
Using VoltDB

Abstract

This book explains how to use VoltDB to design, build, and run high performance applica-
tions.

V10.2.6

Using VoltDB
V10.2.6
Copyright © 2008-2021 VoltDB, Inc.

The text and illustrations in this document are licensed under the terms of the GNU Affero General Public License Version 3 as published by the
Free Software Foundation. See the GNU Affero General Public License (http://www.gnu.org/licenses/) for more details.

Many of the core VoltDB database features described herein are part of the VoltDB Community Edition, which is licensed under the GNU Affero
Public License 3 as published by the Free Software Foundation. Other features are specific to the VoltDB Enterprise Edition and VoltDB Pro, which
are distributed by VoltDB, Inc. under a commercial license.

The VoltDB client libraries, for accessing VoltDB databases programmatically, are licensed separately under the MIT license.

Your rights to access and use VoltDB features described herein are defined by the license you received when you acquired the software.

VoltDB is a trademark of VoltDB, Inc.

VoltDB software is protected by U.S. Patent Nos. 9,600,514, 9,639,571, 10,067,999, 10,176,240, and 10,268,707. Other patents pending.

This document was generated on November 05, 2021.

http://www.gnu.org/licenses/

Table of Contents
About This Book .. xiv
1. Overview ... 1

1.1. What is VoltDB? .. 1
1.2. Who Should Use VoltDB ... 1
1.3. How VoltDB Works .. 2

1.3.1. Partitioning .. 2
1.3.2. Serialized (Single-Threaded) Processing ... 2
1.3.3. Partitioned vs. Replicated Tables ... 3
1.3.4. Ease of Scaling to Meet Application Needs ... 4

1.4. Working with VoltDB Effectively .. 4
2. Installing VoltDB .. 5

2.1. Operating System and Software Requirements .. 5
2.2. Installing VoltDB .. 6

2.2.1. Upgrading From Older Versions ... 6
2.2.2. Building a New VoltDB Distribution Kit .. 7

2.3. Setting Up Your Environment ... 7
2.4. What is Included in the VoltDB Distribution ... 7
2.5. VoltDB in Action: Running the Sample Applications .. 8

3. Starting the Database ... 9
3.1. Initializing and Starting a VoltDB Database ... 9
3.2. Initializing and Starting a VoltDB Database on a Cluster .. 10
3.3. Stopping a VoltDB Database ... 11
3.4. Saving the Data .. 12
3.5. Restarting a VoltDB Database ... 12
3.6. Updating Nodes on the Cluster .. 12
3.7. Defining the Cluster Configuration ... 13

3.7.1. Determining How Many Sites per Host ... 13
3.7.2. Configuring Paths for Runtime Features .. 14
3.7.3. Verifying your Hardware Configuration .. 15

4. Designing the Database Schema ... 16
4.1. How to Enter DDL Statements .. 17
4.2. Creating Tables and Primary Keys ... 18
4.3. Analyzing Data Volume and Workload ... 19
4.4. Partitioning Database Tables ... 20

4.4.1. Choosing a Column on which to Partition Table Rows 20
4.4.2. Specifying Partitioned Tables .. 21
4.4.3. Design Rules for Partitioning Tables .. 21

4.5. Replicating Database Tables .. 21
4.5.1. Choosing Replicated Tables .. 22
4.5.2. Specifying Replicated Tables .. 22

4.6. Modifying the Schema ... 22
4.6.1. Effects of Schema Changes on Data and Clients ... 23
4.6.2. Viewing the Schema .. 24
4.6.3. Modifying Tables .. 24
4.6.4. Adding and Dropping Indexes ... 26
4.6.5. Modifying Partitioning for Tables and Stored Procedures 27

5. Designing Stored Procedures to Access the Database ... 31
5.1. How Stored Procedures Work .. 31

5.1.1. VoltDB Stored Procedures are Transactional .. 31
5.1.2. VoltDB Stored Procedures are Deterministic .. 31

5.2. The Anatomy of a VoltDB Stored Procedure .. 33

iii

Using VoltDB

5.2.1. The Structure of the Stored Procedure .. 33
5.2.2. Passing Arguments to a Stored Procedure .. 35
5.2.3. Creating and Executing SQL Queries in Stored Procedures 36
5.2.4. Interpreting the Results of SQL Queries .. 37
5.2.5. Returning Results from a Stored Procedure .. 40
5.2.6. Rolling Back a Transaction ... 41

5.3. Installing Stored Procedures into the Database .. 41
5.3.1. Compiling, Packaging, and Loading Stored Procedures 42
5.3.2. Declaring Stored Procedures in the Schema ... 42
5.3.3. Partitioning Stored Procedures in the Schema ... 43

6. Designing VoltDB Client Applications .. 47
6.1. Connecting to the VoltDB Database ... 47

6.1.1. Connecting to Multiple Servers ... 48
6.1.2. Using the Auto-Connecting Client ... 48

6.2. Invoking Stored Procedures ... 49
6.3. Invoking Stored Procedures Asynchronously .. 49
6.4. Closing the Connection .. 50
6.5. Handling Errors .. 51

6.5.1. Interpreting Execution Errors .. 51
6.5.2. Handling Timeouts .. 52
6.5.3. Writing a Status Listener to Interpret Other Errors .. 54

6.6. Compiling and Running Client Applications ... 56
6.6.1. Starting the Client Application .. 56
6.6.2. Running Clients from Outside the Cluster ... 56

7. Simplifying Application Development ... 58
7.1. Using Default Procedures ... 58
7.2. Shortcut for Defining Simple Stored Procedures ... 59
7.3. Verifying Expected Query Results .. 60
7.4. Scheduling Stored Procedures as Tasks ... 61
7.5. Directed Procedures: Distributing Transactions to Every Partition 62

8. Using VoltDB with Other Programming Languages ... 64
8.1. C++ Client Interface .. 64

8.1.1. Writing VoltDB Client Applications in C++ .. 64
8.1.2. Creating a Connection to the Database Cluster ... 65
8.1.3. Invoking Stored Procedures .. 65
8.1.4. Invoking Stored Procedures Asynchronously .. 66
8.1.5. Interpreting the Results .. 67

8.2. JSON HTTP Interface .. 67
8.2.1. How the JSON Interface Works .. 67
8.2.2. Using the JSON Interface from Client Applications ... 69
8.2.3. How Parameters Are Interpreted .. 71
8.2.4. Interpreting the JSON Results ... 72
8.2.5. Error Handling using the JSON Interface .. 73

8.3. JDBC Interface ... 74
8.3.1. Using JDBC to Connect to a VoltDB Database .. 74
8.3.2. Using JDBC to Query a VoltDB Database ... 75

9. Using VoltDB in a Cluster .. 77
9.1. Starting a Database Cluster ... 77
9.2. Updating the Cluster Configuration .. 77
9.3. Elastic Scaling to Resize the Cluster ... 78

9.3.1. Adding Nodes with Elastic Scaling .. 79
9.3.2. Removing Nodes with Elastic Scaling .. 80
9.3.3. Configuring How VoltDB Rebalances Nodes During Elastic Scaling 80

10. Availability ... 82

iv

Using VoltDB

10.1. How K-Safety Works ... 82
10.2. Enabling K-Safety ... 83

10.2.1. What Happens When You Enable K-Safety ... 84
10.2.2. Calculating the Appropriate Number of Nodes for K-Safety 84

10.3. Recovering from System Failures ... 85
10.3.1. What Happens When a Node Rejoins the Cluster .. 85
10.3.2. Where and When Recovery May Fail ... 86

10.4. Avoiding Network Partitions .. 86
10.4.1. K-Safety and Network Partitions .. 86
10.4.2. Using Network Fault Protection ... 87

11. Database Replication .. 90
11.1. How Database Replication Works ... 91

11.1.1. Starting Database Replication .. 92
11.1.2. Database Replication, Availability, and Disaster Recovery 93
11.1.3. Database Replication and Completeness .. 94

11.2. Using Passive Database Replication .. 95
11.2.1. Specifying the DR Tables in the Schema ... 95
11.2.2. Configuring the Clusters ... 96
11.2.3. Starting the Clusters .. 96
11.2.4. Loading the Schema and Starting Replication ... 96
11.2.5. Updating the Schema During Replication .. 97
11.2.6. Stopping Replication .. 98
11.2.7. Database Replication and Read-only Clients ... 100

11.3. Using Cross Datacenter Replication ... 100
11.3.1. Designing Your Schema for Active Replication ... 101
11.3.2. Configuring the Database Clusters .. 101
11.3.3. Starting the Database Clusters .. 103
11.3.4. Loading a Matching Schema and Starting Replication 104
11.3.5. Updating the Schema During Active Replication ... 104
11.3.6. Stopping Replication .. 105
11.3.7. Example XDCR Configurations ... 106
11.3.8. Understanding Conflict Resolution .. 106

11.4. Monitoring Database Replication .. 113
12. Security .. 115

12.1. How Security Works in VoltDB ... 115
12.2. Enabling Authentication and Authorization ... 115
12.3. Defining Users and Roles .. 116
12.4. Assigning Access to Stored Procedures .. 117
12.5. Assigning Access by Function (System Procedures, SQL Queries, and Default Proce-
dures) ... 117
12.6. Using Built-in Roles ... 118
12.7. Encrypting VoltDB Communication Using TLS/SSL .. 118

12.7.1. Configuring TLS/SSL on the VoltDB Server .. 119
12.7.2. Choosing What Ports to Encrypt with TLS/SSL .. 120
12.7.3. Using the VoltDB Command Line Utilities with TLS/SSL 120
12.7.4. Implementing TLS/SSL in the Java Client Applications 121
12.7.5. Configuring Database Replication (DR) With TLS/SSL 121

12.8. Integrating Kerberos Security with VoltDB ... 122
12.8.1. Installing and Configuring Kerberos .. 122
12.8.2. Installing and Configuring the Java Security Extensions 123
12.8.3. Configuring the VoltDB Servers and Clients ... 124
12.8.4. Accessing the Database from the Command Line and the Web 126

13. Saving & Restoring a VoltDB Database ... 127
13.1. Performing a Manual Save and Restore of a VoltDB Cluster 127

v

Using VoltDB

13.1.1. How to Save the Contents of a VoltDB Database .. 128
13.1.2. How to Restore the Contents of a VoltDB Database Manually 128
13.1.3. Changing the Cluster Configuration Using Save and Restore 129

13.2. Scheduling Automated Snapshots .. 131
13.3. Managing Snapshots ... 131
13.4. Special Notes Concerning Save and Restore ... 132

14. Command Logging and Recovery .. 133
14.1. How Command Logging Works ... 133
14.2. Controlling Command Logging .. 134
14.3. Configuring Command Logging for Optimal Performance 134

14.3.1. Log Size .. 135
14.3.2. Log Frequency .. 135
14.3.3. Synchronous vs. Asynchronous Logging .. 135
14.3.4. Hardware Considerations .. 136

15. Streaming Data: Import, Export, and Migration .. 138
15.1. How Data Streaming Works in VoltDB ... 139

15.1.1. Understanding Import ... 141
15.1.2. Understanding Export ... 141
15.1.3. Understanding Migration ... 142
15.1.4. Understanding Topics ... 143

15.2. The Business Case for Streaming Data .. 144
15.2.1. Extract, Transform, Load (ETL) ... 145
15.2.2. Change Data Capture ... 145
15.2.3. Streaming Data Validation .. 146
15.2.4. Caching ... 147
15.2.5. Archiving ... 148

15.3. VoltDB Export Connectors .. 148
15.3.1. How Export Works .. 149
15.3.2. The File Export Connector .. 150
15.3.3. The HTTP Export Connector ... 153
15.3.4. The JDBC Export Connector ... 157
15.3.5. The Kafka Export Connector ... 158
15.3.6. The Elasticsearch Export Connector .. 161

15.4. VoltDB Import Connectors .. 162
15.4.1. Bulk Loading Data Using VoltDB Standalone Utilities 162
15.4.2. Streaming Import Using Built-in Import Features .. 163
15.4.3. The Kafka Importer ... 164
15.4.4. The Kinesis Importer ... 166

15.5. VoltDB Import Formatters ... 167
15.6. VoltDB Topics .. 168

15.6.1. Types of VoltDB Topics ... 169
15.6.2. Declaring VoltDB Topics .. 170
15.6.3. Configuring and Managing Topics .. 171
15.6.4. Configuring the Topic Server ... 174
15.6.5. Calling Topics from Consumers and Producers ... 175
15.6.6. Using Opaque Topics ... 176

A. Supported SQL DDL Statements .. 177
ALTER STREAM ... 178
ALTER TABLE .. 179
ALTER TASK .. 182
CREATE AGGREGATE FUNCTION ... 183
CREATE FUNCTION .. 185
CREATE INDEX .. 187
CREATE PROCEDURE AS .. 189

vi

Using VoltDB

CREATE PROCEDURE FROM CLASS ... 191
CREATE ROLE .. 193
CREATE STREAM ... 195
CREATE TABLE .. 198
CREATE TASK .. 205
CREATE VIEW .. 208
DR TABLE .. 210
DROP FUNCTION .. 211
DROP INDEX .. 212
DROP PROCEDURE ... 213
DROP ROLE .. 214
DROP STREAM ... 215
DROP TABLE .. 216
DROP TASK .. 217
DROP VIEW .. 218
PARTITION PROCEDURE .. 219
PARTITION TABLE ... 221

B. Supported SQL Statements .. 222
DELETE .. 223
INSERT ... 225
MIGRATE .. 227
SELECT ... 228
TRUNCATE TABLE ... 237
UPDATE .. 238
UPSERT .. 239

C. SQL Functions .. 241
ABS() .. 244
APPROX_COUNT_DISTINCT() ... 245
AREA() .. 246
ARRAY_ELEMENT() .. 247
ARRAY_LENGTH() .. 248
ASTEXT() .. 249
AVG() ... 250
BIN() ... 251
BIT_SHIFT_LEFT() ... 252
BIT_SHIFT_RIGHT() .. 253
BITAND() .. 254
BITNOT() .. 255
BITOR() ... 256
BITXOR() .. 257
CAST() .. 258
CEILING() ... 259
CENTROID() .. 260
CHAR() ... 261
CHAR_LENGTH() .. 262
COALESCE() ... 263
CONCAT() ... 264
CONTAINS() .. 265
COS() .. 266
COT() .. 267
COUNT() ... 268
CSC() .. 269
CURRENT_TIMESTAMP() .. 270
DATEADD() ... 271

vii

Using VoltDB

DAY(), DAYOFMONTH() .. 272
DAYOFWEEK() .. 273
DAYOFYEAR() .. 274
DECODE() ... 275
DEGREES() .. 276
DISTANCE() .. 277
DWITHIN() .. 278
EXP() .. 279
EXTRACT() ... 280
FIELD() ... 282
FLOOR() .. 284
FORMAT_CURRENCY() ... 285
FORMAT_TIMESTAMP() ... 286
FROM_UNIXTIME() ... 287
HEX() .. 288
HOUR() ... 289
INET6_ATON() .. 290
INET6_NTOA() .. 291
INET_ATON() .. 292
INET_NTOA() .. 293
ISINVALIDREASON() .. 294
ISVALID() ... 295
IS_VALID_TIMESTAMP() ... 297
LATITUDE() .. 298
LEFT() ... 299
LN(), LOG() ... 300
LOG10() .. 301
LONGITUDE() ... 302
LOWER() ... 303
MAKEVALIDPOLYGON() ... 304
MAX() ... 305
MAX_VALID_TIMESTAMP() .. 306
MIGRATING() .. 307
MIN() .. 308
MIN_VALID_TIMESTAMP() ... 309
MINUTE() .. 310
MOD() ... 311
MONTH() .. 312
NOW() ... 313
NUMINTERIORRINGS() ... 314
NUMPOINTS() ... 315
OCTET_LENGTH() ... 316
OVERLAY() ... 317
PI() .. 318
POINTFROMTEXT() ... 319
POLYGONFROMTEXT() ... 320
POSITION() ... 321
POWER() ... 322
QUARTER() ... 323
RADIANS() .. 324
REGEXP_POSITION() ... 325
REPEAT() .. 326
REPLACE() .. 327
RIGHT() .. 328

viii

Using VoltDB

ROUND() ... 329
SEC() .. 330
SECOND() ... 331
SET_FIELD() .. 332
SIN() ... 334
SINCE_EPOCH() .. 335
SPACE() .. 336
SQRT() .. 337
STR() .. 338
SUBSTRING() .. 339
SUM() ... 340
TAN() .. 341
TO_TIMESTAMP() ... 342
TRIM() .. 343
TRUNCATE() ... 344
UPPER() .. 345
VALIDPOLYGONFROMTEXT() .. 346
WEEK(), WEEKOFYEAR() .. 347
WEEKDAY() .. 348
YEAR() .. 349

D. VoltDB CLI Commands ... 350
csvloader .. 351
jdbcloader ... 356
kafkaloader ... 360
sqlcmd ... 364
voltadmin ... 369
voltdb .. 377

E. Configuration File (deployment.xml) ... 384
E.1. Understanding XML Syntax .. 384
E.2. The Structure of the Configuration File ... 384

F. VoltDB Datatype Compatibility .. 390
F.1. Java and VoltDB Datatype Compatibility ... 390

G. System Procedures ... 393
@AdHoc .. 394
@Explain ... 396
@ExplainProc ... 397
@ExplainView .. 398
@GetPartitionKeys ... 400
@Pause .. 402
@Ping .. 403
@Promote .. 404
@QueryStats ... 405
@Quiesce ... 407
@Resume ... 409
@Shutdown .. 410
@SnapshotDelete ... 411
@SnapshotRestore ... 413
@SnapshotSave ... 416
@SnapshotScan ... 420
@Statistics .. 423
@StopNode .. 448
@SwapTables ... 450
@SystemCatalog .. 452
@SystemInformation .. 457

ix

Using VoltDB

@UpdateApplicationCatalog .. 461
@UpdateClasses .. 463
@UpdateLogging ... 465

x

List of Figures
1.1. Partitioning Tables .. 2
1.2. Serialized Processing ... 3
1.3. Replicating Tables ... 4
4.1. Components of a Database Schema .. 16
4.2. Partitions Distribute Table Data and Stored Procedure Processing .. 17
4.3. Diagram Representing the Flight Reservation System .. 19
5.1. Array of VoltTable Structures ... 37
5.2. One VoltTable Structure is returned for each Queued SQL Statement 38
5.3. Stored Procedures Execute in the Appropriate Partition Based on the Partitioned Parameter
Value ... 44
8.1. The Structure of the VoltDB JSON Response ... 72
10.1. K-Safety in Action ... 83
10.2. Network Partition .. 87
10.3. Network Fault Protection in Action ... 88
11.1. Passive Database Replication ... 90
11.2. Cross Datacenter Replication ... 91
11.3. Replicating an Existing Database .. 93
11.4. Promoting the Replica .. 94
11.5. Read-Only Access to the Replica .. 100
11.6. Standard XDCR Configuration ... 106
11.7. XDCR Configuration with Read-Only Replicas ... 106
11.8. Transaction Order and Conflict Resolution ... 107
14.1. Command Logging in Action ... 133
14.2. Recovery in Action .. 134
15.1. Overview of Data Streaming .. 140
15.2. Overview of Topics .. 140
E.1. Configuration XML Structure .. 386

xi

List of Tables
2.1. Operating System and Software Requirements ... 5
2.2. Components Installed by VoltDB ... 7
4.1. Example Application Workload ... 19
5.1. Methods of the VoltTable Classes .. 39
8.1. Datatypes in the JSON Interface .. 71
11.1. Structure of the XDCR Conflict Logs .. 112
12.1. Named Security Permissions .. 117
15.1. File Export Properties ... 151
15.2. Export Metadata .. 152
15.3. HTTP Export Properties .. 154
15.4. JDBC Export Properties .. 157
15.5. Kafka Export Properties .. 160
15.6. Elasticsearch Export Properties ... 162
15.7. Kafka Import Properties .. 165
15.8. Kinesis Import Properties .. 166
15.9. CSV and TSV Formatter Properties ... 167
15.10. Topic Formatting Properties ... 173
A.1. Supported SQL Datatypes .. 198
C.1. Selectable Values for the EXTRACT Function ... 280
E.1. Configuration File Elements and Attributes .. 387
F.1. Java and VoltDB Datatype Compatibility ... 390
G.1. @SnapshotRestoreOptions .. 413
G.2. @SnapshotSave Options ... 417

xii

List of Examples
4.1. DDL Example of a Reservation Schema .. 18
5.1. Components of a VoltDB Java Stored Procedure ... 34
5.2. Cycles of Queue and Execute in a Stored Procedure .. 37
5.3. Displaying the Contents of VoltTable Arrays ... 40

xiii

About This Book
This book is a complete guide to VoltDB. It describes what VoltDB is, how it works, and — more impor-
tantly — how to use it to build high performance, data intensive applications. The book is divided into
five parts:

Part 1: Getting Started Explains what VoltDB is, how it works, how to install it, and how to
start using VoltDB. The chapters in this section are:

• Chapter 1, Overview

• Chapter 2, Installing VoltDB

• Chapter 3, Starting the Database

Part 2: Developing VoltDB Data-
base Applications

Describes how to design and develop applications using VoltDB. The
chapters in this section are:

• Chapter 4, Designing the Database Schema

• Chapter 5, Designing Stored Procedures to Access the Database

• Chapter 6, Designing VoltDB Client Applications

• Chapter 7, Simplifying Application Development

• Chapter 8, Using VoltDB with Other Programming Languages

Part 3: Running VoltDB in a Clus-
ter

Describes additional features useful for running a database in a cluster.
The chapters in this section are:

• Chapter 9, Using VoltDB in a Cluster

• Chapter 10, Availability

• Chapter 11, Database Replication

• Chapter 12, Security

Part 4: Managing the Data Provides techniques for ensuring data durability and integrity. The
chapters in this section are:

• Chapter 13, Saving & Restoring a VoltDB Database

• Chapter 14, Command Logging and Recovery

• Chapter 15, Streaming Data: Import, Export, and Migration

Part 5: Reference Material Provides reference information about the languages and interfaces
used by VoltDB, including:

• Appendix A, Supported SQL DDL Statements

• Appendix B, Supported SQL Statements

• Appendix C, SQL Functions

• Appendix D, VoltDB CLI Commands

xiv

About This Book

• Appendix E, Configuration File (deployment.xml)

• Appendix F, VoltDB Datatype Compatibility

• Appendix G, System Procedures

This book provides the most complete description of the VoltDB product. It includes features from both
the open source Community Edition and the commercial products VoltDB Enterprise Edition and VoltDB
Pro. In general, the features described in Parts 1 and 2 are available in all versions of the product. Several
features in Parts 3 and 4 are unique to the commercial products.

If you are new to VoltDB, the VoltDB Tutorial provides an introduction to the product and its features.
The tutorial, and other books, are available on the web from http://docs.voltdb.com/.

xv

http://docs.voltdb.com/tutorial/
http://docs.voltdb.com/

Chapter 1. Overview
1.1. What is VoltDB?

VoltDB is a revolutionary new database product. Designed from the ground up to be the best solution for
high performance business-critical applications, the VoltDB architecture is able to achieve 45 times higher
throughput than current database products. The architecture also allows VoltDB databases to scale easily
by adding processors to the cluster as the data volume and transaction requirements grow.

Current commercial database products are designed as general-purpose data management solutions. They
can be tweaked for specific application requirements. However, the one-size-fits-all architecture of tradi-
tional databases limits the extent to which they can be optimized.

Although the basic architecture of databases has not changed significantly in 30 years, computing has. As
have the demands and expectations of business applications and the corporations that depend on them.

VoltDB is designed to take full advantage of the modern computing environment:

• VoltDB uses in-memory storage to maximize throughput, avoiding costly disk access.

• Further performance gains are achieved by serializing all data access, avoiding many of the time-con-
suming functions of traditional databases such as locking, latching, and maintaining transaction logs.

• Scalability, reliability, and high availability are achieved through clustering and replication across mul-
tiple servers and server farms.

VoltDB is a fully ACID-compliant transactional database, relieving the application developer from having
to develop code to perform transactions and manage rollbacks within their own application. By using
ANSI standard SQL for the schema definition and data access, VoltDB also reduces the learning curve
for experienced database designers.

1.2. Who Should Use VoltDB
VoltDB is not intended to solve all database problems. It is targeted at a specific segment of business
computing.

VoltDB focuses specifically on fast data. That is, applications that must process large streams of data
quickly. This includes financial applications, social media applications, and the burgeoning field of the
Internet of Things. The key requirements for these applications are scalability, reliability, high availability,
and outstanding throughput.

VoltDB is used today for traditional high performance applications such as capital markets data feeds, fi-
nancial trade, telco record streams and sensor-based distribution systems. It's also used in emerging appli-
cations like wireless, online gaming, fraud detection, digital ad exchanges and micro transaction systems.
Any application requiring high database throughput, linear scaling and uncompromising data accuracy
will benefit immediately from VoltDB.

However, VoltDB is not optimized for all types of queries. For example, VoltDB is not the optimal choice
for collecting and collating extremely large historical data sets which must be queried across multiple
tables. This sort of activity is commonly found in business intelligence and data warehousing solutions,
for which other database products are better suited.

1

Overview

To aid businesses that require both exceptional transaction performance and ad hoc reporting, VoltDB
includes integration functions so that historical data can be exported to an analytic database for larger
scale data mining.

1.3. How VoltDB Works
VoltDB is not like traditional database products. Each VoltDB database is optimized for a specific appli-
cation by partitioning the database tables and the stored procedures that access those tables across multiple
"sites" or partitions on one or more host machines to create the distributed database. Because both the data
and the work is partitioned, multiple queries can be run in parallel. At the same time, because each site
operates independently, each transaction can run to completion without the overhead of locking individ-
ual records that consumes much of the processing time of traditional databases. Finally, VoltDB balances
the requirements of maximum performance with the flexibility to accommodate less intense but equally
important queries that cross partitions. The following sections describe these concepts in more detail.

1.3.1. Partitioning
In VoltDB, each stored procedure is defined as a transaction. The stored procedure (i.e. transaction) suc-
ceeds or rolls back as a whole, ensuring database consistency.

By analyzing and precompiling the data access logic in the stored procedures, VoltDB can distribute both
the data and the processing associated with it to the individual partitions on the cluster. In this way, each
partition contains a unique "slice" of the data and the data processing. Each node in the cluster can support
multiple partitions.

Figure 1.1. Partitioning Tables

1.3.2. Serialized (Single-Threaded) Processing
At run-time, calls to the stored procedures are passed to the appropriate partition. When procedures are
"single-partitioned" (meaning they operate on data within a single partition) the server process executes
the procedure by itself, freeing the rest of the cluster to handle other requests in parallel.

By using serialized processing, VoltDB ensures transactional consistency without the overhead of locking,
latching, and transaction logs, while partitioning lets the database handle multiple requests at a time. As

2

Overview

a general rule of thumb, the more processors (and therefore the more partitions) in the cluster, the more
transactions VoltDB completes per second, providing an easy, almost linear path for scaling an applica-
tion's capacity and performance.

When a procedure does require data from multiple partitions, one node acts as a coordinator and hands out
the necessary work to the other nodes, collects the results and completes the task. This coordination makes
multi-partitioned transactions slightly slower than single-partitioned transactions. However, transactional
integrity is maintained and the architecture of multiple parallel partitions ensures throughput is kept at a
maximum.

Figure 1.2. Serialized Processing

It is important to note that the VoltDB architecture is optimized for total throughput. Each transaction runs
uninterrupted in its own thread, minimizing the individual latency per transaction (the time from when the
transaction begins until processing ends). This also eliminates the overhead needed for locking, latching,
and other administrative tasks, reducing the amount of time requests sit in the queue waiting to be executed.
The result is that for a suitably partitioned schema, the number of transactions that can be completed in a
second (i.e. throughput) is orders of magnitude higher than traditional databases.

1.3.3. Partitioned vs. Replicated Tables
Tables are partitioned in VoltDB based on a column that you, the developer or designer, specify. When you
choose partitioning columns that match the way the data is accessed by the stored procedures, it optimizes
execution at runtime.

To further optimize performance, VoltDB allows certain database tables to be replicated to all nodes of the
cluster. For small tables that are largely read-only, this allows stored procedures to create joins between
this table and another larger table while remaining a single-partitioned transaction. For example, a retail
merchandising database that uses product codes as the primary key may have one table that simply corre-
lates the product code with the product's category and full name, Since this table is relatively small and
does not change frequently (unlike inventory and orders) it can be replicated for access by all partitions.
This way stored procedures can retrieve and return user-friendly product information when searching by
product code without impacting the performance of order and inventory updates and searches.

3

Overview

Figure 1.3. Replicating Tables

1.3.4. Ease of Scaling to Meet Application Needs
The VoltDB architecture is designed to simplify the process of scaling the database to meet the changing
needs of your application. Increasing the number of nodes in a VoltDB cluster both increases throughput
(by increasing the number of simultaneous queues in operation) and increases the data capacity (by in-
creasing the number of partitions used for each table).

Scaling up a VoltDB database is a simple process that doesn't require any changes to the database schema
or application code. You can either:

• Save the database (using a snapshot), then restart the database specifying the new number of nodes for
the resized cluster and using restore to reload the schema and data.

• Add nodes "on the fly" while the database is running.

1.4. Working with VoltDB Effectively
It is possible to use VoltDB like any other SQL database, creating tables and performing ad hoc SQL
queries using standard SQL statements. However, to take full advantage of VoltDB's capabilities, it is best
to design your schema and your stored procedures to maximize the use of partitioned tables and procedures.
There are also additional features of VoltDB to increase the availability and durability of your data. The
following sections explain how to work effectively with VoltDB, including:

• Chapters 2 and 3 explain how to install VoltDB and create a new database.

• Chapters 4 through 8 explain how to design your database, stored procedures, and client applications
to maximize performance.

• Chapters 9 through 12 explain how to create and use VoltDB clusters to increase scalability and avail-
ability.

• Chapters 13 through 15 explain how VoltDB ensures the durability of your data and how you can inte-
grate VoltDB with other data sources using export for complete business solutions

4

Chapter 2. Installing VoltDB
VoltDB is available in both open source and commercial editions. The open source, or community, edi-
tion provides all the transactional performance benefits of VoltDB, plus basic durability and availability.
The commercial editions provide additional features needed to support production environments, such as
complete durability, dynamic scaling, and WAN replication.

Depending on which version you choose, the VoltDB software comes as either pre-built distributions or
as source code. This chapter explains the system requirements for running VoltDB, how to install and
upgrade the software, and what resources are provided in the kit.

2.1. Operating System and Software Requirements
The following are the requirements for developing and running VoltDB applications.

Table 2.1. Operating System and Software Requirements

Operating System VoltDB requires a 64-bit Linux-based operating system. Kits are built and
qualified on the following platforms:

• CentOS version 7.0 and later, or version 8.0 and later
• Red Hat (RHEL) version 7.0 and later, or version 8.0 and later
• Ubuntu versions 16.04 and 18.04
• Macintosh OS X 10.9 and later (for development only)

CPU • Dual core1 x86_64 processor
• 64 bit
• 1.6 GHz

Memory 4 Gbytes2

Java3 VoltDB Server: Java 8 or Java 11

Java and JDBC Client: Java 8 or Java 11

Required Software Time synchronization service, such as NTP or chrony4

Python 2.6 or later (2.7 is recommended)

Recommended Software Eclipse 3.x (or other Java IDE)

Footnotes:

1. Dual core processors are a minimum requirement. Four or eight physical cores are recommended for
optimal performance.

2. Memory requirements are very specific to the storage needs of the application and the number of nodes
in the cluster. However, 4 Gigabytes should be considered a minimum configuration.

3. VoltDB supports JDKs from OpenJDK or Oracle.

4. Time synchronization services minimize the time difference between nodes in a database cluster,
which is critical for VoltDB. All nodes of the cluster should be configured to synchronize against the
same time server. Using a single local server is recommended, but not required.

5

Installing VoltDB

2.2. Installing VoltDB
VoltDB is distributed as a compressed tar archive. The file name identifies the edition (community or
enterprise) and the version number. The best way to install VoltDB is to unpack the distribution kit as a
folder in the home directory of your personal account, like so:

$ tar -zxvf voltdb-ent-10.0.tar.gz -C $HOME/

Installing into your personal directory gives you full access to the software and is most useful for devel-
opment.

If you are installing VoltDB on a production server where the database will be run, you may want to
install the software into a standard system location so that the database cluster can be started with the
same commands on all nodes. The following shell commands install the VoltDB software in the folder
/opt/voltdb:

$ sudo tar -zxvf voltdb-ent-10.0.tar.gz -C /opt
$ cd /opt
$ sudo mv voltdb-ent-10.0 voltdb

Note that installing as root using the sudo command makes the installation folders read-only for non-priv-
ileged accounts. Which is why installing in $HOME is recommended for running the sample applications
and other development activities.

2.2.1. Upgrading From Older Versions
When upgrading an existing database from a recent version of VoltDB, the easiest way to upgrade is as
follows:

1. Perform an orderly shutdown of the database, saving a final snapshot (voltadmin shutdown --save)

2. Upgrade the VoltDB software

3. Restart the database (voltdb start)

Using this process VoltDB automatically restores the final snapshot taken before the upgrade. To upgrade
VoltDB on clusters running database replication (DR), see the instructions specific to DR in the VoltDB
Administrator's Guide.

If you are upgrading from a version before V6.8, you need to save and restore the snapshot manually. In
which case, the recommended steps for upgrading an existing database are:

1. Place the database in admin mode (voltadmin pause --wait).

2. Perform a manual snapshot of the database (voltadmin save --blocking).

3. Shutdown the database (voltadmin shutdown).

4. Upgrade VoltDB.

5. Initialize a new database root directory (voltdb init)

6. Start the new database in admin mode (voltdb start --pause).

7. Restore the snapshot created in Step #2 (voltadmin restore).

6

https://docs.voltdb.com/AdminGuide/MaintainUpgradeVoltdb.php
https://docs.voltdb.com/AdminGuide/
https://docs.voltdb.com/AdminGuide/

Installing VoltDB

8. Return the database to normal operations (voltadmin resume).

2.2.2. Building a New VoltDB Distribution Kit
If you want to build the open source VoltDB software from source (for example, if you want to test recent
development changes), you must first fetch the VoltDB source files. The VoltDB sources are stored in a
GitHub repository.

The VoltDB sources are designed to build and run on 64-bit Linux-based or 64-bit Macintosh platforms.
However, the build process has not been tested on all possible configurations. Attempts to build the sources
on other operating systems may require changes to the build files and possibly to the sources as well.

Once you obtain the sources, use Ant 1.7 or later to build a new distribution kit for the current platform:

$ ant dist

The resulting distribution kit is created as obj/release/volt-n.n.nn.tar.gz where n.n.nn iden-
tifies the current version and build numbers. Use this file to install VoltDB according to the instructions
in Section 2.2, “Installing VoltDB”.

2.3. Setting Up Your Environment
VoltDB comes with shell command scripts that simplify the process of developing and deploying VoltDB
applications. These scripts are in the /bin folder under the installation root and define short-cut commands
for executing many VoltDB actions. To make the commands available to your session, you must include
the /bin directory as part your PATH environment variable.

You can add the /bin directory to your PATH variable by redefining PATH. For example, the following
shell command adds /bin to the end of the environment PATH, assuming you installed the VoltDB
Enterprise Edition as /voltdb-ent-n.n in your $HOME directory:

$ export PATH="$PATH:$HOME/voltdb-ent-n.n/bin"

To avoid having to redefine PATH every time you create a new session, you can add the preceding com-
mand to your shell login script. For example, if you are using the bash shell, you would add the preceding
command to the $HOME/.bashrc file.

2.4. What is Included in the VoltDB Distribution
Table 2.2 lists the components that are provided as part of the VoltDB distribution.

Table 2.2. Components Installed by VoltDB

Component Description

VoltDB Software & Runtime The VoltDB software comes as Java archives (.JAR
files) and a callable library that can be found in the
/voltdb subfolder. Other software libraries that
VoltDB depends on are included in a separate /lib
subfolder.

Example Applications VoltDB comes with several example applications
that demonstrate VoltDB capabilities and perfor-
mance. They can be found in the /examples sub-
folder.

7

https://github.com/VoltDB/voltdb

Installing VoltDB

Component Description

VoltDB Management Center VoltDB Management Center is a browser-based
management tool for monitoring, examining, and
querying a running VoltDB database. The Man-
agement Center is bundled with the VoltDB serv-
er software. You can start the Management Cen-
ter by connecting to the HTTP port of a running
VoltDB database server. For example, http://
voltsvr:8080/. Note that the httpd server and
JSON interface must be enabled on the server to be
able to access the Management Center.

Shell Commands The /bin subfolder contains executable scripts to
perform common VoltDB tasks, such as starting the
VoltDB server process and issuing database queries
from the command line using sqlcmd, Add the /
bin subfolder to your PATH environment variable
to use the following shell commands:

csvloader
jdbcloader
kafkaloader
sqlcmd
voltadmin
voltdb

Documentation Online documentation, including the full manuals
and javadoc describing the Java programming inter-
face, is available in the /doc subfolder.

2.5. VoltDB in Action: Running the Sample Appli-
cations

Once you install VoltDB, you can use the sample applications to see VoltDB in action and get a better
understanding of how it works. The easiest way to do this is to set directory to the /examples folder
where VoltDB is installed. Each sample application has its own subdirectory and a run.sh script to simplify
building and running the application. See the README file in the /examples subfolder for a complete
list of the applications and further instructions.

Once you get a taste for what VoltDB can do, we recommend following the VoltDB tutorial to understand
how to create your own applications using VoltDB.

8

http://docs.voltdb.com/tutorial/

Chapter 3. Starng the Database
This chapter describes the procedures for starting and stopping a VoltDB database and includes details
about configuring the database. The chapter contains the following sections:

• Section 3.1, “Initializing and Starting a VoltDB Database”

• Section 3.2, “Initializing and Starting a VoltDB Database on a Cluster”

• Section 3.3, “Stopping a VoltDB Database”

• Section 3.5, “Restarting a VoltDB Database”

• Section 3.6, “Updating Nodes on the Cluster”

• Section 3.7, “Defining the Cluster Configuration”

3.1. Initializing and Starting a VoltDB Database
Before you start a VoltDB database, you must initialize the root directory where VoltDB stores its config-
uration data, logs, and other disk-based information. Once you initialize the root directory, you can start
the database. For example, you can accept the defaults for the voltdb init and start commands to initialize
and start a new, single-node database suitable for developing and testing a database and application.

$ voltdb init
$ voltdb start

This creates a VoltDB root directory as a subfolder of your current working directory and starts a database
with all default options. You only need to initialize the root directory once and can then start and stop the
database as often as you like.

$ voltadmin shutdown
$ voltdb start

If you are using command logging, which is enabled by default in the VoltDB Enterprise Edition, VoltDB
automatically saves and recovers your database between any stoppage and a restart. If you are not using
command logging, you will want to save a snapshot before shutting down. The easiest way to do this is
by adding the --save argument to the shutdown command.

The snapshot is automatically restored when the database restarts:

$ voltadmin shutdown --save
$ voltdb start

If you want to create a new database, you can reinitialize the root directory. However, you must use the --
force flag if the database has already been used; VoltDB will not clear the root directory of existing data
unless you explicitly "force" it to.

$ voltdb init --force
$ voltdb start

Also, you can specify an alternate location for the root directory using the --dir or -D flag. Of course,
you must specify the same location for the root directory when both initializing and starting the database.
You cannot start a database in a directory that has not been initialized.

$ voltdb init --dir=~/mydb

9

Starting the Database

$ voltdb start --dir=~/mydb

In most cases, you will want to use additional arguments to configure the server and database options. But
the preceding commands are sufficient to get you started in a test environment. The rest of this chapter
explains how to use other arguments and how to start, stop, and recover a database when using a cluster.

Finally, when using the VoltDB Enterprise Edition, you must provide a license file when initializing the
database. VoltDB looks for the license as a file named license.xml in three possible locations, in the
following order:

1. The current working directory

2. The directory where the VoltDB image files are installed (usually in the /voltdb subfolder of the
installation directory)

3. The current user's home directory

If the license file is not in any of these locations, you must explicitly identify it when you issue the voltdb
init command using the --license or -l flag. For example, the command might be:

$ voltdb init -l /usr/share/voltdb-license.xml

The examples in this manual assume that the license file is in one of the default locations and therefore
do not show the --license flag for simplicity's sake.

3.2. Initializing and Starting a VoltDB Database on
a Cluster

You initialize and start a cluster the same way you start a single node: with the voltdb init and start
commands. The only difference is that when starting the cluster, you must tell the cluster nodes how big
the cluster is and which nodes to use as potential hosts for the startup.

You initialize a root directory on each server using the voltdb init command. You can accept the default
configuration as shown in the previous section. However, when setting up a cluster you often want to make
some configuration adjustments (for example, enabling K-safety). So it is a good idea to get into the habit
of specifying a configuration file.

You specify the configuration file with the --config or -C flag when you initialize the root directory.
All nodes must use the same configuration file. For example:

$ voltdb init -D ~/mydb --config=myconfig.xml

Once the nodes are initialized, you start the cluster by issuing the voltdb start command on all nodes
specifying the following information:

• Number of nodes in the cluster: When you start the cluster, you specify how many servers will make
up the cluster using the --count flag.

• Host names: You specify the hostnames or IP addresses of one or more servers from the cluster that
are potential "hosts" for coordinating the formation of the cluster. You specify the list of hosts with the
--host or -H flag. You must specify at least one node as a host.

For each node of the cluster, log in and start the server process using the same voltdb start command. For
example, the following example starts a five-node database cluster specifying voltsvr1 as the host node.
Be sure the number of nodes on which you run the command match the number of nodes specified in the
--count argument.

10

Starting the Database

$ voltdb start --count=5 -–host=voltsvr1

Or you can also use shortened forms for the argument flags:

$ voltdb start -c 5 -H voltsvr1

Although you only need to specify one potential host, it is a good idea to specify multiple hosts. This way,
you can use the exact same command for both starting and rejoining nodes in a highly-available cluster.
Even if the rejoining node is in the host list another, running node can be chosen to facilitate the rejoin.

To simplify even further, you can specify all of the servers in the --host argument. If you do this, you
can skip the --count argument. If --count is missing, VoltDB assumes the number of servers in the
--host list is complete and sets the server count to match. For example, the following command —
issued on all three servers — starts a three node cluster:

$ voltdb start --host=svrA,svrB,svrC

When starting a VoltDB database on a cluster, the VoltDB server process performs the following actions:

1. If you are starting the database process on the node selected as the host node, it waits for initialization
messages from the remaining nodes. The host is selected from the list of hosts on the command line
and plays a special role during startup by managing the cluster initiation process. It is important that all
nodes in the cluster can resolve the hostnames or IP addresses of the host nodes you specify.

2. If you are starting the database on a non-host node, it sends an initialization message to the host indi-
cating that it is ready. The database is not operational until the correct number of nodes (as specified
on the command line) have connected.

3. Once all the nodes have sent initialization messages, the host sends out a message to the other nodes that
the cluster is complete. Once the startup procedure is complete, the host's role is over and it becomes a
peer like every other node in the cluster. It performs no further special functions.

Manually logging on to each node of the cluster every time you want to start the database can be tedious.
Instead, you can use secure shell (ssh) to execute shell commands remotely. By creating an ssh script (with
the appropriate permissions) you can copy files and/or start the database on each node in the cluster from
a single script. Or you can use distributed system management tools such as Chef and Puppet to automate
the startup procedures.

3.3. Stopping a VoltDB Database
Once the VoltDB database is up and running, you can shut it down by stopping the VoltDB server processes
on each cluster node. However, it is easier to stop the database as a whole with a single command. You
do this with the voltadmin shutdown command, which pauses database activity, completes all current
transactions, and empties any queued data (such as export or database replication) before shutting down.
For example, entering the following command without specifying a host server will perform an orderly
shut down the database cluster the current system is part of.

$ voltadmin shutdown

If you are not using command logging, which automatically saves all progress, be sure to add the --save
argument to save a final snapshot before shutting down:

$ voltadmin shutdown --save

To shutdown a database running on another system, use the --host argument to access the remote data-
base. For example, the following command shuts down the VoltDB database that includes the server zeus:

11

Starting the Database

$ voltadmin shutdown --host=zeus

You can pause the database using the voltadmin pause command to restrict clients from accessing it
while you perform changes in administration mode. You resume the database using the voltadmin resume
command. See the VoltDB Administrator's Guide for more about modes of operation.

3.4. Saving the Data
Because VoltDB is an in-memory database, once the database server process stops, the database schema
and the data itself are removed from memory. However, VoltDB can save this information to disk through
the use of command logs and snapshots, so use of these features is strongly encouraged.

• Command logging provides the most complete data durability for VoltDB and is enabled by default
in the VoltDB Enterprise Edition. Command logging works automatically by saving a record of every
transaction. These logs can then be replayed if the database stops for any reason.

• Snapshots, on the other hand, provide a point-in-time copy of the database contents written to disk. You
can create snapshots manually with the voltadmin save command, you can enable periodic (also known
as automatic) snapshots, or you can save a final snapshot when you shutdown the database using the
voltadmin shutdown --save command. Snapshots are restored when the database restarts, but only take
you back to the state of the database at the time the last snapshot was saved.

To learn more about using command logging see Chapter 14, Command Logging and Recovery. To learn
more about how to save and restore snapshots of the database, see Chapter 13, Saving & Restoring a
VoltDB Database.

3.5. Restarting a VoltDB Database
Once a database stops, you can restart it using the same voltdb start command used to start the database the
first time. Once the database starts, any command logs or snapshots are restored. In the VoltDB Enterprise
Edition, command logs automatically restore the last state of the database. If no command log exist but a
snapshot does, the database is restored to its state when that snapshot was taken. For example, the following
command restarts a single-node database:

$ voltdb start

To restart a database on a cluster, issue the same voltdb start command used to start that cluster, including
the server count and list of host nodes. For example:

$ voltdb start --count=5 -–host=voltsvr1

3.6. Updating Nodes on the Cluster
A cluster is a dynamic system in which nodes might be stopped either deliberately or by unforeseen cir-
cumstances, or nodes might be added to the cluster on-the-fly to scale the database for improved perfor-
mance. The voltdb start command provides the following additional functions, described later in this
book, for rejoining and adding nodes to a running VoltDB database:

• Section 10.3, “Recovering from System Failures” — Use the same voltdb start command to start the
cluster or rejoin a failed node.

• Section 9.3.1, “Adding Nodes with Elastic Scaling” — Use voltdb start with the --add flag to add a
new node to the running database cluster.

12

http://docs.voltdb.com/AdminGuide/

Starting the Database

3.7. Defining the Cluster Configuration
Two important aspects of a VoltDB database are the physical layout of the cluster that runs the database
and the database features you choose to use. You define the physical cluster layout on the voltdb start
command using the --count and --host arguments. You enable and disable specific database features
in the configuration file when you initialize the database root directory with the voltdb init command.

The configuration file is an XML file, which you specify when you initialize the root directory. The basic
syntax of the configuration file is as follows:

<?xml version="1.0"?>
<deployment>
 <cluster kfactor="n" />

 <feature option... >
 </feature>

 ...

</deployment>

The attributes of the <cluster> tag define the layout of the database partitions. The attributes of the
<cluster> tag are:

• sitesperhost — specifies the number of partitions created on each server in the cluster. The sites-
perhost value times the number of servers gives you the total number of partitions in the cluster. See
Section 3.7.1, “Determining How Many Sites per Host” for more information about partition count.

• kfactor — specifies the K-safety value to use for durability when creating the database. The K-safety
value controls the duplication of database partitions. See Chapter 10, Availability for more information
about K-safety.

In the simplest case — when running on a single node with no special options enabled — you can skip
the configuration file on the voltdb init command and the server count and host list on the voltdb start
command. If you do not specify a configuration file, VoltDB defaults to eight execution sites per host,
and a K-safety value of zero.

The configuration file is also used to enable and configure many other runtime options related to the
database, which are described later in this book. For example, the configuration file can specify:

• Whether security is enabled and what users and passwords are needed to authenticate clients at runtime.
See Chapter 12, Security for more information.

• A schedule for saving automatic snapshots of the database. See Section 13.2, “Scheduling Automated
Snapshots”.

• Properties for exporting and importing data to other data sources. See Chapter 15, Streaming Data:
Import, Export, and Migration.

For the complete configuration file syntax, see Appendix E, Configuration File (deployment.xml).

3.7.1. Determining How Many Sites per Host
There is very little penalty for allocating more sites than needed for the partitions the database will use
(except for incremental memory usage). Consequently, VoltDB defaults to eight sites per node to provide

13

Starting the Database

reasonable performance on most modern system configurations. This default does not normally need to be
changed. However, for systems with a large number of available processors (16 or more) or older machines
with fewer than 8 processors and limited memory, you may wish to tune the sitesperhost attribute.

The number of sites needed per node is related to the number of processor cores each system has, the
optimal number being approximately 3/4 of the number of CPUs reported by the operating system. For
example, if you are using a cluster of dual quad-core processors (in other words, 8 cores per node), the
optimal number of partitions is likely to be 6 or 7 sites per node.

