custom Importers,
Exporters, and Formatters

 <target name="customimporter">

 <!-- Compile source files -->
 [. . .]

 <!-- Build OSGi bundle -->
 <antcall target="osgibundle">
 <param name="bundle.name" value="mycustomimporter"/>
 <param name="activator" value="MyCustomImporterFactory"/>
 <param name="bundle.displayname" value="MyCustomImporter"/>
 <param name="include.classpattern" value="mycustomimporter/*.class"/>
 </antcall>
 </target>

 <target name="osgibundle">
 <mkdir dir="${bundles.dir}" />
 <jar destfile="${bundles.dir}//${bundle.name}.jar" basedir="${build.dir}">
 <include name="${include.classpattern}"/>
 <manifest>
 <attribute name="Bundle-Activator" value="${activator}" />
 <attribute name="Bundle-ManifestVersion" value="2" />
 <attribute name="Bundle-Name"
 value="${bundle.displayname} OSGi Bundle" />
 <attribute name="Bundle-SymbolicName"
 value="${bundle.displayname}" />
 <attribute name="Bundle-Version" value="1.0.0" />
 <attribute name="DynamicImport-Package" value="*" />
 <attribute name="Import-Package" value="${default.imports}" />
 </manifest>
 </jar>
 </target>
</project>

Once you create the OSGi bundle, you install the custom importer by copying it to the bundles folder
inside the root directory of the VoltDB installation on every server in the cluster. For example, if VoltDB
is installed in /opt/voltdb, copy your custom importer JAR file to /opt/voltdb/bundles/.

9.2.3. Configuring and Running a Custom Importer
Once the custom importer is installed on the VoltDB servers, you can configure and start the importer
using the database configuration file. You can configure import either before the database starts or after
the database is running using the voltadmin update command.

In the configuration use the <import> and <configuration> elements to declare your custom im-
porter. Specify the type as "custom" and identify the custom importer bundle in the module attribute
specifying the name of the JAR file. For example:

<import>
 <configuration type="custom" module="mycustomimporter.jar">
 [. . .]

If the custom importer requires additional information, you can provide it in properties passed to the Im-
porterConfig class. For example:

50

Creating Custom Importers,
Exporters, and Formatters

<import>
 <configuration type="custom" module="mycustomimporter.jar">
 <property name="datasource">my.data.source</property>
 <property name="timeout">5m</property>
 </configuration>
</import>

As soon as the configuration is enabled, the import processes will be initialized and the custom importer
accept() method invoked by the VoltDB import infrastructure.

9.3. Writing a Custom Formatter
A formatter is a module that takes a row of data received by an import connector, interprets the contents,
and translates it into individual column values. The default formatter that is provided with VoltDB parses
comma-separated values (CSV) data. However, if the data you are importing is in a different format, you
can write a custom formatter to perform this translation step.

You provide a custom formatter as an OSGi (Open Service Gateway Initiative) bundle. However, much
of the standard work of an OSGi bundle is handled by the VoltDB import framework. So you only need
to provide selected components as described in the following sections.

Note

Custom formatters can be used with both custom and built-in import connectors and with the
standalone kafkaloader utility.

The following sections describe:

• The structure of the custom formatter

• Compiling and packaging custom formatter bundles

• Installing and invoking custom formatters

• Using custom formatters with the kafkaloader utility

9.3.1. The Structure of the Custom Formatter
The custom formatter must contain at least two Java classes: one that implements the org.volt-
db.importer.formatter.Formatter interface and one that extends the org.voltdb.im-
porter.formatter.AbstractFormatterFactory interface.

For the sake of example, let's assume the custom formatter classes are called MyFormatter and MyFor-
matterFactory. When the associated import connector is initialized, the VoltDB importer infrastructure
calls the classes' methods in the following order:

• MyFormatterFactory.create() is called once, to initialize the formatter. The create method
must return an instance of the MyFormatter class.

• MyFormatter.MyFormatter() is invoked once when an instance of the MyFormatter class is
initialized in the preceding step.

• MyFormatter.transform() is called from the import connector every time it retrieves a record from the
data source.

51

Creating Custom Importers,
Exporters, and Formatters

In many cases, the easiest way to create custom class is to modify an existing example. And VoltDB
provides an example formatter that you can use as a base for your customizations in the VoltDB github
at the following URL:

https://github.com/VoltDB/voltdb/tree/master/tests/test_apps/kafkaimporter/custom_formatter/formatter

The next sections describe how to modify this example — or how to create a custom formatter from
scratch, if you wish.

9.3.1.1. The AbstractFormatterFactory Interface and Class
You must create a class that extends the AbstractFormatterFactory class. However, within that class all
you need to change is overriding the create() method to return an instance of your implementation of the
Formatter interface. So, assuming the new class names use the prefix "MyFormatter" and using the example
formatter provided in github, all you need to modify are the items highlighted in the following example:

package myformatter;

import org.voltdb.importer.formatter.AbstractFormatterFactory;

public class MyFormatterFactory extends AbstractFormatterFactory {
 /**
 * Creates and returns the formatter object.
 */
 @Override
 public MyFormatter create() {
 MyFormatter formatter = new MyFormatter(m_formatName, m_formatProps);
 return formatter;
 }
}

9.3.1.2. The Formatter Interface and Class
The bulk of the work of a custom formatter occurs in the class that implements the Formatter interface.
Within that class, you must have at least one method that overrides the default transform() method.
You can, optionally, include a method that initializes the class and handles any properties that need to be
passed into the formatter from the import configuration.

9.3.1.2.1. Initializing the Formatter Class

The method that initializes the class has the same name as the class (in our example, MyFormatter). The
method accepts two parameters: a string and a list of properties. The string contains the name of the for-
matter as specified in the database configuration file (see Section 9.3.3.2, “Configuring and Invoking Cus-
tom Formatters”). This string will, by definition, match the name of the class itself. The second parame-
ter is a collection of Java Property objects representing properties set in the configuration file using the
<format-property> element and certain VoltDB built-in properties, whose names all start with two
underscores.

If the custom formatter doesn't require any information from the configuration, you do not need to include
this method. However, if your formatter does require additional information, this class can retrieve and
store information provided in the import configuration. For example, the MyFormatter() method in the
following implementation looks for a "column_width" property and stores it for later use by the trans-
form() method:

52

https://github.com/VoltDB/voltdb/tree/master/tests/test_apps/kafkaimporter/custom_formatter/formatter

Creating Custom Importers,
Exporters, and Formatters

package myformatter;

import java.util.Properties;
import org.voltdb.importer.formatter.FormatException;
import org.voltdb.importer.formatter.Formatter;

public class MyFormatter implements Formatter {

 String column_width = "";

 MyFormatter (String formatName, Properties prop) {
 column_width = prop.getProperty("column_width");
 }

9.3.1.2.2. Transforming the Data

The method that does the actual work of formatting the incoming data is the transform() method. This
method receives the incoming data as a Java byte buffer and is expected to return an array of Java objects
representing the input parameters, which will be passed to the specified stored procedure to insert the data
into the database.

For example, If the custom formatter expects data in fixed-width columns, the method might look like this:

@Override
public Object[] transform(ByteBuffer payload) throws FormatException {

 String buffer = new String(payload.array());
 ArrayList<Object> list = new ArrayList<Object>();

 int position = 0;
 while (position < buffer.length()) {
 int endpoint = Math.min(position+column_width, buffer.length());
 list.add(buffer.substring(position,endpoint));
 position += column_width;
 }
 return list.toArray();
}

9.3.2. Compiling and Packaging Custom Formatter Bundles
Once the custom formatter source code is complete, you are ready to compile and package the formatter
as an OSGi bundle.

When compiling the source code, be sure to include the VoltDB JAR files in the Java classpath. For exam-
ple, if VoltDB is installed in the folder /opt/voltdb, you will need to include /opt/voltdb/volt-
db/* and /opt/voltdb/lib/* in the classpath.

You will also need to include a number of OSGi-specific attributes in the final JAR file manifest. For
example, you must include the Bundle-Activator attribute pointing to the FormatterFactory class. To ensure
all the necessary properties are set, it is easiest to use the ant utility and an ant build file. The following is
an example build.xml file, with the items that you must modify highlighted in bold text:

<project default="build">
 <path id='project.classpath'>
 <!-- Replace this with the path to the VoltDB jars -->

53

Creating Custom Importers,
Exporters, and Formatters

 <fileset dir='/opt/voltdb'>
 <include name='voltdb/*.jar' />
 <include name='lib/*.jar' />
 </fileset>
 </path>

 <target name="build" depends="clean, dist, formatter"/>

 <target name="clean">
 <delete dir="obj"/>
 <delete file="myformatter.jar"/>
 </target>

 <target name="dist">
 <mkdir dir="obj"/>
 <javac srcdir="src" destdir="obj">
 <classpath refid="project.classpath"/>
 </javac>
 </target>

 <target name="formatter">
 <jar destfile="myformatter.jar" basedir="obj">
 <include name="myformatter/MyFormatter.class"/>
 <include name="myformatter/MyFormatterFactory.class"/>
 <manifest>
 <attribute name="Bundle-Activator"
 value="myformatter.MyFormatterFactory" />
 <attribute name="Bundle-ManifestVersion" value="2" />
 <attribute name="Bundle-Name" value="My Formatter OSGi Bundle" />
 <attribute name="Bundle-SymbolicName" value="MyFormatter" />
 <attribute name="Bundle-Version" value="1.0.0" />
 <attribute name="DynamicImport-Package" value="*" />
 </manifest>
 </jar>
 </target>
</project>

9.3.3. Installing and Invoking Custom Formatters
Once you have built and packaged the custom formatter, you are ready to install and use it in your VoltDB
infrastructure.

9.3.3.1. Installing Custom Formatters
To install the custom formatter, you simply copy the formatter JAR file (in the preceding examples, my-
formatter.jar) to the bundles folder in the VoltDB installation on every server in the cluster. For
example, if VoltDB is installed in /opt/voltdb:

$ cp obj/myformatter.jar /opt/voltdb/bundles/

9.3.3.2. Configuring and Invoking Custom Formatters
Once the JAR file is available to all VoltDB instances, you can configure and invoke the custom formatter
as part of the import configuration. Note that the import configuration can be changed either before the

54

Creating Custom Importers,
Exporters, and Formatters

database cluster is started or while the database is running using either the voltadmin update command
of the web-based Volt Management Center.

You choose the formatter as part of the import configuration using the format attribute of the <con-
figuration> element in the database configuration file. Normally, you use the built-in "csv" format.
However, to select a custom formatter, set the format attribute to the name of the formatter JAR file
and its class name. For example:

<import>
 <configuration type="kafka" format="myformatter.jar/MyFormatter" >
 [. . .]

Storing your custom JAR in the bundles directory is recommended. However, if you choose to keep your
custom code elsewhere, you can still reference it in the configuration by including the absolute path to the
file location as part of the format attribute. For example, if your JAR file is in the /etc/myapp folder,
the format attribute value would be "file:/etc/myapp/myformatter.jar/MyFormatter". The formatter JAR
must be in the same location on all nodes of the cluster.

Within the import configuration, you can also include any properties that the formatter needs using the
<format-property> element. For example, in the preceding example, the custom formatter expects
a property called "column_width", so the configuration might look like this:

<import>
 <configuration type="kafka" format="myformatter.jar/MyFormatter" >
 <property name="brokers">kafka.myorg.org:9092</property>
 <property name="topics">customer</property>
 <property name="procedure">CUSTOMER.insert</property>
 <format-property name="column_width">15</format-property>
 </configuration>
<import>

9.3.4. Using Custom Formatters With the kaaloader Utility
You can also use custom formatters with the standalone kafkaloader utility. To use a custom formatter
with kafkaloader you must:

• Declare environment variables for FORMATTER_LIB and ZK_LIB

• Create a formatter properties file specifying the formatter class and any formatter-specific properties
the formatter requires.

The environment variables define the paths to the formatter JAR file and the Apache ZooKeeper libraries,
respectively. (Note that ZooKeeper does not need to be running, but you must have a copy of the standard
ZooKeeper libraries installed and accessible via the ZK_LIB environment variable.)

The formatter properties file must contain, at a minimum, a "formatter" property that is assigned to the
formatter class of the custom formatter. It can contain other properties required by the formatter. The
following is the properties file for kafkaloader that matches the example given in the previous section to
configure the custom formatter using the built-in importer infrastructure:

formatter=MyFormatter
column_width=15

If both your formatter and the ZooKeeper libraries are in a folder myformatter under your home di-
rectory, along with the preceding properties file, you could start the kafkaloader utility with the following
commands to use the custom formatter:

55

Creating Custom Importers,
Exporters, and Formatters

$ export FORMATTER_LIB="$HOME/myformatter/"
$ export ZKLIB="$HOME/myformatter/"
$ kafkaloader --formatter=$HOME/myformatter/formatter.config \
 --topic=customer --zookeeper=kafkahost:2181

56

Chapter 10. Creang Custom SQL
Funcons

VoltDB provides many built-in functions for use in SQL statements that are described in an appendix to
the Using VoltDB manual. These built-in functions perform a variety of tasks, such as data conversion,
string matching, geometric calculations, and so on.

There are two types of SQL functions: scalar functions and aggregate functions. A scalar function takes
a set of arguments and produces a single result value. DATEADD() is an example of a scalar function
that takes a timestamp, a value, and a unit type such as MINUTE or HOUR, and produces a value that
represents the addition of the specified units to the input timestamp. An aggregate functions takes multiple
values — a table column or expression — as part of a query and produces a value that aggregates the results
from all of the input. MAX() is an example of a built-in aggregate function that calculates the maximum
value of all the inputs associated with the query's constraints.

However, not all possible functions are built in and there may be cases where you have an application-spe-
cific function that needs to be performed repeatedly. Rather than writing code to perform the operation as
part of the application or within a stored procedure, VoltDB lets you create and declare your own functions
that can be invoked directly from within SQL queries and data manipulation statements just like built-
in functions.

Just as there are two types of built-in functions, you can create two types of user-defined functions. For
user-defined scalar functions, you write the function as a Java method that takes the specified input argu-
ments and returns a single value. User-defined aggregate functions are slightly more complex. You create
aggregate functions as a Java class with specific methods to initiate the function, collect and process the
input values, and return the aggregated result.

In both cases, there are the same three steps to creating a user-defined function:

1. Write the code to perform the function as a Java method (for scalar functions) or a Java class (for
aggregate functions).

2. Load the Java class that includes the user-defined function into the database.

3. Declare the function using the CREATE FUNCTION or CREATE AGGREGATE FUNCTION state-
ment, associating it to the Java class and/or method.

The following sections describe how to perform each of these tasks, as well as how to invoke the function
in SQL statements once it has been declared.

10.1. Writing a User-Defined Scalar Function
You write user-defined scalar functions as Java methods. If you are creating multiple scalar functions, you
can put them all in a single Java class or in separate Java classes. Whichever is most convenient for you
and the management of your code base.

The number and datatypes of the method's parameters define the number and types of the function's argu-
ments. For example, if you declare the method as having two parameters, a Java int and String, the
function will have two arguments, a VoltDB INTEGER and a VARCHAR. Similarly, the return datatype
of the method itself determines the datatype that the function returns.

Because user-defined functions are executable within SQL statements and stored procedures, the methods
must obey the same rules concerning determinism as stored procedures. That is, avoid any actions that in-

57

Creating Custom SQL Functions

troduce values that may vary from one system to another, such as system time, random number generation,
or I/O with indeterminate results. See the section on determinism in the Using VoltDB manual for details.

For example, say you need to convert distances from imperial or US units to metric measurements. You
might define your function with two arguments: a floating-point value representing the measurement and a
string unit identifying the units (such as "feet", "yards", or "miles"). So your Java source code would need
to declare the method as accepting two parameters: a double and a String. It should also be declared
as returning a double value.

package myapp.sql.functions;
import org.voltdb.*;
public class Conversion {

 public double us2metric(double value, String units)
 throws VoltAbortException {

Note the method is declared as throwing a VoltAbortException. This is useful for error handling. By
throwing a VoltAbortException, it is possible for the function to handle errors gracefully and notify the
VoltDB runtime to rollback the current transaction. For example, the first step in the method might be to
validate the input and make sure the units argument has a known value:

units = units.toUpperCase().trim();
if (!units.equals("FEET") &&
 !units.equals("YARDS") &&
 !units.equals("MILES"))
 throw new VoltAbortException("Unrecognized selector.");

The bulk of the method will focus on performing the actual task the function is designed for. The key point
is to make sure it returns the appropriate datatype object that correlates to the VoltDB datatype you want
the function to return in the SQL statement. In the previous example, the method is declared as returning
a double, which matches the VoltDB FLOAT type. See the appendix on Datatype compatibility in the
Using VoltDB manual for details on the mapping of Java and VoltDB datatypes. But, in brief, the mapping
of Java to VoltDB datatypes is as follows:

byte or Byte → TINYINT
short or Short → SMALLINT
int or Integer → INTEGER
long or Long → BIGINT
double or Double → FLOAT
BigDecimal → DECIMAL
String → VARCHAR
byte[] or Byte[] → VARBINARY

You can define parameters for VoltDB-specific datatypes by using the object types included in the VoltDB
Java packages. For example:

org.voltdb.types.GeographyValue → GEOGRAPHY
org.voltdb.types.GeographyPointValue → GEOGRAPHY_POINT
org.voltdb.types.TimestampType → TIMESTAMP

10.2. Writing a User-Defined Aggregate Function
Aggregate functions are more complex than scalar functions because the program code does not receive
a predefined number of arguments, it must handle a variable number of rows. It must also be able to

58

https://docs.voltactivedata.com/UsingVoltDB/DesignProc.php#DesignProcDeterminism
https://docs.voltactivedata.com/UsingVoltDB/
https://docs.voltactivedata.com/UsingVoltDB/AppxDatatype.php
https://docs.voltactivedata.com/UsingVoltDB/

Creating Custom SQL Functions

aggregate results from multiple partitions in the case of partitioned tables. To make this possible, user-
defined aggregate functions are written as a Java class with four required methods:

• start() — This method initializes the function and is called once when the function is first invoked.

• assemble(arg) — This method processes the argument to the function and is called once for
each record matching the constraints defined by the query.

• combine(class-instance) — For partitioned tables in a multi-partition procedure, this
method combines the results of one partition into the results of another and is called iteratively until the
results from all of the partitions are aggregated.

• end() — This method finalizes the function, returning the function result. It is called once after all
of the input has been processed and, if appropriate, the partitions combined.

Let's take a look at a simple example of an aggregate function to understand how this works. The MAX()
built-in function returns the maximum value from a set of inputs and CHAR_LENGTH() returns the length
of a text string. So you can combine them to find the length of the longest string. But what if you want to
know what is the longest word in the set of strings? For this you need to write your own aggregate function.

First, the function must import and implement the VoltUDAggregate interface. Within the class, the
datatype of the assemble method's parameter defines the type of the function's argument. For example,
if you declare the method as having one String parameter, the function will accept one argument, a Volt-
DB VARCHAR expression. Similarly, the datatype of the end method determines the datatype that the
function returns. See the appendix on Datatype compatibility in the Using VoltDB manual for details on
the mapping of Java and VoltDB datatypes.

So the Java source code of a longest word function might look like the following:

package fadvisor.functions;

import java.io.Serializable;
import org.voltdb.VoltUDAggregate;

public class LongestWord
 implements Serializable, VoltUDAggregate<String, LongestWord> {

 private String longest;

 public void start() {
 /* Initialize value. */
 longest = "";
 }

 public void assemble (String txt) {
 /* Break into uppercase words, then check each word. */
 String[] words = txt.toUpperCase().split("\\W+");
 for (int i=0;i<words.length;i++) {
 if (words[i].length() > longest.length()) {
 longest = words[i];
 } else {
 /* If the same length, alphabetize. */
 if (words[i].length() == longest.length() &
 longest.compareTo(words[i]) > 0) {
 longest = words[i];

59

https://docs.voltactivedata.com/UsingVoltDB/AppxDatatype.php
https://docs.voltactivedata.com/UsingVoltDB/

Creating Custom SQL Functions

 }
 }

 }
 }

 public void combine(LongestWord other) {
 /* Merge the results from each partition. */
 if (other.longest.length() > longest.length()) {
 longest = other.longest;
 } else {
 if (other.longest.length() == longest.length() &
 longest.compareTo(other.longest) > 0) {
 longest = other.longest;
 }
 }
 }

 public String end() {
 /* Return the result. */
 return longest;

 }
}

The bulk of the assemble and combine methods perform the actual task the function is designed for.
The key point is to make sure the end method returns the appropriate datatype object that correlates to
the VoltDB datatype you want the function to return in the SQL statement. In this example, the method is
declared as returning a String, matching the VoltDB VARCHAR type.

10.3. Loading User-Defined Functions into the
Database

Once you have written, compiled, and tested the Java code for your SQL functions, you can load them into
the database. You load user-defined functions the same way you load stored procedures, by packaging the
Java class or classes into a JAR file and then loading the JAR file using the LOAD CLASSES statement.
For example:

$ export CLASSPATH="$CLASSPATH:/opt/voltdb/voltdb/*"
$ javac -d ./obj src/myapp/functions/*.java
$ jar cvf myfunctions.jar -C obj .
$ sqlcmd
1> load classes myfunctions.jar;

You can package multiple function methods and classes or a combination of functions and stored procedure
classes into a single JAR file. The key is that you must load the classes containing the aggregate functions
and scalar function methods into the database before you can declare them as SQL functions.

10.4. Declaring a User-Defined Function
Once the Java class containing the method is loaded, you can declare the function itself. You declare
scalar functions using the CREATE FUNCTION statement, specifying the name of the function and the

60

Creating Custom SQL Functions

associated Java class path and method name. For example, if you want to call the function associated with
the scalar example US2METRIC, the CREATE FUNCTION statement looks like this:

CREATE FUNCTION US2METRIC FROM METHOD myapp.functions.Conversion.us2metric;

You declare aggregate functions using the CREATE AGGREGATE FUNCTION statement, specifying
the name of the function and the associated Java class. For example, if you want to call the function
associated with the aggregate example LONGEST_WORD, the CREATE AGGREGATE FUNCTION
statement looks like this:

CREATE AGGREGATE FUNCTION LONGEST_WORD FROM CLASS myapp.functions.LongestWord;

Note that although the function names are not case sensitive, the class path and method names are and
must be specified in the correct mix of upper and lower-case.

10.5. Invoking User-Defined Functions in SQL
Statements

Once the class is loaded and the function declared, you can include the user-defined function in SQL
queries and data manipulation (DML) statements just as you normally use built-in functions in SQL. For
example, if a stored procedure needs to convert an entry in miles to the equivalent measurement in kilo-
meters, the stored procedure definition might look like the following:

CREATE PROCEDURE Expense_in_miles AS
 INSERT INTO Expense_item (item_name, distance, destination)
 VALUES (?, US2METRIC(?,'MILES'), ?);

Similarly, if you want a procedure to find the longest word in each product description for a specific
category, the stored procedure definition might look like this:

CREATE PROCEDURE big_words AS
 SELECT product_name, longest_word(description) FROM products
 WHERE category=? GROUP BY product_name;

Note that user-defined functions can be used in queries and DML but cannot be used in data definition
statements, such as CREATE statements that define indexes, tables, or views.

61

Chapter 11. Creang Custom Tasks
You can schedule common repetitive tasks using the CREATE TASK SQL statement. CREATE TASK
lets you schedule any system or user-defined stored procedure to be run on a specified schedule. However,
there are times when you need the schedule, or the procedure itself, to be more responsive: adjusting to
the current state of the database or the results of the previous task runs. This is what custom tasks help
you accomplish.

Custom tasks let you modify the characteristics of the task, including:

• What procedure is executed by the task

• The arguments to the task procedure

• The time interval between executions of the task

The following sections describe how to design, develop and implement custom tasks.

11.1. Overview of How Custom Tasks Work
You write custom tasks as Java classes implementing one of three interfaces, depending on what you want
to customize:

• ActionGenerator — Customizes the stored procedure to call and the parameters to use

• IntervalGenerator — Customizes the interval between procedure calls

• ActionScheduler — Customizes all three aspects of the task: the stored procedure to call, its parameters,
and the interval between calls

Once you write the class for a custom task, you implement it in VoltDB in two steps:

1. You load the class into the database the same way you would a stored procedure, by compiling and
packaging it as a JAR file and then loading the JAR file into the database with the LOAD CLASSES
directive.