<?xml version="1.0"?>
<deployment>
 <cluster . . .
 sitesperhost="6"
 />
</deployment>

For systems that support hyperthreading (where the number of physical cores support twice as many
threads), the operating system reports twice the number of physical cores. In other words, a dual quad-
core system would report 16 virtual CPUs. However, each partition is not quite as efficient as on non-
hyperthreading systems. So the optimal number of sites is more likely to be between 10 and 12 per node
in this situation.

Because there are no hard and set rules, the optimal number of sites per node is best calculated by actually
benchmarking the application to see what combination of cores and sites produces the best results. How-
ever, it is important to remember that all nodes in the cluster will use the same number of sites. So the best
performance is achieved by using a cluster with all nodes having the same physical architecture (i.e. cores).

3.7.2. Configuring Paths for Runtime Features
An important aspect of some runtime features is that they make use of disk resources for persistent storage
across sessions. For example, automatic snapshots need a directory for storing snapshots of the database
contents. Similarly, export uses disk storage for writing overflow data if the export connector cannot keep
up with the export queue.

You can specify individual paths for each feature in the configuration file. If not, VoltDB creates subfolders
for each feature in the database root directory as needed, which can be useful for testing. However, in
production, it is useful to direct certain high volume features, such as command logging, to separate devices
to avoid disk I/O affecting database performance.

You can identify specific path locations, within the <paths> element, for the following features:

• <commandlog>

• <commandlogsnapshot>

• <exportoverflow>

• <snapshots>

If you name a specific feature path and it does not exist, VoltDB attempts to create it for you. For example,
the <exportoverflow> path contains temporary data which can be deleted periodically. The following
excerpt from a configuration file specifies /opt/overflow as the directory for export overflow.

<paths>
 <exportoverflow path="/opt/overflow" />
</paths>

14

Starting the Database

3.7.3. Verifying your Hardware Configuration
The configuration file and start command options define the desired configuration of your database cluster.
However, there are several important aspects of the physical hardware and operating system configuration
that you should be aware of before running VoltDB:

• VoltDB can operate on heterogeneous clusters. However, best performance is achieved by running the
cluster on similar hardware with the same type of processors, number of processors, and amount of
memory on each node.

• All nodes must be able to resolve the IP addresses and host names of the other nodes in the cluster. That
means they must all have valid DNS entries or have the appropriate entries in their local hosts file.

• You must run a time synchronization service such as Network Time Protocol (NTP) or chrony on all of
the cluster nodes, preferably synchronizing against the same local time server. If the time skew between
nodes in the cluster is greater than 200 milliseconds, VoltDB cannot start the database.

• It is strongly recommended that you configure your time service to avoid adjusting time backwards for
all but very large increments. For example, in NTP this is done using the -x argument. If the server
time moves backward, VoltDB must pause and wait for time to catch up.

15

Chapter 4. Designing the Database
Schema

VoltDB is a relational database product. Relational databases consist of tables and columns, with con-
straints, indexes, and views. VoltDB uses standard SQL database definition language (DDL) statements
to specify the database schema. So designing the schema for a VoltDB database uses the same skills and
knowledge as designing a database for Oracle, MySQL, or any other relational database product.

This guide describes the stages of application design by dividing the work into three chapters:

• Design the schema in DDL to define the database structure. Schema design is covered in this chapter.

• Design stored procedures to access data in the database. Stored procedures provide client applications
an application programming interface (API) to the database. Stored procedures are covered in Chapter 5,
Designing Stored Procedures to Access the Database.

• Design clients to provide business logic and also connect to the database to access data. Client appli-
cation design is covered in Chapter 6, Designing VoltDB Client Applications.

The database schema is a specification that describes the structure of the VoltDB database such as tables
and indexes, identifies the stored procedures that access data in the database, and defines the way tables
and stored procedures are partitioned for fast data access. When designing client applications to use the
database, the schema specifies the details needed about data types, tables, columns, and so on.

Figure 4.1. Components of a Database Schema

Along with designing your database tables, an important aspect of VoltDB database design is partitioning,
which provides much more efficient access to data and processing. Partitioning distributes the rows of a
table and the processing to access the table across several, independent partitions instead of one. Your
design requires coordinating the partitioning of both database tables and the stored procedures that access
the tables. At design time you choose a column on which to partition a table's rows. You also partition
stored procedures on the same column if they use the column to identify which rows to operate on in the
table.

At runtime, VoltDB decides which cluster nodes and partitions to use for the table partitions and consis-
tently allocates rows to the appropriate partition. Figure 4.2, “Partitions Distribute Table Data and Stored
Procedure Processing” shows how when data is inserted into a partitioned table, VoltDB automatically
allocates the data to the correct partition. Also, when a partitioned stored procedure is invoked, VoltDB
automatically executes the stored procedure in the single partition that has the data requested.

16

Designing the Database Schema

Figure 4.2. Partitions Distribute Table Data and Stored Procedure Processing

The following sections of this chapter provide guidelines for designing VoltDB database schemas. Al-
though gathering business requirements is a typical first step in database application design, it is outside
the scope of this guide.

4.1. How to Enter DDL Statements
You use standard SQL DDL statements to design your schema. For a full list of valid VoltDB DDL, see
Appendix A, Supported SQL DDL Statements. The easiest way to enter your DDL statements is using
VoltDB's command line utility, sqlcmd. Using sqlcmd you can input DDL statements in several ways:

• Redirect standard input from a file when you start sqlcmd:

$ sqlcmd < myschema.sql

• Import from a file using the sqlcmd file directive:

$ sqlcmd
1> file myschema.sql;

• Enter DDL directly at the sqlcmd prompt:

$ sqlcmd
1>
2> CREATE TABLE Customer (
3> CustomerID INTEGER UNIQUE NOT NULL,
4> FirstName VARCHAR(15),
5> LastName VARCHAR (15),
6> PRIMARY KEY(CustomerID)
7>);

• Copy DDL from another application and paste it into the sqlcmd prompt:

$ sqlcmd
1> CREATE TABLE Flight (
2> FlightID INTEGER UNIQUE NOT NULL,
3> DepartTime TIMESTAMP NOT NULL,
4> Origin VARCHAR(3) NOT NULL,
5> Destination VARCHAR(3) NOT NULL,
6> NumberOfSeats INTEGER NOT NULL,

17

Designing the Database Schema

7> PRIMARY KEY(FlightID)
8>);

The following sections show how to design and create schema objects. DDL statements and techniques
for changing a schema are described later in Section 4.6, “Modifying the Schema”.

4.2. Creating Tables and Primary Keys
The schema in this section is referred to throughout the design chapters of this guide. Let's assume you
are designing a flight reservation system. At its simplest, the application requires database tables for the
flights, the customers, and the reservations. Example 4.1, “DDL Example of a Reservation Schema” shows
how the schema looks as defined in standard SQL DDL. For the VoltDB-specific details for creating tables,
see CREATE TABLE. When defining the data types for table columns, refer to Table A.1, “Supported
SQL Datatypes”.

Example 4.1. DDL Example of a Reservation Schema

CREATE TABLE Flight (
 FlightID INTEGER UNIQUE NOT NULL,
 DepartTime TIMESTAMP NOT NULL,
 Origin VARCHAR(3) NOT NULL,
 Destination VARCHAR(3) NOT NULL,
 NumberOfSeats INTEGER NOT NULL,
 PRIMARY KEY(FlightID)
);

CREATE TABLE Reservation (
 ReserveID INTEGER NOT NULL,
 FlightID INTEGER NOT NULL,
 CustomerID INTEGER NOT NULL,
 Seat VARCHAR(5) DEFAULT NULL,
 Confirmed TINYINT DEFAULT '0'
);

CREATE TABLE Customer (
 CustomerID INTEGER UNIQUE NOT NULL,
 FirstName VARCHAR(15),
 LastName VARCHAR (15),
 PRIMARY KEY(CustomerID)
);

To satisfy entity integrity you can specify a table's primary key by providing the usual PRIMARY KEY
constraint on one or more of the table’s columns. To create a simple key, apply the PRIMARY KEY
constraint to one of the table's existing columns whose values are unique and not null, as shown in Exam-
ple 4.1, “DDL Example of a Reservation Schema”.

To create a composite primary key from a combination of columns in a table, apply the PRIMARY KEY
constraint to multiple columns with typical DDL such as the following:

$ sqlcmd
1> CREATE TABLE Customer (
2> FirstName VARCHAR(15),
3> LastName VARCHAR (15),
4> CONSTRAINT pkey PRIMARY KEY (FirstName, LastName)
5>);

18

Designing the Database Schema

4.3. Analyzing Data Volume and Workload
A schema is not all you need to define the database effectively. You also need to know the expected volume
and workload on the database. For our example, let's assume that we expect the following volume of data
at any given time:

• Flights: 2,000

• Reservations: 200,000

• Customers: 1,000,000

This additional information about the volume and workload affects the design of both the database and
the client application, because it impacts what SQL queries need to be written for accessing the data and
what attributes (columns) to share between tables. Table 4.1, “Example Application Workload” defines a
set of procedures the application must perform. The table also shows the estimated workload as expected
frequency of each procedure. Procedures in bold modify the database.

Table 4.1. Example Application Workload

Use Case Frequency

Look up a flight (by origin and destination) 10,000/sec

See if a flight is available 5,000/sec

Make a reservation 1,000/sec

Cancel a reservation 200/sec

Look up a reservation (by reservation ID) 200/sec

Look up a reservation (by customer ID) 100/sec

Update flight info 1/sec

Take off (close reservations and archive associated records) 1/sec

You can make your procedures that access the database transactional by defining them as VoltDB stored
procedures. This means each stored procedure call completes or rolls back if necessary, thus maintaining
data integrity. Stored procedures are described in detail in Chapter 5, Designing Stored Procedures to
Access the Database.

In our analysis we also need to consider referential integrity, where relationships are maintained between
tables with shared columns that link tables together. For example, Figure 4.3, “Diagram Representing the
Flight Reservation System” shows that the Flight table links to the Reservation table where FlightID is
the shared column. Similarly, the Customer table links to the Reservation table where CustomerID is the
common column.

Figure 4.3. Diagram Representing the Flight Reservation System

19

Designing the Database Schema

Since VoltDB stored procedures are transactional, you can use stored procedures to maintain referential
integrity between tables as data is added or removed. For example, if a customer record is removed from the
Customer table, all reservations for that customer need to be removed from the Reservations table as well.

With VoltDB, you use all this additional information about volume and workload to configure the database
and optimize performance. Specifically, you want to partition the individual tables to ensure efficiency.
Partitioning is described next.

4.4. Partitioning Database Tables
This section discusses how to partition a database to maximize throughput, using the flight reservation case
study as an example. To partition a table, you choose a column of the table that VoltDB can use to uniquely
identify and distribute the rows into partitions. The goal of partitioning a database table is to ensure that
the most frequent transactions on the table execute in the same partition as the data accessed. We call this a
single-partitioned transaction. Thus the stored procedure must uniquely identify a row by the partitioning
column value. This is particularly important for queries that modify the data, such as INSERT, UPDATE,
and DELETE statements.

Looking at the workload for the reservation system in the previous section, the important transactions to
focus on are:

• Look up a flight

• See if a flight is available

• Look up a reservation

• Make a reservation

Of these transactions, only the last modifies the database.

4.4.1. Choosing a Column on which to Partition Table Rows
We will discuss the Flight table later, but first let's look at the Reservation table. Looking at the schema
alone (Example 4.1), ReserveID might look like a good attribute to use to partition the table rows. How-
ever, looking at the workload, there are only two transactions that are keyed to the ReserveID (“Cancel
a reservation” and “Look up a reservation (by reservation ID)”), each of which occur only 200 times a
second. Whereas, “See if a flight is available” , which requires looking up reservations by the FlightID,
occurs 5,000 times a second, or 25 times as frequently. Therefore, the Reservation table is best partitioned
on the FlightID column.

Moving to the Customer table, CustomerID is used for most data access. Although customers might need
to look up their record by name, the first and last names are not guaranteed to be unique. Therefore,
CustomerID is the best column to use for partitioning the Customer table.

CREATE TABLE Customer (
 CustomerID INTEGER UNIQUE NOT NULL,

20

Designing the Database Schema

 FirstName VARCHAR(15),
 LastName VARCHAR (15),
 PRIMARY KEY(CustomerID)
);

4.4.2. Specifying Partitioned Tables
Once you choose the column to use for partitioning a database table, you define your partitioning choices
in the database schema. Specifying the partitioning along with the schema DDL helps keep all of the
database structural information in one place.

You define the partitioning scheme using VoltDB's PARTITION TABLE statement, specifying the par-
titioning column for each table. For example, to specify FlightID and CustomerID as the partitioning
columns for the Reservation and Customer tables, respectively, your database schema must include the
following statements:

$ sqlcmd
1> PARTITION TABLE Reservation ON COLUMN FlightID;
2> PARTITION TABLE Customer ON COLUMN CustomerID;

4.4.3. Design Rules for Partitioning Tables
The following are the rules to keep in mind when choosing a column by which to partition table rows:

• There can be only one partition column per table. If you need to partition a table on two columns
(for example first and last name), add an additional column (fullname) that combines the values of the
two columns and use this new column to partition the table.

• If the table has a primary key, the partitioning column must be included in the primary key.

• Any integer, string, or byte array column can identify the partition. VoltDB can partition rows on
any column that is an integer (TINYINT, SMALLINT, INTEGER, or BIGINT), string (VARCHAR),
or byte array (VARBINARY) datatype. (See also Table A.1, “Supported SQL Datatypes”.)

• Partition column values cannot be null. The partition columns do not need to have unique values, but
you must specify NOT NULL in the schema for the partition column. Numeric fields can be zero and
string or character fields can be empty, but the column cannot contain a null value.

The following are some additional recommendations:

• Choose a column with a reasonable distribution of values so that rows of data will be evenly partitioned.

• Choose a column that maximizes use of single-partitioned stored procedures. If one procedure uses
column A to lookup data and two procedures use column B to lookup data, partition on column B. The
goal of partitioning is to make the most frequent transactions single-partitioned.

• If you partition more than one table on the same column attribute, VoltDB will partition them together.

4.5. Replicating Database Tables
With VoltDB, tables are either partitioned or replicated across all nodes and sites of a VoltDB database.
Smaller, mostly read-only tables are good candidates for replication. Note also that if a table needs to be
accessed frequently by columns other than the partitioning column, the table should be replicated instead
because there is no guarantee that a particular partition includes the data that the query seeks.

21

Designing the Database Schema

The previous section describes how to partition the Reservation and Customer tables as examples, but what
about the Flight table? It is possible to partition the Flight table (for example, on the FlightID column).
However, not all tables benefit from partitioning.

4.5.1. Choosing Replicated Tables
Looking at the workload of the flight reservation example, the Flight table has the most frequent accesses
(at 10,000 a second). However, these transactions are read-only and may involve any combination of three
columns: the departure time, the point of origin, and the destination. This makes it hard to partition the
table in a way that would make the transaction single-partitioned because the lookup is not restricted to
one table column.

Fortunately, the number of flights available for booking at any given time is limited (estimated at 2,000)
and so the size of the table is relatively small (approximately 36 megabytes). In addition, the vast majority
of the transactions involving the Flight table are read-only except when new flights are added and at take-
off (when the records are deleted). Therefore, Flight is a good candidate for replication.

Note that the Customer table is also largely read-only. However, because of the volume of data in the
Customer table (a million records), it is not a good candidate for replication, which is why it is partitioned.

4.5.2. Specifying Replicated Tables
In VoltDB, you do not explicitly state that a table is replicated. If you do not specify a partitioning column
in the database schema, the table will by default be replicated.

So, in our flight reservation example, there is no explicit action required to replicate the Flight table.
However, it is very important to specify partitioning information for tables that you want to partition.
If not, they will be replicated by default, significantly changing the performance characteristics of your
application.

4.6. Modifying the Schema
You can use DDL to add, modify, or remove schema objects as the database is running. For a list of all
valid DDL you can use, see Appendix A, Supported SQL DDL Statements. You can do the following types
of schema changes:

• Modifying Tables — You can add, modify (alter), and remove (drop) table columns. You can also add
and drop table constraints. Finally, you can drop entire tables.

• Adding and Dropping Indexes — You can add and remove (drop) named indexes.

• Modifying Partitioning for Tables and Stored Procedures — You can un-partition stored procedures
and re-partition stored procedures on a different column, For tables you can change a table between
partitioned and replicated, and repartition a table on a different column,

• Modify roles and users — To learn about modifying roles and users, see Chapter 12, Security.

22

Designing the Database Schema

VoltDB safely handles sqlcmd DDL entered by different users on different nodes of the cluster because
it manages sqlcmd commands as transactions, just like stored procedures. To demonstrate the DDL state-
ments to modify the schema, the following sections use a new table, Airport, added to the fight reservation
as shown below:

CREATE TABLE Airport (
 AirportID integer NOT NULL,
 Name varchar(15) NOT NULL,
 City varchar(25),
 Country varchar(15),
 PRIMARY KEY (AirportID)
);

4.6.1. Effects of Schema Changes on Data and Clients
You can make many schema changes on empty tables with few restrictions. However, be aware that if
a table has data, some schema changes are not allowed and other schema changes may modify or even
remove data. When working with test data in your database, you can use TRUNCATE TABLE to empty
the data from a table you are working on. Note that all DDL examples in this chapter assume the tables
are empty.

We can think of the effects of schema changes on data in three severity levels:

• Schema change completes without damage to data

• Schema change fails to complete to avoid damage to data

• Schema change destroys data

VoltDB error messages and the documentation can help you avoid schema change attempts that fail to
complete. For example, you cannot drop a table that has referencing procedures or views.

Obviously you need to be most aware of which schema changes cause data to be destroyed. In particular,
removing objects from the schema will also remove the data they contain. Note that schema objects cannot
be renamed with DDL, but objects can be replaced by performing a DROP and then ADD. However, it is
important to realize that as a result of a DROP operation, such as DROP TABLE, the data associated with
that table will be deleted before the new definition is added.

Plan and coordinate changes with client development. Stored procedures and ad hoc queries provide an
API that clients use to access the database correctly. Changes to the schema can break the stored procedure
calls client applications have developed, so use well-planned schedules to communicate database schema
changes to others. Client applications depend on many schema definition features including (but not limited
to):

• Table names

• Column names

• Column data types

• Primary key definitions

• Table partitions

• Stored procedure names

• Stored procedure partitioning

23

Designing the Database Schema

Plan and test carefully before making schema changes to a production database. Be aware that clients may
experience connection issues during schema changes, especially for changes that take longer to complete,
such as view or index changes.

Schema changes not only affect data, but the existence of data in the database affects the time it takes to
process schema changes. For example, when there are large amounts of data, some DDL statements can
block processing, resulting in a noticeable delay for other pending transactions. Examples include adding
indexes, creating new table columns, and modifying views.

4.6.2. Viewing the Schema
The VoltDB Management Center provides a web browser view of database information, including the
DDL schema source. Use a web browser to view the VoltDB Management Center on port 8080 of one of
the cluster hosts (http://host-name:8080).

You can also use the sqlcmd show directive to see a list of the current database tables and all procedures.
For additional details about the schema, execute the @SystemCatalog system procedure. Use any of the
following arguments to @SystemCatalog to obtain details about a component of the database schema:

• TABLES

• COLUMNS

• INDEXINFO

• PRIMARYKEYS

• PROCEDURES

• PROCEDURECOLUMNS

For example:

$ sqlcmd
1> SHOW TABLES;
2> SHOW PROCEDURES;
3> EXEC @SystemCatalog COLUMNS;

4.6.3. Modifying Tables
After creating a table in a database with CREATE TABLE, you can use ALTER TABLE to make the
following types of table changes:

• Altering a Table Column's Data Definition

• Adding and Dropping Table Columns

• Adding and Dropping Table Constraints

To drop an entire table, use the DROP TABLE DDL statement.

4.6.3.1. Altering a Table Column's Data Definition
You can make the following types of alterations to a table column's data definition:

$ sqlcmd

24

Designing the Database Schema

1> ALTER TABLE Airport ALTER COLUMN Name VARCHAR(25);
2> ALTER TABLE Airport ALTER COLUMN Country SET DEFAULT 'USA';
3> ALTER TABLE Airport ALTER COLUMN Name SET NOT NULL;

The examples are described as follows:

Change a column's data type. In our example we decided we needed more than 15 characters for the
Airport Name so we changed it to 25 characters.

If the table has no existing data, you can make any data type changes. However, if the table already
contains data, the new type must be larger than the old one. This restriction prevents corrupting
existing data values that might be larger than the size of the new data type (See also Table A.1,
“Supported SQL Datatypes”.)
Set or drop the column's DEFAULT value. In our example we assume the application is to be used
mostly for US domestic travel so we can set a default value for the Airport Country of 'USA'.

To remove a default, redefine the column data definition, for example:

ALTER TABLE Airport ALTER COLUMN Country VARCHAR(15);
Change whether the column is NULL or NOT NULL. In our example we set the AirportID to be not
null because this is a required field.

If the table has existing data, you cannot change a column to not null.

4.6.3.2. Adding and Dropping Table Columns
$ sqlcmd
1> ALTER TABLE Airport ADD COLUMN AirportCode VARCHAR(3)
2> BEFORE AirportID;
3> ALTER TABLE Airport DROP COLUMN AirportID;

The examples are described as follows:

Add table columns. In our example, we have decided not to use the integer AirportID for airport
identification but to instead add an AirportCode, which uses a unique three-letter code for any airport
as defined by the International Air Transport Association's airport codes.

You cannot rename or overwrite a column but you can drop and add columns. When adding a column,
you must include the new column name and the data type. Options you may include are:

• DEFAULT value — If a table contains data, the values for the new column will be automatically
filled in with the default value.

• NOT NULL — If the table contains data, you must include a default value if you specify a NOT
NULL column.

• One of the following index type constraints including PRIMARY KEY, UNIQUE, or ASSUME-
UNIQUE.

Note, we recommend that you not define the UNIQUE or ASSUMEUNIQUE constraint directly on
a column definition when adding a column or creating a table. If you do, the constraint has no name
so you cannot drop the constraint without dropping the entire column. Instead, we recommend
you apply UNIQUE or ASSUMEUNIQUE by adding the constraint (see Section 4.6.3.3, “Adding
and Dropping Table Constraints”) or by adding an index with the constraint (see Section 4.6.4,
“Adding and Dropping Indexes”). Defining these constraints this way names the constraint, which
makes it easier to drop later if necessary.

25

Designing the Database Schema

• BEFORE column-name — Table columns cannot be reordered but the BEFORE clause allows
you to place a new column in a specific position with respect to the existing columns of the table.

Drop table columns. In our example we drop the AirportID column because we are replacing it with
the AirportCode column.

You cannot remove a column that has a reference to it. You have to remove all references to the
column first. References to a column may include:

• A stored procedure

• An index

• A view

4.6.3.3. Adding and Dropping Table Constraints
You cannot alter a table constraint but you can add and drop table constraints. If the table contains existing
data, you cannot add UNIQUE, ASSUMEUNIQUE, or PRIMARY KEY constraints.

$ sqlcmd
1> ALTER TABLE Airport ADD CONSTRAINT
2> uniquecode UNIQUE (Airportcode);
3> ALTER TABLE Airport ADD PRIMARY KEY (AirportCode);

The examples are described as follows:

Add named constraints UNIQUE or ASSUMEUNIQUE. In our example, we add the UNIQUE con-
straint to the AirportCode column. To drop a named constraint, include the name using the format
in the following example:

ALTER TABLE Airport DROP CONSTRAINT uniquecode;
Add unnamed constraint PRIMARY KEY. In our example, we add the PRIMARY KEY constraint
to the new AirportCode column.

When adding a table constraint, it must not conflict with the other columns of the table. For example,
only one primary key is allowed for a table so you cannot add the PRIMARY KEY constraint to
an additional column.

To drop the PRIMARY KEY, include the type of constraint using the following format:

ALTER TABLE Airport DROP PRIMARY KEY;

4.6.4. Adding and Dropping Indexes
Use CREATE INDEX to create an index on one or more columns of a table. Use DROP INDEX to remove
an index from the schema. The following example modifies the flight reservation schema by adding an
index to the Flight table to improve performance when looking up flights.

$ sqlcmd
1> CREATE INDEX flightTimeIdx ON Flight (departtime);

The CREATE INDEX statement explicitly creates an index. VoltDB creates an index implicitly when
you specify the table constraints UNIQUE, PRIMARY KEY, or ASSUMEUNIQUE. Use the ALTER
TABLE statement to add or drop these table constraints along with their associated indexes, as shown in
Section 4.6.3, “Modifying Tables”.

26

Designing the Database Schema

4.6.5. Modifying Partitioning for Tables and Stored Proce-
dures

Any changes to the schema must be carefully coordinated with the design and development of stored
procedures. This not only applies to column names, data types, and so on, but also to the partition plan.

How to partition tables and stored procedures using the PARTITION TABLE and CREATE PROCE-
DURE PARTITION ON statements is explained in Section 4.4, “Partitioning Database Tables” and Sec-
tion 5.3.3, “Partitioning Stored Procedures in the Schema”.

You can change the partitioning of stored procedures, and you can change a table to a replicated table or
repartition it on a different column. However, because of the intricate dependencies of partitioned tables
and stored procedures, this can only be done by dropping and re-adding the tables and procedures. Also,
you must pay close attention to the order in which objects are dropped and added.

The following DDL examples demonstrate some partitioning modifications to a table and stored proce-
dures.

• Un-partitioning a Stored Procedure

• Changing a Partitioned Table to a Replicated Table

• Re-partitioning a Table to a Different Column

• Updating a Stored Procedure

• Removing a Stored Procedure from the Database

The following DDL is added to the Flight reservation schema to help demonstrate the DDL partition
changes described in this section.

$ sqlcmd
1> PARTITION TABLE Airport ON COLUMN Name;
2> CREATE PROCEDURE FindAirportCodeByName
3> PARTITION ON TABLE Airport COLUMN Name
4> AS SELECT TOP 1 AirportCode FROM Airport WHERE Name=?;
5>
6> CREATE PROCEDURE FindAirportCodeByCity AS
7> SELECT TOP 1 AirportCode FROM Airport WHERE City=?;

The stored procedures are tested with the following sqlcmd directives:

$ sqlcmd
1> exec FindAirportCodeByName 'Logan Airport';
2> exec FindAirportCodeByCity 'Boston';

4.6.5.1. Un-partitioning a Stored Procedure
In the simplest case, you can un-partition a single-partitioned stored procedure by dropping and re-creating
that procedure without including the PARTITION ON clause. In this example we drop the single-parti-
tioned FindAirportCodeByName procedure and re-create it as multi-partitioned because it needs to search
all partitions to find an airport code by name.

$ sqlcmd
1> DROP PROCEDURE FindAirportCodeByName;
2> CREATE PROCEDURE FindAirportCodeByName AS

27

Designing the Database Schema

3> SELECT TOP 1 AirportCode FROM Airport WHERE Name=?;

4.6.5.2. Changing a Partitioned Table to a Replicated Table

Important

You cannot change the partitioning of a table that has data in it. To change a partitioned table to a
replicated one, you drop and re-create the table, which deletes any data that might be in the table.

Before executing the following steps, save the existing schema so you can easily re-create the table. The
VoltDB Management Center provides a view of the existing database schema DDL source, which you
can download and save.

$ sqlcmd
1> DROP PROCEDURE FindAirportCodeByName;
2> DROP PROCEDURE FindAirportCodeByCity;
3> DROP TABLE Airport IF EXISTS CASCADE;
4> CREATE TABLE AIRPORT (
5> AIRPORTCODE varchar(3) NOT NULL,
6> NAME varchar(25),
7> CITY varchar(25),
8> COUNTRY varchar(15) DEFAULT 'USA',
9> CONSTRAINT UNIQUECODE UNIQUE (AIRPORTCODE),
10> PRIMARY KEY (AIRPORTCODE)
11>);
12> CREATE PROCEDURE FindAirportCodeByName AS
13> SELECT TOP 1 AirportCode FROM Airport WHERE Name=?;
14> CREATE PROCEDURE FindAirportCodeByCity AS
15> SELECT TOP 1 AirportCode FROM Airport WHERE City=?;

The example is described as follows:

Drop all stored procedures that reference the table. You cannot drop a table if stored procedures
reference it.
Drop the table. Options you may include are:

• IF EXISTS — Use the IF EXISTS option to avoid command errors if the named table is already
removed.

• CASCADE — A table cannot be removed if it has index or view references. You can remove
the references explicitly first or use the CASCADE option to have VoltDB remove the references
along with the table.

Re-create the table. By default, a newly created table is a replicated table.
Re-create the stored procedures that access the table. If the stored procedure is implemented with
Java and changes are required, modify and reload the code before re-creating the stored procedures.
For more, see Section 5.3, “Installing Stored Procedures into the Database”.

4.6.5.3. Re-partitioning a Table to a Different Column

Important

You cannot change the partitioning of a table that has data in it. In order to re-partition a table
you have to drop and re-create the table, which deletes any data that might be in the table.

Follow these steps to re-partition a table:

28

Designing the Database Schema

1. Un-partition the table by following the instructions in Section 4.6.5.2, “Changing a Partitioned Table
to a Replicated Table”. The sub-steps are summarized as follows:

a. Drop all stored procedures that reference the table.

b. Drop the table.

c. Re-create the table.

d. Re-create the stored procedures that access the table.

2. Partition the table on the new column. In our example, it makes sense to partition the Airport table on
the AirportCode column, where each row must be unique and non null.

$ sqlcmd
1> PARTITION TABLE Airport ON COLUMN AirportCode;

3. Re-partition stored procedures that should be single-partitioned. See Section 4.6.5.4, “Updating a Stored
Procedure”.

4.6.5.4. Updating a Stored Procedure
This section describes how to update a stored procedure that has already been declared in the database with
the CREATE PROCEDURE statement. The steps to update a stored procedure are summarized as follows:

1. If the procedure is implemented in Java, update the procedure's code, recompile, and repackage the jar
file. For details, see Section 5.3, “Installing Stored Procedures into the Database”.

2. Ensure all tables and columns the procedure accesses are in the database schema.

3. Update the procedure in the database.

• If the procedure is implemented in Java, use the sqlcmd load classes directive to update the class
in the database. For example:

$ sqlcmd
1> load classes GetAirport.jar;

• If the procedure is implemented with SQL, use the CREATE PROCEDURE AS command to update
the SQL.

4. If required, re-partition the stored procedure. You partition procedures using the PARTITION ON
clause in the CREATE PROCEDURE statement. If you need to re-partition the procedure, either chang-
ing the partitioning column or switching from replicated to partitioned or vice versa, perform the fol-
lowing steps:

a. Use DROP PROCEDURE to remove the stored procedure.

b. Use CREATE PROCEDURE to re-declare the stored procedure, including the new partitioning
scheme.

In our example so far, we have three stored procedures that are adequate to access the Airport table, so
no additional procedures need to be partitioned:

• VoltDB automatically defined a default select stored procedure, which is partitioned on the Airport-
Code column. It takes an AirportCode as input and returns a table structure containing the Airport-
Code, Name, City, and Country.

29

Designing the Database Schema

• The FindAirportCodeByName stored procedure should remain multi-partitioned because it needs to
search in all partitions.

• The FindAirportCodeByCity stored procedure should also remain multi-partitioned because it needs
to search in all partitions.

4.6.5.5. Removing a Stored Procedure from the Database
If you've decided a stored procedure is no longer needed, use the following steps to remove it from the
database:

1. Drop the stored procedure from the database.

$ sqlcmd
1> DROP PROCEDURE GetAirport;

2. Remove the code from the database. If the procedure is implemented with Java, use the sqlcmd remove
classes directive to remove the procedure's class from the database.

2> remove classes myapp.procedures.GetAirport;

30

Chapter 5. Designing Stored Procedures
to Access the Database

As you can see from Chapter 4, Designing the Database Schema, defining the database schema and the
partitioning plan go hand in hand with understanding how the data is accessed. The two must be coordi-
nated to ensure optimum performance. Your stored procedures must use the same attribute for partitioning
as the table being accessed. Proper partitioning ensures that the table rows the stored procedure requests
are in the same partition in which the procedure executes, thereby ensuring maximum efficiency.

It doesn't matter whether you design the partitioning first or the data access first, as long as in the end
they work together. However, for the sake of example, we will use the schema and partitioning outlined
in Chapter 4, Designing the Database Schema when discussing how to design the data access.

5.1. How Stored Procedures Work
The key to designing the data access for VoltDB applications is that complex or performance sensitive
access to the database should be done through stored procedures. It is possible to perform ad hoc queries
on a VoltDB database. However, ad hoc queries do not benefit as fully from the performance optimizations
VoltDB specializes in and therefore should not be used for frequent, repetitive, or complex transactions.

Within the stored procedure, you access the database using standard SQL syntax, with statements such
as SELECT, UPDATE, INSERT, and DELETE. You can also include your own code within the stored
procedure to perform calculations on the returned values, to evaluate and execute conditional statements,
or to perform many other functions your applications may need.

5.1.1. VoltDB Stored Procedures are Transactional
In VoltDB, a stored procedure and a transaction are one and the same. Thus when you define a stored
procedure, VoltDB automatically provides ACID transaction guarantees for the stored procedure. This
means that stored procedures fully succeed or automatically roll back as a whole if an error occurs (atom-
ic). When stored procedures change the data, the database is guaranteed to remain consistent. Stored pro-
cedures execute and access the database completely isolated from each other, including when they execute
concurrently. Finally, stored procedure changes to the database are guaranteed to be saved and available
for subsequent database access (durable).

Because the transaction is defined in advance as a stored procedure, there is no need for your application
to manage transactions using specific transaction commands such as BEGIN, ROLLBACK, COMMIT
or END.1

5.1.2. VoltDB Stored Procedures are Deterministic
To ensure data consistency and durability, VoltDB procedures must be deterministic. That is, given specific
input values, the outcome of the procedure is consistent and predictable. Determinism is critical because it
allows the same stored procedure to run in multiple locations and give the same results. It is determinism
that makes it possible to run redundant copies of the database partitions without impacting performance.
(See Chapter 10, Availability for more information on redundancy and availability.)

1One side effect of transactions being precompiled as stored procedures is that external transaction management frameworks, such as Spring or
JEE, are not supported by VoltDB.

31

Designing Stored Proce-
dures to Access the Database

5.1.2.1. Use Sorted SQL Queries
One key to deterministic behavior is avoiding ambiguous SQL queries in stored procedures. Specifically,
performing unsorted queries can result in a non-deterministic outcome. VoltDB does not guarantee a con-
sistent order of results unless you use a tree index to scan the records in a specific order or you specify
an ORDER BY clause in the query itself. In the worst case, a limiting query, such as SELECT TOP 10
Emp_ID FROM Employees without an index or ORDER BY clause, can result in a different set of
rows being returned. However, even a simple query such as SELECT * from Employees can return
the same rows in a different order.

The problem is that even if a non-deterministic query is read-only, its results might be used as input to an
INSERT, UPDATE, or DELETE statement elsewhere in the stored procedure. For clusters with a K-safety
value greater than zero, this means unsorted query results returned by two copies of the same partition,
which may not match, could be used for separate update queries. If this happens, VoltDB detects the
mismatch, reports it as a potential source of data corruption, and shuts down all but one copy of each
partition.

By switching to this reduced K-safety mode, VoltDB avoids the threat of data corruption due to non-
determinism. However, it also means that the cluster is no longer K-safe; there is only one copy of each
partition and any node failure will crash the database. So, although the database continues to operate after
a mismatch, it is critically important you determine the cause of the non-deterministic behavior, correct
the affected procedures, take a final snapshot, and restart the database to restore full K-safety.

The risk of mismatched results at run time is why VoltDB issues a warning for any non-deterministic
queries in read-write stored procedures when you load the schema or classes. This is also why use of an
ORDER BY clause or a tree index in the WHERE constraint is strongly recommended for all SELECT
statements.

5.1.2.2. Avoid Introducing Non-deterministic Values from External Func-
tions

Another key to deterministic behavior is avoiding calls within your stored procedures to external functions
or procedures that can introduce arbitrary data. External functions include file and network I/O (which
should be avoided any way because they can impact latency), as well as many common system-specific
procedures such as Date and Time.

However, this limitation does not mean you cannot use arbitrary data in VoltDB stored procedures. It just
means you must either generate the arbitrary data before the stored procedure call and pass it in as input
parameters or generate it in a deterministic way. For example, if you need to load a set of records from a
file, you can open the file in your application and pass each row of data to a stored procedure that loads the
data into the VoltDB database. This is the best method when retrieving arbitrary data from sources (such
as files or network resources) that would impact latency.

The other alternative is to use data that can be generated deterministically. For two of the most common
cases, timestamps and random values, VoltDB provides methods for this:

• VoltProcedure.getTransactionTime() returns a timestamp that can be used in place of the
Java Date or Time classes.

• VoltProcedure.getSeededRandomNumberGenerator() returns a pseudo random number
that can be used in place of the Java Util.Random class.

These procedures use the current transaction ID to generate a deterministic value for the timestamp and
the random number. See the VoltDB Java Stored Procedure API for more.

32

http://docs.voltdb.com/javadoc/procedure-api/

Designing Stored Proce-
dures to Access the Database

5.1.2.3. Stored Procedures have no Persistence
Finally, even seemingly harmless programming techniques, such as static variables can introduce nonde-
terministic behavior. VoltDB provides no guarantees concerning the state of the stored procedure class
instance across invocations. Any information that you want to persist across invocations must either be
stored in the database itself or passed into the stored procedure as a parameter.

5.2. The Anatomy of a VoltDB Stored Procedure
You can write VoltDB stored procedures as Java classes. The following code sample illustrates the basic
structure of a VoltDB java stored procedure.

import org.voltdb.*;

public class Procedure-name extends VoltProcedure {

 // Declare SQL statements ...

 public datatype run (arguments) throws VoltAbortException {

 // Body of the Stored Procedure ...

 }
}

The key points to remember are to:

1. Import the VoltDB classes from org.voltdb.*

2. Include the class definition, which extends the abstract class VoltProcedure

3. Define the method run(), which performs the SQL queries and processing that make up the transaction

It is important to understand the details of how to design and develop stored procedures for your application
as described in the following sections. However, for simple data access, the following techniques may
suffice for some of your stored procedures:

• VoltDB defines default stored procedures to perform the most common table access such as inserting,
selecting, updating, and deleting records based on a specific key value. See Section 7.1, “Using Default
Procedures” for more.

• You can create stored procedures without writing any Java code by using the DDL statement CREATE
PROCEDURE AS, where you define a single SQL query as a stored procedure. See Section 7.2, “Short-
cut for Defining Simple Stored Procedures”.

The following sections describe the components of a stored procedure in more detail.

5.2.1. The Structure of the Stored Procedure
The stored procedures themselves are written as Java classes, each procedure being a separate class. Ex-
ample 5.1, “Components of a VoltDB Java Stored Procedure” shows the stored procedure that looks up a
flight to see if there are any available seats. The callouts identify the key components of a VoltDB stored
procedure.

33

Designing Stored Proce-
dures to Access the Database

Example 5.1. Components of a VoltDB Java Stored Procedure

package fadvisor.procedures;

import org.voltdb.*;

public class HowManySeats extends VoltProcedure {

 public final SQLStmt GetSeatCount = new SQLStmt(
 "SELECT NumberOfSeats, COUNT(ReserveID) " +
 "FROM Flight AS F, Reservation AS R " +
 "WHERE F.FlightID=R.FlightID AND R.FlightID=? " +
 "GROUP BY NumberOfSeats;");

 public long run(int flightid)
 throws VoltAbortException {

 long numofseats;
 long seatsinuse;
 VoltTable[] queryresults;

 voltQueueSQL(GetSeatCount, flightid);

 queryresults = voltExecuteSQL();

 VoltTable result = queryresults[0];
 if (result.getRowCount() < 1) { return -1; }
 numofseats = result.fetchRow(0).getLong(0);
 seatsinuse = result.fetchRow(0).getLong(1);
 numofseats = numofseats - seatsinuse;
 return numofseats; // Return available seats
 }
}

Stored procedures are written as Java classes. To access the VoltDB classes and methods, be sure
to import org.voltdb.*.

Although VoltDB stored procedures must be written in Java and the primary client interface is Java
(as described in Chapter 6, Designing VoltDB Client Applications), it is possible to write client appli-
cations using other programming languages. See Chapter 8, Using VoltDB with Other Programming
Languages for more information on alternate client interfaces.
Each stored procedure extends the generic class VoltProcedure.
Within the stored procedure you access the database using ANSI-standard SQL statements. To do
this, you declare the statement as a special Java type called SQLStmt, which must be declared as
final.

In the SQL statement, you insert a question mark (?) everywhere you want to replace a value by a
variable at runtime. In this example, the query GetSeatCount has one input variable, FlightID. (See
Appendix B, Supported SQL Statements for details on the supported SQL statements.)

To ensure the stored procedure code is single partitioned, queries must filter on the partitioning
column for a single value (using equal, =). Filtering for a range of values will not be single-partitioned
because the code will have to look up in all the partitions to ensure the entire range is found.

34

Designing Stored Proce-
dures to Access the Database

The bulk of the stored procedure is the run() method, whose input specifies the input arguments for
the stored procedure. See Section 5.2.2, “Passing Arguments to a Stored Procedure” next for details.

Note that the run() method throws the exception VoltAbortException if any exceptions are
not caught. VoltAbortException causes the stored procedure transaction to rollback. (See Sec-
tion 5.2.6, “Rolling Back a Transaction” for more information about rollback.)
To perform database queries, you queue SQL statements, specifying both the SQL statement and
the variables it requires, using the voltQueueSQL() method. More details are described in Sec-
tion 5.2.3, “Creating and Executing SQL Queries in Stored Procedures”.
After you queue all of the SQL statements you want to perform, use voltExecuteSQL() to
execute the statements in the queue.
Each statement returns its results in a VoltTable structure. Because the queue can contain multiple
queries, voltExecuteSQL() returns an array of VoltTable structures, one array element for
each query. More details are described in Section 5.2.4, “Interpreting the Results of SQL Queries”.
In addition to queueing and executing queries, stored procedures can contain custom code. However,
you should limit the amount of custom code in stored procedures to only that processing that is
necessary to complete the transaction, so as not to delay subsequent transactions.
Stored procedures can return a long integer, a VoltTable structure, or an array of VoltTable
structures. For more details, see Section 5.2.5, “Returning Results from a Stored Procedure”.

5.2.2. Passing Arguments to a Stored Procedure
You specify the number and type of the arguments that the stored procedure accepts in the run() method.
For example, the following is the declaration of the run() method for an Initialize() stored pro-
cedure from the voter sample application. This procedure accepts two arguments: an integer and a string.

public long run(int maxContestants, String contestants) { . . .

VoltDB stored procedures can accept parameters of any of the following Java and VoltDB datatypes:

Integer types byte, short, int, long, Byte, Short, Integer, and Long

Floating point types float, double, Float, Double

Fixed decimal types BigDecimal

String and binary types String and byte[]

Timestamp types org.voltdb.types.TimestampType
java.util.Date, java.sql.Date, java.sql.Timestamp

VoltDB type VoltTable

The arguments can be scalar objects or arrays of any of the preceding types. For example, the following
run() method defines three arguments: a scalar long and two arrays, one array of timestamps and one
array of Strings:

import org.voltdb.*;
public class LogMessagesByEvent extends VoltProcedure {

 public long run (
 long eventType,
 org.voltdb.types.TimestampType[] eventTimeStamps,
 String[] eventMessages
) throws VoltAbortException {

The calling client application can use any of the preceding datatypes when invoking the callProce-
dure() method and, where necessary, VoltDB makes the appropriate type conversions (for example,

35

Designing Stored Proce-
dures to Access the Database

from int to String or from String to Double). See Section 6.2, “Invoking Stored Procedures” for more on
using the callProcedure() method.

5.2.3. Creating and Executing SQL Queries in Stored Proce-
dures

The main function of the stored procedure is to perform database queries. In VoltDB this is done in two
steps:

1. Queue the queries using the voltQueueSQL() function

2. Execute the queue and return the results using the voltExecuteSQL() function

Queuing SQL Statements The first argument to voltQueueSQL() is the SQL statement to be executed.
The SQL statement is declared using a special class, SQLStmt, with question marks as placeholders for
values that will be inserted at runtime.

The SQL statements must be declared as final and initialized at compile time, either when declared or
within a constructor or static initializer. This allows the VoltDB planner to determine the optimal execution
plan for each statement when the procedure is loaded and declared in the schema. To allow for code reuse,
SQLStmt objects can be inherited from parent classes or constructed from other compile-time constants.

The remaining arguments to voltQueueSQL() are the actual values that VoltDB inserts into the place-
holders. For example, if you want to perform a SELECT of a table using two columns in the WHERE
clause, your SQL statement might look something like this:

SELECT CustomerID FROM Customer WHERE FirstName=? AND LastName=?;

At runtime, you want the questions marks replaced by values passed in as arguments from the calling
application. So the actual voltQueueSQL() invocation might look like this:

public final SQLStmt getcustid = new SQLStmt(
 "SELECT CustomerID FROM Customer " +
 "WHERE FirstName=? AND LastName=?;");

 ...

voltQueueSQL(getcustid, firstnm, lastnm);

Your stored procedure can call voltQueueSQL() more than once to queue up multiple SQL statements
before they are executed. Queuing multiple SQL statements improves performance when the SQL queries
execute because it minimizes the amount of network traffic within the cluster. Once you have queued all
of the SQL statements you want to execute together, you then process the queue using the voltExe-
cuteSQL() function.

VoltTable[] queryresults = voltExecuteSQL();

Cycles of Queue and Execute
Your procedure can queue and execute SQL statements in as many cycles as necessary to complete the
transaction. For example, if you want to make a flight reservation, you may need to access the database
and verify that the flight exists before creating the reservation in the database. One way to do this is to
look up the flight, verify that a valid row was returned, then insert the reservation, like so:

36

Designing Stored Proce-
dures to Access the Database

Example 5.2. Cycles of Queue and Execute in a Stored Procedure

final String getflight = "SELECT FlightID FROM Flight WHERE FlightID=?;";
final String makeres = "INSERT INTO Reservation (?,?,?,?,?);";

public final SQLStmt getflightsql = new SQLStmt(getflight);
public final SQLStmt makeressql = new SQLStmt(makeres);

public VoltTable[] run(int reservenum, int flightnum, int customernum)
 throws VoltAbortException {

 // Verify flight ID
 voltQueueSQL(getflightsql, flightnum);
 VoltTable[] queryresults = voltExecuteSQL();

 // If there is no matching record, rollback
 if (queryresults[0].getRowCount() == 0) throw new VoltAbortException();

 // Make reservation
 voltQueueSQL(makeressql, reservenum, flightnum, customernum,0,0);
 return voltExecuteSQL();
}

This stored procedure code to make a reservation is described as follows:

Define the SQL statements to use. The getflight string contains an SQL statement that verifies the
flight ID, and the makeres string contains the SQL statement that makes the reservation.
Define the run() method for the stored procedure. This stored procedure takes as input arguments
the reservation number, the flight number, and the customer number.
Queue and execute an SQL statement. In this example the voltExecuteSQL() method processes
the single getflightsql() function, which executes the SQL statement specified in the getflight
string.
Process results. If the flight is not available, the exception VoltAbortException aborts the
stored procedure and rolls back the transaction.
The second SQL statement to make the reservation is then queued and executed. The voltEx-
ecuteSQL() method processes the single makeressql() function, which executes the SQL
statement specified in the makeres string.

5.2.4. Interpreting the Results of SQL Queries
With the voltExecuteSQL() call, the results of all the queued SQL statements are returned in an array
of VoltTable structures. The array contains one VoltTable for each SQL statement in the queue.
The VoltTable structures are returned in the same order as the respective SQL statements in the queue.

The VoltTable itself consists of rows, where each row contains columns, and each column has the
column name and a value of a fixed datatype. The number of rows and columns per row depends on the
specific query.

Figure 5.1. Array of VoltTable Structures

37

Designing Stored Proce-
dures to Access the Database

For example, if you queue two SQL SELECT statements, one looking for the destination of a specific
flight and the second looking up the ReserveID and Customer name (first and last) of reservations for that
flight, the code for the stored procedure might look like the following:

public final SQLStmt getdestsql = new SQLStmt(
 "SELECT Destination FROM Flight WHERE FlightID=?;");
public final SQLStmt getressql = new SQLStmt(
 "SELECT r.ReserveID, c.FirstName, c.LastName " +
 "FROM Reservation AS r, Customer AS c " +
 "WHERE r.FlightID=? AND r.CustomerID=c.CustomerID;");

 ...

 voltQueueSQL(getdestsql,flightnum);
 voltQueueSQL(getressql,flightnum);
 VoltTable[] results = voltExecuteSQL();

The array returned by voltExecuteSQL() will have two elements:

• The first array element is a VoltTable with one row (FlightID is defined as unique) containing one
column, because the SELECT statement returns only one value.