2. You then declare the custom task using the CREATE TASK statement, replacing the argument to the
appropriate clause with FROM CLASS. For example, a custom procedure call replaces PROCEDURE
{procedure-name} with PROCEDURE FROM CLASS {class-name}, a custom interval re-
places ON SCHEDULE {type-and-value} with ON SCHEDULE FROM CLASS {class-
name}, and a custom scheduler replaces both the PROCEDURE and ON SCHEDULE clauses with
FROM CLASS {class-name}. You can optionally specify arguments to the custom class using
the WITH clause.

For example, the following SQL statements declare one custom task of each type, assuming their classes
are packaged in the JAR mytasks.jar:

LOAD CLASSES mytasks.jar;
CREATE TASK variableproc
 ON SCHEDULE EVERY 5 SECONDS
 PROCEDURE FROM CLASS MyVariableProc WITH (1,2,3);
CREATE TASK variableinterval
 ON SCHEDULE FROM CLASS MyVariableInterval WITH (1,2,3)
 PROCEDURE cleanupchoir;
CREATE TASK variabletask
 FROM CLASS MyVariableTask WITH (1,2,3);

62

Creating Custom Tasks

In all three cases, the sequence of events at run time is the same. Once you declare and enable a custom
task, the database:

1. Invokes the custom task's initialize() method once, passing the parameters specified in the WITH
clause of the CREATE TASK statement.

2. Invokes the custom task's getFirst<item>() method once. The actual method name varies de-
pending on the interface; getFirstAction() for actions, getFirstInterval for intervals, and
getFirstScheduledAction() for both action and interval. The method must return an object
with the custom values and a callback method. VoltDB uses this information to schedule the first in-
vocation of the task.

3. Iteratively, invokes the specified callback method, passing the results of the stored procedure as an
argument. The callback then repeats the process of returning an object with the next custom values
and callback.

This sequence of events is repeated any time the database is restarted, the schema is changed, or the
database is paused and then resumed.

The following sections provide examples of using each type of customization. See the javadoc for addi-
tional details about the classes and methods that can assist your task design.

11.2. Modifying the Procedure Call and Arguments
To vary the stored procedure called by a task or the arguments to that procedure, you can create a custom
task that implements the ActionGenerator interface. The custom task consists of the Java class you create,
and the SQL statements to load and declare the task. At run time, for each invocation of the task, VoltDB
uses the custom class to determine what procedure to call and its arguments and the task declaration to
determine when to run the task.

Let's look at an example. Say we want a task that periodically deletes unused sessions. The stored procedure
to do this might look like the following, where the batch size — the maximum number of records to delete
— is passed in as an argument to the procedure:

CREATE PROCEDURE PurgeOldSessions DIRECTED AS
 DELETE FROM session
 WHERE last_access < DATEADD(MINUTE,-5,NOW())
 ORDER BY sessionID ASC LIMIT ?;

We could schedule this procedure using a static task and a fixed batch size. But then there is no guarantee
that the task can keep up with the volume of expired sessions. Instead, we would like to be able to adjust
the batch size to accommodate changing workloads.

To do this we can create a custom task that checks how many records were actually deleted in each run. If
the count of deleted records is less than 80% of the batch size, reduce the batch size for the next run. On the
other hand, if the number deleted equals the batch size, increase the batch size incrementally until it matches
the workload. Finally, we can use parameters to the custom task to specify the minimum, maximum, and
starting batch size.

11.2.1. Designing a Java Class That Implements Action-
Generator

The first step is to write a Java class that implements the ActionGenerator interface. This must be a static
class whose constructor takes no arguments. In our example, we will also declare class variables for a

63

Creating Custom Tasks

helper object that is used in subsequent methods plus minimum, maximum, and current values for the
batch size.

The class must, at a minimum, declare or override three methods:

initialize()

The initialize() method is called first and receives a helper object (inserted automatically by the task
subsystem), plus any parameters defined by the task definition in SQL. In our example there will be
three parameters from the task definition: a minimum, maximum, and starting value for the batch
size, which the method stores in the variables declared earlier. So the initialize() method ends up
having a total of four arguments.
GetFirstAction()

The getFirstAction() method is called when the task starts; that is, when the task is first defined or
when the database starts or resumes. The method must return an Action object, which includes the
procedure to call, arguments to that procedure, and a callback method to be invoked once the first
invocation is completed. In our example, the method creates an action using the PurgeOldSessions
stored procedure, the initial batch size, and the callback procedure declared in the next step.
A callback method

Finally, your custom task must have a callback method (the method you specify when creating an Ac-
tion object), which is invoked once the specified procedure instance completes. The callback method
must return another Action, similar to getFirstAction.

In our example, the callback compares the current batch size to the number of records deleted by
the last run and makes appropriate adjustments. It decreases the batch size if less than 80% were
deleted, it increases the batch size if the full batch was used, and it keeps the size within the specified
minimum and maximum. In this case, we are changing the arguments only, not the stored procedure
invoked. Although that is possible if your application requires it.

Note that the callback method can be a name of your choosing. It does not have to be callback().
You are also not constrained to using just one callback; you might select different callback methods
based on which stored procedure you are invoking or the current application context.

Example 11.1, “Custom Task Implementing ActionGenerator” shows the completed example task class,
with the key elements highlighted.

Example 11.1. Custom Task Implementing ActionGenerator

package mytasks;

import java.util.concurrent.TimeUnit;
import org.voltdb.VoltTable;
import org.voltdb.client.ClientResponse;
import org.voltdb.task.*;

public class PurgeBatches implements ActionGenerator {

 private TaskHelper helper;
 private long min, max, batchsize;

 public void initialize(TaskHelper helper,
 long min, long max, long batch) {
 this.min = min;

64

Creating Custom Tasks

 this.max = max;
 this.batchsize = batch;
 }

 public Action getFirstAction() {
 return Action.procedureCall(this::callback,
 "PurgeOldSessions", this.batchsize);
 }

 /*
 * Callback to handle the result of the task
 * and return next Action.
 */
 private Action callback(ActionResult result) {

 /* Find out how many records were deleted */
 ClientResponse response = result.getResponse();
 VoltTable[] results = response.getResults();
 long count = results[0].fetchRow(0).getLong(0);

 /* If less than 80%, decrease by 10% */
 if (count < this.batchsize * .8)
 this.batchsize -= this.max * .1;

 /* If equal to batch size, increase by 10% */
 if (count == this.batchsize)
 this.batchsize += this.max * .1;

 /* Stay within min & max */
 if (this.batchsize > this.max) this.batchsize = this.max;
 if (this.batchsize < this.min) this.batchsize = this.min;

 return Action.procedureCall(this::callback,
 "PurgeOldSessions", this.batchsize);
 }
}

11.2.2. Compiling and Loading the Class into VoltDB
Once you complete your Java source code, you need to compile, debug, and package it into a JAR file
so it can be loaded into VoltDB. You compile and package task classes the same way you compile and
package stored procedures. In fact, you can package tasks and procedures into the same or separate JARs
if you choose. The following example compiles the Java classes in the src folder and packages them into
the JAR file sessiontasks.jar:

$ javac -classpath "/opt/voltdb/voltdb/*" \
 -d ./obj src/*.java
$ jar cvf sessiontasks.jar -C obj .

You then load the classes from the JAR file into VoltDB using the sqlcmd LOAD CLASSES directive:

LOAD CLASSES sessiontasks.jar;

65

Creating Custom Tasks

11.2.3. Declaring the Task
Finally, once the custom class is loaded into the database, you can declare the task and start it running.
You declare the task using the CREATE TASK statement, replacing a procedure name with the FROM
CLASS clause specifying the classpath to your new class. In our example, the custom task also requires
three arguments: a minimum, maximum and starting batch size.

Because the stored procedure that the custom class specifies is a directed procedure (that is, it runs sep-
arately on every partition on the cluster), the task must be declared to RUN ON PARTITIONS. If the
procedure was not directed, the task could be run on PARTITIONS, DATABASE, or HOSTS. However,
for partitioned tables it is often necessary to have partitioned or directed procedures if the procedure's
statements need to both ORDER BY and LIMIT the rows.

The following statement creates the custom task with a minimum batch size of 100 records, a maximum
of 2,000, and a starting size of 1,000.

CREATE TASK batchcleanup
 ON SCHEDULE EVERY 5 SECONDS
 PROCEDURE FROM CLASS mytasks.PurgeBatches
 WITH (100,2000,1000)
 RUN ON PARTITIONS;

Note that the task starts as soon as it is declared, unless you include the DISABLE clause. Alternately, you
can use the ALTER TASK statement to change the state of the task. For example, the following statement
disables our newly created task:

ALTER TASK batchcleanup DISABLE;

11.3. Modifying the Interval Between Invocations
To customize the interval between invocations of the task's stored procedure, you create a custom task
that implements the IntervalGenerator interface. The custom task consists of the Java class you create,
and the SQL statements to load and declare the task. At run time, for each invocation of the task, VoltDB
uses the custom class to determine how long to wait before invoking the stored procedure specified in
the task definition.

Let's look at an example. Say we want a task, similar to the previous example, that periodically deletes
unused sessions. The task can use the same stored procedure as before, this time with a fixed batch size
passed in as an argument when declaring the task:

CREATE PROCEDURE PurgeOldSessions DIRECTED AS
 DELETE FROM session
 WHERE last_access < DATEADD(MINUTE,-5,NOW())
 ORDER BY sessionID ASC LIMIT ?;

Now we want to customize how frequently the procedure runs — increasing the frequency if it always
deletes the full batch, or decreasing the frequency if fewer records are deleted each time. To do this we
create a custom task that checks how many records were actually deleted in each run. If the count of deleted
records is less than 80% of the batch size, increase the interval between runs. On the other hand, if the
number deleted records equals the batch size, increase the frequency by reducing the interval. Finally, we
can use parameters to the custom task to specify the minimum, maximum, and starting frequency, as well
as the batch size.

66

Creating Custom Tasks

11.3.1. Designing a Java Class That Implements IntervalGen-
erator

The first step is to write a Java class that implements the IntervalGenerator interface. This must be a static
class whose constructor takes no arguments. In our example, we will also declare class variables for a
helper object that is used in subsequent methods and minimum, maximum, and initial values for interval,
plus the batch size.

The class must, at a minimum, declare or override three methods:

initialize()

The initialize() method is called first and receives a helper object inserted automatically by
the subsystem that manages tasks, plus any parameters defined by the task definition in SQL. In our
example there are four parameters from the task definition, which the method stores in the variables
declared earlier. So the initialize() method ends up having a total of five arguments.
GetFirstInterval()

The getFirstInterval() method is called when the task starts; that is, when the task is first
defined or when the database starts or resumes. The method must return an Interval object, which
specifies the length of time to wait until the first execution of the task as well as a callback to invoke
after the task runs. In our example, we initialize the Interval object with the current interval value,
the MILLISECONDS time unit, and the callback defined in the next step.
A callback method

Finally, your custom task must have a callback method (the method you specify when creating the
Interval object), which is invoked when the task completes. The callback method must return another
Interval, similar to getFirstInterval().

In our example, the callback compares the batch size to the number of records deleted by the last run
and makes appropriate adjustments to the next interval. It increases the frequency by reducing the
interval if the full batch was used, it decreases the frequency by extending the interval if less than
80% was used, and it keeps the interval within the specified minimum and maximum.

Note that the callback method can be any name you choose. It does not have to be callback()
and you can specify different callback methods each time if your application logic requires it.

Example 11.2, “Custom Task Implementing IntervalGenerator” shows the completed example task class,
with the key elements highlighted.

Example 11.2. Custom Task Implementing IntervalGenerator

package mytasks;

import java.util.concurrent.TimeUnit;
import org.voltdb.VoltTable;
import org.voltdb.client.ClientResponse;
import org.voltdb.task.*;

public class PurgeIntervals implements IntervalGenerator {

 private TaskHelper helper;
 private long min, max, delta, batchsize;

67

Creating Custom Tasks

 public void initialize(TaskHelper helper,
 long min, long max,
 long delta, long batch) {
 this.min = min;
 this.max = max;
 this.batchsize = batch;
 }

 public Interval getFirstInterval() {
 return new Interval(this.delta, TimeUnit.MILLISECONDS,
 this::callback);
 }

 /*
 * Callback to handle the result of the task
 * and return next Action.
 */
 private Interval callback(ActionResult result) {

 /* Find out how many records were deleted */
 ClientResponse response = result.getResponse();
 VoltTable[] results = response.getResults();
 long count = results[0].fetchRow(0).getLong(0);

 /* If less than 80%, increase by 10% */
 if (count < this.batchsize * .8)
 this.delta += this.max * .1;

 /* If equal to batch size, decrease by 10% */
 if (count == this.batchsize)
 this.delta -= this.max * .1;

 /* Stay within min & max */
 if (this.delta > this.max) this.delta = this.max;
 if (this.delta < this.min) this.delta = this.min;

 return new Interval(this.delta, TimeUnit.MILLISECONDS,
 this::callback);
 }
}

11.3.2. Compiling and Loading the Class into VoltDB
Once you complete your Java source code, you compile, debug, and package it into a JAR file the same
way you compile and package stored procedures. In fact, you can package tasks, procedures, and other
classes (such as user-defined functions) into a single or separate JARs depending on your application and
operational needs. The following example compiles the Java classes in the src/ folder and packages them
into the JAR file sessiontasks.jar:

$ javac -classpath "/opt/voltdb/voltdb/*" \
 -d ./obj src/*.java
$ jar cvf sessiontasks.jar -C obj .

You then load the classes from the JAR file into VoltDB using the sqlcmd LOAD CLASSES directive:

68

Creating Custom Tasks

LOAD CLASSES sessiontasks.jar;

11.3.3. Declaring the Task
Finally, once the custom class is loaded into the database, you can declare the task and start it running. You
declare the task using the CREATE TASK statement, replacing the ON SCHEDULE static interval with
FROM CLASS specifying the classpath of your new class. In our example, the custom task also requires
four arguments: a minimum, maximum and starting interval, plus the batch size. (The same batch size
passed to the stored procedure PurgeOldSessions.) The following statement creates the custom task with
a minimum interval of 100ms (a tenth of a second), a maximum of 10 seconds, an initial interval of 1
second, and a batch size of 500 records.

CREATE TASK timecleanup
 ON SCHEDULE FROM CLASS mytasks.PurgeIntervals
 WITH (100,10000,1000,500)
 PROCEDURE PurgeOldSessions WITH (500)
 RUN ON PARTITIONS;

Because the stored procedure PurgeOldSessions is a directed procedure (that is, it runs separately on every
partition on the cluster), the task must be declared to RUN ON PARTITIONS.

The task starts as soon as it is declared, unless you include the DISABLE clause. Alternately, you can
use the ALTER TASK statement to change the state of the task. For example, the following statement
disables our newly created task:

ALTER TASK timecleanup DISABLE;

11.4. Modifying Both the Procedure and Interval
To allow full customization of the task — including the procedure, its arguments, and the interval between
invocations — you create a custom task that implements the ActionScheduler interface. The custom task
consists of the Java class you create, and the SQL statements to load and declare the task. At run time, for
each invocation of the task, VoltDB uses the custom class to determine what procedure to invoke, what
arguments to pass to the procedure, and how long to wait before invoking it.

Let's look at an example. The previous examples create tasks for purging old sessions from a database.
But how can you tell that these tasks work without a real application? One way is to create a test database
with tasks to emulate the expected workload, generating new sessions on an ongoing basis.

For our example, we want a task that generates sessions, but not so many the number of sessions created
exceeds the number deleted. So our custom task needs to perform two actions:

1. Check to see how many session records are in the database.

2. If the task hasn't reached its target goal, generate up to 1,000 new sessions. Then repeat step 1.

In other words, we need two separate procedures: one to count the number of session records and another to
insert a new session record. To count all session records in the database, the first procedure, CountSessions,
must be multi-partitioned. (It also checks for the maximum value of the session ID so it can generate an
incrementally unique ID.) But the second procedure, AddSession, can be partitioned since it is inserting
into a partitioned table. This way the task reproduces the actions and performance of a running application.

69

Creating Custom Tasks

CREATE PROCEDURE CountSessions AS
 SELECT COUNT(*), MAX(sessionID) FROM session;

CREATE PROCEDURE AddSession PARTITION ON TABLE SESSION COLUMN sessionID AS
 INSERT INTO session (sessionID,userID) VALUES(?,?);

The custom task will decide which procedure to invoke, and how long to wait between invocations, based
on the results of the previous execution. There are many ways to do this, but for the sake of example, our
custom task uses two separate callback methods: one to evaluate the results of the CountSessions procedure
and one to evaluate the results of the AddSession procedure, as described in the next section.

11.4.1. Designing a Java Class That Implements Ac-
tionScheduler

The majority of the work of a custom class is performed by a Java class that implements a task interface;
in this case, the ActionScheduler interface. It must be a static class whose constructor takes no arguments.
The class must, at a minimum, declare or override three methods:

initialize()

The initialize() method is called first and receives a helper object inserted automatically by
the subsystem that manages tasks, plus any parameters defined by the task definition in SQL. In our
example there is one parameter in the task definition: the target number of records to create. So the
initialize() method has a total of two arguments.
GetFirstInterval()

The getFirstInterval() method is called when the task starts; that is, when the task is first
defined or when the database starts or resumes. The method must return a ScheduledAction object,
which specifies the length of time to wait until the first execution of the task, a callback to invoke
after the task runs, plus the name of the procedure and any arguments the procedure requires. In our
example, we initialize the ScheduledAction object with no wait time (that is, an interval of zero), the
callback for the CheckSessions procedure, and the procedure itself.
callback methods

After each iteration of the task, VoltDB invokes the specified callback procedure. In our example,
there are two callback methods:

• checkcallback — The task specifies this as the callback method to invoke after each iteration of
the CheckSessions stored procedure. The callback checks the results for the number of session
records. (it also saves the highest value of the session ID so it can generate an incrementally unique
ID for each new record.) If the number of records is less than the goal, it schedules the AddSession
procedure as the next task, specifying loadcallback() as the callback method. If the goal has
been met, no more records need to be added so the callback backs off on the frequency (increasing
the interval) and schedules the CheckSessions procedure again.

• loadcallback — After each execution of the AddSession procedure, the callback reduces the batch
size by one. If the batch is not complete, the callback reschedules the AddSession procedure, wait-
ing 2 milliseconds. If the batch of inserts has been completed (that is, the batch size is down to ze-
ro), the callback schedules the CheckSessions procedure, specifying its callback method check-
callback() to see if there is now a full complement of session records.

Two things to note about this process are that if the session table is filled to the specified goal, the
checkcallback uses the ability to customize the interval to reduce the frequency of checking — to
minimize the impact on other transactions. Also, besides scheduling different stored procedures at

70

Creating Custom Tasks

different times, it passes different arguments as well, inserting a unique session ID and randomized
user ID for each AddSession invocation.

Example 11.3, “Custom Task Implementing ActionScheduler” shows the completed example task class,
with the key elements highlighted.

Example 11.3. Custom Task Implementing ActionScheduler

package mytasks;

import java.util.Random;

import java.util.concurrent.TimeUnit;
import org.voltdb.VoltTable;
import org.voltdb.client.ClientResponse;
import org.voltdb.task.*;

public class LoadSessions implements ActionScheduler {

 private TaskHelper helper;
 private long batch, wait, nextid, goal;

 public void initialize(TaskHelper helper, long goal) {
 this.goal = goal;
 this.wait = 0;
 }

 public ScheduledAction getFirstScheduledAction() {
 return ScheduledAction.procedureCall(0, TimeUnit.MILLISECONDS,
 this::checkcallback, "CountSessions");
 }

 /*
 * Callbacks to handle the results of the check task
 * and the load task
 */

 private ScheduledAction checkcallback(ActionResult result) {

 ClientResponse response = result.getResponse();
 VoltTable[] results = response.getResults();
 long recordcount = results[0].fetchRow(0).getLong(0);
 this.nextid = results[0].fetchRow(0).getLong(1);

 if (recordcount == 0) this.nextid = 0; /* start fresh*/
 this.batch = this.goal - recordcount;

 if (this.batch > 0) {
 /* Start loading data. Max batch size is 1,000 records */
 this.batch = (this.batch < 1000) ? this.batch : 1000;
 this.nextid++;
 return ScheduledAction.procedureCall(2, TimeUnit.MILLISECONDS,
 this::loadcallback, "AddSession",
 this.nextid,randomuser());

71

Creating Custom Tasks

 } else {
 /* schedule the next check. */
 this.wait += 500;
 if (this.wait > 60000) this.wait = 60000;
 return ScheduledAction.procedureCall(this.wait, TimeUnit.MILLISECONDS,
 this::checkcallback, "CountSessions");
 }
 }

 private ScheduledAction loadcallback(ActionResult result) {
 this.batch--;
 if (this.batch > 0) {
 /* Load next session */
 this.nextid++;
 return ScheduledAction.procedureCall(2, TimeUnit.MILLISECONDS,
 this::loadcallback, "AddSession",
 this.nextid,randomuser());
 } else {
 /* schedule the next check. */
 System.out.println(" Done.");
 this.wait = 0;
 return ScheduledAction.procedureCall(this.wait, TimeUnit.MILLISECONDS,
 this::checkcallback, "CountSessions");
 }
 }

 private long randomuser() { return new Random().nextInt(1001); }

}

11.4.2. Compiling and Loading the Class into VoltDB
Once you complete your Java source code, you compile, debug, and package it into a JAR file the same way
you compile and package stored procedures. You can package tasks, procedures, and other classes (such
as user-defined functions) into a single or separate JARs depending on your application and operational
needs. The following example compiles the Java classes in the src folder and packages it into the JAR
file sessiontasks.jar:

$ javac -classpath "/opt/voltdb/voltdb/*" \
 -d ./obj src/*.java
$ jar cvf sessiontasks.jar -C obj .

You then load the classes from the JAR file into VoltDB using the sqlcmd LOAD CLASSES directive:

LOAD CLASSES sessiontasks.jar;

11.4.3. Declaring the Task
Once the custom class is loaded into the database, you can declare the task and start it running. You declare
the task using the CREATE TASK statement, replacing both the ON SCHEDULE and PROCEDURE
clauses with a single FROM CLASS clause specifying the classpath of your new class. In our example,
the custom task also requires one argument: the target value for the maximum number of session records
to create. The following statement creates the custom task with a goal of 10,000 records.

72

Creating Custom Tasks

CREATE TASK loadsessions
 FROM CLASS mytasks.LoadSessions WITH (10000)
 RUN ON DATABASE;

Note that the task is defined to RUN ON DATABASE. This means only one instance of the task is running
at one time. However, the stored procedures will run as defined; that is, the CheckSessions procedure
will run as a multi-partitioned procedure and each instance of AddSession will be executed on a specific
partition based on the unique partition ID passed in as an argument at run-time.

The task starts as soon as it is declared, unless you include the DISABLE clause. Alternately, you can
use the ALTER TASK statement to change the state of the task. For example, the following statement
disables our newly created task:

3> ALTER TASK loadsessions DISABLE;

73

Chapter 12. Using Compound Procedures
Compound procedures are a special type of procedure that let you extend the capabilities of the database
server. Compound procedures are not transactional. However, they do let you chain multiple transactional
stored procedures together, define branching and error handling, along with any additional programming
logic your application needs. In other words, they let you automate complex business processes into a
single callable procedure.

The primary use for compound procedures is processing inbound topics, where the topic invokes a pro-
cedure. At times the business logic for adding intelligence to the stream requires more than just a single
transaction. (For example, the topic record's contents need to be written to two separately partitioned ta-
bles.) Compound procedures provide the ability to add logic similar to that used by a client application,
except executed automatically on the cluster.

The following sections explain what compound procedures are, how they work, as well as how to create,
declare, and invoke them. A final section covers special considerations around error handling and perfor-
mance.

12.1. How Compound Procedures Work
Regular VoltDB stored procedures are transactional. That is, the procedure, whether single- or multi-parti-
tioned, succeeds or rolls back as a whole. Combined with single-threaded, non-locking execution engines,
partitioned procedures allow VoltDB to provide best-in-class throughput while guaranteeing reliability
and consistency.

However, not all business logic fits within a single stored procedure. For example, an application might
need to accept messages from IoT devices, look up the device ID to find out which account it is assigned
to, associate the message with the account ID, record the usage, and pass the enhanced message along
to other applications. In this case, the device records are likely to be partitioned on the device ID while
account records are partitioned on the account ID — different partitions.