• The second array element is a VoltTable with as many rows as there are reservations for the specific
flight, each row containing three columns: ReserveID, FirstName, and LastName.

Assuming the stored procedure call input was a FlightID value of 134, the data returned for the second
array element might be represented as follows:

Figure 5.2. One VoltTable Structure is returned for each Queued SQL Statement

VoltDB provides a set of convenience methods for accessing the contents of the VoltTable array. Ta-
ble 5.1, “Methods of the VoltTable Classes” lists some of the most common methods. (See also Java Stored
Procedure API.)

38

http://docs.voltdb.com/javadoc/procedure-api/
http://docs.voltdb.com/javadoc/procedure-api/

Designing Stored Proce-
dures to Access the Database

Table 5.1. Methods of the VoltTable Classes

Method Description

int fetchRow(int index) Returns an instance of the VoltTableRow class for
the row specified by index.

int getRowCount() Returns the number of rows in the table.

int getColumnCount() Returns the number of columns for each row in the
table.

Type getColumnType(int index) Returns the datatype of the column at the specified
index. Type is an enumerated type with the follow-
ing possible values:

BIGINT
DECIMAL
FLOAT
GEOGRAPHY
GEOGRAPHY_POINT
INTEGER
INVALID
NULL
NUMERIC
SMALLINT
STRING
TIMESTAMP
TINYINT
VARBINARY
VOLTTABLE

String getColumnName(int index) Returns the name of the column at the specified in-
dex.

double getDouble(int index)
long getLong(int index)
String getString(int index)
BigDecimal getDecimalAsBigDecimal(int index)
double getDecimalAsDouble(int index)
Date getTimestampAsTimestamp(int index)
long getTimestampAsLong(int index)
byte[] getVarbinary(int index)

Methods of VoltTable.Row

Return the value of the column at the specified index
in the appropriate datatype. Because the datatype of
the columns vary depending on the SQL query, there
is no generic method for returning the value. You
must specify what datatype to use when fetching the
value.

It is also possible to retrieve the column values by name. You can invoke any of the getDatatype() methods
and pass a string argument specifying the name of the column, rather than the numeric index. Accessing
the columns by name can make code easier to read and less susceptible to errors due to changes in the
SQL schema (such as changing the order of the columns). On the other hand, accessing column values by
numeric index is potentially more efficient under heavy load conditions.

Example 5.3, “Displaying the Contents of VoltTable Arrays” shows a generic routine for “walking”
through the return results of a stored procedure. In this example, the contents of the VoltTable array
are written to standard output.

39

Designing Stored Proce-
dures to Access the Database

Example 5.3. Displaying the Contents of VoltTable Arrays

public void displayResults(VoltTable[] results) {
 int table = 1;
 for (VoltTable result : results) {
 System.out.printf("*** Table %d ***\n",table++);
 displayTable(result);
 }
}

public void displayTable(VoltTable t) {

 final int colCount = t.getColumnCount();
 int rowCount = 1;
 t.resetRowPosition();
 while (t.advanceRow()) {
 System.out.printf("--- Row %d ---\n",rowCount++);

 for (int col=0; col<colCount; col++) {
 System.out.printf("%s: ",t.getColumnName(col));
 switch(t.getColumnType(col)) {
 case TINYINT: case SMALLINT: case BIGINT: case INTEGER:
 System.out.printf("%d\n", t.getLong(col));
 break;
 case STRING:
 System.out.printf("%s\n", t.getString(col));
 break;
 case DECIMAL:
 System.out.printf("%f\n", t.getDecimalAsBigDecimal(col));
 break;
 case FLOAT:
 System.out.printf("%f\n", t.getDouble(col));
 break;
 }
 }
 }
}

For further details on interpreting the VoltTable structure, see the Java documentation that is provided
online in the doc/ subfolder for your VoltDB installation.

5.2.5. Returning Results from a Stored Procedure
Stored procedures can return the following types:

• Long integer

• Single VoltTable

• Array of VoltTable structures

You can return all of the query results by returning the VoltTable array, or you can return a scalar value
that is the logical result of the transaction. (For example, the stored procedure in Example 5.1, “Compo-
nents of a VoltDB Java Stored Procedure” returns a long integer representing the number of remaining
seats available in the flight.)

40

Designing Stored Proce-
dures to Access the Database

Whatever value the stored procedure returns, make sure the run() method includes the appropriate
datatype in its definition. For example, the following two definitions specify different return datatypes;
the first returns a long integer and the second returns the results of a SQL query as a VoltTable array.

public long run(int flightid)

public VoltTable[] run (String lastname, String firstname)

Note that you can interpret the results of SQL queries either in the stored procedure or in the client appli-
cation. However, for performance reasons, it is best to limit the amount of additional processing done by
the stored procedure to ensure it executes quickly and frees the queue for the next stored procedure. So
unless the processing is necessary for subsequent SQL queries, it is usually best to return the query results
(in other words, the VoltTable array) directly to the calling application and interpret them there.

5.2.6. Rolling Back a Transaction
Finally, if a problem arises while a stored procedure is executing, whether the problem is anticipated or
unexpected, it is important that the transaction rolls back. Rollback means that any changes made during
the transaction are undone and the database is left in the same state it was in before the transaction started.

VoltDB is a fully transactional database, which means that if a transaction (stored procedure) fails, the
transaction is automatically rolled back and the appropriate exception is returned to the calling application.
Exceptions that can cause a rollback include the following:

• Runtime errors in the stored procedure code, such as division by zero or datatype overflow.

• Violating database constraints in SQL queries, such as inserting a duplicate value into a column defined
as unique.

The atomicity of the stored procedure depends on VoltDB being able to roll back incomplete database
changes. VoltDB relies on Java exception handling outside the stored procedure to perform the roll back.
Therefore, you should not attempt to alter any exceptions thrown by the voltExecuteSql method. If your
procedure code does catch exceptions thrown as a result of executing SQL statements, make sure that the
exception handler re-throws the exception to allow VoltDB to perform the necessary roll back activities
before the stored procedure returns to the calling program.

On the other hand, there may be situations where an exception occurs in the program logic. The issue might
not be one that is caught by Java or VoltDB, but still there is no practical way for the transaction logic to
complete. In these situations, you can force a rollback by explicitly throwing the VoltAbortExcep-
tion exception. For example, if a flight ID does not exist, you do not want to create a reservation so the
stored procedure can force a rollback like so:

if (!flightid) { throw new VoltAbortException(); }

See Section 7.3, “Verifying Expected Query Results” for another way to roll back procedures when queries
do not meet necessary conditions.

5.3. Installing Stored Procedures into the Database
When your stored procedure code is ready, you need to get the procedures into the database and ready to
use. You first compile the procedure code, create a jar file, and load the resulting jar file into the database.
Then you need to declare in the schema which procedures are stored procedures. Finally, depending on
which table each stored procedure accesses, you need to partition each procedure to match the table par-
titioning. These processes are covered in the following sections:

• Compiling, Packaging, and Loading Stored Procedures

41

Designing Stored Proce-
dures to Access the Database

• Declaring Stored Procedures in the Schema

• Partitioning Stored Procedures in the Schema

These sections show how to use DDL to declare and partition stored procedures in the database schema.
If you find you need to modify the schema, see Section 4.6, “Modifying the Schema”.

5.3.1. Compiling, Packaging, and Loading Stored Procedures
The VoltDB stored procedures are written as Java classes, so you compile them using the Java compiler.
Anytime you update your stored procedure code, remember to recompile, package, and reload it into the
database using the following steps:

$ javac -classpath "./:/opt/voltdb/voltdb/*" \
 -d ./obj \
 *.java
$ jar cvf myproc.jar -C obj .
$ sqlcmd
1> load classes myproc.jar;
2> show classes;

The steps are described as follows:

Use the javac command to compile the procedure Java code.

You include libraries by using the -classpath argument on the command line or by defining the
environment variable CLASSPATH. You must include the VoltDB libraries in the classpath so Java
can resolve references to the VoltDB classes and methods. This example assumes that the VoltDB
software has been installed in the folder /opt/voltdb. If you installed VoltDB in a different
directory, you need to include your installation path. Also, if your client application depends on other
libraries, they need to be included in the classpath as well.

Use the -d flag to specify an output directory in which to create the resulting class files.
Use the jar command to package your Java classes into a Java archive, or JAR file.

The JAR file must have the same Java package structure as the classes in the JAR file. For example,
if a class has a structure such as myapp.procedures.ProcedureFoo, then the JAR file has
to have myapp/procedures/ProcedureFoo.class as the class structure for this file.

The JAR file must include any inner classes or other dependent classes used by the stored procedures.
It can also be used to load any resource files, such as XML or other data files, that the procedures
need. Any additional resources in the JAR file are loaded into the server as long as they are in a
subfolder. (Resources in the root directory of the JAR file are ignored.)
Use the sqlcmd load classes directive to load the stored procedure classes into the database.

You can use the show classes command to display information about the classes installed in the
cluster.

Before a stored procedure can be called by a client application, you need to declare it in the schema, which
is described next.

5.3.2. Declaring Stored Procedures in the Schema
To make your stored procedures accessible in the database, you must declare them in the schema using
the CREATE PROCEDURE statement. Be sure to identify all of your stored procedures or they will not

42

Designing Stored Proce-
dures to Access the Database

be available to the client applications at runtime. Also, before you declare a procedure, ensure the tables
and columns the procedure accesses are in the schema.

The following DDL statements declare five stored procedures, identifying them by their class name:

$ sqlcmd
1> CREATE PROCEDURE FROM CLASS fadvisor.procedures.LookupFlight;
2> CREATE PROCEDURE FROM CLASS fadvisor.procedures.HowManySeats;
3> CREATE PROCEDURE FROM CLASS fadvisor.procedures.MakeReservation;
4> CREATE PROCEDURE FROM CLASS fadvisor.procedures.CancelReservation;
5> CREATE PROCEDURE FROM CLASS fadvisor.procedures.RemoveFlight;

For some situations, you can create stored procedures directly in the schema using SQL instead of loading
Java code. See how to use the CREATE PROCEDURE AS statement in Section 7.2, “Shortcut for Defining
Simple Stored Procedures”.

For more about modifying a schema with DDL, see Section 4.6, “Modifying the Schema”.

5.3.3. Partitioning Stored Procedures in the Schema
We want the most frequently used stored procedures to be single-partitioned. This means that the procedure
executes in the one partition that also has the data it needs. Single-partitioned stored procedures do not
have the overhead of processing across multiple partitions and servers, wasting time searching through the
data of the entire table. To ensure single-partitioned efficiency, the parameter the stored procedure uses to
identify its required data must be the same as the column on which the table rows are partitioned.

Remember that in our sample application the RESERVATION table is partitioned on FLIGHTID. Let's
say you create a stored procedure, MakeReservation(), with two arguments, flight_id and customer_id.
The following figure shows how the stored procedure will automatically execute in the partition that has
the requested row.

43

Designing Stored Proce-
dures to Access the Database

Figure 5.3. Stored Procedures Execute in the Appropriate Partition Based on the
Partitioned Parameter Value

If you do not declare a procedure as single-partitioned, it is assumed to be multi-partitioned by default.
The advantage of multi-partitioned stored procedures is that they have full access to all of the data in
the database, across all partitions. However, the real focus of VoltDB, and the way to achieve maximum
throughput for your application, is through the use of single-partitioned stored procedures.

5.3.3.1. How to Declare Single-Partition Procedures
Before declaring a single-partitioned procedure, ensure the following prerequisites:

1. The table that the stored procedure accesses has been partitioned in the schema. See Section 4.4, “Par-
titioning Database Tables”.

2. If the procedure is implemented with Java code, it is loaded into the database. See Section 5.3.1, “Com-
piling, Packaging, and Loading Stored Procedures”.

When you declare a stored procedure as single-partitioned, you must specify both the associated table and
the column on which it is partitioned using the PARTITION ON clause in the CREATE PROCEDURE
statement. The following example uses the RESERVATION table and the FLIGHTID column as the par-
titioning column. For example:

CREATE PROCEDURE
 PARTITION ON
 TABLE Reservation COLUMN FlightID
 FROM CLASS fadvisor.procedures.MakeReservation;

The PARTITION ON clause assumes that the partitioning column value is also the first parameter to the
stored procedure. Suppose you wish to partition a stored procedure on the third parameter such as the

44

Designing Stored Proce-
dures to Access the Database

procedure GetCustomerDetails(), where the third parameter is a customer_id. You must specify
the partitioning parameter using the PARAMETER clause and an index for the parameter position. The
index is zero-based so the third parameter would be "2" and the CREATE PROCEDURE statement would
be as follows:

CREATE PROCEDURE
 PARTITION ON
 TABLE Customer COLUMN CustomerID PARAMETER 2
 FROM CLASS fadvisor.procedures. GetCustomerDetails;

5.3.3.2. Queries in Single-Partitioned Stored Procedures
Single-partitioned stored procedures are special because they operate independently of other partitions,
which is why they are so fast. At the same time, single-partitioned stored procedures operate on only a
subset of the entire data, that is, only the data within the specified partition.

Caution

It is the application developer's responsibility to ensure that the queries in a single-partitioned
stored procedure are truly single-partitioned. VoltDB does not warn you about SELECT or
DELETE statements that might return incomplete results. For example, if your single-partitioned
procedure attempts to operate on a range of values for the partitioning column, the range is in-
complete and includes only a subset of the table data that is in the current partition.

VoltDB does generate a runtime error if you attempt to INSERT a row that does not belong in
the current partition.

After you partition a procedure, your stored procedure can operate on only those records in the partitioned
table that are identified by the partitioning column, in this example the RESERVATION table identified
by a FLIGHTID. Your stored procedure can access records in replicated tables because the entire table is
available to every partition. However, for other partitioned tables, the stored procedure can only operate on
those records if both tables are partitioned on the same attribute. In this example that would be FLIGHTID.

In other words, the following rules apply:

• Any SELECT, UPDATE, or DELETE queries must use the constraint, WHERE identifier=?

The question mark is replaced at runtime by the input value that identifies the row of data in the table.
In our example, queries on the RESERVATION table must use the constraint, WHERE FLIGHTID=?

• SELECT statements can join the partitioned table to replicated tables, as long as the preceding WHERE
constraint is also applied.

• SELECT statements can join the partitioned table to other partitioned tables as long as the following
are true:

• The two tables are partitioned on the same attribute or column (in our example, FLIGHTID).

• The tables are joined on the shared partitioning column.

• The following WHERE constraint is also used: WHERE partitioned-table. identifi-
er=? In this example, WHERE RESERVATION.FLIGHTID=?

For example, the RESERVATION table can be joined with the FLIGHT table (which is replicated). How-
ever, the RESERVATION table cannot be joined with the CUSTOMER table in a single-partitioned stored

45

Designing Stored Proce-
dures to Access the Database

procedure because the two tables use different partitioning columns. (CUSTOMER is partitioned on the
CUSTOMERID column.)

The following are examples of invalid SQL queries for a single-partitioned stored procedure partitioned
on FLIGHTID:

• INVALID: SELECT * FROM reservation WHERE reservationid=?

The RESERVATION table is being constrained by a column (RESERVATIONID) which is not the
partitioning column.

• INVALID: SELECT c.lastname FROM reservation AS r, customer AS c WHERE
r.flightid=? AND c.customerid = r.customerid

The correct partitioning column is being used in the WHERE clause, but the tables are being joined on
a different column. As a result, not all CUSTOMER rows are available to the stored procedure since
the CUSTOMER table is partitioned on a different column than RESERVATION.

46

Chapter 6. Designing VoltDB Client
Applicaons

After you design and partition your database schema (Chapter 4, Designing the Database Schema), and
after you design the necessary stored procedures (Chapter 5, Designing Stored Procedures to Access the
Database), you are ready to write the client application logic. The client code contains all the business-spe-
cific logic required for the application, including business rule validation and keeping track of constraints
such as proper data ranges for arguments entered in stored procedure calls.

The three steps to using VoltDB from a client application are:

1. Creating a connection to the database

2. Calling stored procedures

3. Closing the client connection

The following sections explain how to perform these functions using the standard VoltDB Java client
interface. (See VoltDB Java Client API.) The VoltDB Java Client is a thread-safe class library that provides
runtime access to VoltDB databases and functions.

It is possible to call VoltDB stored procedures from programming languages other than Java. However,
reading this chapter is still recommended to understand the process for invoking and interpreting the results
of a VoltDB stored procedure. See Chapter 8, Using VoltDB with Other Programming Languages for more
information about using VoltDB from client applications written in other languages.

6.1. Connecting to the VoltDB Database
The first task for the calling program is to create a connection to the VoltDB database. You do this with
the following steps:

org.voltdb.client.Client client = null;
ClientConfig config = null;
try {
 config = new ClientConfig("advent","xyzzy");

 client = ClientFactory.createClient(config);

 client.createConnection("myserver.xyz.net");
} catch (java.io.IOException e) {
 e.printStackTrace();
 System.exit(-1);
}

Define the configuration for your connections. In its simplest form, the ClientConfig class spec-
ifies the username and password to use. It is not absolutely necessary to create a client configuration
object. For example, if security is not enabled (and therefore a username and password are not need-
ed) a configuration object is not required. But it is a good practice to define the client configuration
to ensure the same credentials are used for all connections against a single client. It is also possible
to define additional characteristics of the client connections as part of the configuration, such as the
timeout period for procedure invocations or a status listener. (See Section 6.5, “Handling Errors”.)
Create an instance of the VoltDB Client class.

47

http://docs.voltdb.com/javadoc/java-client-api/

Designing VoltDB Client Applications

Call the createConnection() method. After you instantiate your client object, the argument
to createConnection() specifies the database node to connect to. You can specify the server
node as a hostname (as in the preceding example) or as an IP address. You can also add a second
argument if you want to connect to a port other than the default. For example, the following cre-
ateConnection() call attempts to connect to the admin port, 21211:

client.createConnection("myserver.xyz.net",21211);

If security is enabled and the username and password in the ClientConfig() call do not match a
user defined in the configuration file, the call to createConnection() will throw an exception.
See Chapter 12, Security for more information about the use of security with VoltDB databases.

When you are done with the connection, you should make sure your application calls the close() method
to clean up any memory allocated for the connection. See Section 6.4, “Closing the Connection”.

6.1.1. Connecting to Multiple Servers
You can create the connection to any of the nodes in the database cluster and your stored procedure will
be routed appropriately. In fact, you can create connections to multiple nodes on the server and your
subsequent requests will be distributed to the various connections. For example, the following Java code
creates the client object and then connects to all three nodes of the cluster. In this case, security is not
enabled so no client configuration is needed:

try {
 client = ClientFactory.createClient();
 client.createConnection("server1.xyz.net");
 client.createConnection("server2.xyz.net");
 client.createConnection("server3.xyz.net");
} catch (java.io.IOException e) {
 e.printStackTrace();
 System.exit(-1);
}

Creating multiple connections has three major benefits:

• Multiple connections distribute the stored procedure requests around the cluster, avoiding a bottleneck
where all requests are queued through a single host. This is particularly important when using asynchro-
nous procedure calls or multiple clients.

• For Java applications, the VoltDB Java client library uses client affinity. That is, the client knows which
server to send each request to based on the partitioning, thereby eliminating unnecessary network hops.

• Finally, if a server fails for any reason, when using K-safety the client can continue to submit requests
through connections to the remaining nodes. This avoids a single point of failure between client and
database cluster. See Chapter 10, Availability for more.

6.1.2. Using the Auto-Connecting Client
An easier way to create connections to all of the database servers is to use the "smart" or topology-aware
client. By setting the Java client to be aware of the cluster topology, you only need to connect to one server
and the client automatically connects to all of the servers in the cluster.

An additional advantage of the smart client is that it will automatically reconnect whenever the topology
changes. That is, if a server fails and then rejoins the cluster, or new nodes are added to the cluster, the
client will automatically create connections to the newly available servers.

48

Designing VoltDB Client Applications

You enable auto-connecting when you initialize the client object by setting the configuration option before
creating the client object. For example:

org.voltdb.client.Client client = null;
ClientConfig config = new ClientConfig("","");
config.setTopologyChangeAware(true);
 try {
 client = ClientFactory.createClient(config);
 client.createConnection("server1.xyz.net");
 . . .

When setTopologyChangeAware() is set to true, the client library will automatically connect to all
servers in the cluster and adjust its connections any time the cluster topology changes.

6.2. Invoking Stored Procedures
After your client creates the connection to the database, it is ready to call the stored procedures. You invoke
a stored procedure using the callProcedure() method, passing the procedure name and variables as
arguments. For example:

VoltTable[] results;

try { results = client.callProcedure("LookupFlight",
 origin,
 dest,
 departtime).getResults();
} catch (Exception e) {
 e.printStackTrace();
 System.exit(-1);
}

The callProcedure() method takes the procedure name and the procedure's variables as argu-
ments. The LookupFlight() stored procedure requires three variables: the originating airport,
the destination, and the departure time.
Once a synchronous call completes, you can evaluate the results of the stored procedure. The call-
Procedure() method returns a ClientResponse object, which includes information about the
success or failure of the stored procedure. To retrieve the actual return values you use the getRe-
sults() method. See Section 5.2.4, “Interpreting the Results of SQL Queries” for more informa-
tion about interpreting the results of VoltDB stored procedures.
Note that since callProcedure() can throw an exception (such as VoltAbortException)
it is a good practice to perform error handling and catch known exceptions.

6.3. Invoking Stored Procedures Asynchronously
Calling stored procedures synchronously simplifies the program logic because your client application waits
for the procedure to complete before continuing. However, for high performance applications looking to
maximize throughput, it is better to queue stored procedure invocations asynchronously.

Asynchronous Invocation
To invoke stored procedures asynchronously, use the callProcedure() method with an additional
first argument, a callback that will be notified when the procedure completes (or an error occurs). For ex-
ample, to invoke a NewCustomer() stored procedure asynchronously, the call to callProcedure()
might look like the following:

49

Designing VoltDB Client Applications

client.callProcedure(new MyCallback(),
 "NewCustomer",
 firstname,
 lastname,
 custID};

The following are other important points to note when making asynchronous invocations of stored pro-
cedures:

• Asynchronous calls to callProcedure() return control to the calling application as soon as the
procedure call is queued.

• If the database server queue is full, callProcedure() will block until it is able to queue the proce-
dure call. This is a condition known as backpressure. This situation does not normally happen unless the
database cluster is not scaled sufficiently for the workload or there are abnormal spikes in the workload.
See Section 6.5.3, “Writing a Status Listener to Interpret Other Errors” for more information.

• Once the procedure is queued, any subsequent errors (such as an exception in the stored procedure itself
or loss of connection to the database) are returned as error conditions to the callback procedure.

Callback Implementation
The callback procedure (MyCallback() in this example) is invoked after the stored procedure completes
on the server. The following is an example of a callback procedure implementation:

static class MyCallback implements ProcedureCallback {
 @Override
 public void clientCallback(ClientResponse clientResponse) {
 if (clientResponse.getStatus() != ClientResponse.SUCCESS) {
 System.err.println(clientResponse.getStatusString());
 } else {
 myEvaluateResultsProc(clientResponse.getResults());
 }
 }
}

The callback procedure is passed the same ClientResponse structure that is returned in a synchronous
invocation. ClientResponse contains information about the results of execution. In particular, the
methods getStatus() and getResults() let your callback procedure determine whether the stored
procedure was successful and evaluate the results of the procedure.

The VoltDB Java client is single threaded, so callback procedures are processed one at a time. Conse-
quently, it is a good practice to keep processing in the callback to a minimum, returning control to the main
thread as soon as possible. If more complex processing is required by the callback, creating a separate
thread pool and spawning worker methods on a separate thread from within the asynchronous callback
is recommended.

6.4. Closing the Connection
When the client application is done interacting with the VoltDB database, it is a good practice to close the
connection. This ensures that any pending transactions are completed in an orderly way. The following
example demonstrates how to close the client connection:

try {
 client.drain();
 client.close();

50

Designing VoltDB Client Applications

} catch (InterruptedException e) {
 e.printStackTrace();
}

There are two steps to closing the connection:

1. Call drain() to make sure all asynchronous calls have completed. The drain() method pauses the
current thread until all outstanding asynchronous calls (and their callback procedures) complete. This
call is not necessary if the application only makes synchronous procedure calls. However, there is no
penalty for calling drain() and so it can be included for completeness in all applications.

2. Call close() to close all of the connections and release any resources associated with the client.

6.5. Handling Errors
A special situation to consider when calling VoltDB stored procedures is error handling. The VoltDB client
interface catches most exceptions, including connection errors, errors thrown by the stored procedures
themselves, and even exceptions that occur in asynchronous callbacks. These error conditions are not
returned to the client application as exceptions. However, the application can still receive notification and
interpret these conditions using the client interface.

The following sections explain how to identify and interpret errors that occur when executing stored pro-
cedures and in asynchronous callbacks. These include:

• Interpreting Execution Errors

• Handling Timeouts

• Writing a Status Listener to Interpret Other Errors

6.5.1. Interpreting Execution Errors
If an error occurs in a stored procedure (such as an SQL constraint violation), VoltDB catches the error
and returns information about it to the calling application as part of the ClientResponse class. The
ClientResponse class provides several methods to help the calling application determine whether
the stored procedure completed successfully and, if not, what caused the failure. The two most important
methods are getStatus() and getStatusString().

static class MyCallback implements ProcedureCallback {
 @Override
 public void clientCallback(ClientResponse clientResponse) {
 final byte AppCodeWarm = 1;
 final byte AppCodeFuzzy = 2;
 if (clientResponse.getStatus() != ClientResponse.SUCCESS) {

 System.err.println(clientResponse.getStatusString());
 } else {

 if (clientResponse.getAppStatus() == AppCodeFuzzy) {
 System.err.println(clientResponse.getAppStatusString());
 };
 myEvaluateResultsProc(clientResponse.getResults());
 }
 }
}

51

Designing VoltDB Client Applications

The getStatus() method tells you whether the stored procedure completed successfully and, if
not, what type of error occurred. It is good practice to always check the status of the ClientRe-
sponse before evaluating the results of a procedure call, because if the status is anything but SUC-
CESS, there will not be any results returned. The possible values of getStatus() are:

• CONNECTION_LOST — The network connection was lost before the stored procedure returned
status information to the calling application. The stored procedure may or may not have completed
successfully.

• CONNECTION_TIMEOUT — The stored procedure took too long to return to the calling ap-
plication. The stored procedure may or may not have completed successfully. See Section 6.5.2,
“Handling Timeouts” for more information about handling this condition.

• GRACEFUL_FAILURE — An error occurred and the stored procedure was gracefully rolled
back.

• RESPONSE_UNKNOWN — This is a rare error that occurs if the coordinating node for the
transaction fails before returning a response. The node to which your application is connected
cannot determine if the transaction failed or succeeded before the coordinator was lost. The best
course of action, if you receive this error, is to use a new query to determine if the transaction
failed or succeeded and then take action based on that knowledge.

• SUCCESS — The stored procedure completed successfully.

• UNEXPECTED_FAILURE — An unexpected error occurred on the server and the procedure
failed.

• USER_ABORT — The code of the stored procedure intentionally threw a UserAbort exception
and the stored procedure was rolled back.

If a getStatus() call identifies an error status other than SUCCESS, you can use the getSta-
tusString() method to return a text message providing more information about the specific error
that occurred.
If you want the stored procedure to provide additional information to the calling application, there are
two more methods to the ClientResponse that you can use. The methods getAppStatus()
and getAppStatusString() act like getStatus() and getStatusString(), but rather
than returning information set by VoltDB, getAppStatus() and getAppStatusString()
return information set in the stored procedure code itself.

In the stored procedure, you can use the methods setAppStatusCode() and setAppSta-
tusString() to set the values returned to the calling application by the stored procedure. For
example:

/* stored procedure code */
final byte AppCodeWarm = 1;
final byte AppCodeFuzzy = 2;
 . . .
setAppStatusCode(AppCodeFuzzy);
setAppStatusString("I'm not sure about that...");
 . . .

6.5.2. Handling Timeouts
One particular error that needs special handling is if a connection or a stored procedure call times out. By
default, the client interface only waits a specified amount of time (two minutes) for a stored procedure to
complete. If no response is received from the server before the timeout period expires, the client interface

52

Designing VoltDB Client Applications

returns control to your application, notifying it of the error. For synchronous procedure calls, the client
interface returns the error CONNECTION_TIMEOUT to the procedure call. For asynchronous calls, the
client interface invokes the callback including the error information in the clientResponse object.

It is important to note that CONNECTION_TIMEOUT does not necessarily mean the synchronous pro-
cedure failed. In fact, it is very possible that the procedure may complete and return information after the
timeout error is reported. The timeout is provided to avoid locking up the client application when proce-
dures are delayed or the connection to the cluster hangs for any reason.

Similarly, if no response of any kind is returned on a connection (even if no transactions are pending)
within the specified timeout period, the client connection will timeout. When this happens, the connec-
tion is closed, any open stored procedures on that connection are closed with a return status of CONNEC-
TION_LOST, and then the client status listener callback method connectionLost() is invoked. Un-
like a procedure timeout, when the connection times out, the connection no longer exists, so your client ap-
plication will receive no further notifications concerning pending procedures, whether they succeed or fail.

CONNECTION_LOST does not necessarily mean a pending asynchronous procedure failed. It is possible
that the procedure completed but was unable to return its status due to a connection failure. The goal of
the connection timeout is to notify the client application of a lost connection in a timely manner, even if
there are no outstanding procedures using the connection.

There are several things you can do to address potential timeouts in your application:

• Change the timeout period by calling either or both the methods setProcedureCallTimeout()
and setConnectionResponseTimeout() on the ClientConfig object. The default timeout
period is 2 minutes for both procedures and connections. You specify the timeout period in milliseconds,
where a value of zero disables the timeout altogether. For example, the following client code resets the
procedure timeout to 90 seconds and the connection timeout period to 3 minutes, or 180 seconds:

config = new ClientConfig("advent","xyzzy");
config.setProcedureCallTimeout(90 * 1000);
config.setConnectionResponseTimeout(180 * 1000);
client = ClientFactory.createClient(config);

• Catch and respond to the timeout error as part of the response to a procedure call. For example, the
following code excerpt from a client callback procedure reports the error to the console and ends the
callback:

static class MyCallback implements ProcedureCallback {
 @Override
 public void clientCallback(ClientResponse response) {

 if (response.getStatus() == ClientResponse.CONNECTION_TIMEOUT) {
 System.out.println("A procedure invocation has timed out.");
 return;
 };
 if (response.getStatus() == ClientResponse.CONNECTION_LOST) {
 System.out.println("Connection lost before procedure response.");
 return;
 };

• Set a status listener to receive the results of any procedure invocations that complete after the client
interface times out. See the following Section 6.5.3, “Writing a Status Listener to Interpret Other Errors”
for an example of creating a status listener for delayed procedure responses.

53

Designing VoltDB Client Applications

6.5.3. Writing a Status Listener to Interpret Other Errors
Certain types of errors can occur that the ClientResponse class cannot notify you about immediately.
In these cases, an error happens and is caught by the client interface outside of the normal stored procedure
execution cycle. If you want your application to address these situations, you need to create a listener,
which is a special type of asynchronous callback that the client interface will notify whenever such errors
occur. The types of errors that a listener addresses include:

Lost Connection
If a connection to the database cluster is lost or times out and there are outstanding asynchronous
requests on that connection, the ClientResponse for those procedure calls will indicate that the
connection failed before a return status was received. This means that the procedures may or may not
have completed successfully. If no requests were outstanding, your application might not be notified
of the failure under normal conditions, since there are no callbacks to identify the failure. Since the
loss of a connection can impact the throughput or durability of your application, it is important to have
a mechanism for general notification of lost connections outside of the procedure callbacks.

Backpressure
If backpressure causes the client interface to wait, the stored procedure is never queued and so your
application does not receive control until after the backpressure is removed. This can happen if the
client applications are queuing stored procedures faster than the database cluster can process them.
The result is that the execution queue on the server gets filled up and the client interface will not let
your application queue any more procedure calls. Two ways to handle this situation programmatically
are to:

• Let the client pause momentarily to let the queue subside. The asynchronous client interface does
this automatically for you.

• Create multiple connections to the cluster to better distribute asynchronous calls across the database
nodes.

Exceptions in a Procedure Callback
An error can occur in an asynchronous callback after the stored procedure completes. These exceptions
are also trapped by the VoltDB client, but occur after the ClientResponse is returned to the
application.

Late Procedure Responses
Procedure invocations that time out in the client may later complete on the server and return results.
Since the client application can no longer react to this response inline (for example, with asynchronous
procedure calls, the associated callback has already received a connection timeout error) the client
may want a way to process the returned results.

For the sake of example, the following status listener does little more than display a message on standard
output. However, in real world applications the listener would take appropriate actions based on the cir-
cumstances.

/*
* Declare the status listener
*/
ClientStatusListenerExt mylistener = new ClientStatusListenerExt()
 {
 @Override
 public void connectionLost(String hostname, int port,
 int connectionsLeft,

54

Designing VoltDB Client Applications

 DisconnectCause cause)
 {
 System.out.printf("A connection to the database has been lost."
 + "There are %d connections remaining.\n", connectionsLeft);
 }
 @Override
 public void backpressure(boolean status)
 {
 System.out.println("Backpressure from the database "
 + "is causing a delay in processing requests.");
 }
 @Override
 public void uncaughtException(ProcedureCallback callback,
 ClientResponse r, Throwable e)
 {
 System.out.println("An error has occurred in a callback "
 + "procedure. Check the following stack trace for details.");
 e.printStackTrace();
 }
 @Override
 public void lateProcedureResponse(ClientResponse response,
 String hostname, int port)
 {
 System.out.printf("A procedure that timed out on host %s:%d"
 + " has now responded.\n", hostname, port);
 }
 };
/*
* Declare the client configuration, specifying
* a username, a password, and the status listener
*/
ClientConfig myconfig = new ClientConfig("username",
 "password",
 mylistener);
/*
* Create the client using the specified configuration.
*/
Client myclient = ClientFactory.createClient(myconfig);

By performing the operations in the order as described here, you ensure that all connections to the VoltDB
database cluster use the same credentials for authentication and will notify the status listener of any error
conditions outside of normal procedure execution.

Declare a ClientStatusListenerExt listener callback. Define the listener before you define
the VoltDB client or open a connection.
The ClientStatusListenerExt interface has four methods that you can implement, one for
each type of error situation:

• connectionLost()

• backpressure()

• uncaughtException()

• lateProcedureResponse()

55

Designing VoltDB Client Applications

Define the client configuration ClientConfig object. After you declare your ClientStatus-
ListenerExt, you define a ClientConfig object to use for all connections, which includes
the username, password, and status listener. This configuration is then used to define the client next.
Create a client with the specified configuration.

6.6. Compiling and Running Client Applications
VoltDB client applications written in Java compile and run like other Java applications. (See Chapter 8,
Using VoltDB with Other Programming Languages for more on writing client applications using other lan-
guages.) To compile, you must include the VoltDB libraries in the classpath so Java can resolve references
to the VoltDB classes and methods. It is possible to do this manually by defining the environment variable
CLASSPATH or by using the -classpath argument on the command line. If your client application
depends on other libraries, they need to be included in the classpath as well. You can also specify where to
create the resulting class files using the -d flag to specify an output directory, as in the following example:

$ javac -classpath "./:/opt/voltdb/voltdb/*" \
 -d ./obj \
 *.java

The preceding example assumes that the VoltDB software has been installed in the folder /opt/volt-
db. If you installed VoltDB in a different directory, you need to include your installation path in the -
classpath argument.

If you are using Apache Maven to manage your application development, the VoltDB Java client library
is available from the central Maven repository. So rather than installing VoltDB locally, you can simply
include it as a dependency in your Maven project object model, or pom.xml, like so:

<dependency>
 <groupId>org.voltdb</groupId>
 <artifactId>voltdbclient</artifactId>
 <version>5.1</version>
</dependency>

6.6.1. Starting the Client Application
Before you start your client application, the VoltDB database must be running. When you start your client
application, you must ensure that the VoltDB library JAR file is in the classpath. For example:

$ java -classpath "./:/opt/voltdb/voltdb/*" MyClientApp

If you develop your application using one of the sample applications as a template, the run.sh file
manages this dependency for you.

6.6.2. Running Clients from Outside the Cluster
If you are running the database on a cluster and the client applications on separate machines, you
do not need to include all of the VoltDB software with your client application. The VoltDB distribu-
tion comes with two separate libraries: voltdb-n.n.nn.jar and voltdbclient-n.n.nn.jar
(where n.n.nn is the VoltDB version number). The first file is a complete library that is required for build-
ing and running a VoltDB database server.

The second file, voltdbclient-n.n.nn.jar, is a smaller library containing only those components
needed to run a client application. If you are distributing your client applications, you only need to distribute

56

Designing VoltDB Client Applications

the client classes and the VoltDB client library. You do not need to install all of the VoltDB software
distribution on the client nodes.

57

Chapter 7. Simplifying Applicaon
Development

The previous chapter (Chapter 6, Designing VoltDB Client Applications) explains how to develop your
VoltDB database application using the full power and flexibility of the Java client interface. However,
some database tasks — such as inserting records into a table or retrieving a specific column value — do
not need all of the capabilities that the Java API provides. In other cases, there are automation techniques
that can reduce the amount of application code you need to write and maintain.

Now that you know how the VoltDB programming interface works, VoltDB has features to simplify com-
mon tasks and make your application development easier. Those features include:

• Using Default Procedures

• Shortcut for Defining Simple Stored Procedures

• Verifying Expected Query Results

• Scheduling Stored Procedures as Tasks

• Directed Procedures: Distributing Transactions to Every Partition

The following sections describe each of these features separately.

7.1. Using Default Procedures
Although it is possible to define quite complex SQL queries, often the simplest are also the most common.
Inserting, selecting, updating, and deleting records based on a specific key value are the most basic opera-
tions for a database. Another common practice is upsert, where if a row matching the primary key already
exists, the record is updated — if not, a new record is inserted. To simplify these operations, VoltDB
defines these default stored procedures for tables.

The default stored procedures use a standard naming scheme, where the name of the procedure is composed
of the name of the table (in all uppercase), a period, and the name of the query in lowercase. For example,
the Hello World tutorial (doc/tutorials/helloworld) contains a single table, HELLOWORLD,
with three columns and the partitioning column, DIALECT, as the primary key. As a result, five default
stored procedures are included in addition to any user-defined procedures declared in the schema. The
parameters to the procedures differ based on the procedure.

VoltDB defines a default insert stored procedure when any table is defined:

HELLOWORLD.insert The parameters are the table columns, in the same order as defined in the
schema.

VoltDB defines default update, upsert, and delete stored procedures if the table has a primary key:

HELLOWORLD.update The parameters are the new column values, in the order defined by the schema,
followed by the primary key column values. This means the primary key col-
umn values are specified twice: once as their corresponding new column val-
ues and once as the primary key value.

HELLOWORLD.upsert The parameters are the table columns, in the same order as defined in the
schema.

58

Simplifying Application Development

HELLOWORLD.delete The parameters are the primary key column values, listed in the order they
appear in the primary key definition.

VoltDB defines a default select stored procedure if the table has a primary key and the table is partitioned:

HELLOWORLD.select The parameters are the primary key column values, listed in the order they
appear in the primary key definition.

Use the sqlcmd command show procedures to list all the stored procedures available including the number
and type of parameters required. Use @SystemCatalog with the PROCEDURECOLUMNS selector
to show more details about the order and meaning of each procedure's parameters.

The following code example uses the default procedures for the HELLOWORLD table to insert, retrieve
(select), update, and delete a new record with the key value "American":

VoltTable[] results;
client.callProcedure("HELLOWORLD.insert",
 "American","Howdy","Earth");
results = client.callProcedure("HELLOWORLD.select",
 "American").getResults();
client.callProcedure("HELLOWORLD.update",
 "American","Yo","Biosphere",
 "American");
client.callProcedure("HELLOWORLD.delete",
 "American");

7.2. Shortcut for Defining Simple Stored Proce-
dures

Sometimes all you want is to execute a single SQL query and return the results to the calling application. In
these simple cases, writing the necessary Java code to create a stored procedure can be tedious, so VoltDB
provides a shortcut. For very simple stored procedures that execute a single SQL query and return the
results, you can define the entire stored procedure as part of the database schema.

Recall from Section 5.3.2, “Declaring Stored Procedures in the Schema”, that normally you use the CRE-
ATE PROCEDURE statement to specify the class name of the Java procedure you coded, for example:

CREATE PROCEDURE FROM CLASS MakeReservation;
CREATE PROCEDURE FROM CLASS CancelReservation;

However, to create procedures without writing any Java, you can simply insert a SQL query in the AS
clause:

CREATE PROCEDURE CountReservations AS
 SELECT COUNT(*) FROM RESERVATION;

VoltDB creates the procedure when you include the SQL query in the CREATE PROCEDURE AS state-
ment. Note that you must specify a unique class name for the procedure, which is unique among all stored
procedures, including both those declared in the schema and those created as Java classes. (You can use
the sqlcmd command show procedures to display a list of all stored procedures.)

It is also possible to pass arguments to the SQL query in simple stored procedures. If you use the ques-
tion mark placeholder in the SQL, any additional arguments you pass in client applications through the

59

Simplifying Application Development

callProcedure() method are used to replace the placeholders, in their respective order. For example,
the following simple stored procedure expects to receive three additional parameters:

CREATE PROCEDURE MyReservationsByTrip AS
 SELECT R.RESERVEID, F.FLIGHTID, F.DEPARTTIME
 FROM RESERVATION AS R, FLIGHT AS F
 WHERE R.CUSTOMERID = ?
 AND R.FLIGHTID = F.FLIGHTID
 AND F.ORIGIN=? AND F.DESTINATION=?;

You can also specify whether the simple procedure is single-partitioned or not. By default, stored proce-
dures are assumed to be multi-partitioned. But if your procedure should be single-partitioned, specify its
partitioning in the PARTITION ON clause. In the following example, the stored procedure is partitioned
on the FLIGHTID column of the RESERVATION table using the first parameter as the partitioning key.

CREATE PROCEDURE FetchReservations
 PARTITION ON
 TABLE Reservation COLUMN flightid
 AS
 SELECT * FROM RESERVATION WHERE FLIGHTID=?;

Finally, if you want to execute multiple SQL statements within a simple procedure, you must enclose the
SQL in a BEGIN-END clause. For example, the following CREATE PROCEDURE AS statement fetches
separate records from the CUSTOMER and ORDER tables:

CREATE PROCEDURE OpenOrders
 AS BEGIN
 SELECT fullname FROM CUSTOMER WHERE CUSTOMERID=?;
 SELECT * FROM ORDER WHERE CUSTOMERID=?;
 END;

Some important points to note concerning multi-statement simple procedures:

• The END statement and all of the enclosed SQL statements, must be terminated with a semi-colon.

• The procedure returns an array of VoltTables, one for each statement in the procedure.

• Each placeholder represents one parameter to the stored procedure. Parameters cannot be reused. So in
the previous example, the customer ID would need to be entered twice as separate parameters to the
stored procedure, one parameter for the first statement and one parameter for the second statement.

7.3. Verifying Expected Query Results
The automated default and simple stored procedures reduce the coding needed to perform simple queries.
However, another substantial chunk of stored procedure and client application code is often required to
verify the correctness of the results returned by the queries. Did you get the right number of records? Does
the query return the correct value?

Rather than you having to write the code to validate the query results manually, VoltDB provides a way
to perform several common validations as part of the query itself. The Java client interface includes an
Expectation object that you can use to define the expected results of a query. Then, if the query does not
meet those expectations, the executing stored procedure automatically throws a VoltAbortException
and rolls back.

You specify the expectation as the second parameter (after the SQL statement but before any arguments)
when queuing the query. For example, when making a reservation in the Flight application, the procedure

60

Simplifying Application Development

must make sure there are seats available. To do this, the procedure must determine how many seats the
flight has. This query can also be used to verify that the flight itself exists, because there should be one
and only one record for every flight ID.

The following code fragment uses the EXPECT_ONE_ROW expectation to both fetch the number of seats
and verify that the flight itself exists and is unique.

import org.voltdb.Expectation;
 .
 .
 .
public final SQLStmt GetSeats = new SQLStmt(
 "SELECT numberofseats FROM Flight WHERE flightid=?;");

voltQueueSQL(GetSeats, EXPECT_ONE_ROW, flightid);
VoltTable[] recordset = voltExecuteSQL();
Long numofseats = recordset[0].asScalarLong();

By using the expectation, the stored procedure code does not need to do additional error checking to verify
that there is one and only one row in the result set. The following table describes all of the expectations
that are available to use in stored procedures.

Expectation Description

EXPECT_EMPTY The query must return no rows.

EXPECT_ONE_ROW The query must return one and only one row.

EXPECT_ZERO_OR_ONE_ROW The query must return no more than one row.

EXPECT_NON_EMPTY The query must return at least one row.

EXPECT_SCALAR The query must return a single value (that is, one row with one
column).

EXPECT_SCALAR_LONG The query must return a single value with a datatype of Long.

EXPECT_SCALAR_MATCH(long) The query must return a single value equal to the specified
Long value.

7.4. Scheduling Stored Procedures as Tasks
There are often repetitive tasks you want to perform on the database that can be scheduled at regular
intervals. These tasks may include general cleanup, pruning, or periodic data validation. Rather than write
a separate application and scheduler to do this, VoltDB lets you automate tasks at intervals ranging from
milliseconds to days.

A task is a stored procedure that you schedule using the CREATE TASK statement. The statement spec-
ifies what procedure to run and when to run it and what arguments to use. In the simplest case, you can
schedule a multi-partition procedure at specific times of day (using cron notation), at a regular interval
(using EVERY), or with a regular pause between iterations (using DELAY). For example, The following
statements define a procedure called OrphanedRecords that deletes reservations from a specific airline
with no associated flight number and a task called RemoveOrphans that uses that procedure to delete or-
phaned records for FlyByNight airlines every two hours.

CREATE PROCEDURE OrphanedRecords
 AS DELETE FROM reservations
 WHERE aireline=? AND flight_id IS NULL;

61

Simplifying Application Development

CREATE TASK RemoveOrphans
 ON SCHEDULE EVERY 2 HOURS
 PROCEDURE OrphanedRecords WITH ('FlyByNight');

Since the task definition is part of the schema, VoltDB automates starting and stopping the tasks with the
database. Other clauses to the CREATE TASK statement let you further refine how the task is run including
what user account runs it and what to do in case of errors. There are also corresponding ALTER TASK and
DROP TASK statements for managing your task definitions. See the description of the CREATE TASK
statement for details.

7.5. Directed Procedures: Distributing Transac-
tions to Every Partition

As useful as scheduling regular stored procedures is in simplifying application development, it can be
disruptive to ongoing workflow if multi-partition procedures take too long or run too frequently. It would
be nice to be able to schedule some partitioned activities as well to do piecemeal work on each partition
without tying up all of the partitions at once. This is exactly what directed procedures are designed to do.

A directed procedure is a special type of stored procedure, declared using the DIRECTED clause instead
of PARTITION ON. You write a directed procedure the same way you write a regular stored procedure:
either as a simple procedure of one or more SQL statements or as a Java class extending voltProcedure,
using the voltQueueSQL method to queue SQL statements. Since it is transactional, the procedure must
also be deterministic.

However, if you declare the procedure as DIRECTED, when you invoke it a separate instance of the
procedure is queued on every partition in the database. Each instance is its own transaction and acts like
a partitioned procedure. So the separate transactions do not block the other partitions. However, because
they are separate, there is no coordination between the transactions and no guarantee that they are executed
at the same time.

This makes directed procedures particularly useful for non-critical procedures that need to access data
across the database but do not need to be coordinated as a single, atomic transaction. Because of the
special nature of directed procedures, you cannot invoke them the way you would normal partitioned or
multi-partitioned procedures. Instead, the primary way to invoke them is as a scheduled task.

To schedule a directed procedure as a task, you use the same syntax for the CREATE TASK statement
as for a multi-partitioned procedure, except you add the RUN ON PARTITIONS clause. The RUN ON
PARTITIONS clause specifies that the task is scheduled separately for each and every partition. For ex-
ample, if you want to run the RemoveOrphans task defined in the previous section as a directed procedure
so it will not block the ongoing database workload, you would add the DIRECTED clause to the CREATE
PROCEDURE statement and the RUN ON PARTITIONS clause to the CREATE TASK statement, like so:

CREATE PROCEDURE OrphanedRecords DIRECTED
 AS DELETE FROM reservations
 WHERE airline=? AND flight_id IS NULL;
CREATE TASK RemoveOrphans
 ON SCHEDULE EVERY 2 HOURS
 PROCEDURE OrphanedRecords WITH ('FlyByNight')
 RUN ON PARTITIONS;

Although scheduled tasks are the easiest way to invoke directed procedures, you can also invoke them
directly from your Java applications. You cannot call them with the callProcedure method, but you
can using the callAllPartitionProcedure method where the results from all of the partitions are

62

Simplifying Application Development

returned as an array of VoltTables, one per partition. See the descriptions of the CREATE PROCEDURE
AS, CREATE PROCEDURE FROM CLASS, and CREATE TASK statements for more information about
using directed procedures.

63

Chapter 8. Using VoltDB with Other
Programming Languages

VoltDB stored procedures are written in Java and the primary client interface also uses Java. However,
that is not the only programming language you can use with VoltDB.

It is possible to have client interfaces written in almost any language. These client interfaces allow pro-
grams written in different programming languages to interact with a VoltDB database using native func-
tions of the language. The client interface then takes responsibility for translating those requests into a
standard communication protocol with the database server as described in the VoltDB wire protocol.

Some client interfaces are developed and packaged as part of the standard VoltDB distribution kit while
others are compiled and distributed as separate client kits. As of this writing, the following client interfaces
are available for VoltDB:

• C#

• C++

• Erlang

• Go

• Java (packaged with VoltDB)

• JDBC (packaged with VoltDB)

• JSON (packaged with VoltDB)

• Node.js

• PHP

• Python

The JSON client interface may be of particular interest if your favorite programming language is not listed
above. JSON is a data format, rather than a programming interface, and the JSON interface provides a
way for applications written in any programming language to interact with VoltDB via JSON messages
sent across a standard HTTP protocol.

The following sections explain how to use the C++, JSON, and JDBC client interfaces.

8.1. C++ Client Interface
VoltDB provides a client interface for programs written in C++. The C++ client interface is available pre-
compiled as a separate kit from the VoltDB web site, or in source format from the VoltDB github repository
(http://github.com/VoltDB/voltdb-client-cpp). The following sections describe how to write VoltDB client
applications in C++.

8.1.1. Writing VoltDB Client Applications in C++
When using the VoltDB client library, as with any C++ library, it is important to include all of the neces-
sary definitions at the beginning of your source code. For VoltDB client applications, this includes defin-

64

http://voltdb.com/
http://github.com/VoltDB/voltdb-client-cpp

Using VoltDB with Oth-
er Programming Languages

itions for the VoltDB methods, structures, and datatypes as well as the libraries that VoltDB depends on
(specifically, boost shared pointers). For example:

#define __STDC_CONSTANT_MACROS
#define __STDC_LIMIT_MACROS

#include <vector>
#include <boost/shared_ptr.hpp>
#include "Client.h"
#include "Table.h"
#include "TableIterator.h"
#include "Row.hpp"
#include "WireType.h"
#include "Parameter.hpp"
#include "ParameterSet.hpp"
#include "ProcedureCallback.hpp"

Once you have included all of the necessary declarations, there are three steps to using the interface to
interact with VoltDB:

1. Create and open a client connection

2. Invoke stored procedures

3. Interpret the results

The following sections explain how to perform each of these functions.

8.1.2. Creating a Connection to the Database Cluster
Before you can call VoltDB stored procedures, you must create a client instance and connect to the database
cluster. For example:

voltdb::ClientConfig config("myusername", "mypassword");
voltdb::Client client = voltdb::Client::create(config);
client.createConnection("myserver");

As with the Java client interface, you can create connections to multiple nodes in the cluster by making
multiple calls to the createConnection method specifying a different IP address for each connection.

8.1.3. Invoking Stored Procedures
The C++ client library provides both a synchronous and asynchronous interface. To make a synchronous
stored procedure call, you must declare objects for the parameter types, the procedure call itself, the para-
meters, and the response. Note that the datatypes, the procedure, and the parameters need to be declared
in a specific order. For example:

/* Declare the number and type of parameters */
std::vector<voltdb::Parameter> parameterTypes(3);
parameterTypes[0] = voltdb::Parameter(voltdb::WIRE_TYPE_BIGINT);
parameterTypes[1] = voltdb::Parameter(voltdb::WIRE_TYPE_STRING);
parameterTypes[2] = voltdb::Parameter(voltdb::WIRE_TYPE_STRING);

/* Declare the procedure and parameter structures */
voltdb::Procedure procedure("AddCustomer", parameterTypes);
voltdb::ParameterSet* params = procedure.params();

65

Using VoltDB with Oth-
er Programming Languages

/* Declare a client response to receive the status and return values */
voltdb::InvocationResponse response;

Once you instantiate these objects, you can reuse them for multiple calls to the stored procedure, inserting
different values into params each time. For example:

params->addInt64(13505).addString("William").addString("Smith");
response = client.invoke(procedure);
params->addInt64(13506).addString("Mary").addString("Williams");
response = client.invoke(procedure);
params->addInt64(13507).addString("Bill").addString("Smythe");
response = client.invoke(procedure);

8.1.4. Invoking Stored Procedures Asynchronously
To make asynchronous procedure calls, you must also declare a callback structure and method that will
be used when the procedure call completes.

class AsyncCallback : public voltdb::ProcedureCallback
{
public:
 bool callback
 (voltdb::InvocationResponse response)
 throw (voltdb::Exception)
 {
 /*
 * The work of your callback goes here...
 */
 }
};

Then, when you go to make the actual stored procedure invocation, you declare an callback instance and
invoke the procedure, using both the procedure structure and the callback instance:

boost::shared_ptr<AsyncCallback> callback(new AsyncCallback());
client.invoke(procedure, callback);

Note that the C++ interface is single-threaded. The interface is not thread-safe and you should not use
instances of the client, client response, or other client interface structures from within multiple concurrent
threads. Also, the application must release control occasionally to give the client interface an opportunity
to issue network requests and retrieve responses. You can do this by calling either the run() or runOnce()
methods.

The run() method waits for and processes network requests, responses, and callbacks until told not to.
(That is, until a callback returns a value of false.)

The runOnce() method processes any outstanding work and then returns control to the client application.

In most applications, you will want to create a loop that makes asynchronous requests and then calls
runOnce(). This allows the application to queue stored procedure requests as quickly as possible while
also processing any incoming responses in a timely manner.

Another important difference when making stored procedure calls asynchronously is that you must make
sure all of the procedure calls complete before the client connection is closed. The client objects destructor
automatically closes the connection when your application leaves the context or scope within which the

66

Using VoltDB with Oth-
er Programming Languages

client is defined. Therefore, to make sure all asynchronous calls have completed, be sure to call the drain
method until it returns true before leaving your client context:

while (!client.drain()) {}

8.1.5. Interpreting the Results
Both the synchronous and asynchronous invocations return a client response object that contains both the
status of the call and the return values. You can use the status information to report problems encountered
while running the stored procedure. For example:

if (response.failure())
{
 std::cout << "Stored procedure failed. " << response.toString();
 exit(-1);
}

If the stored procedure is successful, you can use the client response to retrieve the results. The results
are returned as an array of VoltTable structures. Within each VoltTable object you can use an iterator to
walk through the rows. There are also methods for retrieving each datatype from the row. For example,
the following example displays the results of a single VoltTable containing two strings in each row:

/* Retrieve the results and an iterator for the first volttable */
std::vector<voltdb::Table> results = response.results();
voltdb::TableIterator iterator = results[0].iterator();

/* Iterate through the rows */
while (iterator.hasNext())
{
 voltdb::Row row = iterator.next();
 std::cout << row.getString(0) << ", " << row.getString(1) << std::endl;
}

8.2. JSON HTTP Interface
JSON (JavaScript Object Notation) is not a programming language; it is a data format. The JSON "inter-
face" to VoltDB is actually a web interface that the VoltDB database server makes available for processing
requests and returning data in JSON format.

The JSON interface lets you invoke VoltDB stored procedures and receive their results through HTTP
requests. To invoke a stored procedure, you pass VoltDB the procedure name and parameters as a querys-
tring to the HTTP request, using either the GET or POST method.

Although many programming languages provide methods to simplify the encoding and decoding of JSON
strings, you still need to understand the data structures that are created. So if you are not familiar with
JSON encoding, you may want to read more about it at http://www.json.org.

8.2.1. How the JSON Interface Works
When a VoltDB database starts, it opens port 8080 on each server as a simple web server. You have
complete control over this feature through the configuration file and the voltdb start command, including:

• Disabling just the JSON interface, or the HTTP port entirely using the <httpd> element in the con-
figuration file.

67

http://www.json.org/

Using VoltDB with Oth-
er Programming Languages

• Enabling TLS encryption on the port using the <ssl> element.

• Changing the port number using the --http flag on the voltdb start command.

See the section on the "Web Interface Port" in the VoltDB Administrator's Guide for more information
on configuring the HTTP port.

This section assumes the database is using the default httpd configuration. In which case, any HTTP re-
quests sent to the location /api/2.0/ on that port are interpreted as JSON requests to run a stored procedure.
The structure of the request is:

URL http://<server>:8080/api/2.0/

Arguments Procedure=<procedure-name>
Parameters=<procedure-parameters>
User=<username for authentication>
Password=<password for authentication>
Hashedpassword=<Hashed password for authentication>
admin=<true|false>
jsonp=<function-name>

The arguments can be passed either using the GET or the POST method. For example, the following URL
uses the GET method (where the arguments are appended to the URL) to execute the system procedure
@SystemInformation on the VoltDB database running on node voltsvr.mycompany.com:

http://voltsvr.mycompany.com:8080/api/2.0/?Procedure=@SystemInformation

Note that only the Procedure argument is required. You can authenticate using the User and Pass-
word (or Hashedpassword) arguments if security is enabled for the database. Use Password to send
the password as plain text or Hashedpassword to send the password as an encoded string. (The hashed
password must be either a 40-byte hex-encoding of the 20-byte SHA-1 hash or a 64-byte hex-encoding
of the 32-byte SHA-256 hash.)1

You can also include the parameters on the request. However, it is important to note that the parameters —
and the response returned by the stored procedure — are JSON encoded. The parameters are an array (even
if there is only one element to that array) and therefore must be enclosed in square brackets. Also, although
there is an upper limit of 2 megabytes for the entire length of the parameter string, large parameter sets
must be sent using POST to avoid stricter limitations on allowable URL lengths.

The admin argument specifies whether the request is submitted on the standard client port (the default)
or the admin port (when you specify admin=true). When the database is in admin mode, the client
port is read-only; so you must submit write requests with admin=true or else the request is rejected
by the server.

The jsonp argument is provided as a convenience for browser-based applications (such as Javascript)
where cross-domain browsing is disabled. When you include the jsonp argument, the entire response is
wrapped as a function call using the function name you specify. Using this technique, the response is a
complete and valid Javascript statement and can be executed to create the appropriate language-specific
object. For example, calling the @Statistics system procedure in Javascript using the jQuery library looks
like this:

$.getJSON('http://myserver:8080/api/1.0/?Procedure=@Statistics' +
 '&Parameters=["MANAGEMENT",0]&jsonp=?',
 {},MyCallBack);

1Hashing the password stops the text of your password from being detectable from network traffic. However, it does not make the database access
any more secure. To secure the transmission of credentials and data between client applications and VoltDB, enable TLS encryption for the HTTP
port using the configuration file.

68

https://docs.voltdb.com/AdminGuide/HostConfigPortOpts.php#ServerConfigHttpdPort
http://docs.voltdb.com/AdminGuide/

Using VoltDB with Oth-
er Programming Languages

Perhaps the best way to understand the JSON interface is to see it in action. If you build and start the Hello
World example application that is provided in the VoltDB distribution kit (including the client that loads
data into the database), you can then open a web browser and connect to the local system through port
8080, to retrieve the French translation of "Hello World". For example:

http://localhost:8080/api/1.0/?Procedure=Select&Parameters=["French"]

The query returns the following results:

{"status":1,"appstatus":-128,"statusstring":null,"appstatusstring":null,
"results":{"0":[{ "HELLO":"Bonjour","WORLD":"Monde"}]}}

As you can see, the JSON-encoded results are not particularly easy to read. But they do provide a simple,
generic interface accessible from almost any programming language, most of which provide methods for
encoding and decoding JSON strings and interpreting their results.

8.2.2. Using the JSON Interface from Client Applications
The general process for using the JSON interface from within a program is:

1. Encode the parameters for the stored procedure as a JSON-encoded string

2. Instantiate and execute an HTTP request, passing the name of the procedure and the parameters as
arguments using either GET or POST.

3. Decode the resulting JSON string into a language-specific data structure and interpret the results.

The following are examples of invoking the Hello World Insert stored procedure from several different
languages. In each case, the three arguments (the name of the language and the words for "Hello" and
"World") are encoded as a JSON string.

PHP
<?php
// Construct the procedure name, parameter list, and URL.

 $voltdbserver = "http://myserver:8080/api/2.0/";
 $proc = "Insert";
 $a = array("Croatian","Pozdrav","Svijet");
 $params = json_encode($a);
 $params = urlencode($params);
 $querystring = "Procedure=$proc&Parameters=$params";

// create a new cURL resource and set options
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL, $voltdbserver);
 curl_setopt($ch, CURLOPT_HEADER, 0);
 curl_setopt($ch, CURLOPT_FAILONERROR, 1);
 curl_setopt($ch, CURLOPT_POST, 1);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $querystring);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

// Execute the request
 $resultstring = curl_exec($ch);
?>

69

Using VoltDB with Oth-
er Programming Languages

Python
import urllib
import urllib2
import json

Construct the procedure name, parameter list, and URL.
url = 'http://myserver:8080/api/2.0/'
voltparams = json.dumps(["Croatian","Pozdrav","Svijet"])
httpparams = urllib.urlencode({
 'Procedure': 'Insert',
 'Parameters' : voltparams
})
print httpparams
Execute the request
data = urllib2.urlopen(url, httpparams).read()

Decode the results
result = json.loads(data)

Perl
use LWP::Simple;

my $server = 'http://myserver:8080/api/2.0/';

Insert "Hello World" in Croatian
my $proc = 'Insert';
my $params = '["Croatian","Pozdrav","Svijet"]';
my $url = $server . "?Procedure=$proc&Parameters=$params";
my $content = get $url;
die "Couldn't get $url" unless defined $content;

C#
using System;
using System.Text;
using System.Net;
using System.IO;

namespace hellovolt

{
 class Program
 {
 static void Main(string[] args)
 {
 string VoltDBServer = "http://myserver:8080/api/2.0/";
 string VoltDBProc = "Insert";
 string VoltDBParams = "[\"Croatian\",\"Pozdrav\",\"Svijet\"]";
 string Url = VoltDBServer + "?Procedure=" + VoltDBProc
 + "&Parameters=" + VoltDBParams;

 string result = null;

70

Using VoltDB with Oth-
er Programming Languages

 WebResponse response = null;
 StreamReader reader = null;

 try
 {
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(Url);
 request.Method = "GET";
 response = request.GetResponse();
 reader = new StreamReader(response.GetResponseStream(),Encoding.UTF8);
 result = reader.ReadToEnd();

 }
 catch (Exception ex)

 { // handle error
 Console.WriteLine(ex.Message);
 }
 finally
 {
 if (reader != null)reader.Close();
 if (response != null) response.Close();

 }
 }
 }
}

8.2.3. How Parameters Are Interpreted
When you pass arguments to the stored procedure through the JSON interface, VoltDB does its best to
map the data to the datatype required by the stored procedure. This is important to make sure partitioning
values are interpreted correctly.

For integer values, the JSON interface maps the parameter to the smallest possible integer type capable of
holding the value. (For example, BYTE for values less than 128). Any values containing a decimal point
are interpreted as DOUBLE.

String values (those that are quoted) are handled in several different ways. If the stored procedure is ex-
pecting a BIGDECIMAL, the JSON interface will try to interpret the quoted string as a decimal value.
If the stored procedure is expecting a TIMESTAMP, the JSON interface will try to interpret the quoted
string as a JDBC-encoded timestamp value. (You can alternately pass the argument as an integer value
representing the number of microseconds from the epoch.) Otherwise, quoted strings are interpreted as
a string datatype.

Table 8.1, “Datatypes in the JSON Interface” summarizes how to pass different datatypes in the JSON
interface.

Table 8.1. Datatypes in the JSON Interface

Datatype How to Pass Example

Integers (Byte, Short, Integer,
Long)

An integer value 12345

DOUBLE A value with a decimal point 123.45

71

Using VoltDB with Oth-
er Programming Languages

Datatype How to Pass Example

BIGDECIMAL A quoted string containing a value
with a decimal point

"123.45"

TIMESTAMP Either an integer value or a quoted
string containing a JDBC-encod-
ed date and time

12345

"2010-07-01 12:30:21"

String A quoted string "I am a string"

8.2.4. Interpreting the JSON Results
Making the request and decoding the result string are only the first steps. Once the request is completed,
your application needs to interpret the results.

When you decode a JSON string, it is converted into a language-specific structure within your application,
composed of objects and arrays. If your request is successful, VoltDB returns a JSON-encoded string that
represents the same ClientResponse object returned by calls to the callProcedure method in the Java client
interface. Figure 8.1, “The Structure of the VoltDB JSON Response” shows the structure of the object
returned by the JSON interface.

Figure 8.1. The Structure of the VoltDB JSON Response

{ status (integer)
 appstatus (integer)
 statusstring (string)
 appstatusstring (string)
 results (list)
 { result-index (array)
 [
 { column-name (any type) ,...
 }
]
 }
}

The key components of the JSON response are the following:

status Indicates the success or failure of the stored procedure. If status is false, statusstring con-
tains the text of the status message..

appstatus Returns additional information, provided by the application developer, about the success
or failure of the stored procedure. The values of appstatus and appstatusstring can be
set programmatically in the stored procedure. (See Section 6.5.1, “Interpreting Execution
Errors” for details.)

results A list of objects representing the VoltTables returned by the stored procedure. Each ele-
ment of the list is one set of results, identified by an index value ("0", "1", "2" and so on).
Within each set is an array of rows. And within each row is a list of columns represented
by the column name and value. If the stored procedure does not return any results (i.e. is
void or null), then the results object will be null.

It is possible to create a generic procedure for testing and evaluating the result values from any VoltDB
stored procedure. However, in most cases it is far more expedient to evaluate the values that you know
the individual procedures return.

72

Using VoltDB with Oth-
er Programming Languages

For example, again using the Hello World example that is provided with the VoltDB software, it is possible
to use the JSON interface to call the Select stored procedure and return the values for "Hello" and "World"
in a specific language. Rather than evaluate the entire results array (including the name and type fields),
we know we are only receiving one result object with two column values. So we can simplify the code,
as in the following python example:

import urllib
import urllib2
import json
import pprint

Construct the procedure name, parameter list, and URL.
url = 'http://localhost:8080/api/2.0/'
voltparams = json.dumps(["French"])
httpparams = urllib.urlencode({
 'Procedure': 'Select',
 'Parameters' : voltparams
})

Execute the request
data = urllib2.urlopen(url, httpparams).read()

Decode the results
results = json.loads(data)[u'results']
volttable = results[u'0']
row = volttable[0]

Get the data by column name and display them
hello = row[u'HELLO']
world = row[u'WORLD']

print hello, world

8.2.5. Error Handling using the JSON Interface
There are a number of different reasons why a stored procedure request using the JSON interface may fail:
the VoltDB server may be unreachable, the database may not be started yet, the stored procedure name
may be misspelled, the stored procedure itself may fail... When using the standard Java client interface,
these different situations are handled at different times. (For example, server and database access issues
are addressed when instantiating the client, whereas stored procedure errors can be handled when the
procedures themselves are called.) The JSON interface simplifies the programming by rolling all of these
activities into a single call. But you must be more organized in how you handle errors as a consequence.

When using the JSON interface, you should check for errors in the following order:

1. First check to see that the HTTP request was submitted without errors. How this is done depends on what
language-specific methods you use for submitting the request. In most cases, you can use the appropriate
programming language error handlers (such as try-catch) to catch and interpret HTTP request errors.

2. Next check to see if VoltDB successfully invoked the stored procedure. You can do this by verifying
that the HTTP request returned a valid JSON-encoded string and that its status is set to true.

3. If the VoltDB server successfully invoked the stored procedure, then check to see if the stored procedure
itself succeeded, by checking to see if appstatus is true.

73

Using VoltDB with Oth-
er Programming Languages

4. Finally, check to see that the results are what you expect. (For example, that the data array is non-empty
and contains the values you need.)

8.3. JDBC Interface
JDBC (Java Database Connectivity) is a programming interface for Java programmers that abstracts data-
base specifics from the methods used to access the data. JDBC provides standard methods and classes
for accessing a relational database and vendors then provide JDBC drivers to implement the abstracted
methods on their specific software.

VoltDB provides a JDBC driver for those who would prefer to use JDBC as the data access interface. The
VoltDB JDBC driver supports ad hoc queries, prepared statements, calling stored procedures, and methods
for examining the metadata that describes the database schema.

8.3.1. Using JDBC to Connect to a VoltDB Database
The VoltDB driver is a standard class within the VoltDB software jar. To load the driver you use the
Class.forName method to load the class org.voltdb.jdbc.Driver.

Once the driver is loaded, you create a connection to a running VoltDB database server by constructing
a JDBC url using the "jdbc:" protocol, followed by "voltdb://", the server name, a colon, and the port
number. In other words, the complete JDBC connection url is "jdbc:voltdb://{server}:{port}". To connect
to multiple nodes in the cluster, use a comma separated list of server names and port numbers after the
"jdbc:voltdb://" prefix.

For example, the following code loads the VoltDB JDBC driver and connects to the servers svr1 and svr2
using the default client port:

Class.forName("org.voltdb.jdbc.Driver");
Connection c = DriverManager.getConnection(
 "jdbc:voltdb://svr1:21212,svr2:21212");

If, after the connection is made, the connection to one or more of the servers is lost due to a network
issue or server failure, the VoltDB JDBC client does not automatically reconnect the broken connection
by default. However, you can have the JDBC driver reconnect lost connections by adding the autoconnect
argument to the connection string. For example:

Class.forName("org.voltdb.jdbc.Driver");
Connection c = DriverManager.getConnection(
 "jdbc:voltdb://svr1:21212,svr2:21212?autoreconnect=true");

When autoreconnect is enabled and a server goes offline, the JDBC driver periodically attempts to recon-
nect to the missing server until it comes back online and the connection is reestablished.

If security is enabled for the database, you must also provide a username and password. Set these as
properties using the setProperty method before creating the connection and then pass the properties as a
second argument to getConnection. For example, the following code uses the username/password pair of
"Hemingway" and "KeyWest" to authenticate to the VoltDB database:

Class.forName("org.voltdb.jdbc.Driver");
Properties props = new Properties();
props.setProperty("user", “Hemingway");
props.setProperty("password", “KeyWest");
Connection c = DriverManager.getConnection(

74

Using VoltDB with Oth-
er Programming Languages

 "jdbc:voltdb://svr1:21212,svr2:21212", props);

8.3.2. Using JDBC to Query a VoltDB Database
Once the connection is made, you use the standard JDBC classes and methods to access the database. (See
the JDBC documentation at http://download.oracle.com/javase/8/docs/technotes/
guides/jdbc for details.) Note, however, when running the JDBC application, you must make sure
both the VoltDB software jar and the Guava library are in the Java classpath. Guava is a third party library
that is shipped as part of the VoltDB kit in the /lib directory. Unless you include both components in the
classpath, your application will not be able to find and load the necessary driver class.

The following is a complete example that uses JDBC to access the Hello World tutorial that comes with
the VoltDB software in the subdirectory /doc/tutorials/helloworld. The JDBC demo program
executes both an ad hoc query and a call to the VoltDB stored procedure, Select.

import java.sql.*;
import java.io.*;

public class JdbcDemo {

 public static void main(String[] args) {

 String driver = "org.voltdb.jdbc.Driver";
 String url = "jdbc:voltdb://localhost:21212";
 String sql = "SELECT dialect FROM helloworld";

 try {
 // Load driver. Create connection.
 Class.forName(driver);
 Connection conn = DriverManager.getConnection(url);

 // create a statement
 Statement query = conn.createStatement();
 ResultSet results = query.executeQuery(sql);
 while (results.next()) {
 System.out.println("Language is " + results.getString(1));
 }

 // call a stored procedure
 CallableStatement proc = conn.prepareCall("{call Select(?)}");
 proc.setString(1, "French");
 results = proc.executeQuery();
 while (results.next()) {
 System.out.printf("%s, %s!\n", results.getString(1),
 results.getString(2));
 }

 //Close statements, connections, etc.
 query.close();
 proc.close();
 results.close();
 conn.close();

 } catch (Exception e) {

75

http://download.oracle.com/javase/8/docs/technotes/guides/jdbc
http://download.oracle.com/javase/8/docs/technotes/guides/jdbc

Using VoltDB with Oth-
er Programming Languages

 e.printStackTrace();
 }
 }
}

76

Chapter 9. Using VoltDB in a Cluster
It is possible to run VoltDB on a single server and still get all the advantages of parallelism because VoltDB
creates multiple partitions on each server. However, there are practical limits to how much memory or
processing power any one server can sustain.

One of the key advantages of VoltDB is its ease of expansion. You can increase both capacity and pro-
cessing (i.e. the total number of partitions) simply by adding servers to the cluster to achieve almost linear
scalability. Using VoltDB in a cluster also gives you the ability to increase the availability of the database
— protecting it against possible server failures or network glitches.

This chapter explains how to create a cluster of VoltDB servers running a single database. It also explains
how to expand the cluster when additional capacity or processing power is needed. The following chapters
explain how to increase the availability of your database through the use of K-safety and database repli-
cation, as well as how to enable security to limit access to the data.

9.1. Starting a Database Cluster
As described in Chapter 3, Starting the Database, starting a VoltDB cluster is similar to starting VoltDB on
a single server — you use the same commands. To start a single server database, you use the voltdb start
command by itself. To customize database features, you specify a configuration file when you initialize
the root directory with voltdb init.

To start a cluster, you also use the voltdb start command. In addition, you must:

• Specify the number of nodes in the cluster using the --count argument.

• Choose one or more nodes as the potential lead or "host" node and specify those nodes using the --host
argument on the start command

• Issue the same voltdb start command on all nodes of the cluster

For example, if you are creating a new five node cluster and choose nodes server2 and server3 as the hosts,
you would issue a command like the following on all five nodes:

$ voltdb start --host=server2,server3 --count=5

To restart a cluster using command logs or automatic snapshots, you repeat the same command. Alternate-
ly, you can specify all nodes in the cluster in the --host argument and skip the server count:

$ voltdb start --host=server1,server2,server3,server4,server5

No matter which approach you choose, you must specify the same list of potential hosts on all nodes of
the cluster. Once the database cluster is running the leader's special role is complete and all nodes become
peers.

9.2. Updating the Cluster Configuration
Before you start the cluster, you choose what database features to use by specifying a configuration file
when you initialize the database root directory on each node using the voltdb init command. You must
specify the same configuration file on every node of the cluster. For example:

$ voltdb init --config=deployment.xml

77

Using VoltDB in a Cluster

If you choose to change database options, many of the features can be adjusted while the database is
running by either:

• Using the web-based VoltDB Management Center to make changes interactively in the Admin tab

• Editing the original configuration file and applying the modifications with the voltadmin update com-
mand

For example, you can change security settings, import and export configurations, and resource limits dy-
namically. With either approach, the changes you make are saved by VoltDB in the database root directory.

However, there are some changes that cannot be made while the database is running. For example, chang-
ing the K-safety value or the number of partitions per server require shutting down, re-initializing, and
restarting the database. To change these static aspects of your cluster, you must save the database contents,
reconfigure the root directory, then restart and restore the database. The steps for changing static config-
uration options are:

1. Pause the database (voltadmin pause)

2. Save a snapshot of the contents (voltadmin save {path} {file-prefix})

3. Shutdown the database (voltadmin shutdown)

4. Re-initialize the root directory with the new configuration file and the --force argument (voltdb
init --force --config=file)

5. Restart the database in admin mode (voltdb start --pause)

6. Restore the snapshot (voltadmin restore {path} {file-prefix})

7. Resume normal operations (voltadmin resume)

See Chapter 13, Saving & Restoring a VoltDB Database for information on using save and restore. When
doing benchmarking, where you need to change the number of partitions or adjust other static configuration
options, this is the recommended approach. However, if you are adjusting the size of the cluster to increase
or decrease capacity or performance, you can perform these operations while the database is running.
Adding and removing nodes "on the fly" is known as elastic scaling and is described in the next section.

9.3. Elastic Scaling to Resize the Cluster
Elastic scaling is the ability to resize the cluster as needed, without having to shutdown the database.
Elastic scaling supports both increasing and decreasing the size of the cluster. For example, you might
want to increase the size of the cluster ahead of an important announcement that will drive additional
traffic — and subsequently require additional capacity. Similarly, you may want to reduce the size for the
cluster during slow periods to limit the number of resources that would be under utilized.

Adding and removing nodes using elastic scaling are each handled separately because increasing the size
of the cluster requires adding new nodes to the cluster first. While when decreasing the size of the cluster,
the nodes are already part of the cluster and VoltDB decides which node are most advantageous to remove
based on the distribution of partitions within the cluster.

To add nodes to the cluster you start the additional nodes using the voltdb start --add command. To
remove nodes from the cluster, you use the voltadmin resize command and the cluster decides which
nodes to remove.

78

Using VoltDB in a Cluster

But in both cases, the correct number of nodes must be added or removed at the same time. The number
of nodes added or removed must result in the resized cluster meeting the requirements for a K-safe cluster
based on the K-safety value and number of sites per host (as described in Section 10.2.2, “Calculating
the Appropriate Number of Nodes for K-Safety”). So for a cluster with no K-safety (K=0), nodes can be
added and removed individually. For K-safe clusters, K+1 nodes must be added or removed at a time. For
example, with K=1 two nodes must be added at a time. While in the case of reducing the size of the cluster,
two nodes must be removed but the resulting cluster must also meet the requirement that the total number
of partitions (sites per host X number of nodes) is divisible by K+1.

Finally, resizing the cluster "on the fly" does require both time and some amount of resources while the
data and partitions are rebalanced. The length of time required to complete the rebalancing depends on
the amount of data present and the current workload. Similarly, the performance impact of resizing on
the ongoing operation of the cluster depends on how much additional capacity the cluster has to assign
to rebalance tasks.

The following sections describe how to:

• Add nodes using elastic scaling

• Remove nodes using elastic scaling

• Control the time and performance impact of elastic scaling by configuring the rebalance workoad

9.3.1. Adding Nodes with Elastic Scaling
When you are ready to extend the cluster by adding one or more nodes, you simply initialize and start the
VoltDB database process on the new nodes using the voltdb init command to initialize and the voltdb
start command to start with the --add argument, specifying the name of one or more of the existing
cluster nodes as the hosts. For example, if you are adding node ServerX to a cluster where ServerA is
already a member, you can execute the following commands on ServerX:

$ voltdb init --config=deployment.xml
$ voltdb start --add --host=ServerA

Once the elastic add action is initiated, the cluster performs the following tasks:

1. The cluster acknowledges the presence of a new server.

2. Copies of the current schema and configuration settings are sent to the new node.

3. Once sufficient nodes are added, copies of all replicated tables and their share of the partitioned tables
are sent to the new nodes.

4. As the data is redistributed (or rebalanced), the added nodes begin participating as full members of
the cluster.

There are some important notes to consider when expanding the cluster using elastic scaling:

• You must add a sufficient number of nodes to create an integral K-safe unit. That is, K+1 nodes. For
example, if the K-safety value for the cluster is two, you must add three nodes at a time to expand the
cluster. If the cluster is not K-safe (in other words it has a K-safety value of zero), you can add one
node at a time.

• When you add nodes to a K-safe cluster, the nodes added first will complete steps #1 and #2 above,
but will not complete steps #3 and #4 until the correct number of nodes are added, at which point all
nodes rebalance together.

79

Using VoltDB in a Cluster

• While the cluster is rebalancing (Step #3), the database continues to handle incoming requests. However,
depending on the workload and amount of data in the database, rebalancing may take a significant
amount of time.

• Once elastic scaling is complete, your database configuration has changed. If you shutdown the database
and then restart, you must specify the new server count in the --count argument to the voltdb start
command.

9.3.2. Removing Nodes with Elastic Scaling
When you want to reduce the size of your cluster, you use the voltadmin resize command to start the
resizing process. First, as with any significant maintenance activity, it is a good idea to take a snapshot of
the database contents before you begin, just in case you need to restore it later. The next step is to test to
make sure the cluster can be reduced. You do this using the voltadmin resize --test command:

$ voltadmin resize --test

The --test qualifier verifies that there are sufficient nodes and partitions to reduce the cluster while main-
taining the K-safety and sitesperhost settings. If not, the command will report that the cluster cannot be
reduced in size. If resizing is possible, the command reports which nodes will be removed when resizing
begins.

Once you are ready to begin the resizing process, you use the voltadmin resize command:

$ voltadmin resize

The command repeats the test phase, reports which nodes will be removed and prompts you to confirm
that you are ready to start. When you respond with "y" or "yes", the resizing process begins.

Once resizing begins, the process cannot be canceled. Even if the cluster stops, resizing will continue once
the cluster restarts (and you must restart all of the original nodes so the resize operation can complete). So
be sure you want to reduce the cluster size before you respond positively to the prompt.

The length of time it takes for resizing to complete depends on the amount of data in the database and
the current workload. You can adjust parameters that affect resizing (as described in Section 9.3.3, “Con-
figuring How VoltDB Rebalances Nodes During Elastic Scaling”). However, increasing the duration or
throughput for resizing will likely have a corresponding inverse impact on the performance of ongoing
database activities. Use the voltadmin status to check on the current status of the resizing operation, or
use the @Statistics system procedure with the REBALANCE selector for details.

Finally, if an unexpected event causes the resize process to fail — which will be reported in the server logs
— you can restart the resize operation using the voltadmin resize --retry command.

9.3.3. Configuring How VoltDB Rebalances Nodes During
Elastic Scaling

As you add or remove nodes using elastic scaling, VoltDB rebalances the cluster by rearranging data within
the partitions. During elastic expansion, as soon as you add the necessary number of nodes (based on the
K-safety value), VoltDB rebalances the cluster, moving data from existing partitions to partitions on the
new nodes. During elastic contraction, before the nodes are removed, VoltDB rebalances the cluster by
moving data from partitions that are being removed to partitions that will remain.

During the rebalance phase, the database remains available and actively processing client requests. How
long the rebalance operation takes is dependent on two factors: how often rebalance tasks are processed
and how much data each transaction moves.

80

Using VoltDB in a Cluster

Rebalance tasks are fully transactional, meaning they operate within the database's ACID-compliant trans-
actional model. Because they involve moving data between two or more partitions, they are also mul-
ti-partition transactions. This means that each rebalance work unit can incrementally add to the latency
of pending client transactions.

You can control how quickly the rebalance operation completes versus how much rebalance work impacts
ongoing client transactions using two attributes of the <elastic> element in the configuration file:

• The duration attribute sets a target value for the length of time each rebalance transaction will take,
specified in milliseconds. The default is 50 milliseconds.

• The throughput attribute sets a target value for the number of megabytes per second that will be
processed by the rebalance transactions. The default is 2 megabytes.

When you change the target duration, VoltDB adjusts the amount of data that is moved in each transaction
to reach the target execution time. If you increase the duration, the volume of data moved per transaction
increases. Similarly, if you reduce the duration, the volume per transaction decreases.

When you change the target throughput, VoltDB adjusts the frequency of rebalance transactions to achieve
the desired volume of data moved per second. If you increase the target throughout, the number of rebal-
ance transactions per second increases. Similarly, if you decrease the target throughout, the number of
transactions decreases.

The <elastic> element is a child of the <systemsettings> element. For example, the following configuration
file sets the target duration to 15 milliseconds and the target throughput to 1 megabyte per second before
starting the database:

<deployment>
 . . .
 <systemsettings>
 <elastic duration="15" throughput="1"/>
 </systemsettings>
</deployment>

81

Chapter 10. Availability
Durability is one of the four key ACID attributes required to ensure the accurate and reliable operation of
a transactional database. Durability refers to the ability to maintain database consistency and availability
in the face of external problems, such as hardware or operating system failure. Durability is provided by
four features of VoltDB: snapshots, command logging, K-safety, and disaster recovery through database
replication.

• Snapshots are a "snapshot" of the data within the database at a given point in time written to disk. You
can use these snapshot files to restore the database to a previous, known state after a failure which brings
down the database. The snapshots are guaranteed to be transactionally consistent at the point at which
the snapshot was taken. Chapter 13, Saving & Restoring a VoltDB Database describes how to create
and restore database snapshots.

• Command Logging is a feature where, in addition to periodic snapshots, the system keeps a log of every
stored procedure (or "command") as it is invoked. If, for any reason, the servers fail, they can "replay"
the log on startup to reinstate the database contents completely rather than just to an arbitrary point-
in-time. Chapter 14, Command Logging and Recovery describes how to enable, configure, and replay
command logs.

• K-safety refers to the practice of duplicating database partitions so that the database can withstand the
loss of cluster nodes without interrupting the service. For example, a K value of zero means that there
is no duplication and losing any servers will result in a loss of data and database operations. If there are
two copies of every partition (a K value of one), then the cluster can withstand the loss of at least one
node (and possibly more) without any interruption in service.

• Database Replication is similar to K-safety, since it involves replicating data. However, rather than cre-
ating redundant partitions within a single database, database replication involves creating and maintain-
ing a complete copy of the entire database. Database replication has a number of uses, but specifically
in terms of durability, replication lets you maintain two copies of the database in separate geographic
locations. In case of catastrophic events, such as fires, earthquakes, or large scale power outages, the
replica can be used as a replacement for a disabled cluster.

Subsequent chapters describe snapshots and command logging. The next chapter describes how you can
use database replication for disaster recovery. This chapter explains how K-safety works, how to configure
your VoltDB database for different values of K, and how to recover in the case of a system failure.

10.1. How K-Safety Works
K-safety involves duplicating database partitions so that if a partition is lost (either due to hardware or
software problems) the database can continue to function with the remaining duplicates. In the case of
VoltDB, the duplicate partitions are fully functioning members of the cluster, including all read and write
operations that apply to those partitions. (In other words, the duplicates function as peers rather than in
a master-slave relationship.)

It is also important to note that K-safety is different than WAN replication. In replication the entire database
cluster is replicated (usually at a remote location to provide for disaster recovery in case the entire cluster
or site goes down due to catastrophic failure of some type).

In replication, the replicated cluster operates independently and cannot assist when only part of the active
cluster fails. The replicate is intended to take over only when the primary database cluster fails entirely.
So, in cases where the database is mission critical, it is not uncommon to use both K-safety and replication
to achieve the highest levels of service.

82

Availability

To achieve K=1, it is necessary to duplicate all partitions. (If you don't, failure of a node that contains a
non-duplicated partition would cause the database to fail.) Similarly, K=2 requires two duplicates of every
partition, and so on.

What happens during normal operations is that any work assigned to a duplicated partition is sent to all
copies (as shown in Figure 10.1, “K-Safety in Action”). If a node fails, the database continues to function
sending the work to the unaffected copies of the partition.

Figure 10.1. K-Safety in Action

10.2. Enabling K-Safety
You specify the desired K-safety value as part of the cluster configuration when you initialize the database
root directory. By default, VoltDB uses a K-safety value of zero (no duplicate partitions). You can specify a
larger K-safety value using the kfactor attribute of the <cluster> tag. For example, in the following
configuration file, the K-safety value is set to 2:

<?xml version="1.0"?>
<deployment>
 <cluster kfactor="2" />
</deployment>

When you start the database specifying a K-safety value greater than zero, the appropriate number of
partitions out of the cluster will be assigned as duplicates. For example, if you start a cluster with 3 nodes
and the default partitions per node of 8, there are a total of 24 partitions. With K=1, half of those partitions
(12) will be assigned as duplicates of the other half. If K is increased to 2, the cluster would be divided
into 3 copies consisting of 8 partitions each.

The important point to note when setting the K value is that, if you do not change the hardware configu-
ration, you are dividing the available partitions among the duplicate copies. Therefore performance (and

83

Availability

capacity) will be proportionally decreased as K-safety is increased. So running K=1 on a 6-node cluster
will be approximately equivalent to running a 3-node cluster with K=0.

If you wish to increase reliability without impacting performance, you must increase the cluster size to
provide the appropriate capacity to accommodate for K-safety.

10.2.1. What Happens When You Enable K-Safety
Of course, to ensure a system failure does not impact the database, not only do the partitions need to be
duplicated, but VoltDB must ensure that the duplicates are kept on separate nodes of the cluster. To achieve
this, VoltDB calculates the maximum number of unique partitions that can be created, given the number
of nodes, partitions per node, and the desired K-safety value.

When the number of nodes is an integral multiple of the duplicates needed, this is easy to calculate. For
example, if you have a six node cluster and choose K=1, VoltDB will create two instances of three nodes
each. If you choose K=2, VoltDB will create three instances of two nodes each. And so on.

If the number of nodes is not a multiple of the number of duplicates, VoltDB does its best to distribute the
partitions evenly. For example, if you have a three node cluster with two partitions per node, when you
ask for K=1 (in other words, two of every partition), VoltDB will duplicate three partitions, distributing
the six total partitions across the three nodes.

10.2.2. Calculating the Appropriate Number of Nodes for K-
Safety

By now it should be clear that there is a correlation between the K value and the number of nodes and
partitions in the cluster. Ideally, the number of nodes is a multiple of the number of copies needed (in other
words, the K value plus one). This is both the easiest configuration to understand and manage.

However, if the number of nodes is not an exact multiple, VoltDB distributes the duplicated partitions
across the cluster using the largest number of unique partitions possible. This is the highest whole integer
where the number of unique partitions is equal to the total number of partitions divided by the needed
number of copies:

Unique partitions = (nodes * partitions/node) / (K + 1)

Therefore, when you specify a cluster size that is not a multiple of K+1, but where the total number of
partitions is, VoltDB will use all of the partitions to achieve the required K-safety value.

Note that the total number of partitions must be a whole multiple of the number of copies (that is, K+1).
If neither the number of nodes nor the total number of partitions is divisible by K+1, then VoltDB will
not let the cluster start and will display an appropriate error message. For example, if the configuration
specifies 3 sites per host and a K-safety value of 1 but the voltdb start command specifies a server count
of 3, the cluster cannot start because the total number of partitions (3X3=9) is not a multiple of the number
of copies (K+1=2). To start the cluster, you must either change the configuration to increase the K-safety
value to 2 (so the number of copies is 3) or change the sites per host to 2 or 4 so the total number of
partitions is divisible by 2.

Finally, if the configuration specifies a K value higher than the available number of nodes, it is not possible
to achieve the requested K-safety. Even if there are enough partitions to create the requested duplicates,
VoltDB cannot distribute the duplicates to distinct nodes. For example, if you start a 3 node cluster when
the configuration specifies 4 partitions per node (12 total partitions) and a K-safety value of 3, the number
of total partitions (12) is divisible by K+1 (4) but not without some duplicates residing on the same node.

84

Availability

In this situation, VoltDB issues an error message. You must either reduce the K-safety or increase the
number of nodes.

10.3. Recovering from System Failures
When running without K-safety (in other words, a K-safety value of zero) any node failure is fatal and
will bring down the database (since there are no longer enough partitions to maintain operation). When
running with K-safety on, if a node goes down, the remaining nodes of the database cluster log an error
indicating that a node has failed.

By default, these error messages are logged to the console terminal. Since the loss of one or more nodes
reduces the reliability of the cluster, you may want to increase the urgency of these messages. For example,
you can configure a separate Log4J appender (such as the SMTP appender) to report node failure mes-
sages. To do this, you should configure the appender to handle messages of class HOST and severity level
ERROR or greater. See the chapter on Logging in the VoltDB Administrator's Guide for more information
about configuring logging.

When a node fails with K-safety enabled, the database continues to operate. But at the earliest possible
convenience, you should repair (or replace) the failed node.

To replace a failed node to a running VoltDB cluster, you restart the VoltDB server process specifying
the address of at least one of the remaining nodes of the cluster as the host. For example, to rejoin a node
to the VoltDB cluster where server5 is one of the current member nodes, you use the following voltdb
start command:

$ voltdb start --host=server5

If you started the servers specifying multiple hosts, you can use the same voltdb start command used to
start the cluster as a whole since, even if the failed node is in the host list, one of the other nodes in the
list can service its rejoin request.

If the failed server cannot be restarted (for example, if hardware problems caused the failure) you can start
a replacement server in its place. Note you will need to initialize a root directory on the replacement server
before you can start the database process. You can either initialize the root with the original configuration
file. Or, if you have changed the configuration, you can download a copy of the current configuration from
the VoltDB Management Center and use that file to initialize the root directory before starting:

$ voltdb init --config=latest-config.xml
$ voltdb start --host=server5

Note that at least one node you specify in the --host argument must be an active member of the cluster. It
does not have to be one of the nodes identified as the host when the cluster was originally started.

10.3.1. What Happens When a Node Rejoins the Cluster
When you use voltdb start to bring back a server to a running cluster, the node first rejoins the cluster,
then retrieves a copy of the database schema and the appropriate data for its partitions from other nodes
in the cluster. Rejoining the cluster only takes seconds and once this is done and the schema is received,
the node can accept and distribute stored procedure requests like any other member.

However, the new node will not actively participate in the work until a full working copy of its partition
data is received. While the data is being copied, the cluster separates the rejoin process from the standard
transactional workflow, allowing the database to continue operating with a minimal impact to throughput
or latency. So the database remains available and responsive to client applications throughout the rejoin
procedure.

85

http://docs.voltdb.com/AdminGuide/ChapLogging.php
http://docs.voltdb.com/AdminGuide/

Availability

It is important to remember that the cluster is not fully K-safe until the restoration is complete. For example,
if the cluster was established with a K-safety value of two and one node failed, until that node rejoins and
is updated, the cluster is operating with a K-safety value of one. Once the node is up to date, the cluster
becomes fully operational and the original K-safety is restored.

10.3.2. Where and When Recovery May Fail
It is possible to rejoin any appropriately configured node to the cluster. It does not have to be the same
physical machine that failed. This way, if a node fails for hardware reasons, it is possible to replace it
in the cluster immediately with a new node, giving you time to diagnose and repair the faulty hardware
without endangering the database itself.

There are a few conditions in which the rejoin operation may fail. Those situations include the following:

• Insufficient K-safety

If the database is running without K-safety, or more nodes fail simultaneously than the cluster is capable
of sustaining, the entire cluster will fail and must be restarted from scratch. (At a minimum, a VoltDB
database running with K-safety can withstand at least as many simultaneous failures as the K-safety
value. It may be able to withstand more node failures, depending upon the specific situation. But the K-
safety value tells you the minimum number of node failures that the cluster can withstand.)

• Mismatched configuration in the root directory

If the configuration file that you specify when initializing the root directory does not match the current
configuration of the database, the cluster will refuse to let the node rejoin.

• More nodes attempt to rejoin than have failed

If one or more nodes fail, the cluster will accept rejoin requests from as many nodes as failed. For
example, if one node fails, the first node requesting to rejoin will be accepted. Once the cluster is back
to the correct number of nodes, any further requests to rejoin will be rejected. (This is the same behavior
as if you try to start more nodes than specified in the --count argument to the voltdb start command
when starting the database.)

10.4. Avoiding Network Partitions
VoltDB achieves scalability by creating a tightly bound network of servers that distribute both data and
processing. When you configure and manage your own server hardware, you can ensure that the cluster
resides on a single network switch, guaranteeing the best network connection between nodes and reducing
the possibility of network faults interfering with communication.

However, there are situations where this is not the case. For example, if you run VoltDB "in the cloud",
you may not control or even know what is the physical configuration of your cluster.

The danger is that a network fault — between switches, for example — can interrupt communication
between nodes in the cluster. The server nodes continue to run, and may even be able to communicate
with others nodes on their side of the fault, but cannot "see" the rest of the cluster. In fact, both halves of
the cluster think that the other half has failed. This condition is known as a network partition.

10.4.1. K-Safety and Network Partitions
When you run a VoltDB cluster without availability (in other words, no K-safety) the danger of a network
partition is simple: loss of the database. Any node failure makes the cluster incomplete and the database

86

Availability

will stop, You will need to reestablish network communications, restart VoltDB, and restore the database
from the last snapshot.

However, if you are running a cluster with K-safety, it is possible that when a network partition occurs, the
two separate segments of the cluster might have enough partitions each to continue running, each thinking
the other group of nodes has failed.

For example, if you have a 3 node cluster with 2 sites per node, and a K-safety value of 2, each node is a
separate, self-sustaining copy of the database, as shown in Figure 10.2, “Network Partition”. If a network
partition separates nodes A and B from node C, each segment has sufficient partitions remaining to sustain
the database. Nodes A and B think node C has failed; node C thinks that nodes A and B have failed.

Figure 10.2. Network Partition

The problem is that you never want two separate copies of the database continuing to operate and accepting
requests thinking they are the only viable copy. If the cluster is physically on a single network switch,
the threat of a network partition is reduced. But if the cluster is on multiple switches, the risk increases
significantly and must be accounted for.

10.4.2. Using Network Fault Protection
VoltDB provides a mechanism for guaranteeing that a network partition does not accidentally create two
separate copies of the database. The feature is called network fault protection.

Because the consequences of a partition are so severe, use of network partition detection is strongly rec-
ommended and VoltDB enables partition detection by default. In addition it is recommended that, wher-
ever possible, K-safe clusters be configured with an odd number of nodes.