Now, it is possible to complete the entire interaction in one multi-partitioned procedure. However, this
is not recommended, since it will block all other transactions until it finishes. The alternative is for the
application to call two or more partitioned procedures to perform the device and account lookups and then
record the final usage. But when automating streams with VoltDB topics, there is no application to link
the transactions together. Instead, a single procedure is associated with the inbound topic as part of the
topic declaration in the configuration file. With compound procedures, it is now possible to include the
necessary business logic in a single compound procedure, which can be invoked by the inbound topic.

The process for creating a compound procedure is:

1. Define the procedure as a Java class that extends VoltCompoundProcedure.

2. Compile and Load the procedure by compiling the Java source file, packaging it in a JAR file (just
as you would transactional procedures), and loading it into your database using the sqlcmd LOAD
CLASSES directive.

3. Declare the procedure in your schema using the CREATE COMPOUND PROCEDURE FROM
CLASS statement.

4. Invoke the procedure by associating it with an inbound topic in the configuration file, or the procedure
can be called from a client application.

74

Using Compound Procedures

The following sections describe each of these step separately.

12.2. Defining the Compound Procedure
Compound procedures are defined as Java classes that extend the class VoltCompoundProcedure.
Within the run method of the class, you define stages, which will be executed sequentially — each stage
having access to the results of any transactional procedures invoked in the previous stage:

public static class MyCompoundProc extends VoltCompoundProcedure {

 public long run() {
 newStageList(this::myFirstStage)
 .then(this::MySecondStage)
 .then(this::MyLastStage)
 .build();

Within each stage you can queue one or more transactional stored procedures, using the queueProce-
dureCall() method. Once the stage executes, the queued procedures are submitted to the appropriate
partitions for execution. All procedures are initiated asynchronously and in parallel. Once all of the queued
procedures complete, the next stage is executed, receiving the results from the stored procedures, in the
order that the queueProcedureCall() methods were invoked, as an argument.

Any parameters to the compound procedure (in the case of topics, the fields of the topic record) are re-
ceived as arguments to the run method. Then each stage receives an array of ClientResponse objects,
matching the number and order of the procedures queued in the previous stage. So if the first stage queues
two procedures, the second stage will receive a two element array with the first element being the client
response from the first procedure and second element being the client response of the second procedure.

Let's look at an example. Say an application processes messages from IoT devices via a topic. The system
needs to look up the device by its ID to verify it exists and identify the account associated with it, then look
up the account information, and finally record the activity to the account log and pass on the enhanced
message information to a new topic. Figure 12.1, “Business Logic for Processing Device Messages” shows
the business logic the application must support.

75

Using Compound Procedures

Figure 12.1. Business Logic for Processing Device Messages

This process can easily be written as a compound procedure with three stages, plus a fourth to complete
the procedure:

1. deviceLookup — Use the ID in the topic input to look up the device record

2. accountLookup — Based on the response from stage 1, look up the account associated with the device.
If there is no response (that is, no record for the device), stop the procedure with the abortProce-
dure method.

3. extendMessage — Use the account information to create an extended message record, which is then
inserted into the appropriate topic stream and recorded into the account log.

4. finish — Complete the procedure, reporting either success or failure.

The following example shows Java code that implements the compound procedure described above. Note
the use of class variables to save state across the stages (in this case, the original topic fields plus the device
and account information necessary in the last stage).

package devices;

import org.voltdb.VoltCompoundProcedure;
import org.voltdb.VoltTable;
import org.voltdb.VoltType;
import org.voltdb.client.ClientResponse;

public class ProcessMessage extends VoltCompoundProcedure {

 private long deviceID, accountID;
 private String deviceName, accountName, message;

76

Using Compound Procedures

 public long run(long id, String messagetext) {

 this.deviceID = id;
 this.message = messagetext;

 newStageList(this::deviceLookup)
 .then(this::accountLookup)
 .then(this::extendMessage)
 .then(this::finish)
 .build();

 return 0;
 }

 // stage 1
 private void deviceLookup(ClientResponse[] none) {
 queueProcedureCall("DEVICE.select", deviceID);
 }

 // stage 2
 private void accountLookup(ClientResponse[] resp) {
 VoltTable deviceRec = resp[0].getResults()[0];

 if (deviceRec == null) { // Verify device exists
 abortProcedure("No such device. " + deviceID);
 return;
 }
 deviceName = deviceRec.getString("name");
 accountID = deviceRec.getLong("account");

 queueProcedureCall("ACCOUNT.select", accountID);
 }

 // stage 3
 private void extendMessage(ClientResponse[] resp) {
 VoltTable accountRec = resp[0].getResults()[0];
 accountName = accountRec.getString("name");

 // Queue two separate procedures
 queueProcedureCall("ACCOUNT_LOG.insert",
 accountID,deviceID,message);
 queueProcedureCall("ExtendedMessage.insert",
 deviceID, deviceName,
 accountID, accountName,
 message);

 }

 // stage 4
 private void finish(ClientResponse[] resp) {
 Long results = 1L
 completeProcedure(results);
 }

77

Using Compound Procedures

}

Some important points to note about this example:

The compound procedure receives any input parameters as arguments to the run method.
You define the order for the stages in the run method. The stages are processed sequentially, with
each stage receiving the results of any procedures queued in the preceding stage.
You can interrupt the compound procedure at any point by calling abortProcedure to cancel the
procedure and return a text message to the calling application (if there is one).
You can queue more than one procedure call. However, they are not initiated until the current stage
completes. Once the stage completes, all procedures are initiated at the same time (not sequentially).
It is also important to note that the procedures are called asynchronously, to avoid blocking threads
while waiting for a response. So there is no guarantee as to the order in which the transactions queued
in a single stage are executed. The only way to ensure two procedures are processed sequentially is
to queue them in separate stages.
Finally, you must explicitly complete the compound procedure, either by calling completePro-
cedure to report success or calling abortProcedure to report failure. If neither is called before
the compound procedure ends, VoltDB returns the status UNEXPECTED_FAILURE.

12.3. Compiling and Loading the Compound Pro-
cedure

Once you write your compound procedure source code, you compile and load it the same way you compile
and load other procedures. First, you compile the Java source file into a class file including the VoltDB
library in your Java classpath:

$ export CLASSPATH="$CLASSPATH:./:/opt/voltdb/voltdb/*"
$ javac -d ./obj src/devices/*.java

Then you package the class file with other stored procedures into a JAR file:

$ jar -cf devices.jar -C obj

Finally you load the JAR file into the database using the sqlcmd LOAD CLASSES directive:

$ sqlcmd
1> LOAD CLASSES devices.jar;

12.4. Declaring the Compound Procedure
Once the compound procedure class is loaded, you can declare the procedure. You declare a compound
procedure using the CREATE COMPOUND PROCEDURE FROM CLASS statement. For example:

CREATE COMPOUND PROCEDURE FROM CLASS devices.ProcessMessage;

The procedure takes its name from the unqualified class name (in this case, ProcessMessage) and is
case sensitive. Because compound procedures can call both multi-partitioned and partitioned procedures,
you cannot partition the procedure.

78

Using Compound Procedures

12.5. Invoking the Compound Procedure
The primary use case for compound procedures is processing incoming topics. Therefore, the common
way to initiate the procedure is to name it as part of the topic definition in the configuration file. You
do this using the procedure attribute of the <topic> element. For example, to associate the example
compound procedure defined in this chapter with the BasicMessage topic, the configuration looks like this:

<topics>
 <topic name="BasicMessage" procedure="ProcessMessage"/>
</topics>

Similarly, you can use compound procedures as the target for import connectors. For example, the follow-
ing configuration associates the compound procedure to a topic from an external Kafka server:

<import>
 <configuration type="kafka" enabled="true">
 <property name="brokers">mykafkasvr:9092</property>
 <property name="topics">BasicMessage</property>
 <property name="procedure">ProcessMessage</property>
 </configuration>
</import>

When declared as the target of an inbound topic or import connector, the compound procedure is in-
voked once for every record received. You can also generate individual invocations of the procedure in the
same way you do any other stored procedure: programmatically (such as with the Java callProcedure
method) or manually through the sqlcmd EXEC directive:

$ sqlcmd
1> exec ProcessMessage 123 "This is a test";

12.6. Handling Errors
Error handling in application programs is always important to avoid incorrect or incomplete data modifi-
cations from occurring. However, it is even more important for compound procedures for three reasons:

• Unlike transactional stored procedures, which either succeed or fail as a whole, compound procedures
are non-transactional. The individual procedures the compound procedure calls will succeed or fail
individually. But if one procedure called by a compound procedure succeeds and a subsequent procedure
fails, changes made by the first procedure are not rolled back. So an incomplete update can result. It is
up to the compound procedure's program logic to handle this situation.

• Even if the compound procedure does catch the error and report it (for example, through the abort-
Procedure method), if the procedure is invoked as part of an inbound topic, there is no calling appli-
cation to receive and respond to the failure message.

• Finally, it is necessary to take into account the fact that the procedure itself could be interrupted if
the node it is running on crashes. In this situation, any transactional procedures it invoked will either
succeed or rollback as part of the normal handling of transactions by VoltDB. But the execution of the
compound procedure itself will simply stop. Meaning that any error handling defined in the procedure
may not have an opportunity to complete.

One way to avoid irreconcilable changes is to avoid write operations in early stages of a compound pro-
cedure that are dependent on write operations that occur in later stages. However, even if two write op-
erations are queued in the same stage there is no guarantee they will both succeed. Take, for example,
the ProcessMessage compound procedure described earlier in this chapter. Although inserts into both

79

Using Compound Procedures

the ExtendedMessage topic stream and the ACCOUNT_LOG table are queued in the same stage, there is
no guarantee they will both succeed. So it is recommended to always check the response status of every
call in the subsequent stage. In this case, the finish method might include the following code to handle
potential issues:

 // stage 4
 private void finish(ClientResponse[] resp) {

 // Check the response status
 String alert = "";
 if (resp[0].getStatus() != ClientResponse.SUCCESS) {
 alert += resp[0].getStatusString() + "\n";
 }
 if (resp[1].getStatus() != ClientResponse.SUCCESS) {
 alert += resp[1].getStatusString() + "\n";
 }

 // Report any errors as part of the closure.
 if (alert.length() > 0) {
 abortProcedure(alert);
 } else {
 completeProcedure(1L);
 }
 }

This is a fairly simplistic example; it does not do anything to correct the failure or address the case where
there is no calling application to respond to the abort message. In actual business applications, additional
code and additional stages might be necessary to requeue a failed insert or manually roll back a successful
insert if its partner fails. Similarly, it may be necessary to write failure messages to a log file or other
notification system for those cases where the procedure is invoked by a topic.

12.7. Managing Compound Procedures and Sys-
tem Resources

Since compound procedures run on the database servers, rather than on a client system, it is important that
you balance resource usage between the compound procedures and other database functions. You do not
want to have the compound procedures competing or interfering with core database operations.

VoltDB lets you control resource usage by adjusting three elements of the compound procedure subsystem.
In the configuration file, the <compoundprocs> element has the following attributes you can set:

callsperstage Specifies the maximum number of regular stored procedure calls a compound pro-
cedure can queue in each stage. If the stage queues more than the maximum allowed,
the compound procedure throws an error. The default maximum number is 10.

queuelimit Specifies the maximum number of compound procedures that can be queued for
processing simultaneously. The default limit is 10,000. If a client or topic attempts
to queue a compound procedure after the limit is reached, the call request will be
rejected.

threads The maximum number of threads used for processing compound procedures. The
default thread count is set equal to the number of processor cores available on the
server.

80

Using Compound Procedures

For example, the following configuration file increases the calls allowable per stage, but reduces the queue
limit:

<deployment>

 [. . .]

 <compoundprocs
 callsperstage="15"
 queuelimit="5000"/>
</deployment>

81

Chapter 13. Understanding Memory
Usage

VoltDB is an in-memory database. Storing data in memory has the advantage of eliminating the perfor-
mance penalty of disk accesses (among other things). However, with the complex interaction of VoltDB
memory usage and how operating systems allocate and deallocate memory, it can be tricky understanding
exactly how much memory is being used at any given time. For example, deleting rows of data can result
in a temporary increase in memory usage, which seems counterintuitive at first.

This chapter explains how VoltDB uses memory, the impact of system memory allocation and deallocation
functions on your database's memory utilization, and variables available to you to help control memory
usage.

13.1. How the Database Uses Memory
The memory that the database uses can be grouped, loosely, into three buckets:

• Persistent

• Semi-persistent

• Temporary

Persistent memory is, as you might expect, the memory used for storing actual database records, including
tables, indexes, and views. The larger the volume of data in the database, the more memory required to
store it. String and varbinary columns longer than 63 bytes are not stored in line. Instead they are stored
as pointers to the content in a separate string storage area, which is also part of persistent memory.