However, it is possible to disable network fault protection in the configuration file when you initialize the
database, if you choose. You enable and disable partition detection using the <partition-detection> tag.
The <partition-detection> tag is a child of <deployment> and peer of <cluster>. For example:

<deployment>
 <cluster hostcount="4"
 sitesperhost="2"
 kfactor="1" />
 <partition-detection enabled="true"/>
</deployment>

87

Availability

When network fault protection is enabled, and a fault is detected (either due to a network fault or one or
more servers failing), any viable segment of the cluster will perform the following steps:

1. Determine what nodes are missing

2. Determine if the missing nodes are also a viable self-sustained cluster. If so...

3. Determine which segment is the larger segment (that is, contains more nodes).

• If the current segment is larger, continue to operate assuming the nodes in the smaller segment have
failed.

• If the other segment is larger, shutdown to avoid creating two separate copies of the database.

For example, in the case shown in Figure 10.2, “Network Partition”, if a network partition separates nodes
A and B from C, the larger segment (nodes A and B) will continue to run and node C will shutdown (as
shown in Figure 10.3, “Network Fault Protection in Action”).

Figure 10.3. Network Fault Protection in Action

If a network partition creates two viable segments of the same size (for example, if a four node cluster
is split into two two-node segments), a special case is invoked where one segment is uniquely chosen
to continue, based on the internal numbering of the host nodes. Thereby ensuring that only one viable
segment of the partitioned database continues.

Network fault protection is a very valuable tool when running VoltDB clusters in a distributed or uncon-
trolled environment where network partitions may occur. The one downside is that there is no way to dif-
ferentiate between network partitions and actual node failures. In the case where network fault protection
is turned on and no network partition occurs but a large number of nodes actually fail, the remaining nodes
may believe they are the smaller segment. In this case, the remaining nodes will shut themselves down
to avoid partitioning.

For example, in the previous case shown in Figure 10.3, “Network Fault Protection in Action”, if rather
than a network partition, nodes A and B fail, node C is the only node still running. Although node C is
viable and could continue because the database was configured with K-safety set to 2, if fault protection
is enabled node C will shut itself down to avoid a partition.

In the worst case, if half the nodes of a cluster fail, the remaining nodes may actually shut themselves down
under the special provisions for a network partition that splits a cluster into two equal parts. For example,
consider the situation where a two node cluster with a k-safety value of one has network partition detection

88

Availability

enabled. If one of the nodes fails (half the cluster), there is only a 50/50 chance the remaining node is the
"blessed" node chosen to continue under these conditions. If the remaining node is not the chosen node, it
will shut itself down to avoid a conflict, taking the database out of service in the process.

Because this situation — a 50/50 split — could result in either a network partition or a viable cluster
shutting down, VoltDB recommends always using network partition detection and using clusters with an
odd number of nodes. By using network partitioning, you avoid the dangers of a partition. By using an
odd number of servers, you avoid even the possibility of a 50/50 split, whether caused by partitioning or
node failures.

89

Chapter 11. Database Replicaon
There are times when it is useful to create multiple copies of a database. Not just a snapshot of a moment
in time, but live, constantly updated copies.

K-safety maintains redundant copies of partitions within a single VoltDB database, which helps protect
the database cluster against individual node failure. Database replication also creates a copy. However,
database replication creates and maintains copies in separate, often remote, databases.

VoltDB supports two forms of database replication:

• One-way (Passive)

• Two-way (Cross Datacenter)

Passive replication copies the contents from one database, known as the master database, to the other,
known as the replica. In passive replication, replication occurs in one direction: from the master to the
replica. Clients can connect to the master database and perform all normal database operations, including
INSERT, UPDATE, and DELETE statements. As shown in Figure 11.1, “Passive Database Replication”
changes are copied from the master to the replica. To ensure consistency between the two databases, the
replica is started as a read-only database, where only transactions replicated from the master can modify
the database contents.

Figure 11.1. Passive Database Replication

Cross Datacenter Replication (XDCR), or active replication, copies changes in both directions. XDCR
can be set up on multiple clusters (not just two). Client applications can then perform read/write operations
on any of the participating clusters and changes in one database are then copied and applied to all the other
databases. Figure 11.2, “Cross Datacenter Replication” shows how XDCR can support client applications
attached to each database instance.

90

Database Replication

Figure 11.2. Cross Datacenter Replication

Database replication (DR) provides two key business advantages. The first is protecting your business data
against catastrophic events, such as power outages or natural disasters, which could take down an entire
cluster. This is often referred to as disaster recovery. Because the clusters can be in different geographic
locations, both passive DR and XDCR allow other clusters to continue unaffected when one becomes
inoperable. Because the replica is available for read-only transactions, passive DR also allows you to
offload read-only workloads, such as reporting, from the main database instance.

The second business issue that DR addresses is the need to maintain separate, active copies of the database
in separate locations. For example, XDCR allows you to maintain copies of a product inventory database
at two or more separate warehouses, close to the applications that need the data. This feature makes it
possible to support massive numbers of clients that could not be supported by a single database instance
or might result in unacceptable latency when the database and the users are geographically separated. The
databases can even reside on separate continents.

It is important to note, however, that database replication is not instantaneous. The transactions are com-
mitted locally, then copied to the other database or databases. So when using XDCR to maintain multiple
active clusters you must be careful to design your applications to avoid possible conflicts when transac-
tions change the same record in two databases at approximately the same time. See Section 11.3.8, “Un-
derstanding Conflict Resolution” for more information about conflict resolution.

The remainder of this chapter discusses the following topics:

• Section 11.1, “How Database Replication Works”

• Section 11.2, “Using Passive Database Replication”

• Section 11.3, “Using Cross Datacenter Replication”

• Section 11.4, “Monitoring Database Replication”

11.1. How Database Replication Works
Database replication (DR) involves duplicating the contents of selected tables between two database clus-
ters. In passive DR, the contents are copied in one direction: from master to replica. In active or cross
datacenter DR, changes are copied in both directions.

91

Database Replication

You identify which tables to replicate in the schema, by specifying the table name in a DR TABLE state-
ment. For example, to replicate all tables in the voter sample application, you would execute three DR
TABLE statements when defining the database schema:

DR TABLE contestants;
DR TABLE votes;
DR TABLE area_code_state;

11.1.1. Starting Database Replication
You enable DR by including the <dr> tag in the configuration files when initializing the database. The
<dr> element identifies three pieces of information:

• A unique cluster ID for each database. The ID is required and can be any number between 0 and 127,
as long as each cluster has a different ID.

• The role the cluster plays, whether master, replica, or xdcr. The default is master.

• For the replica and xdcr roles, a connection source listing the host name or IP address of one or more
nodes from the other databases.

For example:

<dr id="2" role="replica">
 <connection source="serverA1,serverA2" />
</dr>

Each cluster must have a unique ID. For passive DR, only the replica needs a <connection> element,
since replication occurs in only one direction.

For cross datacenter replication (XDCR), all clusters must include the <connection> element pointing
to at each one other cluster. If you are establishing an XDCR network with multiple clusters, the <con-
nection> tag can specify hosts from one or more of the other clusters. The participating clusters will co-
ordinate establishing the correct connections, even if the <connection> element does not list them all.

Note that for XDCR, you must specify the attribute role="xdcr" before starting each cluster. You
cannot mix active and passive DR in the same database group.

For passive DR, you must start the replica database with the role="replica" attribute to ensure the
replica is in read-only mode. Once the clusters are configured properly and the schema of the DR tables
match in the databases, replication starts.

The actual replication process is performed in multiple parallel streams; each unique partition on one
cluster sends a binary log of completed transactions to the other clusters. Replicating by partition has two
key advantages:

• The process is faster — Because the replication process uses a binary log of the results of the transaction
(rather than the transaction itself), the receiving cluster (or consumer) does not need to reprocess the
transaction; it simply applies the results. Also, since each partition replicates autonomously, multiple
streams of data are processed in parallel, significantly increasing throughout.

• The process is more durable — In a K-safe environment, if a server fails on a DR cluster, individual
partition streams can be redirected to other nodes or a stream can wait for the server to rejoin — without
interfering with the replication of the other partitions.

92

Database Replication

If data already exists in one of the clusters before database replication starts for the first time, that data-
base sends a snapshot of the existing data to the other, as shown in Figure 11.3, “Replicating an Existing
Database”. Once the snapshot is received and applied (and the two clusters are in sync), the partitions start
sending binary logs of transaction results to keep the clusters synchronized.

Figure 11.3. Replicating an Existing Database

For passive DR, only the master database can have existing data before starting replication for the first
time. The replica's DR tables must be empty. For XDCR, the first database that is started can have data in
the DR tables. If other clusters contain data, replication cannot start. Once DR has started, the databases
can stop and recover using command logging without having to restart DR from the beginning.

11.1.2. Database Replication, Availability, and Disaster Re-
covery

Once replication begins, the DR process is designed to withstand normal failures and operational down-
time. When using K-safety, if a node fails on any cluster, you can rejoin the node (or a replacement) us-
ing the voltdb start command without breaking replication. Similarly, if a cluster shuts down, you can
use voltdb start to restart the database and restart replication where it left off. The ability to restart DR
assumes you are using command logging. Specifically, synchronous command logging is recommended
to ensure complete durability.

If unforeseen events occur that make a database unreachable, database replication lets you replace the
missing database with its copy. This process is known as disaster recovery. For cross datacenter replication
(XDCR), you simply need to redirect your client applications to the remaining cluster(s). For passive
DR, there is an extra step. To replace the master database with the replica, you must issue the voltadmin
promote command on the replica to switch it from read-only mode to a fully operational database.

93

Database Replication

Figure 11.4. Promoting the Replica

See Section 11.2.6.3, “Promoting the Replica When the Master Becomes Unavailable” for more informa-
tion on promoting the replica database.

11.1.3. Database Replication and Completeness
It is important to note that, unlike K-safety where multiple copies of each partition are updated simultane-
ously, database replication involves shipping the results of completed transactions from one database to
another. Because replication happens after the fact, there is no guarantee that the contents of the clusters
are identical at any given point in time. Instead, the receiving database (or consumer) "catches up" with
the sending database (or producer) after the binary logs are received and applied by each partition.

Also, because DR occurs on a per partition basis, changes to partitions may not occur in the same order on
the consumer, since one partition may replicate faster than another. Normally this is not a problem because
the results of all transactions are atomic in the binary log. However, if the producer cluster crashes, there
is no guarantee that the consumer has managed to retrieve all the logs that were queued. Therefore, it is
possible that some transactions that completed on the producer are not reflected on the consumer.

Fortunately, using command logging, when you restart the failed cluster, any unacknowledged transactions
will be replayed from the failed cluster's disk-based DR cache, allowing the clusters to recover and resume
DR where they left off. However, if the failed cluster does not recover, you will need to decide how to
proceed. You can choose to restart DR from scratch or, if you are using passive DR, you can promote the
replica to replace the master.

To ensure effective recovery, the use of synchronous command logging is recommended for DR. Synchro-
nous command logging guarantees that all transactions are recorded in the command log and no transac-
tions are lost. If you use asynchronous command logging, there is a possibility that a binary log is applied
but not captured by the command log before the cluster crashes. Then when the database recovers, the
clusters will not agree on the last acknowledged DR transaction, and DR will not be able to resume.

The decision whether to promote the replica or wait for the master to return (and hopefully recover all
transactions from the command log) is not an easy one. Promoting the replica and using it to replace the
original master may involve losing one or more transactions per partition. However, if the master cannot
be recovered or cannot not be recovered quickly, waiting for the master to return can result in significant
business loss or interruption.

Your own business requirements and the specific situation that caused the outage will determine which
choice to make — whether to wait for the failed cluster to recover or to continue operations on the re-

94

Database Replication

maining cluster only. The important point is that database replication makes the choice possible and sig-
nificantly eases the dangers of unforeseen events.

11.2. Using Passive Database Replication
The following sections provide step-by-step instructions for setting up and running passive replication
between two VoltDB clusters. The steps include:

1. Specifying what tables to replicate in the schema

2. Configuring the master and replica root directories for DR

3. Starting the databases

4. Loading the schema

The remaining sections discuss other aspects of managing passive DR, including:

• Updating the schema

• Stopping database replication

• Promoting the replica database

• Using the replica for read-only transactions

11.2.1. Specifying the DR Tables in the Schema
First, you must identify which tables you wish to copy from the master to the replica. Only the selected
tables are copied. You identify the tables in both the master and the replica database schema with the
DR TABLE statement, For example, the following statements identify two tables to be replicated, the
Customers and Orders tables:

CREATE TABLE customers (
 customerID INTEGER NOT NULL,
 firstname VARCHAR(128),
 lastname VARCHAR(128)
);
CREATE TABLE orders (
 orderID INTEGER NOT NULL,
 customerID INTEGER NOT NULL,
 placed TIMESTAMP
);
DR TABLE customers;
DR TABLE orders;

You can identify any regular table, whether partitioned or not, as a DR table, as long as the table is empty.
That is, the table must have no data in it when you issue the DR TABLE statement.

The important point to remember is that the schema for both databases must contain matching table defi-
nitions for any tables identified as DR tables, including the associated DR TABLE declarations. Although
it is easiest to have the master and replica databases use the exact same schema, that is not necessary. The
replica can have a subset or superset of the tables in the master, as long as it contains matching definitions
for all of the DR tables. The replica schema can even contain additional objects not in the master schema,
such as additional views. Which can be useful when using the replica for read-only or reporting workloads,
just as long as the DR tables match.

95

Database Replication

11.2.2. Configuring the Clusters
The next step is to properly configure the master and replica clusters. The two database clusters can have
different physical configurations (that is, different numbers of nodes, different sites per host, or a different
K factor). Identical cluster configurations guarantee the most efficient replication, because the replica
does not need to repartition the incoming binary logs. Differing configurations, on the other hand, may
incrementally increase the time needed to apply the binary logs.

Before you start the databases, you must initialize the root directories for both clusters with the appropriate
DR attributes. You enable DR in the configuration file using the <dr> element, including a unique cluster
ID for each database cluster and that cluster's role. The ID is a number between 0 and 127 which VoltDB
uses to uniquely identify each cluster as part of the DR process. The role is either master or replica.

For example, you could assign ID=1 for the master cluster and ID=2 for the replica. On the replica, you
must also include a <connection> sub-element that points to the master database. For example:

Master Cluster <dr id="1" role="master"/>
Replica Cluster <dr id="2" role="replica">

 <connection source="MasterSvrA,MasterSvrB" />
</dr>

11.2.3. Starting the Clusters
The next step is to start the databases. You start the master database as normal with the voltdb start
command. If you are creating a new database, you can then load the schema, including the necessary DR
TABLE statements. Or you can restore a previous database instance if desired. Once the master database
starts, it is ready and can interact with client applications.

For the replica database, you use the voltdb start command to start a new, empty database. Once the
database is running, you can execute DDL statements to load the database schema, but you cannot perform
any data manipulation queries such as INSERT, UPDATE, or DELETE because the replica is in read-
only mode.

The source attribute of the <connection> tag in the replica configuration file identifies the hostname
or IP address (and optionally port number) of one or more servers in the master cluster. You can specify
multiple servers so that DR can start even if one of the listed servers on the master cluster is currently down.

It is usually convenient to specify the connection information when initializing the database root directory.
But this property can be changed after the database is running, in case you do not know the address of
the master cluster nodes before starting. (Note, however, that the cluster ID cannot be changed once the
database starts.)

11.2.4. Loading the Schema and Starting Replication
As soon as the replica database starts with DR enabled, it will attempt to contact the master database to
start replication. The replica will issue warnings that the schema does not match, since the replica does
not have any schema defined yet. This is normal. The replica will periodically contact the master until the
schema for DR objects on the two databases match. This gives you time to load a matching schema.

As soon as the replica database has started, you can load the appropriate schema. Loading the same schema
as the master database is the easiest and recommended approach. The key point is that once a matching
schema is loaded, replication will begin automatically.

When replication starts, the following actions occur:

96

Database Replication

1. The replica and master databases verify that the DR tables match on the two clusters.

2. If data already exists in the DR tables on the master, the master sends a snapshot of the current contents
to the replica where it is restored into the appropriate tables.

3. Once the snapshot, if any, is restored, the master starts sending binary logs of changes to the DR tables
to the replica.

If any errors occur during the snapshot transmission, replication stops and must be restarted from the
beginning. However, once the third step is reached, replication proceeds independently for each unique
partition and, in a K safe environment, the DR process becomes durable across node failures and rejoins
and other non-fatal events.

If either the master or the replica database crashes and needs to restart, it is possible to restart DR where it
left off, assuming the databases are using command logging for recovery. If the master fails, you simply
use the voltdb start command to restart the master database. The replica will wait for the master to recover.
The master will then replay any DR logs on disk and resume DR where it left off.

If the replica fails, the master will queue the DR logs to disk waiting for the replica to return. If you use
the voltdb start command on the replica cluster, the replica will perform the following actions:

1. Restart the replica database, restoring both the schema and the data, and placing the database in read-
only mode.

2. Contact the master cluster and attempt to re-establish DR.

3. If both clusters agree on where (that is, what transaction), DR was interrupted, DR will resume from
that point, starting with the DR logs that the master database has queued in the interim.

If the clusters do not agree on where DR stopped during step #3, the replica database will generate an error
and stop replication. For example, if you recover from an asynchronous command log where the last few
DR logs were ACKed to the master but not written to the command log, the master and the replica will
be in different states when the replica recovers.

If this occurs, you must restart DR from the beginning, by re-initializing the replica root directory (with
the --force flag), restarting the database, and then reloading a compatible schema. Similarly, if you are not
using command logging, you cannot recover the replica database and must start DR from scratch.

11.2.5. Updating the Schema During Replication
Because database replication is asynchronous, updating the schema requires a deliberate, planned process.
You need to ensure that no transactions that write to the affected tables are executed while the schema is
being updated. If the DR consumer (that is, the replica) detects a transaction to a table where the schema
does not match, the replica stops requesting and processing binary logs from the master cluster. The master
cluster then queues all changes until the schema is updated on the replica. Once the schema on the replica
is updated to match the incoming transaction, replication resumes.

The safest way to update the schema is the following:

1. Pause the master cluster with the voltadmin pause --wait command

2. Update the schema on the master and replica.

3. Resume operation on the master with the voltadmin resume command

These steps ensure that no transactions are processed until the schema for both clusters are updated. How-
ever, this process also means the master database does not accept any client transactions during the update
process.

97

Database Replication

Because schema validation occurs on a per table, per transaction basis, it is possible to update the schema
without pausing the database. However, this only works if you ensure that no client transactions attempt
to modify affected tables while the schema differ.

For example, it is possible to add tables to the database schema without pausing the database by adding the
tables to the master database and replica in one step, then updating the stored procedures to access the new
tables in a second step. This way no client applications access the new tables until they exist and match
on both databases, and ongoing transactions are not impacted.

You can even modify existing DR tables without pausing the database. But in this case you must be
much more careful about avoiding operations that access the affected tables during the transition. If any
transactions attempt to write to an affected table while the schema differ, the replica will stall until the
schema match. One way to do this is to create a new table, matching the existing table but with the desired
changes. Update the schema on both clusters, then update the client applications and stored procedures to
use the new table. Finally, once all client applications are updated, the original table can be deleted.

11.2.6. Stopping Replication
If, for any reason, you wish to stop replication of a database, there are two ways to do this: you can stop
sending data from the master or you can "promote" the replica to stop it from receiving data. Since the
individual partitions are replicating data independently, if possible you want to make sure all pending
transfers are completed before turning off replication.

So, under the best circumstances, you should perform the following steps to stop replication:

1. Stop write transactions on the master database by putting it in admin mode using the voltadmin pause
command.

2. Wait for all pending DR log transfers to be completed.

3. Reset DR on the master cluster using the voltadmin dr reset command.

4. Depending on your goals, either shut down the replica or promote it to a fully-functional database as
described in Section 11.2.6.3, “Promoting the Replica When the Master Becomes Unavailable”.

11.2.6.1. Stopping Replication on the Master if the Replica Becomes Un-
available

If the replica becomes unavailable and is not going to be recovered or restarted, you should consider
stopping DR on the master database, to avoid consuming unnecessary disk space.

The DR process is resilient against network glitches and node or cluster failures. This durability is achieved
by the master database continually queueing DR logs in memory and — if too much memory is required
— to disk while it waits for the replica to ACK the last message. This way, when the network interruption
or other delay is cleared, the DR process can pick up where it left off. However, the master database has
no way to distinguish a temporary network failure from an actual stoppage of DR on the replica.

Therefore, if the replica stops unexpectedly, it is a good idea to restart the replica and re-initiate DR as
soon as convenient. Or, if you are not going to restart DR, you should reset DR on the master to cancel
the queuing of DR logs and to delete any pending logs. To reset the DR process on the master database,
use the voltadmin dr reset command. For example:

$ voltadmin dr reset --host=serverA

98

Database Replication

Of course, if you do intend to recover and restart DR on the replica, you do not want to reset DR on the
master. Resetting DR on the master will delete any queued DR logs and make restarting replication where
it left off impossible and force you to start DR over from the beginning.

11.2.6.2. Database Replication and Disaster Recovery
If unforeseen events occur that make the master database unreachable, database replication lets you replace
the master with the replica and restore normal business operations with as little downtime as possible. You
switch the replica from read-only to a fully functional database by promoting it. To do this, perform the
following steps:

1. Make sure the master is actually unreachable, because you do not want two live copies of the same
database. If it is reachable but not functioning properly, be sure to pause or shut down the master
database.

2. Promote the replica to a read/write mode using the voltadmin promote command.

3. Redirect the client applications to the newly promoted database.

Figure 11.4, “Promoting the Replica” illustrates how database replication reduces the risk of major disas-
ters by allowing the replica to replace the master if the master becomes unavailable.

Once the master is offline and the replica is promoted, the data is no longer being replicated. As soon as
normal business operations have been re-established, it is a good idea to also re-establish replication. This
can be done using any of the following options:

• If the original master database hardware can be restarted, take a snapshot of the current database (that
is, the original replica), restore the snapshot on the original master and redirect client traffic back to the
original. Replication can then be restarted using the original configuration.

• An alternative, if the original database hardware can be restarted but you do not want to (or need to)
redirect the clients away from the current database, is to use the original master hardware to create
a replica of the newly promoted cluster — essentially switching the roles of the master and replica
databases — as described in Section 11.2.6.4, “Reversing the Master/Replica Roles”.

• If the original master hardware cannot be recovered effectively, create a new database cluster in a third
location to use as a replica of the current database.

11.2.6.3. Promoting the Replica When the Master Becomes Unavailable
If the master database becomes unreachable for whatever reason (such as catastrophic system or network
failure) it may not be possible to turn off DR in an orderly fashion. In this case, you may choose to “turn
on” the replica as a fully active (writable) database to replace the master. To do this, you use the voltad-
min promote command. When you promote the replica database, it exits read-only mode and becomes
a fully operational VoltDB database. For example, the following Linux shell command uses voltadmin
to promote the replica node serverB:

$ voltadmin promote --host=serverB

11.2.6.4. Reversing the Master/Replica Roles
If you do promote the replica and start using it as the primary database, you will likely want to establish a
new replica as soon as possible to return to the original production configuration and level of durability.
You can do this by creating a new replica cluster and connecting to the promoted database as described in
Section 11.2.3, “Starting the Clusters”. Or, if the master database can be restarted, you can reuse that cluster
as the new replica, by modifying the configuration file to change the DR role from master to replica, and

99

Database Replication

add the necessary <connection> element, re-initializing the database root directory, and then starting
the new database cluster with the voltdb start command.

11.2.7. Database Replication and Read-only Clients
While database replication is occurring, the only changes to the replica database come from the binary
logs. Client applications can connect to the replica and use it for read-only transactions, including read-
only ad hoc queries and system procedures. However, any attempt to perform a write transaction from a
client application returns an error.

There will always be some delay between a transaction completing on the master and its results being
applied on the replica. However, for read operations that do not require real-time accuracy (such as report-
ing), the replica can provide a useful source for offloading certain less-frequent, read-only transactions
from the master.

Figure 11.5. Read-Only Access to the Replica

11.3. Using Cross Datacenter Replication
The following sections provide step-by-step instructions for setting up and running cross datacenter repli-
cation (XDCR) between two or more VoltDB clusters. The sections describe how to:

1. Design your schema and identify the DR tables

2. Configure the database clusters, including:

• Choosing unique cluster IDs

• Identifying the DR connections

3. Start the databases

4. Load the schema and start replication

Later sections discuss other aspects of managing XDCR, including:

• Updating the schema during replication

• Stopping database replication

• Resolving conflicts

100

Database Replication

Important

XDCR is a separately licensed feature. If your current VoltDB license does not include a key for
XDCR you will not be able to complete the tasks described in this section. See your VoltDB sales
representative for more information on licensing XDCR.

11.3.1. Designing Your Schema for Active Replication
To manage XDCR, VoltDB stores a small amount (8 bytes) of extra metadata with every row of data that is
shared. This additional space is allocated automatically for any table declared as a DR TABLE on a cluster
configured with the <dr> role attribute set to xdcr. Be sure to take this additional space requirement into
consideration when planning the memory usage of servers participating in an XDCR network.

Next, you must identify which tables you wish to share between the databases. Only the selected tables are
copied. You identify the tables in the schema with the DR TABLE statement. For example, the following
statements identify two tables to be replicated, the Customers and Orders tables:

CREATE TABLE customers (
 customerID INTEGER NOT NULL,
 firstname VARCHAR(128),
 LASTNAME varchar(128)
);
CREATE TABLE orders (
 orderID INTEGER NOT NULL,
 customerID INTEGER NOT NULL,
 placed TIMESTAMP
);
DR TABLE customers;
DR TABLE orders;

You can identify any regular table, whether partitioned or not, as a DR table, as long as the table is empty.
That is, the table must have no data in it when you issue the DR TABLE statement. The important point
to remember is that the schema definitions for all DR tables, including the DR TABLE statements, must
be identical on all the participating clusters.

11.3.2. Configuring the Database Clusters
The next step is to configure and initialize the database root directories. The database clusters can have
different physical configurations (that is, different numbers of nodes, different sites per host, or a different
K factor). Identical cluster configurations guarantee the most efficient replication, because the databases
do not need to repartition the incoming binary logs. Differing configurations, on the other hand, may
incrementally increase the time needed to apply the binary logs.

When initializing the database root directories, you must also enable and configure DR in the configuration
file, including:

• Choosing a unique ID for each cluster

• Specifying the DR connections

11.3.2.1. Choosing Unique IDs
You enable DR in the configuration file using the <dr> element and including a unique cluster ID for
each database cluster.

101

Database Replication

To manage the DR process VoltDB needs to uniquely identify the clusters. You provide this unique iden-
tifier as a number between 0 and 127 when you configure the clusters. For example, if we assign ID=1 to a
cluster in New York and ID=2 to another in Chicago, their respective configuration files must contain the
following <dr> elements. You must also specify that the cluster is participating in XDCR by specifying
the role. For example:

New York Cluster

<dr id="1" role="xdcr" />

Chicago Cluster

<dr id="2" role="xdcr" />

11.3.2.2. Identifying the DR Connections
For each database cluster, you must also specify the source of replication in the <connection> sub-
element. You do this by pointing each cluster to at least one of the other clusters, specifying one or more
servers on the remote cluster(s) in the source attribute.

You only need to point each connection source at servers from one of the other clusters, even if more
clusters are participating in the XDRC relationship. However, it is a good idea to include them all in the
source string so the current cluster is not dependent on the order in which the clusters start.

For example, say there are two clusters. The New York cluster has nodes NYserverA, NYserverB, and
NYserverC. While the Chicago cluster has CHIserverX, CHIserverY, and CHIserverZ. The configuration
files for the two clusters might look like this:

New York Cluster

<dr id="1" role="xdcr" >
 <connection source="CHIserverX,CHIserverY" />
</dr>

Chicago Cluster

<dr id="2" role="xdcr" >
 <connection source="NYserverA,NYserverB,NYserverC" />
</dr>

Note that both clusters must have a connection defined for active replication to start. An alternative ap-
proach is to initialize the databases leaving the source attribute of the <connection> element empty. You
can then update the configuration to add source servers once the database is up and running and the ap-
propriate schema has been applied. For example:

<dr id="1" role="xdcr">
 <connection source="" />
</dr>

Once the configuration files have the necessary declarations, you can initialize the root directories on all
cluster nodes using the appropriate configuration files:

New York Cluster

$ voltdb init -D ~/nydb --config=nyconfig.xml

Chicago Cluster

102

Database Replication

$ voltdb init -D ~/chidb --config=chiconfig.xml

If you then want to add a third cluster to the XDRC relationship (say San Francisco), you can define a
configuration file that points at either or both of the other clusters:

San Francisco Cluster

<dr id="3" role="xdcr" >
 <connection source="CHIserverX,CHIserverY,NYserverA,NYserverB" />
</dr>

When configuring three or more XDCR clusters, you also have the option of specifying which cluster a
new instance uses as the source for downloading the initial snapshot. For example, if two of the clusters are
located in the same physical location, you can specify the cluster ID of a preferred source to reduce the time
needed to synchronize the clusters. Note that the preferred source attribute only applies when the database
first joins the XDCR environment or if DR is restarted from scratch. When the cluster recovers existing
data under normal operation the preferred source is ignored. For example, a second Chicago cluster could
specify the cluster ID of the original Chicago database as the preferred source, like so:

2nd Chicago Cluster

<dr id="4" role="xdcr" >
 <connection source="CHIserverX,CHIserverY,NYserverA,NYserverB"
 preferred-source="2" />
</dr>

11.3.3. Starting the Database Clusters
Once the servers are initialized with the necessary configuration, you can start the database clusters. How-
ever, it is important to note three important points:

• Only one of the clusters can have data in the DR tables when setting up XDCR and that database must
be the first in the XDCR network. In other words, start the database containing the data first. Then start
and connect a second, empty database to it.

• As soon as the databases start, they automatically attempt to contact each other, verify that the DR table
schema match, and start the DR process

• Only one database can join the XDCR network at a time. You must wait for each joining cluster to
complete the initial synchronization before starting the next.

Often the easiest method for starting the databases is to:

1. Start one cluster

2. Load the schema (including the DR table declarations) and any pre-existing data on that cluster

3. Once the first cluster is fully configured, start the second cluster and load the schema

4. Once the second cluster finishes synchronizing with the first, start each additional cluster, one at a time.

Using this approach, DR does not start until step #3 is complete and the first two clusters are fully config-
ured. Then any additional clusters are added separately.

You can then start and load the schema on the databases and perform any other preparatory work you
require. Then edit the configuration files — one at a time using the voltadmin update command — filling

103

Database Replication

in the source attribute for each cluster to point at another. As soon as the source attribute is defined and
the schema match, the DR process will begin for the first pair of clusters. Once the first two clusters
synchronize, you can repeat this process, one at a time, with any other participating clusters.

Note

Although the source attribute can be modified on a running database, the unique cluster ID cannot
be changed after the database starts. So it is important to include the <dr> element with the unique
ID and xdcr role when initializing the database root directories.

11.3.4. Loading a Matching Schema and Starting Replication
As soon as the databases start with DR enabled, they attempt to contact a cooperating database to start
replication. Each cluster will issue warnings until the schema for the databases match. This is normal and
gives you time to load a matching schema. The key point is that once matching schema are loaded on the
databases, replication will begin automatically.

When replication starts, the following actions occur:

1. The clusters verify that the DR tables match on both clusters.

2. If data already exists in the DR tables of the first database, that cluster sends a snapshot of the current
contents to the other cluster where it is restored into the appropriate tables.

3. Once the snapshot, if any, is restored, both databases (and any other participating clusters) start sending
binary logs of changes from DR tables to the other cluster.

If any errors occur during the snapshot transmission, replication stops and must be restarted from the
beginning. However, once the third step is reached, replication proceeds independently for each unique
partition and, in a K safe environment, the DR process becomes durable across node failures and rejoins
as well as cluster shutdowns and restarts.

11.3.5. Updating the Schema During Active Replication
SQL statements such as DELETE, INSERT, and UPDATE are transmitted through the DR binary logs,
but schema changes are not. Therefore, you must make schema changes to each database separately. More
importantly, while doing this you must be careful to ensure that no transactions attempt to modify data in
tables where the schema does not match on the cooperating clusters.

If a consumer cluster (cluster A) receives a replication record in the binary log that does not match the
schema for that table in the database, the consumer will stop processing binary logs from the producer
(cluster B). Replication will remain stalled until the schema is updated to match what was received from the
producer. At the same time, the producer will buffer any subsequent transactions waiting for the consumer
to resume replication.

In the best case, there are mismatched transactions in only one direction (that is, from cluster B to cluster
A). If so, once you update the schema on the stalled consumer cluster A, replication resumes and cluster
B can send the subsequent transactions it had buffered.

However, while binary logs from the producer are stalled, the consumer continues to process client trans-
actions itself and will send those transactions as binary logs to the other cluster. That is, cluster A also acts
as a producer sending binary logs to cluster B as a consumer. If there are simultaneous write transactions to
the same table on the two clusters while the schema do not match, a deadlock can result. Both clusters will
stall due to mismatched schema and their content will have diverged. In this situation, your only option is to
choose one of the clusters as the "winner" and reinitialize the other cluster and restart XDCR from scratch.

104

Database Replication

To avoid conflicts, the safest process for changing the schema for DR tables in XDCR is the following:

1. Pause and drain the outstanding DR binary logs on all clusters using the voltadmin pause --wait com-
mand

2. Update the schema for the DR tables on all clusters

3. Resume all clusters using the voltadmin resume command

This process ensures that no transactions are processed until the schema on all clusters in the XDCR
relationship are updated and in sync. However, this process also means that there are no client transactions
processed during the update.

It is possible to update the schema without pausing the database. However, to do this, you must be ex-
tremely careful to ensure that no transactions attempt to modify tables while the schema differ between
the clusters. For example, it is possible to add tables to the database schema without pausing the database.
You can add the new tables to the databases in one step, then update the stored procedures and client
applications in a second step. This way no client applications access the new tables until their schema exist
and match on all of the XDCR databases. At the same time, ongoing transactions associated with older
tables are not impacted.

11.3.6. Stopping Replication
If, for any reason, you need to break replication between the XDCR databases, you can issue the voltadmin
dr reset command to any cluster. For example, if one of two clusters goes down and will not be brought
back online for an extended period, you can issue a voltadmin dr reset command on the remaining cluster
to tell it to stop queuing binary logs. If not, the logs will be saved on disk, waiting for the other cluster
to return, until you run out of disk space.

When using multiple clusters in an XDCR environment, you must choose whether to break replication
with all other clusters (voltadmin dr reset --all) or with one specific cluster. Breaking replication with
all clusters means that all of the other clusters will need to restart DR from scratch to rejoin the XDCR
environment. Breaking replication with a single cluster means the remaining clusters retain their XDCR
relationship.

If you wish to remove just one, active cluster from the XDCR relationship, you can issue the voltadmin
dr drop command to the cluster you wish to remove. This command finalizes any remaining DR logs on
the cluster and tells all other clusters to break their DR connection with that cluster. If the cluster you want
to remove is not currently running, you can issue the voltadmin dr reset --cluster=n to all the remaining
clusters where n is the cluster ID of the cluster being removed.

However, there is a danger that if you remove a failed cluster from a multi-cluster XDCR environment,
the failed cluster may not have sent the same binary logs to all of the other clusters. In which case, when
you drop that cluster from the environment, the data on the remaining clusters will diverge. So, using dr
reset --cluster is recommended only if you are sure that there were no outstanding logs to be sent from the
failed cluster. For example, stopping an XDCR cluster with an orderly shutdown (voltadmin shutdown)
ensures that all its binary logs are transmitted and therefore the other clusters are in sync.

When using the dr reset --cluster command, you must also include the --force option to verify that you
understand the risks associated with this action. So, the process for removing a single, failed cluster from
a multi-cluster XDCR environment is:

1. Identify the cluster ID of the cluster that has failed.

2. Issue the voltadmin dr reset --cluster={failed-cluster-ID} --force command on all the remaining clus-
ters to clear the binary log queues.

105

Database Replication

This way, the remaining clusters can maintain their XDCR relationship but not retain queued data for the
failed cluster. If, later, you want to rejoin the failed cluster to the XDCR environment, you will need to
reinitialize the failed cluster's root directories and restart its XDCR relationship from scratch.

11.3.7. Example XDCR Configurations
It is not possible to mix XDCR clusters and passive DR in the same database relationship. However, it is
possible to create "virtual" replicas in a XDCR environment, if your business requires it.

Normally, in an XDCR environment, all cluster participate equally. They can all initiate transactions and
replicate those transactions among themselves, as shown in Figure 11.6, “Standard XDCR Configuration”.

Figure 11.6. Standard XDCR Configuration

If you also want to have one (or more) clusters on "standby", for example, purely for disaster recovery
or to off-load read-only workloads, you can dedicate clusters from within your XDCR environment for
that purpose. The easiest way to do that is to configure the extra clusters as normal XDCR clusters. That
is setting their role as "XDCR" and assigning them a unique DR ID. However, rather than starting the
clusters in normal operational mode, you can use the --pause flag on the voltdb start command to start
them in admin mode. This way no transactions can be initiated on the cluster's client ports. However, the
cluster will receive and process DR binary logs from the other clusters in the DR relationship. Figure 11.7,
“XDCR Configuration with Read-Only Replicas” demonstrates one such configuration.

Figure 11.7. XDCR Configuration with Read-Only Replicas

11.3.8. Understanding Conflict Resolution
One aspect of database replication that is unique to cross datacenter replication (XDCR) is the need to
prepare for and manage conflicts between the databases. Conflict resolution is not an issue for passive
replication since changes travel in only one direction. However, with XDCR it is possible for changes to

106

Database Replication

be made to the same data at approximately the same time on two databases. Those changes are then sent
to the other database, resulting in possible inconsistencies or invalid transactions.

For example, say clusters A and B are processing transactions as shown in Figure 11.8, “Transaction
Order and Conflict Resolution”. Cluster A executes a transaction that modifies a specific record and this
transaction is included in the binary log A1. By the time cluster B receives the binary log and processes
A1, cluster B has already processed its own transactions B1 and B2. Those transactions may have modified
the same record as the transaction in A1, or another record that would conflict with the change in A1, such
as a matching unique index entry.

Figure 11.8. Transaction Order and Conflict Resolution

Under these conditions, cluster B cannot simply apply the changes in A1 because doing so could violate
the uniqueness constraints of the schema and, more importantly, is likely to result in the content of the
two database clusters diverging. Instead, cluster B must decide which change takes priority. That is, what
resolution to the conflict is most likely to produce meaningful results or match the intent of the business
application. This decision making process is called conflict resolution.

No matter what the resolution, it is important that the database administrators are notified of the conflict,
why it occurred, and what action was taken. The following sections explain:

• How to avoid conflicts

• How VoltDB resolves conflicts when they do occur

• What types of conflicts can occur

• How those conflicts are reported

11.3.8.1. Designing Your Application to Avoid Conflicts
VoltDB uses well-defined rules for resolving conflicts. However, the best protection against conflicts and
the problems they can cause is to design your application to avoid conflicts in the first place. There are at
least two things you can do in your client applications to avoid conflicts:

• Use Primary Keys

It is best, wherever possible, to define a primary key for all DR tables. The primary key index greatly
improves performance for finding the matching row to apply the change on a consumer cluster. It is also
required if you want conflicts to be resolved using the standard rules described in the following section.
Any conflicting action without a primary key is rejected.

• Apply related transactions to the same cluster

107

Database Replication

Another tactic for avoiding conflicts is to make sure any autonomous set of transactions affecting a set
of rows are all applied on the same cluster. For example, ensuring that all transactions for a single user
session, or associated with a particular purchase order, are directed to the same cluster.

• Do not use TRUNCATE TABLE

TRUNCATE TABLE is a convenient statement for deleting all records in a table. The statement is
optimized to avoid deleting row by row. However, this optimization means that the binary log does
not report which rows were deleted. As a consequence, a TRUNCATE TABLE statement can easily
produce a conflict between two XDCR clusters that is not detected or reported in the conflict log.

Therefore, do not use TRUNCATE TABLE with XDCR. Instead, explicitly delete all rows with a
DELETE statement and a filter. For example, DELETE * FROM table WHERE column=column
ensures all deleted rows are identified in the binary log and any conflicts are accurately reported.

Note that DELETE FROM table is not sufficient, since its execution plan is optimized to equate to
TRUNCATE TABLE. Also, when deleting all rows in a table, it is best to perform the delete in smaller
batches to avoid overflowing the maximum size allowed for the binary log packets.

11.3.8.2. How Conflicts are Resolved
Even with the best application design possible, errors in program logic or operation may occur that result
in conflicting records being written to two or more databases. When a conflict does occur, VoltDB follows
specific rules for resolving the issue. The conflict resolution rules are:

• Conflicts are resolved on a per action basis. That is, resolution rules apply to the individual INSERT,
UPDATE, or DELETE operation on a specific tuple. Resolutions are not applied to the transaction as
a whole.

• The resolution is that the incoming action is accepted (that is, applied to the receiving database) or
rejected.

• Only actions involving a table with a primary key can be accepted, all other conflicting actions are
rejected.

• Accepted actions are applied as a whole — the entire record is changed to match the result on the
producer cluster. That means for UPDATE actions, all columns are written not just the columns specified
in the SQL statement.

• For tables with primary keys, the rules for which transaction wins are, in order:

1. DELETE transactions always win

2. If neither action is a DELETE, the last transaction (based on the timestamp) wins

Let's look at a simple example to see how these rules work. Assume that the database stores user records,
using a numeric user ID as the primary key and containing columns for the user's name and password. A
user logs on simultaneously in two locations and performs two separate updates: one on cluster A changing
their name and one on cluster B changing the password. These updates are almost simultaneous. However,
cluster A timestamps its transaction as occurring at 10:15.00.003 and cluster B timestamps its transaction
at 10:15.00.001.

The binary logs from the two transactions include the type of action, the contents of the record before
and after the change, and the timestamps — both of the last previous transaction and the timestamp of the
new transaction. (Note that the timestamp includes both the time and the cluster ID where the transaction
occurred.) So the two binary logs might look like the following.

108

Database Replication

Binary Log A1:

Action: UPDATE
Current Timestamp: 1, 10:15.00.003
Previous Timestamp: 1, 06:30.00.000

Before

 UserID: 12345
 Name: Joe Smith
 Password: abalone

After

 UserID: 12345
 Name: Joseph Smith
 Password: abalone

Binary Log B1:

Action: UPDATE
Current Timestamp: 2, 10:15.00.001
Previous Timestamp: 1, 06:30.00.000

Before

 UserID: 12345
 Name: Joe Smith
 Password: abalone

After

 UserID: 12345
 Name: Joe Smith
 Password: flounder

When the binary log A1 arrives at cluster B, the DR process performs the following steps:

1. Uses the primary key (12345) to look up the current record in the database.

2. Compares the current timestamp in the database with the previous timestamp in the binary log.

3. Because the transaction in B1 has already been applied on cluster B, the time stamps do not match. A
conflict is recognized.

4. A primary key exists, so cluster B attempts to resolve the conflict by comparing the new timestamp,
10:15.00.003, to the current timestamp, 10:15.00.001.

5. Because the new timestamp is the later of the two, the new transaction "wins" and the change is applied
to the database.

6. Finally, the conflict and resolution is logged. (See Section 11.3.8.4, “Reporting Conflicts” for more
information about how conflicts are reported.)

Note that when the UPDATE from A1 is applied, the change to the password in B1 is overwritten and
the password is reset to "abalone". Which at first looks like a problem. However, when the binary log B1
arrives at cluster A, the same steps are followed. But when cluster A reaches steps #4 and 5, it finds that
the new timestamp from B1 is older than the current timestamp, and so the action is rejected and the record
is left unchanged. As a result both databases end up with the same value for the record. Essentially, the
password change is dropped.

If the transaction on cluster B had been to delete the user record rather than change the password, then
the outcome would be different, but still consistent. In that case, when binary log A1 reaches cluster B, it
would not be able to find the matching record in step #1. This is recognized as a DELETE action having
occurred. Since DELETE always wins, the incoming UPDATE is rejected. Similarly, when binary log B1
reaches cluster A, the previous timestamps do not match but, even though the incoming action in B1 has
an older timestamp than the UPDATE action in A1, B1 "wins" because it is a delete action and the record
is deleted from cluster A. Again, the result is consistent across the two databases.

109

Database Replication

The real problem with conflicts is when there is no primary key on the database table. Primary keys
uniquely identify a record. Without a primary key, there is no way for VoltDB to tell, even if there are one
or more unique indexes on the table, whether two records are the same record modified or two different
records with the same unique key values.

As a result, if there is a conflict between two transactions without a primary key, VoltDB has no way to
resolve the conflict and simply rejects the incoming action. Going back to our example, if the user table
had a unique index on the user ID rather than a primary key, and both cluster A and cluster B update the
user record at approximately the same time, when binary log A1 arrives at cluster B, it would look for the
record based on all columns in the record and fail to find a match.

However, when it attempts to insert the record, it will encounter a constraint violation on the unique index.
Again, since there is no primary key, VoltDB cannot resolve the conflict and rejects the incoming action,
leaving the record with the changed password. On cluster A, the same process occurs and the password
change in B1 gets rejected, leaving cluster A with a changed name column and database B with a changed
password column — the databases diverge.

11.3.8.3. What Types of Conflict Can Occur
The preceding section uses a simple case of conflicting UPDATE transactions to illustrate the steps in-
volved in conflict resolution. However, there are several different types of conflict that can occur. First,
there are three possible actions that the binary log can contain: INSERT, UPDATE, or DELETE. There
are also three types of conflicts that can be generated:

• Missing row — The affected row is missing from the consumer database.

• Timestamp mismatch — The affected row exists in the consumer database, but has a different time-
stamp than expected (in other words, it has been modified).

• Constraint violation — Applying the incoming action would result in one or more constraint violations
on unique indexes.

A missing row means that the binary log contains an UPDATE or DELETE action, but the affected row
cannot be found in the consumer database. (A missing row conflict cannot occur for INSERT actions, since
INSERT assumes no such row exists.) In the case of a missing row conflict, VoltDB assumes a DELETE
action has removed the affected row. Since the rule is that DELETE wins, this means the incoming action
is rejected.

Note that if the table does not have a primary key, the assumption that a DELETE action removed the row
is not guaranteed to be true, since it is possible an UPDATE changed the row. Without a primary key,
there is no way for the DR process to find the matching row when some columns may have changed, so it
assumes it was deleted. As a result, an UPDATE could occur on one cluster and a DELETE on the other.
This is why assigning primary keys is recommended for DR tables when using XDCR.

If the matching primary key is found, it is still possible that the contents of the row have been changed.
In which case, the timestamps will not match and a timestamp mismatch conflict occurs. Again, this can
happen for UPDATE and DELETE actions where an existing row is being modified. If the incoming action
is a DELETE, it takes precedence and the row is deleted. If not, if the incoming action has the later of
the two timestamps, it is accepted. If the existing record has the later timestamp, the incoming action is
rejected.

Finally, whether the timestamps match or not, with an INSERT or UPDATE action, it is possible that
applying the action would violate one of more unique index constraints. This can happen because another
row has been updated with matching values for the unique index or another record has been inserted
with similar values. Whatever the cause, VoltDB cannot apply the incoming action so it is rejected. Note

110

Database Replication

that for a single action there can be more than one unique index that applies to the table, so there can
be multiple constraint violations as well as a possible incorrect timestamp. When a conflict occurs, all
conflicts associated with the action are included in the conflict log.

To summarize, the following chart shows the conflicts that can occur with each type of action and the
result for tables with a primary key.

Action Possible Conflict Result for Tables with Primary Key

INSERT Constraint violation Rejected

UPDATE Missing row
Timestamp mismatch
Constraint violation

Rejected
Last transaction wins
Rejected

DELETE Missing row
Timestamp mismatch

Accepted (no op)
Accepted

11.3.8.4. Reporting Conflicts
VoltDB makes a record of every conflict that occurs when processing the DR binary logs. These conflict
logs include:

• The intended action

• The type of conflict

• The timestamp and contents of the row before and after the action from the binary log

• The timestamp and contents of the row(s) in the consumer database that caused the conflict

• The timestamp and cluster ID of the conflict itself

By default, these logs are written as comma-separated value (CSV) files on the cluster where the con-
flicts occur. These files are usually written to a subfolder of the voltdbroot directory (voltdbroot/xd-
cr_conflicts) using the file prefix LOG. However, you can configure the logs to be written to different
destinations or locations using the VoltDB export configuration settings.

The DR process writes the conflicts as export data to the export stream VOLTDB_XDCR_CONFLICTS.
You do not need to explicitly configure export — the DR process automatically declares the necessary
export streams, establishes a default export configuration for the file connector, and enables the export
stream. However, if you want the data to be sent to a different location or using a different export connector,
you can do this by configuring the export stream yourself.

For example, if you want to export the XDCR conflicts to a Kafka stream where they can be used for
automatic notifications, you can change the export properties in the configuration file. The following con-
figuration file code writes the conflict logs to the Kafka topic sysops on the broker kafkabroker.mycompa-
ny.com:

<export>
 <configuration enabled="true" type="kafka"
 stream="VOLTDB_XDCR_CONFLICTS">
 <property name="broker">kafkabroker.mycompany.com</property>
 <property name="topic">sysops</property>
 </configuration>
</export>

111

Database Replication

Each action in the binary log can generate one or more conflicts. When this occurs, VoltDB logs the
conflict(s) as multiple rows in the conflict report. Each row is identified by the type of action (INSERT,
UPDATE, DELETE) as well as the type of information the row contains:

• EXISTING (EXT) — The timestamp and contents of an existing row in the consumer database that
caused a conflict. There can be multiple existing row logs, if there are multiple conflicts.

• EXPECTED (EXP) — The timestamp and contents of the row that is expected before the action is
applied (from the binary log).

• NEW (NEW) — The new timestamp and contents for the row once the action is applied (from the
binary log).

• DELETE (DEL) — For a DELETE conflict, the timestamp and cluster ID indicating when and where
the conflict occurred.

For an INSERT action, there is no EXPECTED row. For either an INSERT or an UPDATE action there
is no DELETE row. And for a DELETE action there is no NEW row. The order of the rows in the report
is as follows:

1. The EXISTING row, if there is a timestamp mismatch

2. The EXPECTED row, if there is a timestamp mismatch

3. One or more EXISTING rows, if there are any constraint violations

4. The NEW row, for all actions but DELETE

5. The DELETE row, for the DELETE action only

Table 11.1, “Structure of the XDCR Conflict Logs” describes the structure and content of the conflict log
records in the export stream.

Table 11.1. Structure of the XDCR Conflict Logs

Column Name Datatype Description

ROW_TYPE 3 Byte string The type of row, specified as:

EXT — existing
EXP — expected
NEW — new
DEL — delete

ACTION_TYPE 1 Byte string The type of action, specified as:

I — insert
U — update
D — delete

CONFLICT_TYPE 4 Byte string The type of conflict, specified as:

MISS — missing row
MSMT — timestamp mismatch
CNST — constraint violation
NONE — no violationa

CONFLICTS_ON
_PRIMARY_KEY

TINYINT Whether a constraint violation is associated with the
primary key. 1 for true and 0 for false.

112

Database Replication

Column Name Datatype Description

DECISION 1 Byte string How the conflict was resolved, specified as:

A — the incoming action is accepted
R — the incoming action is rejected

CLUSTER_ID TINYINT The DR cluster ID of the cluster that last modified
the row

TIMESTAMP BIGINT The timestamp of the row.

DIVERGENCE 1 Byte string Whether the resulting action could cause the two
cluster to diverge, specified as:

C — the clusters are consistent
D — the cluster may have diverged

TABLE_NAME String The name of the table.

CURRENT
_CLUSTER_ID

TINYINT The DR cluster ID of the cluster reporting the con-
flict.

CURRENT
_TIMESTAMP

BIGINT The timestamp of the conflict.

TUPLE JSON-encoded string The schema and contents of the row, as a JSON-en-
coded string. The column is limited to 1MB in size.
If the schema and contents exceeds the 1MB limit,
it is truncated.

aUpdate operations are executed as two separate statements: a delete and an insert, where only one of the two statements might result
in a violation. For example, the delete may trigger a missing row violation but the insert not generate a violation. In which case the
EXT row of the conflict log reports the MISS conflict and the NEW row reports NONE.

11.4. Monitoring Database Replication
Database replication runs silently in the background. To ensure replication is proceeding effectively, Volt-
DB provides statistics on the producer and consumer clusters that help you understand the current state of
the DR process. Specifically, the statistics can tell you:

• The amount of DR data waiting to be sent from the producer

• The timestamp and unique ID of the last transaction received by the consumer

• Whether any partitions are "falling behind" in processing DR data

This information is available from the @Statistics system procedure using the DRROLE, DR-
CONSUMER, and DRPRODUCER selectors. All clusters provide summary information in response to
the DRROLE selector. For one-way (passive) DR, the master database is a "producer" and provides addi-
tional information through the DRPRODUCER selector and the replica is the "consumer" and provides
additional information through the DRCONSUMER selector. For two-way (cross datacenter) replication,
all clusters act as both producer and consumer and can provide statistics on both roles:

• On all databases, the @Statistics DRROLE procedure provides summary information about the data-
base's DR role (master, replica, xdcr, or none), the cluster ID, and the current state of the DR process.

• On the producer database, the @Statistics DRPRODUCER procedure includes columns for the cluster
IDs of the current cluster and the consumer, as well as the transaction ID and timestamp of the last
queued transaction and for the last transaction ACKed by the consumer. The difference between these
two events can tell you the approximate latency between the two databases.

113

Database Replication

• On the consumer database, the @Statistics DRCONSUMER procedure includes statistics, on a per par-
tition basis, showing whether it has an identified "host" server from each producer cluster "covering" it,
or in other words, providing it DR logs. The system procedure results also include columns listing the
ID and timestamp of the last received transaction for each producer cluster. If a consumer partition is
not covered, it means it has lost contact with the server on the producer database that was providing it
logs (possibly due to a node failure). It is possible for the partition to recover, once the covering serv-
er rejoins. However, the difference between the last received timestamp of that partition and the other
partitions may give you an indication of how long the interruption has persisted and how far behind
that partition may be.

114

Chapter 12. Security
Security is an important feature of any application. By default, VoltDB does not perform any security
checks when a client application opens a connection to the database or invokes a stored procedure. This
is convenient when developing and distributing an application on a private network.

However, on public or semi-private networks, it is important to make sure only known client applications
are interacting with the database. VoltDB lets you control access to the database through settings in the
schema and configuration files. The following sections explain how to enable and configure security for
your VoltDB application.

12.1. How Security Works in VoltDB
When an application creates a connection to a VoltDB database (using ClientFactory.clientCreate), it pass-
es a username and password as part of the client configuration. These parameters identify the client to the
database and are used for authenticating access.

At runtime, if security is enabled, the username and password passed in by the client application are val-
idated by the server against the users defined in the configuration file. If the client application passes in
a valid username and password pair, the connection is established. When the application calls a stored
procedure, permissions are checked again. If the schema identifies the user as being assigned a role hav-
ing access to that stored procedure, the procedure is executed. If not, an error is returned to the calling
application.

Note

VoltDB uses hashing rather than encryption when passing the username and password between
the client and the server. The Java and C++ clients use SHA-2 hashing while the older clients
currently use SHA-1. The passwords are also hashed within the database. To secure the actual
communication between the server and client, you can implement either Transport Layer Security
(TLS) or Kerberos security. Use of TLS is described in Section 12.7, “Encrypting VoltDB Com-
munication Using TLS/SSL” while the use of Kerberos with VoltDB is described in Section 12.8,
“Integrating Kerberos Security with VoltDB”.

There are three steps to enabling security for a VoltDB application:

1. Add the <security enabled="true"/> tag to the configuration file to turn on authentication
and authorization.

2. Define the users and roles you need to authenticate.

3. Define which roles have access to each stored procedure.

The following sections describe each step of this process, plus how to enable access to system procedures
and ad hoc queries.

12.2. Enabling Authentication and Authorization
By default VoltDB does not perform authentication and client applications have full access to the database.
To enable authentication, add the <security> tag to the configuration file. You can enable security when
you initialize the database root directory, or you can use voltadmin update to change the security setting
on the running database. (Or you can change the setting interactively through the VoltDB Management
Center.)

115

Security

<deployment>
 <security enabled="true"/>
 . . .
</deployment>

12.3. Defining Users and Roles
The key to security for VoltDB applications is the users and roles defined in the schema and configuration.
You define users in the configuration file and roles in the schema.

This split is deliberate because it allows you to define the overall security structure globally in the schema,
assigning permissions to generic roles (such as operator, dbuser, apps, and so on). You then define specific
users and assign them to the generic roles as part of the database configuration. This way you can create
one configuration (including cluster information and users) for development and testing, then move the
database to a different configuration and a different set of users for production by changing only one file:
the configuration file.

You define users within the <users> ... </users> tag set in the configuration file. The syntax for defining
users is as follows.

<deployment>
 <users>
 <user name="user-name"
 password="password-string"
 roles="role-name[,...]" />
 [...]
 </users>
 ...
</deployment>

Note

If you do not want to distribute the account passwords in plain text, you can use the voltdb mask
command to hash the passwords in the configuration file.

Include a <user> tag for every username/password pair you want to define. You specify which roles a user
belongs to as part of the user definition in the configuration file using the roles attribute to the <user> tag.
You can assign users built-in roles, user-defined roles, or both. For user-defined roles, you define the roles
in the database schema using the CREATE ROLE statement.

CREATE ROLE role-name;

Note that at least one user must be assigned the built-in ADMINISTRATOR role. For example, the fol-
lowing code defines three users, assigning operator the built-in ADMINISTRATOR role and the user-
defined OPS role, assigning developer the user-defined roles OPS and DBUSER, and assigning the user
clientapp DBUSER. When a user is assigned more than one role, you specify the role names as a com-
ma-delimited list.

<deployment>
 <users>
 <user name="operator" password="mech" roles="administrator, ops" />
 <user name="developer" password="tech" roles="ops,dbuser" />
 <user name="clientapp" password="xyzzy" roles="dbuser" />
 </users>

</deployment>

116

Security

Three important notes concerning the assignment of users and roles:

• Users must be assigned at least one role, or else they have no permissions. (Permissions are assigned
by role.)

• At least one user must be assigned the built-in ADMINISTRATOR role.

• There must be a corresponding role defined in the schema for any user-defined roles listed in the con-
figuration file.

12.4. Assigning Access to Stored Procedures
Once you define the users and roles you need, you assign them access to individual stored procedures using
the ALLOW clause of the CREATE PROCEDURE statement in the schema. In the following example,
users assigned the roles dbuser and ops are permitted access to both the MyProc1 and MyProc2 procedures.
Only users assigned the ops role have access to the MyProc3 procedure.

CREATE PROCEDURE ALLOW dbuser,ops FROM CLASS MyProc1;
CREATE PROCEDURE ALLOW dbuser,ops FROM CLASS MyProc2;
CREATE PROCEDURE ALLOW ops FROM CLASS MyProc3;

Usually, when security is enabled, you must specify access rights for each stored procedure. If a procedure
declaration does not include an ALLOW clause, no access is allowed. In other words, calling applications
will not be able to invoke that procedure.

12.5. Assigning Access by Function (System Proce-
dures, SQL Queries, and Default Procedures)

It is not always convenient to assign permissions one at a time. You might want a special role for access to
all user-defined stored procedures. Also, there are special capabilities available within VoltDB that are not
called out individually in the schema so cannot be assigned using the CREATE PROCEDURE statement.

For these special cases VoltDB provides named permissions that you can use to assign functions as a
group. For example, the ALLPROC permission grants a role access to all user-defined stored procedures
so the role does not need to be granted access to each procedure individually.

Several of the special function permissions have two versions: a full access permission and a read-only
permission. So, for example, DEFAULTPROC assigns access to all default procedures while DEFAULT-
PROCREAD allows access to only the read-only default procedures; that is, the TABLE.select procedures.
Similarly, the SQL permission allows the user to execute both read and write SQL queries interactively
while SQLREAD only allows read-only (SELECT) queries to be executed.

One additional functional permission is access to the read-only system procedures, such as @Statistics and
@SystemInformation. This permission is special in that it does not have a name and does not need to be
assigned; all authenticated users are automatically assigned read-only access to these system procedures.

Table 12.1, “Named Security Permissions” describes the named functional permissions.

Table 12.1. Named Security Permissions

Permission Description Inherits

DEFAULTPROCREAD Access to read-only default procedures (TABLE.se-
lect)

117

Security

Permission Description Inherits

DEFAULTPROC Access to all default procedures (TABLE.select, TA-
BLE.insert, TABLE.delete, TABLE.update, and TA-
BLE.upsert)

DEFAULTPROCREAD

SQLREAD Access to read-only ad hoc SQL queries (SELECT) DEFAULTPROCREAD

SQL Access to all ad hoc SQL queries and default proce-
dures

SQLREAD, DEFAULT-
PROC

ALLPROC Access to all user-defined stored procedures

ADMIN Full access to all system procedures, all user-defined
procedures, as well as default procedures, ad hoc
SQL, and DDL statements.

ALLPROC, DEFAULT-
PROC, SQL

Note: For backwards compatibility, the special permissions ADHOC and SYSPROC are still recognized.
They are interpreted as synonyms for SQL and ADMIN, respectively.

In the CREATE ROLE statement you enable access to these functions by including the permission name
in the WITH clause. (The default, if security is enabled and the keyword is not specified, is that the role
is not allowed access to the corresponding function.)

Note that the permissions are additive. So if a user is assigned one role that allows access to SQLREAD
but not DEFAULTPROC, but that user is also assigned another role that allows DEFAULTPROC, the
user has both permissions.

The following example assigns full access to members of the ops role, access to interactive SQL queries
(and default procedures by inheritance) and all user-defined procedures to members of the developer role,
and no special access beyond read-only system procedures to members of the apps role.

CREATE ROLE ops WITH admin;
CREATE ROLE developer WITH sql, allproc;
CREATE ROLE apps;

12.6. Using Built-in Roles
To simplify the development process, VoltDB predefines two roles for you when you enable security:
administrator and user. Administrator has ADMIN permissions: access to all functions including interac-
tive SQL queries, DDL, system procedures, and user-defined procedures. User has SQL and ALLPROC
pemissions: access to ad hoc SQL and all default and user-defined stored procedures.

These predefined roles are important, because when you start the database there is no schema and therefore
no user-defined roles available to assign to users. So you must always include at least one user who is
assigned the Administrator role when starting a database with security enabled. You can use this account
to then load the schema — including additional security roles and permissions — and then update the
configuration to add more users as necessary.

12.7. Encrypting VoltDB Communication Using
TLS/SSL

VoltDB hashes usernames and passwords both within the database server and while passing them across
the network. However, the network communication itself is not encrypted by default. You can enable
Transport Layer Security (TLS) — the recommended upgrade from Secure Socket Layer (SSL) commu-
nication — for the HTTP port, which affects the VoltDB Management Center and the JSON interface.

118

Security

You can also extend TLS encryption to all external interfaces (HTTP, client, and admin), the internal in-
terface, and the port used for database replication (DR) for more thorough security. The following sections
summarize how to enable TLS for the servers in a cluster, including:

• Configuring TLS encryption on the server

• Choosing which ports to encrypt

• Using the VoltDB command line utilities with TLS

• Implementing TLS communication in Java client applications

• Configuring Database Replication (DR) using TLS

12.7.1. Configuring TLS/SSL on the VoltDB Server
TLS, like its predecessor SSL, uses certificates to validate the authenticity of the communication. You
can either use a certificate created by a commercial certificate provider (such as Digitcert, GeoTrust, or
Symantec) or you can create your own certificate. If you use a commercial provider, that provider also
handles the authentication of the certificate. If you create a local or self-signed certificate, you need to
provide the certificate and authentication to the server and clients yourself.

If you purchase a commercial certificate, the server configuration must include a pointer to the certificate
in the <keystore> element. So, for example, if the path to the certificate is /etc/ssl/certifi-
cate, you can enable TLS for all external interfaces by including the following XML in the database
configuration file:

<ssl enabled="true" external="true">
 <keystore path="/etc/ssl/certificate" password="mysslpassword"/>
</ssl>

If you choose to use a locally created certificate, you must first generate the certificate key store and trust
store. You can create a local certificate using the Java keytool utility. Creating the key store and trust store
requires several steps including:

1. Creating a key store and password

2. Creating a key signing request

3. Creating and signing the certificate

4. Importing the certificate into the key store

5. Creating the associated trust store

There are a number of different options when performing this task. It is important to understand how
these options affect the resulting certificate. Be sure to familiarize yourself with the documentation of the
keytool utility before creating your own certificate. The following example uses some common options to
generate a self-signed certificate key store and trust store.

$ keytool -genkey -keystore mydb.keystore \
 -storepass mypasswd -alias mydb \
 -keyalg rsa -validity 365 -keysize 2048
$ keytool -certreq -keystore mydb.keystore \
 -storepass mypasswd -alias mydb \
 -keyalg rsa -file mydb.csr
$ keytool -gencert -keystore mydb.keystore \
 -storepass mypasswd -alias mydb \

119

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

Security

 -infile mydb.csr -outfile mydb.cert -validity 365
$ keytool -import -keystore mydb.keystore \
 -storepass mypasswd -alias mydb \
 -file mydb.cert
$ keytool -import -keystore mydb.truststore \
 -storepass mypasswd -alias mydb \
 -file mydb.cert

Once you create the key store and the trust store, you can reference them in the database configuration file
to enable TLS when initializing the database root directory. For example:

<ssl enabled="true" external="true">
 <keystore path="/etc/ssl/local/mydb.keystore" password="mypasswd"/>
 <truststore path="/etc/ssl/local/mydb.truststore" password="mypasswd"/>
</ssl>

12.7.2. Choosing What Ports to Encrypt with TLS/SSL
If TLS encryption is enabled, the HTTP is always encrypted. You can selectively choose to encrypt other
ports as well. You specify which ports to encrypt using attributes of the <ssl> element:

• External ports (external), including the client and admin ports

• Internal ports (internal), used for intra-cluster communication between the nodes of the cluster

• Extranet ports (dr), including the replication port used for DR

For each type of port, you specify that the ports are either enabled ("true") or disabled ("false"). The default
is false. For example, the following configuration enables TLS encryption on the external, internal, and
DR ports:

<ssl enabled="true" external="true" internal="true" dr="true">
 <keystore path="/etc/ssl/local/mydb.keystore" password="mypasswd"/>
 <truststore path="/etc/ssl/local/mydb.truststore" password="mypasswd"/>
</ssl>

Note that if you enable TLS encryption for the DR port, other clusters replicating from this cluster must
include the appropriate client configuration when they enable DR. See Section 12.7.5, “Configuring Data-
base Replication (DR) With TLS/SSL” for information on setting up TLS when configuring DR.

Also, enabling TLS encryption on the internal port means that all intra-cluster communication must be
encrypted and decrypted as it passes between nodes. Consequently, any operations that require interactions
between cluster nodes (such as K-safety or multi-partition transactions) may take longer and therefore
impact overall latency. Be sure to benchmark your application with and without TLS encryption before
enabling internal port encryption on production systems.

Finally, it is important to note that all ports where TLS is enabled and all the servers within a single cluster
use the same certificate.

12.7.3. Using the VoltDB Command Line Utilities with TLS/
SSL

Once you enable TLS for the external interfaces on your database servers, you must also enable TLS on the
command line utilities so they use the appropriate protocols to connect to the servers. (The voltdb utility
is the one exception. Since it only operates on the local server it does not require a network connection.)

120

Security

When invoking the command line utilities, such as voltadmin and sqlcmd, you use the --ssl option to
activate encryption with TLS-enabled VoltDB servers. If the servers are using a commercially-provided
certificate, you can specify the --ssl option without an argument. For example:

$ sqlcmd --ssl

If the servers are using a local or self-signed certificate you must also specify a Java properties file as an
argument to the --ssl option. For example:

$ sqlcmd --ssl=localcert.txt

The properties file must declare two properties that specify the path to the trust store and the trust store
password, respectively. So, using the trust store generated by the example in Section 12.7.1, “Configuring
TLS/SSL on the VoltDB Server”, the localcert.txt file could be:

trustStore=/etc/ssl/local/mydb.truststore
trustStorePassword=mypasswd

12.7.4. Implementing TLS/SSL in the Java Client Applications
Just as the command line tools must specify how to connect to an TLS-enabled server, client applications
must also establish an appropriate connection. Using the VoltDB Java API, you can enable TLS by setting
the appropriate attributes of the client configuration. Specifically, if you are using a self-signed certificate,
you must provide the path to the trust store and its password. You can do this using either the .setTrustS-
tore() or .setTrustStoreConfigFromPropertyFile(). For example, the following two commands are equiva-
lent, assuming the localcert.txt file matches the properties file described in Section 12.7.3, “Using
the VoltDB Command Line Utilities with TLS/SSL”:

clientConfig.setTrustStore("/etc/ssl/local/mydb.truststore", "mypasswd");
clientConfig.setTrustStoreConfigFromPropertyFile("localcert.txt");

After setting the trust store properties you can enable TLS communication using the .enableSSL() method
and create the client connection. For example:

ClientConfig clientConfig = new ClientConfig("JDoe", "JDsPasswd");
clientConfig.setTrustStoreConfigFromPropertyFile("localcert.txt");
clientConfig.enableSSL();
client = ClientFactory.createClient(clientConfig);

When using a commercially generated certificate, you do not need to specify the trust store and can use
just the .enableSSL() method.

12.7.5. Configuring Database Replication (DR) With TLS/SSL
When using TLS encryption on the DR port, the DR snapshots and binary logs are encrypted as they
pass from the producer cluster to the consumer cluster. This means that the producer must not only have
TLS enabled for the DR port, but the consumer cluster must use the appropriate TLS credentials when
it contacts the producer.

So, for example, in passive DR, the master cluster must have TLS enabled for the DR port and the replica
must be configured to use TLS when connecting to the master. In XDCR, you enable TLS for all clusters
in the XDCR relationship. So each cluster must both enable TLS for its DR port as well as configure TLS
for its connections to the other clusters.

Section 12.7.1, “Configuring TLS/SSL on the VoltDB Server” describes how to enable TLS encryption
for the DR port, which must be done before the cluster starts. To configure TLS connectivity at the other
end, you add the ssl attribute to the <connection> element within the DR configuration. The value

121

Security

of the ssl attribute is either blank — for commercial certificates — or the path to a Java properties file
specifying the trust store and password for the remote cluster(s) when using a locally-generated certificate.
These attribute values are the same as the --ssl argument you use when running the command line
utilities described in Section 12.7.3, “Using the VoltDB Command Line Utilities with TLS/SSL”.

For example, when configuring TLS encryption for passive DR, the master cluster must enable TLS on
the DR port and the replica must specify use of TLS in the <connection> element. The respective
configuration files might look like this:

Master Cluster <ssl enabled="true" dr="true">
 <keystore path="/etc/ssl/local/mydb.keystore" password="mypasswd"/>
 <truststore path="/etc/ssl/local/mydb.truststore" password="mypasswd"/>
</ssl>

Replica Cluster <dr id="2" role="replica">
 <connection source="MasterSvrA,MasterSvrB" ssl="/usr/local/mastercert.txt">
</dr>

Note that the replica does not need to enable TLS for its DR port, since it is a consumer and its own port
is not used.

For XDCR, each cluster must both enable DR for its own port and specify the TLS credentials for the
remote clusters. The configuration file might look like this:

XDCR Cluster <ssl enabled="true" dr="true">
 <keystore path="/etc/ssl/local/mydb.keystore" password="mypasswd"/>
 <truststore path="/etc/ssl/local/mydb.truststore" password="mypasswd"/>
</ssl>
<dr id="1" role="xdcr">
 <connection source="NYCSvrA,NYCSvrB" ssl="/usr/local/nyccert.txt">
</dr>

Note that when using locally-generated certificates, there is only one properties file specified in the ssl
attribute. So all of the clusters in the XDCR relationship must use the same certificate. When using com-
mercially purchased certificates, the ssl attributes is left blank; so each cluster can, if you choose, use
a separate certificate.

12.8. Integrating Kerberos Security with VoltDB
For environments where more secure communication is required than hashed usernames and passwords, it
is possible for a VoltDB database to use Kerberos to authenticate clients and servers. Kerberos is a popular
network security protocol that you can use to authenticate the Java client processes when they connect to
VoltDB database servers. Use of Kerberos is supported for the Java client library and JSON interface only.

To use Kerberos authentication for VoltDB security, you must perform the following steps:

1. Set up and configure Kerberos on your network, servers, and clients.

2. Install and configure the Java security extensions on your VoltDB servers and clients.

3. Configure the VoltDB cluster and client applications to use Kerberos.

The following sections describe these steps in detail.

12.8.1. Installing and Configuring Kerberos
Kerberos is a complete software solution for establishing a secure network environment. It includes net-
work protocols and software for handling authentication and authorization in a secure, encrypted fashion.

122

Security

Kerberos requires one or more servers known as key distribution centers (KDC) to authenticate and au-
thorize services and the users who access them.

To use Kerberos for VoltDB authentication you must first set up Kerberos within your network environ-
ment. If you do not already have a Kerberos KDC, you will need to create one. You will also need to install
the Kerberos client libraries on all of the VoltDB servers and clients and set up the appropriate principals
and services. Because Kerberos is a complete network environment rather than a single platform applica-
tion, it is beyond the scope of this document to explain how to install and configure Kerberos itself. This
section only provides notes specific to configuring Kerberos for use by VoltDB. For complete information
about setting up and using Kerberos, please see the Kerberos documentation.

Part of the Kerberos setup is the creation of a configuration file on both the VoltDB server and client ma-
chines. By default, the configuration file is located in /etc/krb5.conf on Linux systems. (On Mac-
intosh systems, the configuration file is edu.mit.Kerberos located either in ~/Library/Pref-
erences/ or /Library/Preferences/.) Be sure this file exists and points to the correct realm
and KDC.

Once a KDC exists and the nodes are configured correctly, you must create the necessary Kerberos ac-
counts — known as "user principals" for the accounts that run the VoltDB client applications and a "ser-
vice principal" for the VoltDB cluster. If you intend to use the web-based VoltDB Management Center
or the JSON interface, you will also want to create a host and HTTP service principle for each server as
well. For example, to create the service keytab file for the VoltDB database, you can issue the following
commands on the Kerberos KDC:

$ sudo kadmin.local
kadmin.local: addprinc -randkey service/voltdb
kadmin.local: ktadd -k voltdb.keytab service/voltdb

Then copy the keytab file to the database servers, making sure it is only accessible by the user account
that starts the database process:

$ scp voltdb.keytab voltadmin@voltsvr:voltdb.keytab
$ ssh voltadmin@voltsvr chmod 0600 voltdb.keytab

You can then create host and HTTP service principles for each server in the cluster and write them to a
server-specific keytab. For example, to create a keytab file for the database node server1, the command
would be the following:

$ sudo kadmin.local

kadmin.local: addprinc -randkey host/server1.mycompany.lan
kadmin.local: addprinc -randkey HTTP/server1.mycompany.lan

kadmin.local: ktadd -k server1.mycompany.lan.keytab HTTP/server1.mycompany.lan
kadmin.local: ktadd -k server1.mycompany.lan.keytab host/server1.mycompany.lan

12.8.2. Installing and Configuring the Java Security Exten-
sions

The next step is to install and configure the Java security extension known as Java Cryptography Extension
(JCE). JCE enables the more robust encryption required by Kerberos within the Java Authentication and
Authorization Service (JAAS). This is necessary because VoltDB uses JAAS to interact with Kerberos.

The JCE that needs to be installed is specific to the version of Java you are running. See the the Java web
site for details. Again, you must install JCE on both the VoltDB servers and client nodes

123

http://web.mit.edu/kerberos/
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Security

Once JCE is installed, you create a JAAS login configuration file so Java knows how to authenticate the
current process. By default, the JAAS login configuration file is $HOME/.java.login.config. On
the database servers, the configuration file must define the VoltDBService module and associate it with
the keytab created in the previous section.

To enable Kerberos access from the web-based VoltDB Management Center and JSON interface, you must
also include entries for the Java Generic Security Service (JGSS) declaring the VoltDB service principle
and the server's HTTP service principle. For example:

Server JAAS Login Configuration File
VoltDBService {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true keyTab="/home/voltadmin/voltdb.keytab"
 doNotPrompt=true
 principal="service/voltdb@MYCOMPANY.LAN" storeKey=true;
};

com.sun.security.jgss.initiate {
 com.sun.security.auth.module.Krb5LoginModule required
 principal="service/voltdb@MYCOMPANY.LAN"
 keyTab="/home/voltadmin/voltdb.keytab"
 useKeyTab=true
 storeKey=true
 debug=false;
};

com.sun.security.jgss.accept {
 com.sun.security.auth.module.Krb5LoginModule required
 principal="HTTP/server1.mycompany.lan@MYCOMPANY.LAN"
 useKeyTab=true
 keyTab="/etc/krb5.keytab"
 storeKey=true
 debug=false
 isInitiator=false;
};

On the client nodes, the JAAS login configuration defines the VoltDBClient module.

Client JAAS Login Configuration File
VoltDBClient {
 com.sun.security.auth.module.Krb5LoginModule required
 useTicketCache=true renewTGT=true doNotPrompt=true;
};

12.8.3. Configuring the VoltDB Servers and Clients
Finally, once Kerberos and the Java security extensions are installed and configured, you must configure
the VoltDB database cluster and client applications to use Kerberos.

On the database servers, you enable Kerberos security using the <security> element when you initialize
the database root directory, specifying "kerberos" as the provider. For example:

<?xml version="1.0"?>

124

Security

<deployment>
 <security enabled="true" provider="kerberos"/>
 . . .
</deployment>

You then assign roles to individual users as described in Section 12.3, “Defining Users and Roles”, except
in place of generic usernames, you specify the Kerberos user — or "principal" — names, including their
realm. Since Kerberos uses encrypted certificates, the password attribute is ignored and can be filled in
with arbitrary text. For example:

<?xml version="1.0"?>
<deployment>
 <security enabled="true" provider="kerberos"/>
 . . .
 <users>
 <user name="mtwain@MYCOMPANY.LAN" password="n/a" roles="administrator"/>
 <user name="cdickens@MYCOMPANY.LAN" password="n/a" roles="dev"/>
 <user name="hbalzac@MYCOMPANY.LAN" password="n/a" roles="adhoc"/>
 </users>
</deployment>

Having configured Kerberos in the configuration file, you are ready to initialize and start the VoltDB
cluster. When starting the VoltDB process, Java must know how to access the Kerberos and JAAS login
configuration files created in the preceding sections. If the files are not in their default locations, you
can override the default location using the VOLTDB_OPTS environment variable and setting the flags
java.security.krb5.conf and java.security.auth.login.config, respectively.1

In Java client applications, you specify Kerberos as the security protocol when you create the client con-
nection, using the enableKerberosAuthentication method as part of the configuration. For example:

import org.voltdb.client.ClientConfig;
import org.voltdb.client.ClientFactory;

ClientConfig config = new ClientConfig();
 // specify the JAAS login module
config.enableKerberosAuthentication("VoltDBClient");

VoltClient client = ClientFactory.createClient(config);
client.createConnection("voltsvr");

Note that the VoltDB client automatically picks up the Kerberos cached credentials of the current process,
the user's Kerberos "principal". So you do not need to — and should not — specify a username or password
as part of the VoltDB client configuration.

When using the VoltDB JDBC client interface, you can enable Kerberos by setting the kerberos prop-
erty on the connection to match the settings in the Java API. For example, you can enable Kerberos by
setting the property on the connection string as a query parameter:

Class.forName("org.voltdb.jdbc.Driver");
Connection c = DriverManager.getConnection(
 "jdbc:voltdb://svr1:21212,svr2:21212?kerberos=VoltDBClient");

Alternately, you can supply a list of properties, including the kerberos property, when you initialize
the connection:

1On Macintosh systems, you must always specify the java.security.krb5.conf property.

125

Security

Class.forName("org.voltdb.jdbc.Driver");
Properties props = new Properties();
props.setProperty("kerberos", “VoltDBClient");
Connection c = DriverManager.getConnection(
 "jdbc:voltdb://svr1:21212,svr2:21212", props);

12.8.4. Accessing the Database from the Command Line and
the Web

It is also important to note that once the cluster starts using Kerberos authentication, only Java, JDBC,
JSON, and Python clients can connect to the cluster and they must use Kerberos authentication to do it. The
same is true for the CLI commands, such has sqlcmd and voltadmin. To authenticate to a VoltDB server
with Kerberos security enabled using the Java-based utilities sqlcmd and cvsloader, you must include the
--kerberos flag identifying the name of the Kerberos client service module. For example:

$ sqlcmd --kerberos=VoltDBClient

If the configuration files are not in the default location, you must specify their location on the command
line:

$ sqlcmd --kerberos=VoltDBClient \
 -J-Djava.security.auth.login.config=myclient.kerberos.conf

To use the Python API or Python-based voltadmin utility, you must first make sure you have the python-
gssapi package installed. Then, login to your Kerberos account using kinit before invoking the Python
client. When using the voltadmin utility, you must also include --kerberos flag, but you do not need
to specify any argument since it picks up the credentials in the Kerberos user's cache. For example:

$ voltadmin shutdown --kerberos

To use the VoltDB Management Center or the JSON interface to access the database, your web browser
must be configured to use the Simple and Protected GSS-API Negotiation Mechanism (also known as
SPNEGO). See your web browser's help for instructions on configuring SPNEGO.

126

Chapter 13. Saving & Restoring a VoltDB
Database

There are times when it is necessary to save the contents of a VoltDB database to disk and then restore it.
For example, if the cluster needs to be shut down for maintenance, you may want to save the current state
of the database before shutting down the cluster and then restore the database once the cluster comes back
online. Performing periodic backups of the data can also provide a fallback in case of unexpected failures
— either physical failures, such as power outages, or logic errors where a client application mistakenly
corrupts the database contents.

VoltDB provides shell commands, system procedures, and an automated snapshot feature that help you
perform these operations. The following sections explain how to save and restore a running VoltDB cluster,
either manually or automatically.

13.1. Performing a Manual Save and Restore of a
VoltDB Cluster

Manually saving and restoring a VoltDB database is useful when you need to modify the database's phys-
ical structure or make schema changes that cannot be made to a running database. For example, changing
the K-safety value, the number of sites per site, or changing the partitioning column of a partitioned table.
The normal way to perform such a maintenance operation using save and restore is as follows:

1. Stop database activities (using pause).

2. Use save to write a snapshot of the current data to disk.

3. Shutdown the cluster.

4. Make changes to the VoltDB schema, cluster configuration, and/or configuration file as desired.

5. Reinitialize the database with the modified configuration file, using voltdb init --force.

6. Restart the cluster in admin mode, using voltdb start --pause.

7. Optionally, reload the schema and stored procedures (if you are changing the schema).

8. Restore the previous snapshot.

9. Restart client activity (using resume).

The key is to make sure that all database activity is stopped before the save and shutdown are performed.
This ensures that no further changes to the database are made (and therefore lost) after the save and before
the shutdown. Similarly, it is important that no client activity starts until the database has started and the
restore operation completes.

Also note that Step #7, reloading the schema, is optional. If you are going to reuse the same schema in a
new database instance, the restore operation will automatically load the schema from the snapshot itself.
If you want to modify the schema in any way, such as changing indexes or tables and columns, you should
load the modified schema before restoring the data from the snapshot. If the database schema is not empty
(that is there are tables already defined), only the data is loaded from the snapshot. See Section 13.1.3.2,

127

Saving & Restoring
a VoltDB Database

“Modifying the Database Schema and Stored Procedures” for more information on modifying the schema
when restoring snapshots.

Save and restore operations are performed either by calling VoltDB system procedures or using the cor-
responding voltadmin shell commands. In most cases, the shell commands are simpler since they do not
require program code to use. Therefore, this chapter uses voltadmin commands in the examples. If you
are interested in programming the save and restore procedures, see Appendix G, System Procedures for
more information about the corresponding system procedures.

When you issue a save command, you specify a path where the data will be saved and a unique identifier
for tagging the files. VoltDB then saves the current data on each node of the cluster to a set of files at the
specified location (using the unique identifier as a prefix to the file names). This set of files is referred
to as a snapshot, since it contains a complete record of the database for a given point in time (when the
save operation was performed).

The --blocking option lets you specify whether the save operation should block other transactions
until it completes. In the case of manual saves, it is a good idea to use this option since you do not want
additional changes made to the database during the save operation.

Note that every node in the cluster uses the same absolute path, so the path specified must be valid, must
exist on every node, and must not already contain data from any previous saves using the same unique
identifier, or the save will fail.

When you issue a restore command, you specify the same absolute path and unique identifier used when
creating the snapshot. VoltDB checks to make sure the appropriate save set exists on each node, then
restores the data into memory.

13.1.1. How to Save the Contents of a VoltDB Database
To save the contents of a VoltDB database, use the voltadmin save command. The following example
creates a snapshot at the path /tmp/voltdb/backup using the unique identifier TestSnapshot.

$ voltadmin save --blocking /tmp/voltdb/backup "TestSnapshot"

In this example, the command tells the save operation to block all other transactions until it completes. It is
possible to save the contents without blocking other transactions (which is what automated snapshots do).
However, when performing a manual save prior to shutting down, it is normal to block other transactions
to ensure you save a known state of the database.

Note that it is possible for the save operation to succeed on some nodes of the cluster and not others. When
you issue the voltadmin save command, VoltDB displays messages from each partition indicating the
status of the save operation. If there are any issues that would stop the process from starting, such as a
bad file path, they are displayed on the console. It is a good practice to examine these messages to make
sure all partitions are saved as expected.

Note that it is also possible to issue the voltadmin save command without arguments. In that case the
snapshot is saved to the default snapshots folder in the database root directory. This can be useful because
the voltdb start command can automatically restore the latest snapshot in that directory as described in
the next section.

13.1.2. How to Restore the Contents of a VoltDB Database
Manually

The easiest way to restore a snapshot is to let VoltDB do it for you as part of the recover operation. If
you are not changing the cluster configuration you can use an automated snapshot or other snapshot saved

128

Saving & Restoring
a VoltDB Database

into the voltdbroot/snapshots directory by simply restarting the cluster nodes using the voltdb
start command. With the start action VoltDB automatically starts and restores the most recent snapshot.
If command logging is enabled, it also replays any logs after the snapshot. This approach has the added
benefit that VoltDB automatically loads the previous schema as well as part of the snapshot.

However, you cannot use voltdb start to restore a snapshot if the physical configuration of the cluster has
changed or if you want to restore an earlier snapshot or a snapshot stored in an alternate location. In these
cases you must do a manual restore.

To manually restore a VoltDB database from a snapshot previously created by a save operation, you can
create a new database instance and use the voltadmin restore command. So, for example, if you modify
the configuration, you must re-initialize the root directory with the new configuration file, using the --
force flag to overwrite the previous configuration and database content:

$ voltdb init --config=newconfig.xml --force

Then you can start the reconfigured database, which creates a new empty database. It is also a good idea
to start the database in admin mode by including the --pause flag:

$ voltdb start --pause

Finally, you restore the previously saved snapshot using the same pathname and unique identifier used
during the save. The following example restores the snapshot created by the example in Section 13.1.1
and resumes normal operation (that is, exits admin mode).

$ voltadmin restore /tmp/voltdb/backup "TestSnapshot"
$ voltadmin resume

As with save operations, it is always a good idea to check the status information displayed by the command
to ensure the operation completed as expected.

13.1.3. Changing the Cluster Configuration Using Save and
Restore

Most changes to a VoltDB database can be made "on the fly" while the database is running. Adding
and removing tables, enabling and disabling database features such as import and export, and adding or
updating stored procedures can all be done while the database is active. However, between a save and a
restore, it is possible to make changes to the database and cluster configuration that cannot be made on
a running cluster. For example, you can:

• Add or remove nodes from the cluster

• Modify the schema and/or stored procedures that:

• Change partitioned tables to replicated and vice versa

• Change the partitioning column on partitioned tables

• Add unique indexes to tables with existing data

• Change the number of sites per host

• Change the K-safety value

The following sections discuss these procedures in more detail.

129

Saving & Restoring
a VoltDB Database

13.1.3.1. Adding and Removing Nodes from the Database
To add nodes to the cluster, use the following procedure:

1. Save the database with the voltadmin save command.

2. Shutdown and re-initialize the database root directories on each node (including initializing new root
directories for the nodes you are adding).

3. Start the cluster (including the new nodes) specifying the new server count with the --count argument
to the voltdb start command.

4. Restore the database with the voltadmin restore command..

When the snapshot is restored, the database (and partitions) are redistributed over the new cluster config-
uration.

It is also possible to remove nodes from the cluster using this procedure. However, to make sure that no
data is lost in the process, you must copy the snapshot files from the nodes that are being removed to one
of the nodes that is remaining in the cluster. This way, the restore operation can find and restore the data
from partitions on the missing nodes.

13.1.3.2. Modifying the Database Schema and Stored Procedures
The easiest and recommended way to change the database schema is by sending the appropriate SQL
database definition language (DDL) statements to the sqlcmd utility. Similarly you can update the stored
procedures on a running database using the LOAD CLASSES and REMOVE CLASSES directives.

However, there are a few changes that cannot be made to a running database,. For example, changing the
partitioning column of a table if the table contains data. For these changes, you must use save and restore
to change the schema.

To modify the database schema or stored procedures between a save and restore, make the appropriate
changes to the source files (that is, the database DDL and the stored procedure Java source files). If you
modify the stored procedures, be sure to repackage any Java stored procedures into a JAR file. Then you
can:

1. Save the database with the voltadmin save command.

2. Shutdown and re-initialize the database root directories on each node.

3. Start the cluster with the voltdb start command.

4. Load the modified schema and stored procedures using sqlcmd.

5. Restore the database contents with the voltadmin restore command.

Two points to note when modifying the database structure before restoring a snapshot are:

• When existing rows are restored to tables where new columns have been added, the new columns are
filled with either the default value (if defined by the schema) or nulls.

• When changing the datatypes of columns, it is possible to decrease the datatype size (for example, going
from an INT to an TINYINT). However, if any existing values exceed the capacity of the new datatype
(such as an integer value of 5,000 where the datatype has been changed to TINYINT), the entire restore
will fail.

130

Saving & Restoring
a VoltDB Database

If you remove or modify stored procedures (particularly if you change the number and/or datatype of the
parameters), you must make sure the corresponding changes are made to client applications as well.

13.2. Scheduling Automated Snapshots
Save and restore are useful when planning for scheduled down times. However, these functions are also
important for reducing the risk from unexpected outages. VoltDB assists in contingency planning and
recovery from such worst case scenarios as power failures, fatal system errors, or data corruption due to
application logic errors.

In these cases, the database stops unexpectedly or becomes unreliable. By automatically generating snap-
shots at set intervals, VoltDB gives you the ability to restore the database to a previous valid state.

You schedule automated snapshots of the database as part of the configuration file. The <snapshot> tag
lets you specify:

• The frequency of the snapshots. You can specify any whole number of seconds, minutes, or hours (using
the suffix "s", "m", or "h", respectively, to denote the unit of measure). For example "3600s", "60m",
and "1h" are all equivalent. The default frequency is 24 hours.

• The unique identifier to use as a prefix for the snapshot files. The default prefix is "AUTOSNAP".

• The number of snapshots to retain. Snapshots are marked with a timestamp (as part of the file names), so
multiple snapshots can be saved. The retain attribute lets you specify how many snapshots to keep.
Older snapshots are purged once this limit is reached. The default number of snapshots retained is two.

The following example enables automated snapshots every thirty minutes using the prefix "flightsave" and
keeping only the three most recent snapshots.

<snapshot prefix="flightsave"
 frequency="30m"
 retain="3"
/>

By default, automated snapshots are stored in a snapshots subfolder of the VoltDB root directory (as
described in Section 3.7.2, “Configuring Paths for Runtime Features”). You can save the snapshots to a
specific path by adding the <snapshots> tag within to the <paths>...</paths> tag set. For example, the
following example defines the path for automated snapshots as /etc/voltdb/autobackup/.

<paths>
 <snapshots path="/etc/voltdb/autobackup/" />
</paths>

13.3. Managing Snapshots
VoltDB does not delete snapshots after they are restored; the snapshot files remain on each node of the
cluster. For automated snapshots, the oldest snapshot files are purged according to the settings in the
configuration file. But if you create snapshots manually or if you change the directory path or the prefix
for automated snapshots, the old snapshots will also be left on the cluster.

To simplify maintenance, it is a good idea to observe certain guidelines when using save and restore:

• Create dedicated directories for use as the paths for VoltDB snapshots.

• Do not store any other files in the directories used for VoltDB snapshots.

131

Saving & Restoring
a VoltDB Database

• Periodically cleanup the directories by deleting obsolete, unused snapshots.

You can delete snapshots manually. To delete a snapshot, use the unique identifier, which is applied as
a filename prefix, to find all of the files in the snapshot. For example, the following commands remove
the snapshot with the ID TestSave from the directory /etc/voltdb/backup/. Note that VoltDB separates the
prefix from the remainder of the file name with a dash for manual snapshots:

$ rm /etc/voltdb/backup/TestSave-*

However, it is easier if you use the system procedures VoltDB provides for managing snapshots. If you
delete snapshots manually, you must make sure you execute the commands on all nodes of the cluster.
When you use the system procedures, VoltDB distributes the operations across the cluster automatically.

VoltDB provides several system procedures to assist with the management of snapshots:

• @Statistics "SNAPSHOTSTATUS" provides information about the most recently performed snapshots
for the current database. The response from @Statistics for this selector includes information about
up to ten recent snapshots, including their location, when they were created, how long the save took,
whether they completed successfully, and the size of the individual files that make up the snapshot. See
the reference section on @Statistics for details.

• @SnapshotScan lists all of the snapshots available in a specified directory path. You can use this system
procedure to determine what snapshots exist and, as a consequence, which ought to be deleted. See the
reference section on @SnapshotScan for details.

• @SnapshotDelete deletes one or more snapshots based on the paths and prefixes you provide. The
parameters to the system procedure are two string arrays. The first array specifies one or more directory
paths. The second array specifies one or more prefixes. The array elements are taken in pairs to determine
which snapshots to delete. For example, if the first array contains paths A, B, and C and the second
array contains the unique identifiers X, Y, and Z, the following three snapshots will be deleted: A/X,
B/Y, and C/Z. See the reference section on @SnapshotDelete for details.

13.4. Special Notes Concerning Save and Restore
The following are special considerations concerning save and restore that are important to keep in mind:

• Save and restore do not check the cluster health (whether all nodes exist and are running) before exe-
cuting. The user can find out what nodes were saved by looking at the messages displayed by the save
operation.

• Both the save and restore calls do a pre-check to see if the action is likely to succeed before the actual
save/restore is attempted. For save, VoltDB checks to see if the path exists, if there is any data that
might be overwritten, and if it has write access to the directory. For restore, VoltDB verifies that the
saved data can be restored completely.

• It is possible to provide additional protection against failure by copying the automated snapshots to
remote locations. Automated snapshots are saved locally on the cluster. However, you can set up a
network process to periodically copy the snapshot files to a remote system. (Be sure to copy the files
from all of the cluster nodes.) Another approach would be to save the snapshots to a SAN disk that is
already set up to replicate to another location. (For example, using iSCSI.)

132

Chapter 14. Command Logging and
Recovery

By executing transactions in memory, VoltDB, frees itself from much of the management overhead and I/
O costs of traditional database products. However, accidents do happen and it is important that the contents
of the database be safeguarded against loss or corruption.

Snapshots provide one mechanism for safeguarding your data, by creating a point-in-time copy of the
database contents. But what happens to the transactions that occur between snapshots?

Command logging provides a more complete solution to the durability and availability of your VoltDB
database. Command logging keeps a record of every transaction (that is, stored procedure) as it is execut-
ed. Then, if the servers fail for any reason, the database can restore the last snapshot and "replay" the
subsequent logs to re-establish the database contents in their entirety.

The key to command logging is that it logs the invocations, not the consequences, of the transactions. A
single stored procedure can include many individual SQL statements and each SQL statement can modify
hundreds or thousands of table rows. By recording only the invocation, the command logs are kept to a
bare minimum, limiting the impact the disk I/O will have on performance.

However, any additional processing can impact overall performance, especially when it involves disk I/O.
So it is important to understand the tradeoffs concerning different aspects of command logging and how
it interacts with the hardware and any other options you are utilizing. The following sections explain how
command logging works and how to configure it to meet your specific needs.

14.1. How Command Logging Works
When command logging is enabled, VoltDB keeps a log of every transaction (that is, stored procedure)
invocation. At first, the log of the invocations are held in memory. Then, at a set interval the logs are
physically written to disk. Of course, at a high transaction rate, even limiting the logs to just invocations,
the logs begin to fill up. So at a broader interval, the server initiates a snapshot. Once the snapshot is
complete, the command logging process is able to free up — or "truncate" — the log keeping only a record
of procedure invocations since the last snapshot.

This process can continue indefinitely, using snapshots as a baseline and loading and truncating the com-
mand logs for all transactions since the last snapshot.

Figure 14.1. Command Logging in Action

The frequency with which the transactions are written to the command log is configurable (as described in
Section 14.3, “Configuring Command Logging for Optimal Performance”). By adjusting the frequency and

133

Command Logging and Recovery

type of logging (synchronous or asynchronous) you can balance the performance needs of your application
against the level of durability desired.

In reverse, when it is time to "replay" the logs, you start the database and the server nodes establish a
quorum, the first thing the database servers do is restore the most recent snapshot. Then they replay all of
the transactions in the log since that snapshot.