Semi-persistent memory is used for temporary storage while processing SQL statements and certain system
procedures. In particular, semi-persistent memory includes temporary tables and the undo buffer.

• Temporary tables are where data is processed as part of an SQL statement. For example, if you execute
an SQL statement like SELECT * FROM flight WHERE DESTINATION='LAX', all of the tuples
meeting the selection criteria are copied into temporary tables before being returned to the initiator.
If the stored procedure is multi-partitioned, each partition creates a copy of its tuples and the initiator
merges the multiple copies.

• The undo buffer is also associated with the execution of SQL statements. Any tuples that are modified
or deleted as part of an SQL statement are recorded in the undo buffer until the transaction is committed
or rolled back.

Semi-persistent memory is also used for buffers related to system activities such as snapshots and export.
While a snapshot is occurring, a certain amount of memory is required for overhead, as well as copy-on-
write buffers. Normally, snapshots are written directly from the tables in memory, thus requiring no addi-
tional overhead. However, if snapshots are non-blocking (performed asynchronously while other transac-
tions are executing), any tuples that need to be modified before they are written to the snapshot get copied
into semi-persistent memory. This technique is known as "copy-on-write". The consequence is that mixing
asynchronous snapshots with frequent deletes and updates will increase the memory usage.

Similarly, when export is enabled, any insertions into export streams are written to an export buffer in
semi-persistent memory until the export connector sends the data to the export target.

82

Understanding Memory Usage

Temporary memory is used by VoltDB to manage the queueing and distribution of procedures to the
individual partitions. Temporary memory includes the queue of pending procedure invocations as well as
buffers for the return values for the completed procedures (until the client application retrieves them).

Figure 13.1, “The Three Types of Memory in VoltDB” illustrates how the three types of memory are
allocated in VoltDB.

Figure 13.1. The Three Types of Memory in VoltDB

The sum of the persistent, semi-persistent, and temporary memory is what makes up the total memory
(what is referred to as resident set size, or RSS) used by VoltDB on the server.

13.2. Actions that Impact Memory Usage
There are a number of actions that impact the amount of memory VoltDB uses during operation. Obviously,
the more data that is stored within the partition (including all tables, indexes, and views), the more memory
is required for persistent storage. Similarly for snapshotting and export, when these functions are enabled,
they require some amount of semi-persistent storage. However, under normal conditions, the memory
requirements for snapshotting and export should be relatively consistent over time.

Temporary storage, on the other hand, fluctuates depending on the workload and type of transactions
being executed. If the client applications are "firehosing" (sending stored procedure requests faster than the
servers can process them), the temporary storage required for pending procedure invocations will grow.
Similarly, if the parameters being submitted to the procedures or the data being returned is large in size
(up to 50 megabytes per procedure), the buffer for return values can grow significantly.

The nature of the workload also has an impact on the amount of semi-persistent storage. Read-only queries
do not require space in the undo buffer. However, complex queries and queries that return large data sets

83

Understanding Memory Usage

require space for temporary tables. On the other hand, update and delete queries can take up significant
space in the undo buffer, especially when a single transaction (or stored procedure) performs multiple
queries, each requiring undo support.

The use of the temporary and semi-persistent storage explains fluctuations that can be seen in overall
memory utilization of servers running VoltDB. Although delete operations do eventually release memory
used by the persistent storage, they initially require more memory in the undo buffer and for any temporary
table operations. Once the entire transaction is complete and committed, the space in persistent storage
and undo buffer is freed up. Note, however, that the unused space may not immediately be visible in the
system RSS reports. The amount of memory in use and the amount of memory allocated can vary as a
result of the interaction of several different memory management schemes that all come into play.

When VoltDB frees up space in persistent storage, it does not immediately return that memory to the
operating system. Instead, it keeps track of unused space, which is then reused the next time a tuple is
stored. Over time, memory can become fragmented. To avoid excessive fragmentation, a separate process
runs periodically checking the tables in each partition. If the fragmentation for a table within a partition
is large enough, the compaction process incrementally rearranges the tuples to "fill the holes" and then
deallocates and returns the unused memory to the operating system.

Figure 13.2. Details of Memory Usage During and After an SQL Statement

84

Understanding Memory Usage

Figure 13.2, “Details of Memory Usage During and After an SQL Statement” illustrates how a delete
operation can have a delayed effect on overall memory allocation.

1. At the beginning of the transaction, the deleted tuples are recorded in the semi-persistent undo buffer,
increasing memory usage. Any freed persistent storage is returned to the VoltDB list of free space.

2. At the end of the transaction, the undo buffer is freed. However, the storage for the deleted tuples in
persistent storage is managed and may not be released immediately.

3. Over time, free memory is used for new tuples, or...

4. If fragmentation reaches a noticeable level, the compaction process starts incrementally defragmenting
the table and releasing the unused blocks to the system.

How and when memory is actually deallocated depends on what that memory is being used for and how
it is managed. The following section Section 13.3, “How the Database Manages Memory” describes how
VoltDB manages memory in more detail.

Finally, there are some combinations of factors that can aggravate the fluctuations in memory usage. The
memory required for snapshotting is usually not significant. However, if non-blocking snapshots are in-
termixed with update-heavy transactions, the snapshot copy-on-write buffer can grow rapidly.

Similarly, the memory used for export can grow if export is enabled but the connector cannot reach the
target destination to clear the export buffer. However, the export buffer size is constrained; after a certain
point any additional export data that is not acknowledged by the connector is written out as export overflow
to disk. So memory used for export queues does not grow indefinitely.

13.3. How the Database Manages Memory
To manage memory effectively, VoltDB does not immediately release all unused memory. Allocating
and deallocating small chunks of memory frequently can be expensive. Instead, VoltDB manages unused
memory until larger chunks are available. Similarly, the Java runtime and the operating system perform
their own memory pooling techniques.

As a result, RSS is not an exact measurement of actual memory usage. However, VoltDB offers statistics
that provide a detailed breakdown of how it is using the memory that it has currently allocated. These sta-
tistics provide a more meaningful representation of VoltDB's memory usage than the lump sum allocation
reported by the operating system RSS.

VoltDB manages memory for persistent and semi-persistent storage aggressively to ensure unused space
is compacted and released when available. In some cases, memory is returned to the operating system,
making the RSS more responsive to changes in the database contents. In other cases, where memory is
managed as a pool of resources, VoltDB provides detailed statistics on what memory is allocated and what
is actually in use.

Persistent storage for database tables (tuples) and indexes is compacted incrementally. A periodic process
initiates incremental compaction for each table within a partition once the volume of data and fragmen-
tation for that table reaches a predefined level. This avoids the compaction process thrashing over small
amounts of data that would not significantly affect memory usage.

Tuple storage is managed in blocks. Until a full block is released by compaction, no memory is actually
regained by the system. Therefore, compaction is not considered until the volume of data for the table ex-
ceeds at least three blocks. Similarly, compaction will not start until the allocated but unused space reaches
at least 5% of the total storage for a table within a partition. Again, this avoids excessive compaction effort
when it is unlikely to free up enough space to recover a block's worth of storage.

85

Understanding Memory Usage

Once the persistent storage for a table within a given partition meets the compaction criteria, a transaction
is initiated to defragment the unused space. During the transaction, tuples are moved to fill any "holes" in
the allocated blocks and — if any blocks are emptied by this process — deallocate the blocks and return
memory to the system. Just as the compaction process doesn't start until data volume and fragmentation
reach the minimum criteria, the defragmentation is done incrementally, with each transaction moving only
up to a predefined maximum number of tuples. If more tuples need to be moved, they will be moved in
the next iteration of the compaction process.

By performing compaction of tuple storage incrementally through short single-partitioned transactions,
excess unused space can be recovered without impacting the ongoing database workload. At the same
time, storage for variable data such as strings and varbinary data greater than 63 bytes in length is being
managed as a pool of resources. Free memory in the pool is not immediately returned to the operating
system. VoltDB holds and reuses memory that is allocated but unused for these objects.

The consequence of these operations is that when you delete rows, the allocated memory for VoltDB (as
shown by RSS) may go up during the delete operation (to allow for the undo buffer), but then it will go
down — by differing amounts — based on the type of content that is deleted. Memory for tuples not
containing large strings or binary data is returned to the operating system quickly. Memory for large string
and binary data is not returned but is held for later reuse.

In other words, the pool size for non-inline string and binary data tends to reach a maximum size (based
on the maximum required for your application workload) and then stabilize. Whereas memory for indexes
as well as numeric and short string data oscillates as your application needs vary.

To help you understand these changes, the @Statistics system procedure tells you how much memory
VoltDB is using and how much unused memory is being held for each type of content. These statistics
provide a more accurate view of actual memory usage than the lump sum value of system RSS.

13.4. How Memory is Allocated and Deallocated
Technically, persistent and semi-persistent memory within VoltDB is managed using code written in C++.
Temporary memory is managed using code written in Java. What language the source code is written
in is not usually relevant, except in the case of memory, because different languages manage memory
differently. C++ uses the traditional explicit allocation and deallocation of memory, where the application
code controls exactly how and when memory is assigned and deassigned. In Java, memory is not explicitly
allocated and deallocated. Instead, Java uses what is called "garbage collection" to free up memory that
is not in use.

To complicate matters, the language libraries themselves do some performance optimizations to avoid
allocating and deallocating memory from the operating system too frequently. So even if VoltDB explicitly
frees memory in persistent or semi-persistent storage, that memory may not be immediately returned to
the operating system or alter the process's perceived RSS value.

For temporary storage (which is managed in Java), VoltDB cannot explicitly control memory allocation
and deallocation and relies on the Java virtual machine (JVM) to manage memory appropriately. The JVM
decides when and how to collect free space from unused objects. This means that the VoltDB server cannot
directly control if and when the memory associated with temporary storage is returned to the operating
system.

13.5. Controlling How Memory is Allocated and
Used

The database memory management schemes described in the previous sections are designed to relieve
you as database developer or administrator from having to manage the memory consumption yourself.

86

Understanding Memory Usage

However, there may be times when you want to optimize the system for your specific application's needs.
The following sections explain what controls are available to help you adjust:

• Memory consumption in the Java Heap

• Frequency and size of the compaction process for table data

13.5.1. Managing the Java Heap
Despite the fact that you as a developer or database administrator cannot control when temporary storage
is allocated and freed, you can control how much memory is used. Java provides a way to specify the size
of the heap, the portion of memory the JVM uses to store runtime data such as class instances, arrays,
etc. The -Xms and -Xmx arguments to the java command specify the initial and maximum heap size,
respectively.

By setting both the -Xmx and -Xms arguments, you can control not only the maximum amount of memory
used, but also the amount of fluctuation that can occur. Figure 13.3, “Controlling the Java Heap Size”
illustrates how the -Xms and -Xmx arguments can be used to control the overall size of temporary storage.

Figure 13.3. Controlling the Java Heap Size

However, you must be careful when setting the values for the Java heap size, since the JVM will not exceed
the value you set as a maximum. It is possible, under some conditions, to force a Java out-of-memory
error if the maximum heap size is not large enough for the temporary storage VoltDB requires. See the
VoltDB Planning Guide for recommendations on calculating the appropriate heap size for your specific
application.

Remember, temporary storage is used to queue the procedure requests and responses. If you are using syn-
chronous procedures calls (and therefore little or no queuing on the server) a small heap size is acceptable.
Also, if the size of the procedure invocations (in terms of the arguments passed into the procedures) and the
return values are small, a lower heap size is acceptable. But if you are invoking procedures asynchronously
with large argument lists or return values, be very careful when setting a low maximum heap size.

87

http://docs.voltdb.com/PlanningGuide/

Understanding Memory Usage

13.5.2. Controlling the Compaction Process for Table Data
The compaction process is designed to run in parallel with the database workload, constantly managing the
memory incrementally in the background. Under normal operations the process is transparent to the users.
However, if your application has an unusual workload or requires special attention regarding memory
reclamation, there are database configuration options you can use to modify the compaction process. There
are two key triggers you can adjust regarding compaction:

• The frequency, or interval, of compaction transactions

• The maximum limit for tuples moved as part of a single compaction transaction

By default, the compaction process runs every 60 seconds. You can modify this setting to check for defrag-
mentation more or less frequently by setting the interval attribute of the <compaction> element,
which can be found under <systemsettings> in the configuration file. You specify the interval as
an integer number of seconds. If you specify the interval as zero (0), no compaction processing will be
done by the system automatically.

You can also change the maximum number of tuples that will be moved in a single compaction transaction
by setting the maxcount attribute of <compaction>. You do not specify the maximum count as a number of
tuples, since tuples can be dramatically different in size, depending on the schema. And moving 10 large
tuples can be more expensive than moving 10 small tuples. Instead, to make the transactions equivalent
in size and execution time, you specify the maximum as the number of blocks' worth of tuples that can
be moved in one transaction.

For example, if you specify the maxcount as 2 and one table (A) can fit 200 tuples in a block and another
table (B) can fit 1,000 tuples in a block this means compaction can move at most 400 tuples in table A
or 2,000 tuples in table B at one time. You can specify maxcount as 1, 2, or 3 block's worth of tuples.
The default maximum count is 1.

The following configuration sets the interval to 120 seconds and the maximum count to 2 blocks' worth
of tuples.

<systemsettings>
 <compaction interval="120" maxcount="2"/>
</systemsettings>

You can modify the compaction settings at any time — when initializing the database with the voltdb init
command or while it is running using the voltadmin update command. If, for any reason, compaction
is not keeping up with the number of delete operations and the amount of fragmentation is growing, you
can force the system to run compaction using the voltadmin defrag command. The voltadmin defrag
command begins an iteration of the compaction process, regardless of the currently configured schedule,
and triggers any appropriate compaction transactions that are required.

When running compaction manually, you have three additional controls available.

• You can specify a different maximum count for the volume of data to move during the compaction,
using the --count flag and specifying the maximum number of blocks' worth of tuples to move.

• You can choose which tables to compact (normally, the compaction process checks all tables on each
iteration). To limit the compaction to selected tables, use the --tables flag specifying a comma-sep-
arated list of table names.

• You can also choose to do a full compaction, where the maximum limit is ignored and all gaps in memory
for the table are filled. You initiate a full compaction using the --full flag. (If --count and --
full are both specified, --count is ignored.)

88

Understanding Memory Usage

For example, the following command performs a full compaction of the orders and shipments tables:

$ voltadmin defrag --tables=orders,shipments --full

Warning

Depending on how much data exists in the table and the amount of fragmentation, a full com-
paction can take a significant amount of time to execute and could result in increased latency for
other transactions. A full compaction should not be done without due consideration for potential
impact to the current workload or, preferably, be scheduled for off hours.

Finally, as part of operational planning, it is possible to set resource limits related to memory usage, us-
ing the <resourcemonitor> element in the database configuration. When you set the limit (using
the <memorylimit> subelement) you can also specify compact="true" so that, when the limit is
triggered, besides pausing the database it will trigger a full compaction of the database tables to alleviate
the memory pressure. For example:

<systemsettings>
 <resourcemonitor>
 <memorylimit size="80%" compact="true"/>
 </resourcemonitor>
</systemsettings>

13.6. Understanding Memory Usage for Specific
Applications

To help understand the memory usage for a specific VoltDB database, the @Statistics system procedure
provides memory usage information. The "MEMORY" selector returns a separate row of data for each
server in the cluster, with columns providing information about the different aspects of memory usage,
as described in the following table.

Column Type of Storage Description

JAVAUSED Temporary The amount of memory currently in use for tempo-
rary storage.

JAVAUNUSED Temporary The maximum amount of Java heap allocated but
not currently in use.

TUPLECOUNT Persistent The number of tuples currently being held in mem-
ory.

TUPLEDATA Persistent The amount of memory in use to store inline table
data.

TUPLEALLOCATED Persistent The amount of memory allocated for table storage.
This includes the amount in use and any free space
currently being held by VoltDB.

INDEXMEMORY Persistent The approximate amount of memory in use to store
indexes.

STRINGMEMORY Persistent The approximate amount of memory in use for non-
inline string and binary storage.

POOLEDMEMORY Persistent The total amount allocated to pooled memory, in-
cluding the memory assigned for storing strings, in-

89

Understanding Memory Usage

Column Type of Storage Description

dexes, free lists, and metadata associated with tuple
storage.

RSS All The resident set size for the VoltDB server process.

There is also a separate @Statistics selector, COMPACTION, that reports of the results of the compaction
process for each table. You can use periodic calls to the @Statistics system procedure with the MEMORY
and COMPACTION keywords to track your database cluster's memory usage in detail. But if you are
only looking for an overall picture, the Volt Management Center, a web-based console accessible from
the server's HTTP port, provides graphs of both database activity and memory usage at runtime.

90

Chapter 14. Managing Time
In VoltDB, differences in system clocks do not directly impact database latency since each partition op-
erates indpendently. However, there are several database activities that need to be globally managed, such
as when the database starts or failed nodes rejoin the cluster. For these activities, differences in clock time
can impact — or, if the skew is large enough, even interrupt — proper operation.

That is why it is important to ensure a stable and consistent view of time within a VoltDB cluster using
a time synchronization service such as NTP or chrony. This chapter presents some best practices for con-
figuring and managing time using NTP.

If you are familiar with NTP or another service and have a preferred method for using it, you may want
to read only Section 14.1, “The Importance of Time” and Section 14.2.2, “Troubleshooting Issues with
Time”. If you are not familiar with NTP, this chapter suggests an approach that has proven to provide
useful results in most situations.

The following sections explain:

• Why time is important to a VoltDB cluster

• How to use NTP to manage time across the cluster

• Special considerations when using VoltDB in a hosted or cloud environment

14.1. The Importance of Time
Because certain operations require coordination between the server nodes, it is important that they agree
on what time it is. When the database process starts, VoltDB determines the maximum amount of skew
(that is, the difference in clock time) between the individual nodes in the cluster. If the skew is greater than
200 milliseconds (2/10ths of a second), the VoltDB cluster refuses start.

14.2. Using NTP to Manage Time
NTP (Network Time Protocol) is a protocol and a set of system tools that help synchronize time across
servers. The actual purpose of NTP is to keep an individual node's clock "accurate". This is done by having
the node periodically synchronize its clock with a reference server. You can specify multiple servers to
provide redundancy in case one or more time servers are unavailable.

The important point to note here is that VoltDB doesn't care whether the cluster view of time is "correct"
from a global perspective, but it does care that they all have the same view. In other words, it is important
that the nodes all synchronize to the same reference time and server.

14.2.1. Basic Configuration
To manage time effectively with NTP on a VoltDB cluster you must:

• Start NTP on each node

• Point each instance of NTP to the same set of reference servers

You start NTP by starting the NTP1 service, or daemon, on your system. On many systems, starting the
NTP daemon happens automatically on startup. You do not need to perform this action manually. However,

1The name of the NTP service varies from system to system. For Debian-based operating systems, such as Ubuntu, the service name is "ntp". For
Red Hat-based distributions, such as CentOS, the service name is "ntpd".

91

Managing Time

if you need to make adjustments to the NTP configuration, it is useful to know how to stop and start the
service. For example, the following command starts the daemon2:

$ service ntp start -x

You specify the time server(s) in the NTP configuration file (usually /etc/ntp.conf). You can specify
multiple servers, one server per line. For example:

server clock.psu.edu

The configuration file is read when the NTP service starts. So, if you change the configuration file after
NTP is running, stop and restart the service to have the new configuration options take affect.

14.2.2. Troubleshooting Issues with Time
In many cases, the preceding basic configuration is sufficient. However, there are issues that can arise
time varies within the cluster.

If you are unsure whether a difference between the clocks in your cluster is causing performance issues
for your database, the first step is to determine how much clock skew is present. When the VoltDB server
starts it reports the maximum clock skew as part of its startup routine. For example:

INFO - HOST: Maximum clock/network skew is 12 milliseconds (according to leader)

If the skew is greater than 200 milliseconds, the cluster refuses to start. But even if the skew is around
100 milliseconds, the difference can delay certain operations and the nodes may drift farther apart in the
future. The most common issues when using NTP to manage time are:

• Time drifts between adjustments

• Different time servers reporting different times

14.2.3. Correcting Common Problems with Time
The NTP daemon checks the time servers periodically and adjusts the system clock to account for any drift
between the local clock and the reference server (by default, somewhere between every 1 to 17 minutes).
If the local clock drifts too much during that interval, it may never be able to fully correct itself or provide
a consistent time value to VoltDB.

You can reduce the polling interval by setting the minpoll and maxpoll arguments as part of the server
definition in the NTP configuration file. By setting minpoll and maxpoll to a low value (measured as
exponential values of 2 seconds), you can ensure that the VoltDB server checks more frequently. For
example, setting minpoll and maxpoll to 4 (that is, 16 seconds), you ensure the daemon polls the reference
server approximately every minute3.

It is also possible that the poll does not get a response. When this happens, the NTP daemon normally waits
for the next interval before checking again. To increase the likelihood of receiving a new reference time
— especially in environments with network fluctuations — you can use the burst and iburst arguments to
increase the number of polls during each internal.

By combining the burst, iburst, minpoll, and maxpoll arguments, you can increase the frequency that the
NTP daemon synchronizes and thereby reduce the potential drift of the local server's clock. However, you
should not use these arguments with public servers, such as the ones included in the NTP configuration

2Use of the -x option is recommended. This option causes NTP to "slew" time — slowly increasing or decreasing the clock to adjust time — instead
of making one-time jumps that could create sudden changes in clock skew for the entire cluster.
3The default values for minpoll and maxpoll are 6 and 10, respectively. The allowable value for both is any integer between 4 and 17 inclusive.

92

Managing Time

file by default. Excessive polling of public servers is considered impolite. Instead, you should only use
these arguments with a private server (as described in Section 14.2.4, “Example NTP Configuration”). For
example, the ntp.conf entry might look like the following:

server myntpsvr iburst burst minpoll 4 maxpoll 4

Even if your system synchronizes with an NTP server, there can be skew between the reference servers
themselves. Remember, the goal of NTP is to synchronize your system with a reference time source, not
necessarily to reduce the skew between multiple local systems. Even if the polling frequency is improved
for each node in a VoltDB cluster, the skew between them may never reach an acceptable value if they
are synchronizing against different reference servers.

This situation is made worse by the fact that the most common host names for reference servers (such
as ntp.ubuntu.com) are not actual IP addresses, but rather front ends to a pool of servers. So even if the
VoltDB nodes have the same NTP configuration file, they might not end up synchronizing against the
same physical reference server.

You can determine what actual servers your system is using to synchronize by using the NTP query tool
(ntpq) with the -p argument. The tool displays a list of the servers it has selected, with an asterisk (*)
next to the server currently in use and plus signs (+) next to alternatives in case the primary server is
unavailable. For example:

$ ntpq -p
 remote refid st t when poll reach delay offset jitter
==
+dns3.cit.cornel 192.5.41.209 2 u 14 1024 377 32.185 2.605 0.778
-louie.udel.edu 128.4.1.20 2 u 297 1024 377 22.060 3.643 0.920
 gilbreth.ecn.pu .STEP. 16 u - 1024 0 0.000 0.000 0.000
*otc2.psu.edu 128.118.2.33 2 u 883 1024 377 29.776 1.963 0.901
+europium.canoni 193.79.237.14 2 u 1017 1024 377 90.207 2.741 0.874

Note that NTP does not necessarily choose the first server on the list and that the generic host names are
resolved to different physical servers.

So, although it is normal to have multiple servers listed in the NTP configuration file for redundancy, it can
introduce differences in the local system clocks. If the maximum skew for a VoltDB cluster is consistently
outside of acceptable values, you should take the following steps:

• Change from using generic host names to specific server IP addresses (such as otc2.psu.edu or
128.118.2.33 in the preceding example)

• List only one NTP server to ensure all VoltDB nodes synchronize against the same reference point

Of course, using only one reference server for time introduces a single point of failure to your environ-
ment. If the reference server is not available, the database nodes receive no new reference values for time.
The nodes continue to synchronize as best they can, based on the last valid reference time and historical
information about skew. But over time, the clock skew within the cluster will start to drift.

14.2.4. Example NTP Configuration
You can provide both redundancy and maintain a single source for time synchronization, by creating your
own NTP server.

NTP assumes a hierarchy (or strata) of servers, where each level of server synchronizes against servers
one level up and provides synchronization to servers one level down. You can create your own reference
server by inserting a server between your cluster nodes and the normal reference servers.