Figure 14.2. Recovery in Action

14.2. Controlling Command Logging
Command logging is enabled by default in the VoltDB Enterprise Edition. Using command logging is
recommended to ensure durability of your data. However, you can choose whether to have command
logging enabled or not using the <commandlog> element in the configuration file. For example:

<deployment>
 <cluster kfactor="1" />
 <commandlog enabled="true"/>
</deployment>

In its simplest form, the <commandlog/> tag enables or disables command logging by setting the en-
abled attribute to "true" or "false". You can also use other attributes and child elements to control specific
characteristics of command logging. The following section describes those options in detail.

14.3. Configuring Command Logging for Optimal
Performance

Command logging can provide complete durability, preserving a record of every transaction that is com-
pleted before the database stops. However, the amount of durability must be balanced against the perfor-
mance impact and hardware requirements to achieve effective I/O.

VoltDB provides three settings you can use to optimize command logging:

• The amount of disk space allocated to the command logs

• The frequency between writes to the command logs

• Whether logging is synchronous or asynchronous

The following sections describe these options. A fourth section discusses the impact of storage hardware
on the different logging options.

134

Command Logging and Recovery

14.3.1. Log Size
The command log size specifies how much disk space is preallocated for storing the logs on disk. The
logs are divided into three "segments" Once a segment is full, it is written to a snapshot (as shown in
Figure 14.1, “Command Logging in Action”).

For most workloads, the default log size of one gigabyte is sufficient. However, if your workload writes
large volumes of data or uses large strings for queries (so the procedure invocations include large parame-
ter values), the log segments fill up very quickly. When this happens, VoltDB can end up snapshotting
continuously, because by the time one snapshot finishes, the next log segment is full.

To avoid this situation, you can increase the total log size, to reduce the frequency of snapshots. You define
the log size in the configuration file using the logsize attribute of the <commandlog> tag. Specify
the desired log size as an integer number of megabytes. For example:

<commandlog enabled="true" logsize="3072" />

When increasing the log size, be aware that the larger the log, the longer it may take to recover the database
since any transactions in the log since the last snapshot must be replayed before the recovery is complete.
So, while reducing the frequency of snapshots, you also may be increasing the time needed to restart.

The minimum log size is three megabytes. Note that the log size specifies the initial size. If the existing
segments are filled before a snapshot can truncate the logs, the server will allocate additional segments.

14.3.2. Log Frequency
The log frequency specifies how often transactions are written to the command log. In other words, the
interval between writes, as shown in Figure 14.1, “Command Logging in Action”. You can specify the
frequency in either or both time and number of transactions.

For example, you might specify that the command log is written every 200 milliseconds or every 10,000
transactions, whichever comes first. You do this by adding the <frequency> element as a child of
<commandlog> and specifying the individual frequencies as attributes. For example:

<commandlog enabled="true">
 <frequency time="200" transactions="10000"/>
</commandlog>

Time frequency is specified in milliseconds and transaction frequency is specified as the number of trans-
actions. You can specify either or both types of frequency. If you specify both, whichever limit is reached
first initiates a write.

14.3.3. Synchronous vs. Asynchronous Logging
If the command logs are being written asynchronously (which is the default), results are returned to the
client applications as soon as the transactions are completed. This allows the transactions to execute un-
interrupted.

However, with asynchronous logging there is always the possibility that a catastrophic event (such as a
power failure) could cause the cluster to fail. In that case, any transactions completed since the last write
and before the failure would be lost. The smaller the frequency, the less data that could be lost. This is how
you "dial up" the amount of durability you want using the configuration options for command logging.

In some cases, no loss of data is acceptable. For those situations, it is best to use synchronous logging. When
you select synchronous logging, no results are returned to the client applications until those transactions

135

Command Logging and Recovery

are written to the log. In other words, the results for all of the transactions since the last write are held on
the server until the next write occurs.

The advantage of synchronous logging is that no transaction is "complete" and reported back to the calling
application until it is guaranteed to be logged — no transactions are lost. The obvious disadvantage of
synchronous logging is that the interval between writes (i.e. the frequency) while the results are held, adds
to the latency of the transactions. To reduce the penalty of synchronous logging, you need to reduce the
frequency.

When using synchronous logging, it is recommended that the frequency be limited to between 1 and 4 mil-
liseconds to avoid adding undue latency to the transaction rate. A frequency of 1 or 2 milliseconds should
have little or no measurable affect on overall latency. However, low frequencies can only be achieved
effectively when using appropriate hardware (as discussed in the next section, Section 14.3.4, “Hardware
Considerations”).

To select synchronous logging, use the synchronous attribute of the <commandlog> tag. For exam-
ple:

<commandlog enabled="true" synchronous="true" >
 <frequency time="2"/>
</commandlog>

14.3.4. Hardware Considerations
Clearly, synchronous logging is preferable since it provides complete durability. However, to avoid neg-
atively impacting database performance you must not only use very low frequencies, but you must have
storage hardware that is capable of handling frequent, small writes. Attempting to use aggressively low
log frequencies with storage devices that cannot keep up will also hurt transaction throughput and latency.

Standard, uncached storage devices can quickly become overwhelmed with frequent writes. So you should
not use low frequencies (and therefore synchronous logging) with slower storage devices. Similarly, if the
command logs are competing for the device with other disk I/O, performance will suffer. So do not write
the command logs to the same device that is being used for other I/O, such as snapshots or export overflow.

On the other hand, fast, cached devices such as disks with a battery-backed cache, are capable of handling
frequent writes. So it is strongly recommended that you use such devices when using synchronous logging.

To specify where the command logs and their associated snapshots are written, you use tags within the
<paths>...</paths> tag set. For example, the following example specifies that the logs are written to
/fastdisk/voltdblog and the snapshots are written to /opt/voltdb/cmdsnaps:

<paths>
 <commandlog path="/faskdisk/voltdblog/" />
 <commandlogsnapshot path="/opt/voltdb/cmdsnaps/" />
</paths>

Note that the default paths for the command logs and the command log snapshots are both subfolders of
the voltdbroot directory. To avoid overloading a single device on production servers, it is recommended
that you specify an explicit path for the command logs, at a minimum, and preferably for both logs and
snapshots.

To summarize, the rules for balancing command logging with performance and throughput on production
databases are:

• Use asynchronous logging with slower storage devices.

136

Command Logging and Recovery

• Write command logs to a dedicated device. Do not write logs and snapshots to the same device.

• Use low (1-2 milisecond) frequencies when performing synchronous logging.

• Use moderate (100 millisecond or greater) frequencies when performing asynchronous logging.

137

Chapter 15. Streaming Data: Import,
Export, and Migraon

Earlier chapters discuss features of VoltDB as a standalone component of your business application. But
like most technologies, VoltDB is often used within a diverse and heterogeneous computing ecosystem
where it needs to "play well" with other services This chapter describes features of VoltDB that help inte-
grate it with other databases, systems, and applications to simplify, automate, and speed up your business
processes.

Just as VoltDB as a database aims to provide the optimal transaction throughput, VoltDB as a data service
aims to efficiently and reliably transfer data to and from other services. Of course, you can always write
custom code to integrate VoltDB into your application environment, calling stored procedures to move
data in and out of the database. However, the VoltDB feature set simplifies and automates the process of
streaming data into, out of, and through VoltDB allowing your application to focus on the important work
of analyzing, processing, and modifying the data in flight through secure, reliable transactions. To make
this possible, VoltDB introduces five key concepts:

• Streams

• Import

• Export

• Migration

• Topics

Streams operate much like regular database tables. You define them with a CREATE statement like tables,
they consist of columns and you insert data into streams the same way you insert data into tables using
the INSERT statement. You can define views that aggregate the data as it passes through the stream.
Interactions with streams within a stored procedure are transactional just like tables. The only difference is
a stream does not store any data in the database. This allows you to use all the consistency and reliability
of a transactional database and the familiar syntax of SQL to manage data "in flight" without necessarily
having to save it to persistent storage. Of course, since there is no storage associated with streams, they are
for INSERT only. Any attempt to SELECT, UPDATE, or DELETE data from a stream results in an error.

Import automates the process of pulling data from external sources and inserting it into the database work-
flow through the same stored procedures your applications use. The import connectors are declared as part
of the database configuration and stop and start with the database. The key point being that the database
manages the entire import process and ensures the durability of the data while it is within VoltDB. Alter-
nately, you can use one of the VoltDB data loading utilities to push data into the VoltDB database from
a variety of sources.

Export automates the reverse process from import: it manages copying any data written to an export table
or stream and sending it to the associated external target, whether it be a file, a service such as Kafka, or
another database. The export targets are defined in the database configuration file, while the connection
of a table or stream to it specific export target is done in the data definition language (DDL) CREATE
statement using the EXPORT TO TARGET clause.

Topics are similar to import and export in that topics let you stream data into and out of the VoltDB
database. The differences are that a single topic can perform both import and output, there can be multiple
consumers and producers for a single topic, and it is the external producers and consumers that control how

138

Streaming Data: Import,
Export, and Migration

and when data is transferred rather than VoltDB pulling from and pushing to individual external targets.
You identify the stream to use for output to the topic by specifying EXPORT TO TOPIC in the CREATE
STREAM statement. You then configure the topic, including the stored procedure to use for input, in the
configuration file. Another difference between export and topics is that, because topics do not have a single
output consumer, there is no single event that determines when the data transfer is complete. Instead, you
must define a retention/expiration policy (based on time or size) for when data is no longer needed and
can be deleted from the queue.

Migration is a special case of export where export is more fully integrated into the business workflow.
When you define a table with the MIGRATE TO TARGET clause instead of EXPORT TO TARGET, data
is not deleted from the VoltDB table until it is successfully written to the associated target. You trigger a
migration of data using an explicit MIGRATE statement or you can declare the table with USING TTL
to schedule the migration based on a timestamp within the data records and an expiration time defined
as the TTL value.

How you configure these features depends on your specific business goals. The bulk of this chapter de-
scribes how to declare and configure import, export and migration in detail. The next two sections provide
an overview of how data streaming works and how to use these features to perform common business
activities.

15.1. How Data Streaming Works in VoltDB
Import associates incoming data with a stored procedure that determines what is done with the data. Ex-
port associates a database object (a table or stream) with an external target, where the external target de-
termines how the exported data is handled. But in both cases the handling of streamed data follows three
key principles:

• Interaction with the VoltDB database is transactional, providing the same ACID guarantees as all other
transactions.

• Interaction with the external system occurs as a separate asynchronous process, avoiding any negative
impact on the latency of ongoing transactions in the VoltDB database.

• The VoltDB server takes care of starting and stopping the import and export subsystems when the
database starts and stops. The server also takes responsibility for managing streaming data "in flight"
— ensuring that no data is lost once it enters the subsystem and before it reaches its final destination.

VoltDB database achieves these goals is by having separate export and import connectors handle the data
as it passes from one system to the next as shown in Figure 15.1, “Overview of Data Streaming”.

139

Streaming Data: Import,
Export, and Migration

Figure 15.1. Overview of Data Streaming

In the case of topics, there is no specific source or target; multiple producers and consumers can write to
and read from the topic. And the stored procedure that receives the incoming data can do whatever you
choose with that content: it can write it to the stream as output for the same topic, it can write into other
topics, it can write into other database tables, or any combination, providing the ultimate flexibility to meet
your business logic needs, as shown in Figure 15.2, “Overview of Topics”.

Figure 15.2. Overview of Topics

Which streaming features you use depend on your business requirements. The key point is that orchestrat-
ing multiple disparate systems is complex and error prone and the VoltDB streaming services free you
from these complexities by ensuring that all operations start and stop automatically as part of the server
process, the data in flight is made durable across database sessions, and that all data is delivered at least
once or retained until delivery is possible.

The following sections provide an overview of each service. Later sections describe the services and built-
in connectors in more detail. You can also define your own custom import and export connectors, as
described in the VoltDB Guide to Performance and Customization.

140

https://docs.voltdb.com/PerfGuide/

Streaming Data: Import,
Export, and Migration

15.1.1. Understanding Import
To import data into VoltDB from an external system you have two options: you can use one of the standard
VoltDB data loading utilities (such as csvloader) or you can define an import connector in the database
configuration file that associates the external source with a stored procedure. The data loading utilities
are standalone external applications that push data into the VoltDB database. VoltDB import connectors
use a pull model. In other words, the connector periodically checks the data source to determine if new
content is available. If so, the connector retrieves the data and passes it to the stored procedure where it
can analyze the data, validate it, manipulate it, insert it into the database, or even pass it along to an export
stream; whatever your application needs.

The creation of the import connector is done using the <configuration> tag within the <import> ... </
import> element of the configuration file. The attributes of the <configuration> tag specify the type of
import connector to use (Kafka, Kinesis, or custom) and, optionally, the input format (CSV by default).
The <property> tags within the configuration specify the actual data source, the stored procedure to use
as a destination, and any other connector-specific attributes you wish to set.

For example, to process data from a Kafka topic, the connector definition must specify the type (kafka),
the addresses of one or more Kafka brokers as the source, the name of the topic (or topics), and the stored
procedure to process the data. If the data does not need additional processing, you can use the default
stored procedure that VoltDB generates for each table to insert the data directly into the database. The
following configuration reads the Kafka topics nyse and nasdaq in CSV format and inserts records into
the stocks table using the default insert procedure:

<import>
 <configuration type="kafka" format="csv">
 <property name="brokers">kafkasvr1:9092,kafkasvr2:9092</property>
 <property name="topics">nyse,nasdaq</property>
 <property name="procedure">STOCKS.insert</property>
 </configuration>
</import>

Having the import connectors defined in the configuration file lets VoltDB manage the entire import
process, from starting and stopping the connectors to making sure the specified stored procedure exists,
fetching the data in batches and ensuring nothing is lost in transit. You can even add, delete, or modify the
connector definitions on the fly by updating the database configuration file while the database is running.

VoltDB provides built-in import connectors for Kafka and Kinesis. Section 15.4, “VoltDB Import Con-
nectors” describes these built-in connectors and the required and optional properties for each. Section 15.5,
“VoltDB Import Formatters” provides additional information about the input formatters that prepare the
incoming data for the stored procedure.

15.1.2. Understanding Export
To export data from VoltDB to an external system you define a database table or stream as the export
source by including the EXPORT TO TARGET clause in the DDL definition and associating that data
source with a logical target name. For example, to associate the stream alerts with a target called systemlog,
you would declare a stream like so:

CREATE STREAM alerts
 EXPORT TO TARGET systemlog
 ({column-definition} [,...]);

For tables, you can also specify when data is queued for export. By default, data inserted into export tables
with the INSERT statement (or UPSERT that results in a new record being inserted) is queued to the

141

Streaming Data: Import,
Export, and Migration

target, similar to streams. However, you can customize the export to write on any combination of data
manipulation language (DML) statements, using the ON clause. For example, to include updates into the
export steam, the CREATE TABLE statement might look like this:

CREATE TABLE orders
 EXPORT TO TARGET orderprocessing ON INSERT, UPDATE
 ({column-definition} [,...]);

As soon as you declare a stream or table as exporting to a target, any data written to that source (or in the
case of tables, the export actions you specified in the CREATE TABLE statement) is queued for the export
stream. You associate the named target with a specific connector and external system in the <export> ...
</export> section of the database configuration file. Note that you can define the target either before or
after declaring the source, and you can add, remove, or modify the export configuration at any time before
or after the database is started.

In the configuration file you define the export connector using the <configuration> element, identifying the
target name and type of connector to use. Within the <configuration> element you then identify the specific
external target to use and any necessary connector-specific attributes in <property> tags. For example, to
write export data to files locally on the database servers, you use the file connector and specify attributes
such as the file prefix, location, and roll-over frequency as properties:

<export>
 <configuration target="systemlog" type="file">
 <property name="type">csv</property>
 <property name="nonce">syslog</property>
 <property name="period">60</property>
 <!-- roll every hour (60 minutes) -->
 </configuration>
</export>

VoltDB supports built-in connectors for five types of external targets: file, HTTP (including Hadoop),
JDBC, Kafka, and Elasticsearch. Each export connector supports different properties specific to that type
of target. Section 15.3, “VoltDB Export Connectors” describes the built-in export connectors and the
required and optional properties for each.

15.1.3. Understanding Migration
Migration is a special case of export that synchronizes export with the deletion of data in database tables.
When you migrate a record, VoltDB ensures the data is successfully transmitted to (and acknowledged
by) the target before the data is deleted from the database. This way you can ensure the data is always
available from one of the two systems — it cannot temporarily "disappear" during the move.

You define a VoltDB table as a source of migration using the MIGRATE TO TARGET clause, the same
way you define an export source with the EXPORT TO TARGET clause. For example, the following
CREATE TABLE statement defines the orders table as a source for migration to the oldorders target:

CREATE TABLE orders
 MIGRATE TO TARGET oldorders
 ({column-definition} [,...]);

Migration uses the export subsystem to perform the interaction with the external data store. So you can use
any of the supported connectors to configure the target of the migration; and you do so the exact same way
you do for any other export target. The difference is that rather than exporting the data when it is inserted
into the table, the data is exported when you initiate migration.

142

Streaming Data: Import,
Export, and Migration

You trigger migration at run time using the MIGRATE SQL statement and a WHERE clause to identify
the specific rows to move. For example, to migrate all of the orders for a specific customer, you could use
the following MIGRATE statement:

MIGRATE FROM orders
 WHERE custmer_id = ? AND NOT MIGRATING;

Note the use of NOT MIGRATING. MIGRATING is a special function that identifies all rows that are
currently being migrated; that is, where migration (and deletion) has not yet completed. Although not re-
quired — VoltDb will skip rows that are already migrating — adding AND NOT MIGRATING to a MI-
GRATE statement can improve performance by reducing the number of rows evaluated by the expression.

Once the rows are migrated and the external target acknowledges receipt, the rows are deleted from the
database.

To further automate the migration of data to external targets, you can use the MIGRATE TO TARGET
clause with USING TTL. USING TTL automates the deletion of records based on a TTL value and a
TIMESTAMP column in the table. For example, adding the clause USING TTL 12 HOURS ON COLUMN
created to a table where the created column defaults to NOW, means that records will be deleted
from the table 12 hours after they are inserted. By adding the MIGRATE TO TARGET clause, you can tell
VoltDB to migrate the data to the specified target before removing it when its TTL expiration is reached.

CREATE TABLE sessions
 MIGRATE TO TARGET sessionlog
 (session_id BIGINT NOT NULL,
 created TIMESTAMP DEFAULT NOW [,...]
)
 USING TTL 12 HOURS ON COLUMN created;

15.1.4. Understanding Topics
Topics allow you to integrate both import and export into a single stream. They also allow multiple external
producers and consumers to access the topic at the same time, keeping track of where each consumer or
group of consumers is in the stream of output.

There are actually two distinct and independent components to a topic that you control separately: input
and output. You declare a topic having either or both, depending on the schema and configuration file.
The schema associates individual streams with topics and the configuration file defines the properties of
the topic, including what stored procedure to use for input. For example, you can declare an output-only
topic by specifying the topic in the CREATE STREAM.... EXPORT TO TOPIC statement but specifying
no stored procedure in the configuration file. In this case, any records written to the associated stream are
queued for output and available to any consumers of the topic:

CREATE STREAM session EXPORT TO TOPIC sessions ...

If, on the other hand, you specify a stored procedure in the configuration file, records written to the topic
by producers invoke the specified procedure passing the message contents (and, optionally, the key) as
arguments:

<topics>
 <topic name="sessions" procedure="ProcessSessions"/>
</topics>

If you include both the EXPORT TO TOPIC clause in the CREATE STEAM statement and the proce-
dure attribute in the <topic> element of the configuration file, the topic is available for both input and
output. What happens to the data as it passes through VoltDB is up to you. You can simply pass it from
producers to consumers by taking the data received by the input procedure and inserting it into the associ-

143

Streaming Data: Import,
Export, and Migration

ated stream. Or the stored procedure can filter, modify, or redirect the content as needed. For example, the
following data definitions create a topic where the input procedure uses an existing table in the database
(users) to fill out additional fields based on the matching username in the incoming records while writing
the data to the stream for output:

Schema CREATE TABLE tempuser (username VARCHAR(128) NOT NULL);
CREATE TABLE users (username VARCHAR(128) NOT NULL,
 country VARCHAR(32), userrank INTEGER);
PARTITION TABLE tempuser on column username;
PARTITION TABLE users on column username;

CREATE STREAM session
 EXPORT TO TOPIC "sessions"
 PARTITION ON COLUMN username (
 username VARCHAR(128) NOT NULL,
 login TIMESTAMP, country VARCHAR(32), userrank INTEGER);

CREATE PROCEDURE ProcessSessions
 PARTITION ON TABLE users COLUMN username
 AS BEGIN
 INSERT INTO tempuser VALUES(CAST(? AS VARCHAR));
 INSERT INTO session SELECT u.username,
 CAST(? AS TIMESTAMP), u.country, u.userrank
 FROM users AS u, tempuser AS t
 WHERE u.username=t.username;
 TRUNCATE TABLE tempuser;
 END;

Configuration <topics>
 <topic name="sessions" procedure="ProcessSessions"/>
</topics>

Finally, if you want to create a topic that is not processed but simply flows through VoltDB from producers
to consumers, you declare the topic as "opaque" in the configuration file, without either specifying a stored
procedure for input or associating a stream with the topic for output.

<topic name="sysmsgs" opaque="true"/>

Opaque topics are useful if you want to have a single set of brokers for all your topics but only need to
analyze and process some of the data feeds. Opaque topics let VoltDB handle the additional topics without
requiring the stored procedure or stream definitions needed for processed topics.

15.2. The Business Case for Streaming Data
The streaming features of VoltDB provide a robust and flexible set of capabilities for connecting a VoltDB
database to external systems. They can be configured in many different ways. At the most basic, they
let you automate the import and export data from a VoltDB database. The following section demonstrate
other ways these capabilities can simplify and automate common business processes, including:

• Section 15.2.1, “Extract, Transform, Load (ETL)”

• Section 15.2.2, “Change Data Capture”

• Section 15.2.3, “Streaming Data Validation”

• Section 15.2.4, “Caching”

144

Streaming Data: Import,
Export, and Migration

• Section 15.2.5, “Archiving”

15.2.1. Extract, Transform, Load (ETL)
Extract, transform, load (ETL) is a common business pattern where you extract data from a database,
restructure and repurpose it, then load into another system. For example, an order processing database
might have separate tables for customer data, orders, and product information. When it comes time to ship
the order, information from all three tables is needed: the customer ID and product SKU from the order,
the name and address from the customer record, and the product name and description from the product
table. This information is merged and passed to the shipping management system.

Rather than writing a separate application to perform these tasks, VoltDB lets you integrate them in a
single stored procedure. By creating a stream with the appropriate columns for the transformed data and
assigning it as an export source and defining a target that matches the shipping management system, you
can declare single stored procedure to complete the process:

CREATE STREAM shipping
 EXPORT TO TARGET shipmgtsystem
 (order_number BIGINT,
 prod_sku BIGINT,
 prod_name VARCHAR(64),
 customer_name VARCHAR(64),
 customer_address VARCHAR(128));
CREATE PROCEDURE shiporder AS
 INSERT INTO shipping SELECT
 o.id, p.sku, p.name, c.name, c.address
 FROM orders AS o, products AS p, customers AS c
 WHERE o.id = ? AND
 o.sku = p.sku AND o.customer_id = c.id;

15.2.2. Change Data Capture
Change Data Capture is the process of recording all changes to the content of a database. Those changes
can then be reused by inserting into another repository for redundancy, logging to a file, merging into
another database or whatever the business workflow call for.

VoltDB simplifies change data capture by allowing you to export all or any subset of data changes to a table
to any of the available export targets. When you declare a table as an export source with the EXPORT TO
TARGET clause you can specify which actions trigger export using ON. Possible triggers are INSERT,
UPDATE, UPDATE_NEW, UPDATE_OLD, and DELETE.

INSERT and DELETE are self-explanatory. UPDATE, on the other hand, generates two export records:
one for the row before the update and one for the row after the update. To select only one or these records,
you can use the actions UPDATE_OLD or UPDATE_NEW.

For change data capture, you can export all changes by specifying ON INSERT, UPDATE, DELETE. For
example, the following schema definitions ensure that all data changes for the tables products and orders
are exported to the targets offsiteprod and offsiteorder, respectively:

CREATE TABLE products EXPORT TO TARGET offsiteprod
 ON INSERT, UPDATE, DELETE
 [...];
CREATE TABLE orders EXPORT TO TARGET offsiteorder
 ON INSERT, UPDATE, DELETE
 [...];

145

Streaming Data: Import,
Export, and Migration

Note that the built-in connectors include six columns of metadata at the beginning of the export data by
default. For change data capture, the most important piece of metadata is the sixth column, with is a single
byte value that indicates which action triggered the export. The external target can use this information
to determine what to do with the record. The possible values for the operation indicator are shown in
Table 15.2, “Export Metadata”.

15.2.3. Streaming Data Validation
VoltDB provides the necessary speed and features to implement an intelligent data pipeline — where
information passing through a high performance stream is analyzed, validated and then accepted, rejected,
or modified as necessary and passed on to the next stage of the pipeline. In this use case, the data in VoltDB
is used as reference for comparison with the influx of data in the pipeline. VoltDB import connectors
accept the incoming data, where it is submitted to a stored procedure. The stored procedure analyses the
data against the reference tables, then inserts the validated content into a stream which is in turn declared
as a source for an export connector that sends it along to its next target.

For example, VoltDB can be inserted into a Kafka pipeline by using:

• A Kafka import connector as the input

• A VoltDB stream and a Kafka export connector as the output

• A stored procedure analyzing the input and inserting it into the stream

The following schema and configuration illustrate a simple example that checks if the data in a Kafka
stream matches an existing user account with appropriate funds. The schema uses a reference table (ac-
count), a temporary table (incoming), and an export stream (outgoing). Any data matching the require-
ments is written to the export target; all other incoming data is dropped.

CREATE TABLE incoming
 (trans_id BIGINT, amount BIGINT, user_id BIGINT);
CREATE STREAM outgoing EXPORT TO TARGET kafka_output
 (trans_id BIGINT, amount BIGINT, user_id BIGINT);

CREATE PROCEDURE validate AS
 BEGIN
 INSERT INTO incoming (?,?,?);
 INSERT INTO outgoing
 SELECT i.trans_id, i.amount, i.userid
 FROM incoming AS i, account AS a
 WHERE i.user_id = a.user_id AND a.balance + i.amount > 0;
 TRUNCATE incoming;
 END;

146

Streaming Data: Import,
Export, and Migration

<import>
 <configuration type="kafka">
 <property name="procedure">validate</configuration>
 <property name="brokers">kfkasrc1,kfksrc2</configuration>
 <property name="topics">transactions</configuration>
 </configuration>
</import>

<export>
 <configuration type="kafka" target="kafka_output">
 <property name="bootstrap.servers">kfkdest1,kfkdest2</configuration>
 <property name="topic.key">outgoing.transactions</configuration>
 <property name="skipinternals">true</configuration>
 </configuration>
</export>

15.2.4. Caching
Because of its architecture, VoltDB is excellent at handling high volume transactions. It is not as well
suited for ad hoc analytical processing of extremely large volumes of historical data. But sometimes you
need both. Caching allows current, high touch content to be accessible from a fast front-end repository
while historical, less frequently accessed content is stored in slower, large back-end repositories (such as
Hadoop) sometimes called data lakes.

Export, Time To Live (TTL), and automated tasks help automate the use of VoltDB as a hot cache. By
declaring tables in VoltDB as export sources to a large back-end repository, any data added to VoltDB
automatically gets added to the historical data lake. Once data in VoltDB is no longer "hot", it can be
deleted but remains available from larger back-end servers.

In the simplest case, caching can be done by declaring the VoltDB tables with EXPORT TO TARGET
and using ON INSERT, UPDATE_NEW so all data changes except deletes are exported to the data lake.
You can then manually delete data from VoltDB when it becomes unnecessary in the cache.

CREATE TABLE sessions
 EXPORT TO TARGET historical ON INSERT, UPDATE_NEW
 (id BIGINT NOT NULL,
 login TIMESTAMP, last_access TIMESTAMP [,...]);

To make it easier, VoltDB can automate the process of aging out old data. If the content is time sensitive,
you can add USING TTL to the table declaration to automatically delete records once a column exceeds
a certain time limit. You specify the reference column and the time limit in the USING TTL clause. For
example, if you want to automatically delete any sessions that have not been accessed for more than two
hours, you can change the sessions table declaration like so:

CREATE TABLE sessions
 EXPORT TO TARGET historical ON INSERT, UPDATE_NEW
 (id BIGINT NOT NULL, user_id BIGINT,
 login TIMESTAMP, last_access TIMESTAMP [,...])
 USING TTL 2 hours ON COLUMN last_access;

If your expiration criteria is more complex than a single column value, you can use a stored procedure to
identify rows that need deleting. To automate this process, you then define a task that executes the stored
procedure on a regular basis. For example, if you want to remove sessions more frequently if there is no
access after the initial login, you can define a stored procedure GhostSessions to remove inactive sessions,

147

Streaming Data: Import,
Export, and Migration

then execute that procedure periodically with the task RemoveGhosts. Note that the actual time limit can
be made adjustable by a parameter passed to the task.

CREATE PROCEDURE GhostSessions AS
 DELETE FROM sessions
 WHERE login = last_access AND DATEADD(MINUTE,?,login) < NOW;
CREATE TASK ON SCHEDULE EVERY 2 MINUTES
 PROCEDURE GhostSessions WITH (20); -- 20 minute limit

15.2.5. Archiving
Archiving is like caching in that older data is maintained in slower, large-scale repositories. The difference
is that for archiving, rather than having copies of the current data in both locations, data is not moved to
the archive until after it's usefulness in VoltDB expires.

You could simply export the data when you delete it from the VoltDB database. But since export is asyn-
chronous, there will be a short period of time when the data is neither in VoltDB or in the archive. To
avoid this situation, you can use migration rather than export, which ensures the data is not deleted from
VoltDB until the export target acknowledges receipt of the migrated content.

For example, if we are archiving orders, we can include the MIGRATE TO TARGET clause in the table
definition and then use the MIGRATE statement instead of DELETE to clear the records from VoltDB:

CREATE TABLE orders MIGRATE TO TARGET archive
 [. . .];

If you are archiving records based on age, you can use MIGRATE TO TARGET with USING TTL to
automatically migrate the table rows once a specific column in the table expires. Used alone, USING TTL
simply deletes records; used with MIGRATE TO TARGET it initiates a migration for the expired records:

CREATE TABLE orders MIGRATE TO TARGET archive
 [. . .]
 USING TTL 30 DAYS ON COLUMN order_completed;

15.3. VoltDB Export Connectors
You use the EXPORT TO TARGET or MIGRATE TO TARGET clauses to identify the sources of export
and start queuing export data. To enable the actual transmission of data to an export target at runtime,
you include the <export> and <configuration> tags in the configuration file. You can configure
the export targets when you initialize the database root directory. Or you can add or modify the export
configuration while the database is running using the voltadmin update command.

In the configuration file, the export and configuration tags specify the target you are configuring and which
export connector to use (with the type attribute). To export to multiple destinations, you include multiple
<configuration> tags, each specifying the target it is configuring. For example:

<export>
 <configuration enabled="true" type="file" target="log">
 . . .
 </configuration>
 <configuration enabled="true" type="jdbc" target="archive">
 . . .
 </configuration>
</export>

148

Streaming Data: Import,
Export, and Migration

You configure each export connector by specifying properties as one or more <property> tags within
the <configuration> tag. For example, the following XML code enables export to comma-separated
(CSV) text files using the file prefix "MyExport".

<export>
 <configuration enabled="true" target="log" type="file">
 <property name="type">csv</property>
 <property name="nonce">MyExport</property>
 </configuration>
</export>

The properties that are allowed and/or required depend on the export connector you select. VoltDB comes
with five export connectors:

• Export to file (type="file")

• Export to HTTP, including Hadoop (type="http")

• Export to JDBC (type="jdbc")

• Export to Kafka (type="kafka")

• Export to Elasticsearch (type="elasticsearch")

In addition to the connectors shipped as part of the VoltDB software kit, an export connector for Amazon
Kinesis is available from the VoltDB public Github repository (https://github.com/VoltDB/export-kine-
sis).

15.3.1. How Export Works
Two important points about export to keep in mind are:

• Data is queued for export as soon you declare a stream or table with the EXPORT TO TARGET clause
and write to it. Even if the export target has not been configured yet. Be careful not to declare export
sources and forget to configure their targets, or else the export queues could grow and cause disk space
issues. Similarly, when you drop the stream or table, its export queue is deleted, even if there is data
waiting to be delivered to the configured export target.

• VoltDB will send at least one copy of every export record to the target. It is possible, when recovering
command logs or rejoining nodes, that certain export records are resent. It is up to the downstream target
to handle these duplicate records. For example, using unique indexes or including a unique record ID
in the export stream.

All nodes in a cluster queue export data, but only one actually writes to the external target. If one or more
nodes fail, responsibility for writing to the export targets is transferred to another currently active server.
It is possible for gaps to appear in the export queues while servers are offline. Normally if a gap is found, it
is not a problem because another node can take over responsibility for writing (and queuing) export data.

However, in unusual cases where export falls behind and nodes fail and rejoin consecutively, it is possible
for gaps to occur in all the available queues. When this happens, VoltDB issues a warning to the console
(and via SNMP) and waits for the missing data to be resolved. You can also use the @Statistics system
procedure with the EXPORT selector to determine exactly what records are and are not present in the
queues. If the gap cannot be resolved (usually by rejoining a failed server), you must use the voltadmin
export release command (specifying the stream or table and the export target with the --source and --
target qualifiers, respectively) to free the queue and resume export at the next available record.

149

https://github.com/VoltDB/export-kinesis
https://github.com/VoltDB/export-kinesis

Streaming Data: Import,
Export, and Migration

15.3.1.1. Export Overflow
VoltDB uses persistent files on disk to queue export data waiting to be written to its specified target. If
for any reason the export target can not keep up with the connector, VoltDB writes the excess data in the
export buffer from memory to disk. This protects your database in several ways:

• If the destination target is not configured, is unreachable, or cannot keep up with the data flow, writing
to disk helps VoltDB avoid consuming too much memory while waiting for the destination to accept
the data.

• If the database stops, the export data is retained across sessions. When the database restarts, the con-
nector will retrieve the overflow data and reinsert it in the export queue.

Even when the target does keep up with the flow, some amount of data is written to the overflow directory
to ensure durability across database sessions. You can specify where VoltDB writes the overflow export
data using the <exportoverflow> element in the configuration file. For example:

<paths>
 <exportoverflow path="/tmp/export/"/>
</paths>

If you do not specify a path for export overflow, VoltDB creates a subfolder in the database root directory.
See Section 3.7.2, “Configuring Paths for Runtime Features” for more information about configuring paths
in the configuration file.

15.3.1.2. Persistence Across Database Sessions
It is important to note that VoltDB only uses the disk storage for overflow data. However, you can force
VoltDB to write all queued export data to disk using any of the following methods:

• Calling the @Quiesce system procedure

• Requesting a blocking snapshot (using voltadmin save --blocking)

• Performing an orderly shutdown (using voltadmin shutdown)

This means that if you perform an orderly shutdown with the voltadmin shutdown command, you can
recover the database — and any pending export queue data — by simply restarting the database cluster
in the same root directories.

Note that when you initialize or re-initialize a root directory, any subdirectories of the root are purged.1

So if your configuration did not specify a different location for the export overflow, and you re-initialize
the root directories and then restore the database from a snapshot, the database is restored but the export
overflow will be lost. If both your original and new configuration use the same, explicit directory outside
the root directory for export overflow, you can start a new database and restore a snapshot without losing
the overflow data.

15.3.2. The File Export Connector
The file connector receives the serialized data from the export source and writes it out as text files (either
comma or tab separated) to disk. The file connector writes the data out one file per source table or stream,
"rolling" over to new files periodically. The filenames of the exported data are constructed from:

1Initializing a root directory deletes any files in the command log and overflow directories. The snapshots directory is archived to a named subdi-
rectory.

150

Streaming Data: Import,
Export, and Migration

• A unique prefix (specified with the nonce property)

• A unique value identifying the current version of the database schema

• The stream or table name

• A timestamp identifying when the file was started

• Optionally, the ID of the host server writing the file

While the file is being written, the file name also contains the prefix "active-". Once the file is complete
and a new file started, the "active-" prefix is removed. Therefore, any export files without the prefix are
complete and can be copied, moved, deleted, or post-processed as desired.

There are two properties that must be set when using the file connector:

• The type property lets you choose between comma-separated files (csv) or tab-delimited files (tsv).

• The nonce property specifies a unique prefix to identify all files that the connector writes out for this
database instance.

Table 15.1, “File Export Properties” describes the supported properties for the file connector.

Table 15.1. File Export Properties

Property Allowable Values Description

type* csv, tsv Specifies whether to create comma-separated (CSV) or tab-delimit-
ed (TSV) files,

nonce* string A unique prefix for the output files.

outdir directory path The directory where the files are created. Relative paths are relative
to the database root directory on each server. If you do not specify
an output path, VoltDB writes the output files into a subfolder of the
root directory itself.

period Integer The frequency, in minutes, for "rolling" the output file. The default
frequency is 60 minutes.

binaryencoding hex, base64 Specifies whether VARBINARY data is encoded in hexadecimal or
BASE64 format. The default is hexadecimal.

dateformat format string The format of the date used when constructing the output file names.
You specify the date format as a Java SimpleDateFormat string. The
default format is "yyyyMMddHHmmss".

timezone string The time zone to use when formatting the timestamp. Specify the
time zone as a Java timezone identifier. The default is GMT.

delimiters string Specifies the delimiter characters for CSV output. The text string
specifies four characters in the following order: the separator, the
quote character, the escape character, and the end-of-line character.

Non-printing characters must be encoded as Java literals. For ex-
ample, the new line character (ASCII code 13) should be entered
as "\n". Alternately, you can use Java Unicode literals, such as
"\u000d". You must also encode any XML special characters, such
as the ampersand and left angle bracket as HTML entities for inclu-
sion in the XML configuration file. For example encoding "<" as
">".

151

Streaming Data: Import,
Export, and Migration

Property Allowable Values Description

The following property definition matches the default delimiters.
That is, the comma, the double quotation character twice (as both
the quote and escape delimiters) and the new line character:

<property name="delimiter">,""\n</property>

batched true, false Specifies whether to store the output files in subfolders that are
"rolled" according to the frequency specified by the period property.
The subfolders are named according to the nonce and the timestamp,
with "active-" prefixed to the subfolder currently being written.

skipinternals true, false Specifies whether to include six columns of VoltDB metadata (such
as transaction ID and timestamp) in the output. If you specify skipin-
ternals as "true", the output files contain only the exported data.

uniquenames true, false Specifies whether to include the host ID in the file name to ensure
that all files written are unique across a cluster. The export files are
always unique per server. But if you plan to write all cluster files to
a network drive or copy them to a single location, set this property
to true to avoid any possible conflict in the file names. The default is
false.

with-schema true, false Specifies whether to write a JSON representation of the source's
schema as part of the export. The JSON schema files can be used to
ensure the appropriate datatype and precision is maintained if and
when the output files are imported into another system.

*Required

Whatever properties you choose, the order and representation of the content within the output files is the
same. The export connector writes a separate line of data for every INSERT it receives, including the
following information:

• Six columns of metadata generated by the export connector.

• The remaining columns are the columns of the database source, in the same order as they are listed in
the database definition (DDL) file.

Table 15.2, “Export Metadata” describes the six columns of metadata generated by the export connector
and the meaning of each column.

Table 15.2. Export Metadata

Column Datatype Description

Transaction ID BIGINT Identifier uniquely identifying the transaction that generated the ex-
port record.

Timestamp TIMESTAMP The time when the export record was generated.

Sequence Number BIGINT For internal use.

Partition ID BIGINT Identifies the partition that sent the record to the export target.

Site ID BIGINT Identifies the site that sent the record to the export target.

Export Operation TINYINT A single byte value identifying the type of transaction that initiated
the export. Possible values include:

• 1 — insert
• 2 — delete

152

Streaming Data: Import,
Export, and Migration

Column Datatype Description

• 3 — update (record before update)
• 4 — update (record after update)
• 5 — migration

15.3.3. The HTTP Export Connector
The HTTP connector receives the serialized data from the export streams and writes it out via HTTP
requests. The connector is designed to be flexible enough to accommodate most potential targets. For
example, the connector can be configured to send out individual records using a GET request or batch
multiple records using POST and PUT requests. The connector also contains optimizations to support
export to Hadoop via WebHDFS.

15.3.3.1. Understanding HTTP Properties
The HTTP connector is a general purpose export utility that can export to any number of destinations
from simple messaging services to more complex REST APIs. The properties work together to create a
consistent export process. However, it is important to understand how the properties interact to configure
your export correctly. The four key properties you need to consider are:

• batch.mode — whether data is exported in batches or one record at a time

• method — the HTTP request method used to transmit the data

• type — the format of the output

• endpoint — the target HTTP URL to which export is written

The properties are described in detail in Table 15.3, “HTTP Export Properties”. This section explains the
relationship between the properties.

There are essentially two types of HTTP export: batch mode and one record at a time. Batch mode is
appropriate for exporting large volumes of data to targets such as Hadoop. Exporting one record at a time
is less efficient for large volumes but can be very useful for writing intermittent messages to other services.

In batch mode, the data is exported using a POST or PUT method, where multiple records are combined in
either comma-separated value (CSV) or Avro format in the body of the request. When writing one record
at a time, you can choose whether to submit the HTTP request as a POST, PUT or GET (that is, as a
querystring attached to the URL). When exporting in batch mode, the method must be either POST or PUT
and the type must be either csv or avro. When exporting one record at a time, you can use the GET,
POST, or PUT method, but the output type must be form.

Finally, the endpoint property specifies the target URL where data is being sent, using either the http: or
https: protocol. Again, the endpoint must be compatible with the possible settings for the other properties.
In particular, if the endpoint is a WebHDFS URL, batch mode must enabled.

The URL can also contain placeholders that are filled in at runtime with metadata associated with the
export data. Each placeholder consists of a percent sign (%) and a single ASCII character. The following
are the valid placeholders for the HTTP endpoint property:

Placeholder Description

%t The name of the VoltDB export source table or stream. The source name is inserted
into the endpoint in all uppercase.

%p The VoltDB partition ID for the partition where the INSERT query to the export source
is executing. The partition ID is an integer value assigned by VoltDB internally and

153

Streaming Data: Import,
Export, and Migration

Placeholder Description

can be used to randomly partition data. For example, when exporting to webHDFS, the
partition ID can be used to direct data to different HDFS files or directories.

%g The export generation. The generation is an identifier assigned by VoltDB. The gener-
ation increments each time the database starts or the database schema is modified in
any way.

%d The date and hour of the current export period. Applicable to WebHDFS export only.
This placeholder identifies the start of each period and the replacement value remains
the same until the period ends, at which point the date and hour is reset for the new
period.

You can use this placeholder to "roll over" WebHDFS export destination files on a
regular basis, as defined by the period property. The period property defaults to
one hour.

When exporting in batch mode, the endpoint must contain at least one instance each of the %t, %p, and
%g placeholders. However, beyond that requirement, it can contain as many placeholders as desired and
in any order. When not in batch mode, use of the placeholders are optional.

Table 15.3, “HTTP Export Properties” describes the supported properties for the HTTP connector.

Table 15.3. HTTP Export Properties

Property Allowable Values Description

endpoint* string Specifies the target URL. The endpoint can contain placeholders for
inserting the source name (%t), the partition ID (%p), the date and
hour (%d), and the export generation (%g).

avro.compress true, false Specifies whether Avro output is compressed or not. The default is
false and this property is ignored if the type is not Avro.

avro.schema.location string Specifies the location where the Avro schema will be written. The
schema location can be either an absolute path name on the local
database server or a webHDFS URL and must include at least one
instance of the placeholder for the source name (%t). Optional-
ly it can contain other instances of both %t and %g. The default
location for the Avro schema is the file path export/avro/
%t_avro_schema.json on the database server under the voltd-
broot directory. This property is ignored if the type is not Avro.

batch.mode true, false Specifies whether to send multiple rows as a single request or send
each export row separately. The default is true. Batch mode must be
enabled for WebHDFS export.

httpfs.enable true, false Specifies that the target of WebHDFS export is an Apache HttpFS
(Hadoop HDFS over HTTP) server. This property must be set to true
when exporting webHDFS to HttpFS targets.

kerberos.enable true, false Specifies whether Kerberos authentication is used when connecting
to a WebHDFS endpoint. This property is only valid when connect-
ing to WebHDFS servers and is false by default.

method get, post, put Specifies the HTTP method for transmitting the export data. The de-
fault method is POST. For WebHDFS export, this property is ig-
nored.

154

Streaming Data: Import,
Export, and Migration

Property Allowable Values Description

period Integer Specifies the frequency, in hours, for "rolling" the WebHDFS output
date and time. The default frequency is every hour (1). For WebHD-
FS export only.

timezone string The time zone to use when formatting the timestamp. Specify the
time zone as a Java timezone identifier. The default is the local time
zone.

type csv, avro, form Specifies the output format. If batch.mode is true, the default type is
CSV. If batch.mode is false, the default and only allowable value for
type is form. Avro format is supported for WebHDFS export only
(see Section 15.3.3.2, “Exporting to Hadoop via WebHDFS” for de-
tails.)

*Required

15.3.3.2. Exporting to Hadoop via WebHDFS
As mentioned earlier, the HTTP connector contains special optimizations to support exporting data to
Hadoop via the WebHDFS protocol. If the endpoint property contains a WebHDFS URL (identified by
the URL path component starting with the string "/webhdfs/v1/"), special rules apply.

First, for WebHDFS URLs, the batch.mode property must be enabled. Also, the endpoint must have at
least one instance each of the source name (%t), the partition ID (%p), and the export generation (%g)
placeholders and those placeholders must be part of the URL path, not the domain or querystring.

Next, the method property is ignored. For WebHDFS, the HTTP connector uses a combination of POST,
PUT, and GET requests to perform the necessary operations using the WebHDFS REST API.

For example, The following configuration file excerpt exports stream data to WebHDFS using the HTTP
connector and writing each stream to a separate directory, with separate files based on the partition ID,
generation, and period timestamp, rolling over every 2 hours:

<export>
 <configuration target="hadoop" enabled="true" type="http">
 <property name="endpoint">
 http://myhadoopsvr/webhdfs/v1/%t/data%p-%g.%d.csv
 </property>
 <property name="batch.mode">true</property>
 <property name="period">2</property>
 </configuration>
</export>

Note that the HTTP connector will create any directories or files in the WebHDFS endpoint path that do
not currently exist and then append the data to those files, using the POST or PUT method as appropriate
for the WebHDFS REST API.

You also have a choice between two formats for the export data when using WebHDFS: comma-separated
values (CSV) and Apache Avro™ format. By default, data is written as CSV data with each record on
a separate line and batches of records attached as the contents of the HTTP request. However, you can
choose to set the output format to Avro by setting the type property, as in the following example:

155

Streaming Data: Import,
Export, and Migration

<export>
 <configuration target="hadoop" enabled="true" type="http">
 <property name="endpoint">
 http://myhadoopsvr/webhdfs/v1/%t/data%p-%g.%d.avro
 </property>
 <property name="type">avro</property>
 <property name="avro.compress">true</property>
 <property name="avro.schema.location">
 http://myhadoopsvr/webhdfs/v1/%t/schema.json
 </property>
 </configuration>
</export>

Avro is a data serialization system that includes a binary format that is used natively by Hadoop utilities
such as Pig and Hive. Because it is a binary format, Avro data takes up less network bandwidth than text-
based formats such as CSV. In addition, you can choose to compress the data even further by setting the
avro.compress property to true, as in the previous example.

When you select Avro as the output format, VoltDB writes out an accompanying schema definition as a
JSON document. For compatibility purposes, the source name and columns names are converted, removing
underscores and changing the resulting words to lowercase with initial capital letters (sometimes called
"camelcase"). The source name is given an initial capital letter, while columns names start with a lowercase
letter. For example, the stream EMPLOYEE_DATA and its column named EMPLOYEE_iD would be
converted to EmployeeData and employeeId in the Avro schema.

By default, the Avro schema is written to a local file on the VoltDB database server. However, you can
specify an alternate location, including a webHDFS URL. So, for example, you can store the schema in
the same HDFS repository as the data by setting the avro.schema.location property, as shown in
the preceding example.

See the Apache Avro web site for more details on the Avro format.

15.3.3.3. Exporting to Hadoop Using Kerberos Security
If the WebHDFS service to which you are exporting data is configured to use Kerberos security, the
VoltDB servers must be able to authenticate using Kerberos as well. To do this, you must perform the
following two extra steps:

• Configure Kerberos security for the VoltDB cluster itself

• Enable Kerberos authentication in the export configuration

The first step is to configure the VoltDB servers to use Kerberos as described in Section 12.8, “Integrating
Kerberos Security with VoltDB”. Because use of Kerberos authentication for VoltDB security changes
how the clients connect to the database cluster, It is best to set up, enable, and test Kerberos authentication
first to ensure your client applications work properly in this environment before trying to enable Kerberos
export as well.