93

Managing Time

For example, assume you have a node myntpsvr that uses the default NTP configuration for setting its own
clock. It can list multiple reference servers and use the generic host names, since the actual time does not
matter, just that all cluster nodes agree on a single source.

Then the VoltDB cluster nodes list your private NTP server as their one and only reference node. By doing
this, all the nodes synchronize against a single source, which has strong availability since it is within the
same physical infrastructure as the database cluster.

Of course, there is always the possibility that access to your own NTP server could fail, in which case
the database nodes need a fallback to ensure they continue to synchronize against the same source. You
can achieve this by:

• Adding all of the cluster nodes as peers of the current node in the NTP configuration file

• Adding the current node (localhost) as its own server and setting it as a low level stratum (for example,
stratum 10)

By listing the nodes of the cluster as peers, you ensure that when the reference server (myntpsvr in this
example) becomes unavailable, the nodes will negotiate between themselves on an alternative source. At
the same time, listing localhost (127.127.0.1) as a server tells the node that it can use itself as a reference
server. In other words, the cluster nodes will agree among themselves to use one of their own as the
reference server for synchronizing time. Finally, by using the fudge statement to set the stratum of localhost
to 10, you ensure that the cluster will only pick one of its own members as a reference server for NTP if
the primary server is unavailable.

Example 14.1, “Custom NTP Configuration File” shows what the resulting NTP configuration file might
look like. This configuration can be the same on all nodes of the cluster, since peer entries referencing
the current node are ignored.

Example 14.1. Custom NTP Configuration File

server myntpsvr burst iburst minpoll 4 maxpoll 4

peer voltsvr1 burst iburst minpoll 4 maxpoll 4
peer voltsvr2 burst iburst minpoll 4 maxpoll 4
peer voltsvr3 burst iburst minpoll 4 maxpoll 4

server 127.127.0.1
fudge 127.127.0.1 stratum 10

14.3. Configuring NTP in a Hosted, Virtual, or
Cloud Environment

The preceding recommendations for using NTP work equally well in a managed or a hosted environment.
However, there are some additional issues that can arise when working in a hosted environment that should
be considered.

In a locally managed environment, you have complete control over both the hardware and software con-
figuration. This means you can ensure that the VoltDB cluster nodes are connected to the same switch and
in close proximity to a private NTP server, guaranteeing the best network performance within the cluster
and to the NTP reference server.

In a hosted environment, you may not have control over the physical arrangement of servers but you
usually have control of the software configuration.

94

Managing Time

In a virtualized or cloud environment, you have no control over — or even knowledge of — the hardware
configuration. You are often using a predefined system image or "instance", including the operating system
and time management configuration, which may not be appropriate for VoltDB. There are configuration
changes you should consider making each time you "spin up" a new virtual server.

14.3.1. Considerations for Hosted Environments
In situations where you have control over the selection and configuration of the server operating system
and services, the preceding recommendations for configuring NTP should be sufficient. The key concern
would be those aspects of the environment you do not have control over: network bandwidth and reliabil-
ity. Again, the recommended NTP configuration in Section 14.2.4, “Example NTP Configuration”, espe-
cially the use of a local timer server and peer relationship within the cluster, should provide reliable time
management despite any network fluctuations.

14.3.2. Considerations for Virtual and Cloud Environments
In virtual or cloud environments, you usually do not have control over either the hardware or the initial
software configuration. New servers are instantiated from a common system image, or "instance", with
default configurations for the operating system and time management. This presents two problems for
establishing a reliable environment for VoltDB:

• The default configuration may not be sufficient and must be overridden

• Because of the prior issue, there can be considerable clock skew that must be corrected before running
VoltDB

Virtualization allows multiple virtual servers to run on a single piece of hardware. To do this, prepackaged
"instances" of an operating system are booted under a virtual machine manager. These instances are de-
signed to support the majority of applications, most of which do not have extensive requirements for clock
synchronization, As a result, the instances often use default NTP configurations or none at all.

When you spin up a new virtual server, in most cases you need to reconfigure NTP, changing the config-
uration file as described in Section 14.2.4, “Example NTP Configuration” and restarting the service.

In some cases, NTP is not used at all. Instead, the operating system synchronizes its (virtual) clock against
the clock of the physical server on which it runs. You need to override this setting before installing, con-
figuring, and starting NTP. For example, when running early instances of Ubuntu in EC2 under the Xen
hypervisor, you must modify the file /proc/sys/xen/independent_wallclock to avoid the hy-
pervisor performing the clock synchronization. For example:

$ echo "1" > /proc/sys/xen/independent_wallclock
$ apt-get install -y ntp

This particular approach is specific to the Xen hypervisor. Other virtualization engines may use a different
approach for controlling the system clock. See the documentation for your specific virtualization environ-
ment for details.

Once NTP is running and managing the system clock, it can take a considerable amount of time for the
clocks to synchronize if the initial skew is large. You can reduce this initial delay by forcing synchroniza-
tion before you start VoltDB. You can do this performing the following steps as the user root:

1. Stop the NTP service.

2. Use the ntpdate command to synchronize against a specific reference server. Do this several times
until the reported skew is consistently low. (It will never effectively be less than a millisecond — a
thousandth of a second — but can be reduced to a few milliseconds.)

95

Managing Time

3. Restart the NTP Service.

For example, if your local time server's IP address is 10.10.56.1, the commands might look like this:

$ service ntp stop
 * Stopping NTP server ntpd [OK]
$ ntpdate -p 8 10.10.56.1
20 Oct 09:21:04 ntpdate[2795]: adjust time server 10.10.56.1 offset 0.008294 sec
$ ntpdate -p 8 10.10.56.1
20 Oct 09:21:08 ntpdate[2797]: adjust time server 10.10.56.1 offset 0.002518 sec
$ ntpdate -p 8 10.10.56.1
20 Oct 09:21:12 ntpdate[2798]: adjust time server 10.10.56.1 offset 0.001459 sec
$ service ntp start -x
 * Starting NTP server ntpd [OK]

Once NTP is configured and the skew between the individual clocks and the reference server has been
minimized, you can safely start the VoltDB database.

96

	Guide to Performance and Customization
	Table of Contents
	Preface
	1. Organization of this Manual
	2. Other Resources

	Chapter 1. Introduction
	1.1. What Affects Performance?
	1.2. How to Use This Book

	Chapter 2. Hello, World! Revisited
	2.1. Optimizing your Application for VoltDB
	2.2. Applying Hello World to a Practical Problem
	2.3. Partitioned vs. Replicated Tables
	2.3.1. Defining the Partitioning Column
	2.3.2. Creating the Stored Procedures
	2.3.2.1. Loading the Replicated Table
	2.3.2.2. Registering New Users
	2.3.2.3. Signing In

	2.4. Using Asynchronous Stored Procedure Calls
	2.4.1. Understanding Asynchronous Programming
	2.4.2. The Callback Procedure
	2.4.3. Making an Asynchronous Procedure Call

	2.5. Connecting to all Servers
	2.6. Putting it All Together
	2.7. Next Steps

	Chapter 3. Understanding VoltDB Execution Plans
	3.1. How VoltDB Selects Execution Plans for Individual SQL Statements
	3.2. Understanding VoltDB Execution Plans
	3.3. Reading the Execution Plan and Optimizing Your SQL Statements
	3.3.1. Evaluating the Use of Indexes
	3.3.2. Evaluating the Table Order for Joins

	Chapter 4. Using Indexes Effectively
	4.1. Basic Principles for Effective Indexing
	4.2. Defining Indexes
	4.3. The Goals for Effective Indexing
	4.4. How Indexes Work
	4.5. Summary

	Chapter 5. Client2, A Modern Java Client Programming Interface (API)
	5.1. Configuring the Client
	5.2. Connecting to the Database
	5.3. Calling Procedures
	5.3.1. Handling Backpressure
	5.3.2. Handling Request Timeouts
	5.3.3. Defining Options on a Per-Call Basis

	Chapter 6. Prioritizing Transactions
	6.1. How Prioritizing Transactions Works
	6.2. Enabling Prioritized Transactions
	6.3. Prioritizing Transactions at Runtime
	6.4. Prioritizing Other Types of Transactions

	Chapter 7. Creating Flexible Schemas With JSON
	7.1. Using JSON Data Structures as VoltDB Content
	7.2. Querying JSON Data
	7.3. Updating JSON Data
	7.4. Indexing JSON Fields
	7.5. Summary: Using JSON in VoltDB

	Chapter 8. Creating Geospatial Applications
	8.1. The Geospatial Datatypes
	8.1.1. The GEOGRAPHY_POINT Datatype
	8.1.2. The GEOGRAPHY Datatype
	8.1.3. Sizing GEOGRAPHY Columns
	8.1.4. How Geospatial Values are Interpreted

	8.2. Entering Geospatial Data
	8.3. Working With Geospatial Data
	8.3.1. Working With Locations
	8.3.2. Working With Regions

	Chapter 9. Creating Custom Importers, Exporters, and Formatters
	9.1. Writing a Custom Exporter
	9.1.1. The Structure and Workflow of the Export Client
	9.1.2. How to Use Custom Properties to Configure the Client
	9.1.3. How to Compile and Install the Client
	9.1.4. How to Configure the Export Client

	9.2. Writing a Custom Importer
	9.2.1. Designing and Coding a Custom Importer
	9.2.1.1. Run-Everywhere vs. Single Process
	9.2.1.2. Managing the Starting and Stopping of the Import Process

	9.2.2. Packaging and Installing a Custom Importer
	9.2.3. Configuring and Running a Custom Importer

	9.3. Writing a Custom Formatter
	9.3.1. The Structure of the Custom Formatter
	9.3.1.1. The AbstractFormatterFactory Interface and Class
	9.3.1.2. The Formatter Interface and Class
	9.3.1.2.1. Initializing the Formatter Class
	9.3.1.2.2. Transforming the Data

	9.3.2. Compiling and Packaging Custom Formatter Bundles
	9.3.3. Installing and Invoking Custom Formatters
	9.3.3.1. Installing Custom Formatters
	9.3.3.2. Configuring and Invoking Custom Formatters

	9.3.4. Using Custom Formatters With the kafkaloader Utility

	Chapter 10. Creating Custom SQL Functions
	10.1. Writing a User-Defined Scalar Function
	10.2. Writing a User-Defined Aggregate Function
	10.3. Loading User-Defined Functions into the Database
	10.4. Declaring a User-Defined Function
	10.5. Invoking User-Defined Functions in SQL Statements

	Chapter 11. Creating Custom Tasks
	11.1. Overview of How Custom Tasks Work
	11.2. Modifying the Procedure Call and Arguments
	11.2.1. Designing a Java Class That Implements ActionGenerator
	11.2.2. Compiling and Loading the Class into VoltDB
	11.2.3. Declaring the Task

	11.3. Modifying the Interval Between Invocations
	11.3.1. Designing a Java Class That Implements IntervalGenerator
	11.3.2. Compiling and Loading the Class into VoltDB
	11.3.3. Declaring the Task

	11.4. Modifying Both the Procedure and Interval
	11.4.1. Designing a Java Class That Implements ActionScheduler
	11.4.2. Compiling and Loading the Class into VoltDB
	11.4.3. Declaring the Task

	Chapter 12. Using Compound Procedures
	12.1. How Compound Procedures Work
	12.2. Defining the Compound Procedure
	12.3. Compiling and Loading the Compound Procedure
	12.4. Declaring the Compound Procedure
	12.5. Invoking the Compound Procedure
	12.6. Handling Errors
	12.7. Managing Compound Procedures and System Resources

	Chapter 13. Understanding Memory Usage
	13.1. How the Database Uses Memory
	13.2. Actions that Impact Memory Usage
	13.3. How the Database Manages Memory
	13.4. How Memory is Allocated and Deallocated
	13.5. Controlling How Memory is Allocated and Used
	13.5.1. Managing the Java Heap
	13.5.2. Controlling the Compaction Process for Table Data

	13.6. Understanding Memory Usage for Specific Applications

	Chapter 14. Managing Time
	14.1. The Importance of Time
	14.2. Using NTP to Manage Time
	14.2.1. Basic Configuration
	14.2.2. Troubleshooting Issues with Time
	14.2.3. Correcting Common Problems with Time
	14.2.4. Example NTP Configuration

	14.3. Configuring NTP in a Hosted, Virtual, or Cloud Environment
	14.3.1. Considerations for Hosted Environments
	14.3.2. Considerations for Virtual and Cloud Environments