Once you have Kerberos authentication working for the VoltDB cluster, you can enable Kerberos authen-
tication in the configuration of the WebHDFS export target as well. Enabling Kerberos authentication in
the HTTP connector only requires one additional property, kerberos.enable, to be set. To use Ker-
beros authentication, set the property to "true". For example:

156

http://avro.apache.org/

Streaming Data: Import,
Export, and Migration

<export>
 <configuration target="hadoop" enabled="true" type="http">
 <property name="endpoint">
 http://myhadoopsvr/webhdfs/v1/%t/data%p-%g.%d.csv
 </property>
 <property name="type">csv</property>
 <property name="kerberos.enable">true</property>
 </configuration>
</export>

Note that Kerberos authentication is only supported for WebHDFS endpoints.

15.3.4. The JDBC Export Connector
The JDBC connector receives the serialized data from the export source and writes it, in batches, to another
database through the standard JDBC (Java Database Connectivity) protocol.

By default, when the JDBC connector opens the connection to the remote database, it first attempts to
create tables in the remote database to match the VoltDB export source by executing CREATE TABLE
statements through JDBC. This is important to note because, it ensures there are suitable tables to receive
the exported data. The tables are created using either the names from the VoltDB schema or (if you do not
enable the ignoregenerations property) the name prefixed by the database generation ID.

If the target database has existing tables that match the VoltDB export sources in both name and structure
(that is, the number, order, and datatype of the columns), be sure to enable the ignoregenerations property
in the export configuration to ensure that VoltDB uses those tables as the export target.

It is also important to note that the JDBC connector exports data through JDBC in batches. That is, multiple
INSERT instructions are passed to the target database at a time, in approximately two megabyte batches.
There are two consequences of the batching of export data:

• For many databases, such as Netezza, where there is a cost for individual invocations, batching reduces
the performance impact on the receiving database and avoids unnecessary latency in the export pro-
cessing.

• On the other hand, no matter what the target database, if a query fails for any reason the entire batch fails.

To avoid errors causing batch inserts to fail, it is strongly recommended that the target database not use
unique indexes on the receiving tables that might cause constraint violations.

If any errors do occur when the JDBC connector attempts to submit data to the remote database, the VoltDB
disconnects and then retries the connection. This process is repeated until the connection succeeds. If
the connection does not succeed, VoltDB eventually reduces the retry rate to approximately every eight
seconds.

Table 15.4, “JDBC Export Properties” describes the supported properties for the JDBC connector.

Table 15.4. JDBC Export Properties

Property Allowable Values Description

jdbcurl* connection string The JDBC connection string, also known as the URL.

jdbcuser* string The username for accessing the target database.

157

Streaming Data: Import,
Export, and Migration

Property Allowable Values Description

jdbcpassword string The password for accessing the target database.

jdbcdriver string The class name of the JDBC driver. The JDBC driver class must be
accessible to the VoltDB process for the JDBC export process to
work. Place the driver JAR files in the lib/extension/ direc-
tory where VoltDB is installed to ensure they are accessible at run-
time.

You do not need to specify the driver as a property value for several
popular databases, including MySQL, Netezza, Oracle, PostgreSQL,
and Vertica. However, you still must provide the driver JAR file.

schema string The schema name for the target database. The use of the schema
name is database specific. In some cases you must specify the data-
base name as the schema. In other cases, the schema name is not
needed and the connection string contains all the information neces-
sary. See the documentation for the JDBC driver you are using for
more information.

minpoolsize integer The minimum number of connections in the pool of connections to
the target database. The default value is 10.

maxpoolsize integer The maximum number of connections in the pool. The default value
is 100.

maxidletime integer The number of milliseconds a connection can be idle before it is re-
moved from the pool. The default value is 60000 (one minute).

maxstatementcached integer The maximum number of statements cached by the connection pool.
The default value is 50.

createtable true, false Specifies whether VoltDB should create the corresponding table in
the remote database. By default , VoltDB creates the table(s) to re-
ceive the exported data. (That is, the default is true.) If you set this
property to false, you must create table(s) with matching names to
the VoltDB export sources before starting the export connector.

lowercase true, false Specifies whether VoltDB uses lowercase table and column names
or not. By default, VoltDB issues SQL statements using uppercase
names. However, some databases (such as PostgreSQL) are case
sensitive. When this property is set to true, VoltDB uses all lower-
case names rather than uppercase. The default is false.

ignoregenerations true, false Specifies whether a unique ID for the generation of the database
is included as part of the output table name(s). The generation ID
changes each time a database restarts or the database schema is up-
dated. The default is false.

skipinternals true, false Specifies whether to include six columns of VoltDB metadata (such
as transaction ID and timestamp) in the output. If you specify skip-
internals as true, the output contains only the exported stream data.
The default is false.

*Required

15.3.5. The Kafka Export Connector
The Kafka connector receives serialized data from the export sources and writes it to a message queue using
the Apache Kafka version 0.10.2 protocols. Apache Kafka is a distributed messaging service that lets you

158

http://kafka.apache.org/

Streaming Data: Import,
Export, and Migration

set up message queues which are written to and read from by "producers" and "consumers", respectively.
In the Apache Kafka model, VoltDB export acts as a "producer" capable of writing to any Kafka service
using version 0.10.2 or later.

Before using the Kafka connector, we strongly recommend reading the Kafka documentation and becom-
ing familiar with the software, since you will need to set up a Kafka service and appropriate "consumer"
clients to make use of VoltDB's Kafka export functionality. The instructions in this section assume a work-
ing knowledge of Kafka and the Kafka operational model.

When the Kafka connector receives data from the VoltDB export sources, it establishes a connection to the
Kafka messaging service as a Kafka producer. It then writes records to Kafka topics based on the VoltDB
stream or table name and certain export connector properties.

The majority of the Kafka export properties are identical in both in name and content to the Kafka pro-
ducer properties listed in the Kafka documentation. All but one of these properties are optional for the
Kafka connector and will use the standard Kafka default value. For example, if you do not specify the
queue.buffering.max.ms property it defaults to 5000 milliseconds.

The only required property is bootstrap.servers, which lists the Kafka servers that the VoltDB
export connector should connect to. You must include this property so VoltDB knows where to send the
export data. Specify each server by its IP address (or hostname) and port; for example, myserver:7777. If
there are multiple servers in the list, separate them with commas.

In addition to the standard Kafka producer properties, there are several custom properties specific to Volt-
DB. The properties binaryencoding, skipinternals, and timezone affect the format of the
data. The topic.prefix and topic.key properties affect how the data is written to Kafka.

The topic.prefix property specifies the text that precedes the stream or table name when constructing
the Kafka topic. If you do not specify a prefix, it defaults to "voltdbexport". Alternately, you can map
individual sources to topics using the topic.key property. In the topic.key property you associate
a VoltDB export source name with the corresponding Kafka topic as a named pair separated by a period
(.). Multiple named pairs are separated by commas (,). For example:

Employee.EmpTopic,Company.CoTopic,Enterprise.EntTopic

Any mappings in the topic.key property override the automated topic name specified by top-
ic.prefix.

Note that unless you configure the Kafka brokers with the auto.create.topics.enable property
set to true, you must create the topics for every export source manually before starting the export process.
Enabling auto-creation of topics when setting up the Kafka brokers is recommended.

When configuring the Kafka export connector, it is important to understand the relationship between syn-
chronous versus asynchronous processing and its effect on database latency. If the export data is sent
asynchronously, the impact of export on the database is reduced, since the export connector does not wait
for the Kafka infrastructure to respond. However, with asynchronous processing, VoltDB is not able to
resend the data if the message fails after it is sent.

If export to Kafka is done synchronously, the export connector waits for acknowledgement of each message
sent to Kafka before processing the next packet. This allows the connector to resend any packets that fail.
The drawback to synchronous processing is that on a heavily loaded database, the latency it introduces
means export may not be able to keep up with the influx of export data and and have to write to overflow.

You specify the level of synchronicity and durability of the connection using the Kafka acks property.
Set acks to "0" for asynchronous processing, "1" for synchronous delivery to the Kafka broker, or "all"
to ensure durability on the Kafka broker. See the Kafka documentation for more information.

159

http://kafka.apache.org/documentation.html
http://kafka.apache.org/documentation.html#producerconfigs

Streaming Data: Import,
Export, and Migration

VoltDB guarantees that at least one copy of all export data is sent by the export connector. But when
operating in asynchronous mode, the Kafka connector cannot guarantee that the packet is actually received
and accepted by the Kafka broker. By operating in synchronous mode, VoltDB can catch errors returned
by the Kafka broker and resend any failed packets. However, you pay the penalty of additional latency
and possible export overflow.

Finally, the actual export data is sent to Kafka as a comma-separated values (CSV) formatted string. The
message includes six columns of metadata (such as the transaction ID and timestamp) followed by the
column values of the export stream.

Table 15.5, “Kafka Export Properties” lists the supported properties for the Kafka connector, including
the standard Kafka producer properties and the VoltDB unique properties.

Table 15.5. Kafka Export Properties

Property Allowable Val-
ues

Description

bootstrap.servers* string A comma-separated list of Kafka brokers (specified
as IP-address:port-number). You can use meta-
data.broker.list as a synonym for boot-
strap.servers.

acks 0, 1, all Specifies whether export is synchronous (1 or all) or
asynchronous (0) and to what extent it ensures delivery.
The default is all, which is recommended to avoid pos-
sibly losing messages when a Kafka server becomes un-
available during export. See the Kafka documentation of
the producer properties for details.

acks.retry.timeout integer Specifies how long, in milliseconds, the connector will
wait for acknowledgment from Kafka for each packet.
The retry timeout only applies if acknowledgements are
enabled. That is, if the acks property is set greater than
zero. The default timeout is 5,000 milliseconds. When
the timeout is reached, the connector will resend the
packet of messages.

partition.key {source}.{col-
umn}[,...]

Specifies which source column value to use as the Kafka
partitioning key for each stream. Kafka uses the partition
key to distribute messages across multiple servers.

By default, the value of the source's partitioning column
is used as the Kafka partition key. Using this property
you can specify a list of column names, where the source
name and column name are separated by a period and
the list of stream references is separated by commas. If a
stream or table is not partitioned and you do not specify
a key, the server partition ID is used as a default.

binaryencoding hex, base64 Specifies whether VARBINARY data is encoded in
hexadecimal or BASE64 format. The default is hexadec-
imal.

skipinternals true, false Specifies whether to include six columns of VoltDB
metadata (such as transaction ID and timestamp) in the
output. If you specify skipinternals as true, the output

160

http://kafka.apache.org/documentation.html#producerconfigs

Streaming Data: Import,
Export, and Migration

Property Allowable Val-
ues

Description

contains only the exported stream data. The default is
false.

timezone string The time zone to use when formatting the timestamp.
Specify the time zone as a Java timezone identifier. The
default is GMT.

topic.key string A set of named pairs each identifying a VoltDB source
name and the corresponding Kafka topic name to which
the data is written. Separate the names with a period (.)
and the name pairs with a comma (,).

The specific source/topic mappings declared by top-
ic.key override the automated topic names specified by
topic.prefix.

topic.prefix string The prefix to use when constructing the topic name.
Each row is sent to a topic identified by {prefix}{source-
name}. The default prefix is "voltdbexport".

Kafka producer properties various You can specify standard Kafka producer properties
as export connector properties and their values will be
passed to the Kafka interface. However, you cannot
modify the property block.on.buffer.full.

*Required

15.3.6. The Elasticsearch Export Connector
The Elasticsearch connector receives serialized data from the export source and inserts it into an Elastic-
search server or cluster. Elasticsearch is an open-source full-text search engine built on top of Apache
Lucene™. By exporting selected tables and streams from your VoltDB database to Elasticsearch you can
perform extensive full-text searches on the data not possible with VoltDB alone.

Before using the Elasticsearch connector, we recommend reading the Elasticsearch documentation and
becoming familiar with the software. The instructions in this section assume a working knowledge of
Elasticsearch, its configuration and its capabilities.

The only required property when configuring Elasticsearch is the endpoint, which identifies the location of
the Elasticsearch server and what index to use when inserting records into the target system. The structure
of the Elasticsearch endpoint is the following:

<protocol>://<server>:<port>//<index-name>//<type-name>

For example, if the target Elasticsearch service is on the server esearch.lan using the default port
(9200) and the exported records are being inserted into the employees index as documents of type
person, the endpoint declaration would look like this:

<property name="endpoint">
 http://esearch.lan:9200/employees/person
</property>

You can use placeholders in the endpoint that are replaced at runtime with information from the export
data, such as the source name (%t), the partition ID (%p), the export generation (%g), and the date and hour
(%d). For example, to use the source name as the index name, the endpoint might look like the following:

161

https://www.elastic.co/guide/index.html

Streaming Data: Import,
Export, and Migration

<property name="endpoint">
 http://esearch.lan:9200/%t/person
</property>

When you export to Elasticsearch, the export connector creates the necessary index names and types in
Elasticsearch (if they do not already exist) and inserts each record as a separate document with the appro-
priate metadata. Table 15.6, “Elasticsearch Export Properties” lists the supported properties for the Elas-
ticsearch connector.

Table 15.6. Elasticsearch Export Properties

Property Allowable Val-
ues

Description

endpoint* string Specifies the root URL of the RESTful interface for the
Elasticsearch cluster to which you want to export the da-
ta. The endpoint should include the protocol, host name
or IP address, port, and path. The path is assumed to in-
clude an index name and a type identifier.

The export connector will use the Elasticsearch RESTful
API to communicate with the server and insert records
into the specified locations. You can use placeholders
to replace portions of the endpoint with data from the
exported records at runtime, including the source name
(%t), the partition ID (%p), the date and hour (%d), and
the export generation (%g).

batch.mode true, false Specifies whether to send multiple rows as a single re-
quest or send each export row separately. The default is
true.

timezone string The time zone to use when formatting timestamps. Spec-
ify the time zone as a Java timezone identifier. The de-
fault is the local time zone.

*Required

15.4. VoltDB Import Connectors
Just as VoltDB can export data from selected streams and tables to external targets, it supports importing
data into selected tables from external sources. Import works in two ways:

• Bulk loading data using one of several standalone utilities VoltDB provides. These data loaders support
multiple standard input protocols and can be run from any server, even remotely from the database itself.

• Streaming import as part of the database server process. For data that is imported on an ongoing basis,
use of the built-in import functionality ensures that import starts and stops with the database.

The following sections discuss these two approaches to data import.

15.4.1. Bulk Loading Data Using VoltDB Standalone Utilities
Often, when migrating data from one database to another or when pre-loading a set of data into VoltDB
as a starting point, you just want to perform the import once and then use the data natively within VoltDB.

162

Streaming Data: Import,
Export, and Migration

For these one-time uses, or when you prefer to manage the import process externally, VoltDB provides
separate data loader utilities.

Each data loader supports a different source format. You can load data from text files — such as com-
ma-separated value (CSV) files — using the csvloader utility. You can load data from another JDBC-com-
pliant database using the jdbcloader utility. Or you can load data from a streaming message service with
the Kafka loader utility, kafkaloader.

All of the data loaders operate in much the same way. For each utility you specify the source for the
import and either a table that the data will be loaded into or a stored procedure that will be used to load
the data. So, for example, to load records from a CSV file named staff.csv into the table EMPLOYEES,
the command might be the following:

$ csvloader employees --file=staff.csv

If instead you are copying the data from a JDBC-compliant database, the command might look like this:

$ jdbcloader employees \
 --jdbcurl=jdbc:postgresql://remotesvr/corphr \
 --jdbctable=employees \
 --jdbcdriver=org.postgresql.Driver

Each utility has arguments unique to the data source (such as --jdbcurl) that allow you to properly
configure and connect to the source. See the description of each utility in Appendix D, VoltDB CLI Com-
mands for details.

15.4.2. Streaming Import Using Built-in Import Features
If importing data is an ongoing business process, rather than a one-time event, then it is desirable to make
it an integral part of the database system. This can be done by building a custom application to push data
into VoltDB using one of its standard APIs, such as the JDBC interface. Or you can take advantage of
VoltDB's built-in import infrastructure.

The built-in importers work in much the same way as the data loading utilities, where incoming data is
written into one or more database tables using an existing stored procedure. The difference is that the built-
in importers start automatically whenever the database starts and stop when the database stops, making
import an integral part of the database process.

You configure the built-in importers in the configuration file the same way you configure export connec-
tions. Within the <import> element, you declare each import stream using separate <configuration> el-
ements. Within the <configuration> tag you use attributes to specify the type and format of data being
imported and whether the import configuration is enabled or not. Then enclosed within the <configura-
tion> tags you use <property> elements to provide information required by the specific importer and/or
formatter. For example:

<import>
 <configuration type="kafka" format="csv" enabled="true">
 <property name="brokers">kafkasvr:9092</property>
 <property name="topics">employees</property>
 <property name="procedure">EMPLOYEE.insert</property>
 </configuration>
</import>

When the database starts, the import infrastructure starts any enabled configurations. If you are importing
multiple streams to separate tables through separate procedures, you must include multiple configurations,

163

Streaming Data: Import,
Export, and Migration

even if they come from the same source. For example, the following configuration imports data from two
Kafka topics from the same Kafka servers into separate VoltDB tables.

<import>
 <configuration type="kafka" enabled="true">
 <property name="brokers">kafkasvr:9092</property>
 <property name="topics">employees</property>
 <property name="procedure">EMPLOYEE.insert</property>
 </configuration>
 <configuration type="kafka" enabled="true">
 <property name="brokers">kafkasvr:9092</property>
 <property name="topics">managers</property>
 <property name="procedure">MANAGER.insert</property>
 </configuration>
</import>

VoltDB currently provides support for two types of import:

• Import from Apache Kafka (type="kafka")

• Import from Amazon Kinesis (type="kinesis")

VoltDB also provides support for two import formats: comma-separated values (csv) and tab-separated
values (tsv). Comma-separated values are the default format. So if you are using CSV-formatted input,
you can leave out the format attribute, as in the preceding example.

The following sections describe each of the importers and the CSV/TSV formatter in more detail.

15.4.3. The Kafka Importer
The Kafka importer connects to the specified Kafka messaging service and imports one or more Kafka
topics and writes the records into the VoltDB database. The data is decoded according to the specified
format — comma-separated values (CSV) by default — and is inserted into the VoltDB database using
the specified stored procedure.

The Kafka importer supports Kafka version 0.10 or later. You must specify at least the following properties
for each configuration:

• brokers — Identifies one or more Kafka brokers. That is, servers hosting the Kafka service and desired
topics. Specify a single server or a comma-separated list of brokers.

• topics — Identifies the Kafka topics that will be imported. The property value can be a single topic
name or a comma-separated list of topics.

• procedure — Identifies the stored procedure that is invoked to insert the records into the VoltDB data-
base.

When import starts, the importer first checks to make sure the specified stored procedure exists in the
database schema. If not (for example, when you first create a database and before a schema is loaded), the
importer issues periodic warnings to the console.

Once the specified stored procedure is declared, the importer looks for the specified Kafka brokers and
topics. If the specified brokers cannot be found or the specified topics do not exist on the brokers, the
importer reports an error and stops. You will need to restart import once this error condition is corrected.
You can restart import using any of the following methods:

164

Streaming Data: Import,
Export, and Migration

• Stop and restart the database

• Pause and resume the database using the voltadmin pause and voltadmin resume commands

• Update the configuration using the voltadmin update command or the web-based VoltDB Management
Center

If the brokers are found and the topics exist, the importer starts fetching data from the Kafka topics and
submitting it to the stored procedure to insert into the database. In the simplest case, you can use the default
insert procedure for a table to insert records into a single table. For more complex data you can write your
own import stored procedure to interpret the data and insert it into the appropriate table(s).

Table 15.7, “Kafka Import Properties” lists the allowable properties for the Kafka importer. You can also
specify properties associated with the formatter, as described in Table 15.9, “CSV and TSV Formatter
Properties”.

Table 15.7. Kafka Import Properties

Property Allowable Val-
ues

Description

brokers* string A comma-separated list of Kafka brokers.

procedure* string The stored procedure to invoke to insert the incoming
data into the database.

topics* string A comma-separated list of Kafka topics.

commit.policy integer Because the importer performs two distinct tasks — re-
trieving records from Kafka and then inserting them in-
to VoltDB — Kafka's automated tracking of the current
offset may not match what records are successfully in-
serted into the database. Therefore, by default, the im-
porter uses a manual commit policy to ensure the Kafka
offset matches the completed inserts.

Use of the default commit policy is recommended. How-
ever, you can, if you choose, use Kafka's automated
commit policy by specifying a commit interval, in mil-
liseconds, using this property.

groupid string A user-defined name for the group that the client belongs
to. Kafka maintains a single pointer for the current posi-
tion within the stream for all clients in the same group.

The default group ID is "voltdb". In the rare case where
you have two or more databases importing data from the
same Kafka brokers and topics, be sure to set this prop-
erty to give each database a unique group ID and avoid
the databases interfering with each other.

fetch.max.bytes
heartbeat.interval.ms
max.partition.fetch.bytes
max.poll.interval.ms
max.poll.records
request.timeout.ms
session.timeout.ms

string These Kafka consumer properties are supported as im-
port properties. See the Kafka 0.11 documentation for
details.

*Required

165

https://kafka.apache.org/documentation/#consumerconfigs

Streaming Data: Import,
Export, and Migration

15.4.4. The Kinesis Importer
The Kinesis importer connects to the specified Amazon Kinesis stream and writes the records into the
VoltDB database. Kinesis streams let you aggregate data from multiple sources, such as click streams and
media feeds, which is then pushed as streaming data to the application. The VoltDB Kinesis importer acts
as a target application for the Kinesis Stream. The data is decoded according to the specified format —
comma-separated values (CSV) by default — and is inserted into the VoltDB database using the specified
stored procedure.

When import starts, the importer first checks to make sure the specified stored procedure exists in the
database schema. If not (for example, when you first create a database and before a schema is loaded), the
importer issues periodic warnings to the console.

Once the specified stored procedure is declared, the importer looks for the specified Kinesis stream. If the
stream cannot be found or accessed (for example, if the keys don't match), the importer reports an error
and stops. You will need to restart import once this error condition is corrected. You can restart import
using any of the following methods:

• Stop and restart the database

• Pause and resume the database using the voltadmin pause and voltadmin resume commands

• Update the configuration using the voltadmin update command or the web-based VoltDB Management
Center

If the stream is found and can be accessed, the importer starts fetching data and submitting it to the stored
procedure to insert into the database. In the simplest case, you can use the default insert procedure for a
table to insert records into a single table. For more complex data you can write your own import stored
procedure to interpret the data and insert it into the appropriate table(s).

Table 15.8, “Kinesis Import Properties” lists the allowable properties for the Kinesis importer. You can
also specify properties associated with the formatter, as described in Table 15.9, “CSV and TSV Formatter
Properties”.

Table 15.8. Kinesis Import Properties

Property Allowable Val-
ues

Description

app.name* string A user-defined name that is used by Kinesis to track the
application's current position in the stream.

procedure* string The stored procedure to invoke to insert the incoming
data into the database.

region* string The Amazon region where the Kinesis stream service is
running.

stream.name* string The name of the Kinesis stream.

access.key* string The Amazon access key for permitting access to the
stream.

secret.key* string The Amazon secret key for permitting access to the
stream.

max.read.batch.size integer The maximum number of records to read in a single
batch. The default batch size is size 10,000 records.

*Required

166

Streaming Data: Import,
Export, and Migration

15.5. VoltDB Import Formatters
The import infrastructure uses formatters to interpret the incoming data and convert it for insertion into
the database. If you use the CSV or TSV formatter, you can control how the data is interpreted by setting
additional properties associated with those formatters. For example, the following configuration for the
Kafka importer includes the formatter property blank specifying that blank entries should generate an
error, rather than being interpreted as null or empty values:

<import>
 <configuration type="kafka" format="csv" enabled="true">
 <property name="brokers">kafkasvr:9092</property>
 <property name="topics">employees</property>
 <property name="procedure">EMPLOYEE.insert</property>
 <property name="blank">error</property>
 </configuration>
</import>

You include the formatter properties in the <configuration> element along with the import type properties.
Table 15.9, “CSV and TSV Formatter Properties” lists the allowable properties for the CSV and TSV
import formatters.

Table 15.9. CSV and TSV Formatter Properties

Property Allowable Val-
ues

Description

blank empty, error, null Specifies what to do with missing values in the input.
If you specify empty, missing entries result in the cor-
responding "empty" value (that is, zero for INTEGER,
a zero-length string for VARCHAR, and so on); if you
specify error, missing entries generate an error, if you
specify null, missing entries result in a null value. The
default interpretation of missing values is null.

nowhitespace true, false Specifies whether the input can contain whitespace be-
tween data values and separators. If you specify true,
any input lines containing whitespace will generate an
error and not be inserted into the database. The default is
false.

nullstring string Specifies a custom string to be interpreted as a null val-
ue. By default, the following entries are interpreted as
null:

• An empty entry
• NULL (unquoted, uppercase)
• \N (quoted or unquoted, either upper or lowercase)

If you specify a custom null string, it overrides all de-
fault null strings.

trimrawtext true, false Specifies whether any white space around unquoted
string values is included in the string input or not. If you
specify true, surrounding white space is dropped; if
you specify false, surrounding white space between

167

Streaming Data: Import,
Export, and Migration

Property Allowable Val-
ues

Description

the string value and the separators is included in the in-
put value. The default is true.

15.6. VoltDB Topics
Topics use the Apache Kafka protocols for producing data for (input) and consuming data from (output) a
VoltDB database. The configuration file declares the topic and specifies the stored procedure that receives
the inbound data. The CREATE STREAM... EXPORT TO TOPIC statement identifies the stream that is
used to queue outbound data to the specified topic. VoltDB topics operate just like Kafka topics, with the
database nodes acting as Kafka brokers. However, unlike Kafka, VoltDB topics also have the ability to
analyze, act on, or even modify the data as it passes through.

As the preceding diagram shows, data submitted to the topic from a Kafka producer (either using the Kafka
API or using a tool such as Kafka Connect) is passed to the stored procedure, which then interprets and
operates on the data before passing it along to the stream through standard SQL INSERT semantics. Note
that the named procedure must exist before input is accepted. Similarly, the stream must be declared using
the EXPORT TO TOPIC clause and the topic be defined in the configuration file before any output is
queued. So, it is a combination of the database schema and configuration file that establishes the complete
topic workflow.

For example, the following SQL statements declare the necessary stored procedure and stream and the
configuration file defines a topic eventLogs that integrates them:

Schema DDL CREATE STREAM eventlog
 PARTITION ON COLUMN e_type
 EXPORT TO TOPIC eventlogs
 (e_type INTEGER NOT NULL,
 e_time TIMESTAMP NOT NULL,
 e_msg VARCHAR(256)
);

CREATE PROCEDURE
 PARTITION ON TABLE eventlog COLUMN e_type
 FROM CLASS mycompany.myprocs.checkEvent;

Configuration File <topics>
 <topic name="eventLogs" procedure="checkEvent"/>
</topics>

Concerning Case Sensitivity

The names of Kafka topics are case sensitive. That means that the name of the topic matches
exactly how it is specified in the configuration file. So in the previous example, the topic name

168

Streaming Data: Import,
Export, and Migration

eventLogs is all lowercase except for the letter "L". This is how the producers and consumers
must specify the topic name. But SQL names — such as table and column names — are case
insensitive. As a result, the topic name specified in the EXPORT TO TOPIC clause does not have
to match exactly. In other words, the topic "eventLogs" matches any stream that specifies the
topic name with the same spelling, regardless of case.

The structure of a topic message — that is, the fields included in the message and the message key — is
defined in the schema using the EXPORT TO TOPIC... WITH clause. Other characteristics of how the
message is handled, such as the data format, security, and retention policy, are controlled by <property>
tags in the configuration file. The following sections discuss:

• Understanding the different types of topics

• Declaring VoltDB topics

• Configuring and managing topics

• Configuring the topic server

• Calling topics from external consumers and producers

• Using opaque topics

15.6.1. Types of VoltDB Topics
VoltDB supports four different types of topics, depending on how the topic is declared:

• A fully processed topic is a pipeline that supports both input and output and passes through a stored
procedure. This is defined using both the procedure attribute in the configuration file and the EX-
PORT TO TOPIC clause in the CREATE STREAM statement.

• An input-only topic only provides for input from Kafka producers. You define an input-only topic
by specifying the procedure attribute, without any streams including a corresponding EXPORT TO
TOPIC clause.

• An output-only topic only provides for output to Kafka consumers but can be written to by VoltDB
INSERT statements. You define an output-only topic by including the EXPORT TO TOPIC clause, but
not specifying a procedure in the topic declaration.

169

Streaming Data: Import,
Export, and Migration

• An opaque topic supports input and output but provides for no processing or interpretation. You de-
fine an opaque topic using the opaque="true" attribute in the configuration file, as described in
Section 15.6.6, “Using Opaque Topics”.

15.6.2. Declaring VoltDB Topics
You declare and configure topics by combining SQL stored procedures and streams with topic declarations
in the database configuration file. The topic itself is defined in the configuration file, using the <topics>
and <topic> elements. The configuration also lets you identify the stored procedure used for input from
producers:

<topics>
 <topic name="eventLogs"
 procedure="eventWatch"/>
</topics>

15.6.2.1. Processing Topic Output
For output, you include the EXPORT TO TOPIC clause when you declare a stream. Once the stream
includes the EXPORT TO TOPIC clause and the topic is defined in the configuration file, any records
written into the stream are made available to consumers through the topic port.

You can control what parts of the stream records are sent to the topic, using the WITH KEY/VALUE
clauses. The WITH VALUE clause specifies which columns of the stream are included in the body of the
topic message and their order. The WITH KEY clause lets you specify one or more columns as a key for
the message. Columns can appear in either the message body or the key, in both, or in neither, as needed.
In all cases, the lists of columns are enclosed in parentheses and separated by commas.

So, for example, the following stream declaration associates the stream events with the topic eventLogs
and selects two columns for the body of the topic message and one column as the key:

170

Streaming Data: Import,
Export, and Migration

CREATE STREAM events
 PARTITION ON COLUMN event_type
 EXPORT TO TOPIC eventLogs
 WITH KEY (event_type) VALUE (when,what)
 (event_type INTEGER NOT NULL,
 when TIMESTAMP NOT NULL,
 what VARCHAR(256)
);

15.6.2.2. Processing Topic Input
Since VoltDB does not control what content producers send to the topic, it cannot dictate what columns or
datatypes the stored procedure will receive. Instead, VoltDB interprets the content from its format. By de-
fault, text data is interpreted as comma-separated values. All other data is interpreted as a single value based
on the data itself. On the other hand, if the topic is configured as using either JSON or AVRO formatted
data in the configuration file, the incoming data from producers will be interpreted in the specified format.

Any errors during the decoding of the input fields is recorded in the log file. If the input can be decoded,
the message fields are used, in order, as arguments to the store procedure call.

Only one key field is allowed for input. By default, the key is not passed to the specified stored procedure;
only the message fields of the topic are passed as parameters to the stored procedure. If you want to include
the key in the list of parameters to the stored procedure, you can set the property producer.parame-
ters.includeKey to true and the key will be included as the partitioning parameter for the procedure.
For example:

<topics>
 <topic name="eventLogs" procedure="eventWatch">
 <property name="producer.parameters.includeKey">true</property>
 </topic>
</topics>

15.6.3. Configuring and Managing Topics
Declaring the topic and its stream and/or procedure are the only required elements for creating a topic.
However, there are several other attributes you can specify either as part of the declaration or as clauses
to the stored procedure and stream declarations. Those attributes include:

• Permissions — Controlling access to the topic by consumers and producers

• Retention — Managing how long data is retained in the topic queue before being deleted

• Data Format — Choosing a format for the data passed to the external clients

15.6.3.1. Permissions
When security is enabled for the database, the external clients must authenticate using a username and
password when they initiate contact with the server. Access to the topic is handled separately for consumers
and producers.

For producers, access to the topic is controlled by the security permissions of the associated stored proce-
dure, as defined by the CREATE PROCEDURE... ALLOW clause or the generic permissions of the user
account's role. (For example, a role with the ALLPROC or ADMIN permissions can write to any topic.)

For consumers, access to the topic is restricted by the allow attribute of the topic declaration in the
configuration file. If allow is not specified, any authenticated user can read from the topic. If allow

171

Streaming Data: Import,
Export, and Migration

is included in the declaration, only users with the specified role(s) have access. You specify permissions
by providing a comma-separated list of roles that can read from the topic. For example, the following
declaration allows users with the kreader and operator roles to read from the topic eventLogs:

<topics>
 <topic name="eventLogs" allow="kreader,operator"/>
</topics>

Question: What about ADMIN? SQLREAD? Needs testing.

15.6.3.2. Retention
Unlike export or import, where there is a single destination or source, topics can have multiple consumers
and producers. So there is no specific event when the data transfer is complete and can be discarded.
Instead, you must set a retention policy that defines when data is aged out of the topic queues. You specify
the retention policy in terms of either the length of time the data is in queue or the volume of data in the
queue.

For example, if you specify a retention policy of five days, after a record has been in the queue for five
days, it will be deleted. If, instead, you set a retention policy of five gigabytes, as soon as the volume of
data in the queue exceeds 5GB, data will deleted until the queue size is under the specified limit. In both
cases, data aging is a first in, first out process.

You specify the retention policy in the retention attribute of the <topic> declaration. The retention
value is a positive integer and a unit, such as "gb" for gigabytes or "dy" for days. The following is the
list of valid retention units:

Time mn — Minutes
hr — Hours
dy — Days
wk — Weeks
mo — Months
yr — Years

Size mb — Megabytes
gb — Gigabytes

If you do not specify a retention value, the default policy is seven days (7 dy).

15.6.3.3. Data Format
VoltDB topics are composed of three elements: a timestamp, a record with one or more fields, and an
optional set of keys values. The timestamp is generated automatically when the record is inserted into the
stream. The format of the record and the key depends on the data itself. Or you can specify a format for
the record, for the key, or for both using properties of the topic declaration in the configuration file.

For single value records and keys, the data is sent in the native Kafka binary format for that datatype. For
multi-value records or keys, VoltDB defaults to sending the content as comma-separated values (CSV) in
a text string. Similarly, on input from producers, the topic record is interpreted as a single binary format
value or a CSV string, depending on the datatype of the content.

You can control what format is used to send and receive the topic data using either the format attribute
of the <topic> element, or separate <property> child elements to select the format of individual
components. For example, to specify the format for the message and the keys for both input and output,
you can use the attribute format="avro":

<topics>

172

Streaming Data: Import,
Export, and Migration

 <topic name="eventLogs" format="avro"/>
</topics>

To specify individual formats for input versus output, or message versus keys, you can use <property>
elements as children of the <topic> tag, where the property name is either consumer or producer
followed by format and, optionally, the component type — all separated by periods. For example, the
following declaration specifies Avro for both consumers and producers, and is equivalent to the preceding
example using the format attribute:

<topics>
 <topic name="eventLogs">
 <property name="consumer.format">avro</property>
 <property name="producer.format">avro</property>
 </topic>
</topics>

The following are the valid formatting properties:

• consumer.format
• consumer.format.key
• consumer.format.value
• producer.format.value

For input, note that you cannot specify the format of the key. This is because only a single key value is
supported for producers and it is always assumed to be in native binary or string format.

Depending on what format you choose, you can also control specific aspects of how data is represented
in that format. For example, you can specify special characters such as the separator, quote, and escape
character in CSV format. Table 15.10, “Topic Formatting Properties” lists all of the supported formatting
properties you can use when declaring topics in the configuration file.

Table 15.10. Topic Formatting Properties

Property Values Description

consumer.format avro, csv, json Format of keys and values sent to consumers. Supersedes the
format definition in the <topic> deployment element. The de-
fault is CSV.

consumer.for-
mat.value

avro, csv, json Format of values sent to consumers. Supersedes the format
definition in the <topic> deployment element and the "con-
sumer.format" property. The default is CSV.

consumer.for-
mat.key

avro, csv, json Format of keys sent to consumers. Supersedes the format
definition in the <topic> deployment element and the "con-
sumer.format" property. The default is CSV.

producer.for-
mat.value

avro, csv, json Format of values received from producers. Supersedes the for-
mat definition in the <topic> deployment element. The default
is CSV.

config.avro.time-
stamp

microseconds, mil-
liseconds

Unit of measure for timestamps in AVRO formatted fields. The
default is microseconds.

config.avro.geogra-
phyPoint

binary, fixed_bina-
ry, string

Datatype for GEOGRAPHY_POINT columns in AVRO for-
matted fields. The default is fixed_binary.

config.avro.geogra-
phy

binary,string Datatype for GEOGRAPHY columns in AVRO formatted
fields. The default is binary.

173

Streaming Data: Import,
Export, and Migration

Property Values Description

config.csv.escape character Character used to escape the next character in a quoted string
in CSV format. The default is the backslash "\".

config.csv.null character(s) Character(s) representing a null value in CSV format. The de-
fault is "\N".

config.csv.quote character Character used to enclose quoted strings in CSV format. The
default is the double quotation character (").

config.csv.separa-
tor

character Character separating values in CSV format. The default is the
comma ",".

config.csv.al-
waysQuote

true, false Whether all string values are quoted or only strings with special
characters (such as commas, line breaks, and quotation marks)
in CSV format. The default is false.

config.csv.ignore-
LeadingWhitespace

true, false Whether leading spaces are included in string values in CSV
format. The default is true.

config.json.schema embedded, none Whether the JSON representation contains a property named
"schema" embedded within it or not. If embedded, the schema
property describes the layout of the object. The default is none.

config.json.produc-
er.attributes

string Specifies the name and order of the JSON elements that are
inserted as parameters to the topic input procedure.

producer.parame-
ter.includeKey

true, false Whether the topic key is included as the partitioning parameter
to the stored procedure call. The default is false.

opaque.partitioned true, false Whether the opaque topic is partitioned. Ignored if not an
opaque topic. The default is false

topic.store.encoded true, false Whether the topic is stored in the same format as issued by the
producer: optimizes transcoding to consumers when producer
and consumer formats are identical. The default is false.

When using AVRO format, you must also have access to an AVRO schema registry, which is where
VoltDB stores the schema for AVRO-formatted topics. The URL for the registry is specified in the database
configuration file, as described in the next section.

15.6.4. Configuring the Topic Server
Communication between the VoltDB database and topic clients is handled by a separate server process:
the topic server. The topic server process is started whenever VoltDB starts with the <topics> element
declared and enabled in the configuration file.

By default, the topic server, when running, listens on port 9092. You can specify a different port with the
port attribute of the <topics> element. Other aspects of the topic server operation are configured as
properties of the <broker> element, which if present must be the first child of the <topics> element.
The following are the supported properties of the <broker> element:

• cluster.id
• network.thread.count
• group.max.session.timeout.ms
• groups.min.session.timeout.ms
• group.max.size
• offsets.retention.interval.ms
• offsets.retention.minutes

174

Streaming Data: Import,
Export, and Migration

• retention.policy.threads
• quota.throttle.max_ms
• quota.request.bytes_per_second
• quota.response.bytes_per_second
• quota.request.processing_percent
• log.cleaner.threads
• log.cleaner.delete.retention.ms
• log.cleaner.dedupe.buffer.size

For example, this declaration configures the broker using port 9999, a cluster ID of 3, and five network
threads:

<topics port="9999">
 <broker>
 <property name="cluster.id">3</property>
 <property name="network.thread.count">5</property>
 </broker>
</topics>

Finally, you can additionally tune the performance of the topic server by adjusting the threads that man-
age the inbound and outbound connections. You can specify a threadpool for the topic server to use for
processing client requests using the threadpool attribute of the <topics>, then specify a size for the
pool in the <threadpools> element:

<topics threadpool="topics">
 [. . .]
</topics>
<threadpools>
 <pool name="topics" size="10"/>
</threadpools>

15.6.5. Calling Topics from Consumers and Producers
Once the topic has been declared in the database configuration and the appropriate streams and stored
procedures created in the schema, the topic is ready for use by external clients. Since VoltDB topics use
the Kafka API protocol, any Kafka consumer or producer with the appropriate permissions can access the
topics. For example, you can use the console consumer that comes with Kakfa to read topics from VoltDB:

$ bin/kafka-console-consumer.sh --from-beginning \
 --topic eventLogs --bootstrap-server myvoltdb:9092

You can even use the console producer. However, to optimize write operations, Kafka needs to know
the VoltDB partitioning scheme. So it is strongly recommended that you define the Kafka ProducerCon-
fig.PARTITIONER_CLASS_CONFIG property to point to the VoltDB partitioner for Kafka. By defining
the PARTITIONER_CLASS_CONFIG, VoltDB can ensure that the producer sends records to the appro-
priate cluster node for each partitioning key. For example, a Java-based client application should contain
a producer definition similar to the following:

 Properties props = new Properties();

 props.put("bootstrap.servers", "myvoltdb:9092");
 props.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, VoltDBKafkaPartitioner.class.getName());
 props.put("client.id","myConsumer");

 props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");

175

Streaming Data: Import,
Export, and Migration

 props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

 Producer<String, String> producer = new KafkaProducer<>(props);

To access the VoltDB partitioner for Kafka, be sure to include the VoltDB client library JAR file in your
classpath when compiling and running your producer client.

15.6.6. Using Opaque Topics
Opaque topics are a special type of topic that do not receive any interpretation or modification by the data-
base. If you want to create a topic that is not processed but simply flows through VoltDB from producers
to consumers, you declare the topic as "opaque" in the configuration file, without either specifying a stored
procedure for input or associating a stream with the topic for output.

<topic name="sysmsgs" opaque="true"/>

Opaque topics allow you to use a single set of brokers for all your topics even if you only need to analyze
and process certain data feeds. Because there is no interpretation, you cannot specify a stored procedure,
a stream, or a format for the topic. However, there are a few properties specific to opaque topics you can
use to control how the data are handled.

One important control is whether the opaque topics are partitioned or not. Partitioning the opaque topics
improves throughput by distributing processing across the cluster. However, you can only partition opaque
topics that have a key. To partition an opaque topic you set the opaque.partitioned property to true:

<topic name="sysmsgs" opaque="true">
 <property name="opaque.partitioned">true</property>
</topic>

You can specify a retention policy for opaque topics, just like regular topics. In fact, opaque topics have
one additional retention option. Since the content is not analyzed in any way, it can be compressed to save
space while it is stored. By specifying the retention policy as "compact" with a time limit, the records are
stored compressed until the time limit expires. For example, the following configuration compresses the
opaque topic data then deletes it after two months:

<topic name="sysmsgs" opaque="true" retention="compact 2 mo">
 <property name="opaque.partitioned">true</property>
</topic>

176

Appendix A. Supported SQL DDL
Statements

This appendix describes the subset of the SQL Data Definition Language (DDL) that VoltDB supports
when defining the schema for a VoltDB database. VoltDB also supports extensions to the standard syntax
to allow for the declaration of stored procedures and partitioning information related to tables and proce-
dures.

The following sections are not intended as a complete description of the standard SQL DDL. Instead, they
summarize the subset of standard SQL DDL statements that are allowed when defining a VoltDB schema
and any exceptions, extensions, or limitations that application developers should be aware of.

The supported standard SQL DDL statements are:

• ALTER TABLE
• CREATE INDEX
• CREATE TABLE
• CREATE VIEW
• DROP INDEX
• DROP TABLE
• DROP VIEW

The supported VoltDB-specific extensions for declaring functions, stored procedures, streams, and parti-
tioning are:

• ALTER STREAM
• ALTER TASK
• CREATE AGGREGATE FUNCTION
• CREATE FUNCTION
• CREATE PROCEDURE AS
• CREATE PROCEDURE FROM CLASS
• CREATE ROLE
• CREATE STREAM
• CREATE TASK
• DR TABLE
• DROP FUNCTION
• DROP PROCEDURE
• DROP ROLE
• DROP STREAM
• DROP TASK
• PARTITION PROCEDURE
• PARTITION TABLE

177

Supported SQL DDL Statements

ALTER STREAM
ALTER STREAM — Modifies an existing stream definition.

Syntax
ALTER STREAM stream-name DROP [COLUMN] column-name

ALTER STREAM stream-name ADD column-definition [BEFORE column-name]

ALTER STREAM stream-name ALTER column-definition

ALTER STREAM stream-name ALTER [COLUMN] column-name SET {DEFAULT value | [NOT]
NULL}

column-definition: column-name datatype [DEFAULT value] [NOT NULL]

Description
The ALTER STREAM statement modifies an existing stream by adding, dropping, or modifying a column
associated with the stream. You cannot drop or modify the column if there are dependencies on that column.
For example, if stored procedure queries reference a dropped or modified column, you cannot make the
change. In this case, you must drop the stored procedures before making the change to the stream's schema,
then recreate the stored procedures afterwards.

If you drop the stream as a whole (using the DROP STREAM statement) and then redefine it using
CREATE STREAM, any pending data not already sent to the stream's export target is deleted. ALTER
STREAM, on the other hand, does not interrupt pending data. By using ALTER STREAM to modify the
schema of the stream, all previously committed data stays in the queue for the target and any inserts after
the schema change are added the queue.

Example
The following example modifies an existing stream, invoice, to modify the definition of the customer
column.

ALTER STREAM ALTER COLUMN customer SET NOT NULL;

178

Supported SQL DDL Statements

ALTER TABLE
ALTER TABLE — Modifies an existing table definition.

Syntax
ALTER TABLE table-name DROP CONSTRAINT constraint-name

ALTER TABLE table-name DROP [COLUMN] column-name [CASCADE]

ALTER TABLE table-name DROP {PRIMARY KEY | TTL}

ALTER TABLE table-name ADD constraint-definition

ALTER TABLE table-name ADD column-definition [BEFORE column-name]

ALTER TABLE table-name ADD ttl-definition

ALTER TABLE table-name ALTER column-definition [CASCADE]

ALTER TABLE table-name ALTER [COLUMN] column-name SET {DEFAULT value | [NOT]
NULL}

ALTER TABLE table-name ALTER ttl-definition

column-definition: [COLUMN] column-name datatype [DEFAULT value] [NOT NULL] [in-
dex-type]

constraint-definition: [CONSTRAINT constraint-name] { index-definition }

index-definition: {index-type} (column-name [,...])

ttl-definition: USING TTL value [time-unit] ON COLUMN column-name
[BATCH_SIZE number-of-rows] [MAX_FREQUENCY value]

index-type: PRIMARY KEY | UNIQUE | ASSUMEUNIQUE

Description
The ALTER TABLE modifies an existing table definition by adding, removing or modifying a column,
constraint, or clause. There are several different forms of the ALTER TABLE statement, depending on
what attribute you are altering and how you are changing it. The key point to remember is that you only
alter one item at a time. For example, to change two columns or a column and a constraint, you need to
issue two ALTER TABLE statements.

There are three ALTER TABLE operations:

• ALTER TABLE ADD

• ALTER TABLE DROP

• ALTER TABLE ALTER

179

Supported SQL DDL Statements

The syntax of each statement depends on whether you are modifying a column, a constraint, or the TTL
clause. You can ADD or DROP columns, indexes, and the TTL clause and you can ALTER columns
and the TTL clause. However, you cannot ALTER indexes. To alter an existing constraint you must first
DROP the constraint and then ADD the new definition.

There are two forms of the ALTER TABLE DROP statement. You can drop a column or constraint by
name or you can drop a PRIMARY KEY or a USING TTL clause by identifying the item to drop, since
there is only one such item for any given table.

The syntax for the ALTER TABLE ADD statement uses the same syntax to define a new column, con-
straint, or clause as that used in the CREATE TABLE command. When adding a column you can also
specify the BEFORE clause to specify where the new column falls in the order of table columns. If you to
not specify BEFORE, the column is added at the end of the list of columns.

When modifying the USING TTL clause, the ALTER TABLE ALTER command specifies the complete
replacement definition for the clause, including either or both the BATCH_SIZE or MAX_FREQUENCY
clauses.

You cannot alter the MIGRATE TO TARGET attribute of the table. You also cannot alter any attributes
of the table that affect migration. For example, you cannot add, drop, or alter the USING TTL clause if
the table is declared with MIGRATE TO TARGET. And if the table has both MIGRATE TO TARGET
and USING TTL, you cannot add, drop, or alter the TTL column. However, you can alter the TTL value,
batch size, and frequency.

To add, drop, or alter the MIGRATE action you must drop the table first and redefine it using the CREATE
TABLE statement.

When modifying columns, the ALTER TABLE ALTER COLUMN statement can have one of two forms.
You can alter the column by providing a complete replacement definition, similar to the ALTER TABLE
ADD COLUMN statement, or you can alter a specific attribute using the ALTER TABLE ALTER COL-
UMN... SET syntax. Use SET DEFAULT to add or modify an existing default. Use SET DEFAULT
NULL to remove an existing default. You can also use the SET clause to specify whether the column can
be null (SET NULL) or must not contain a null value (SET NOT NULL).

Handling Dependencies
You can only alter tables if there are no dependencies on the table, column, or index that would be violated
by the change. For example, you cannot drop the partitioning column from a partitioned table if there
are stored procedures partitioned on that table and column as well. You must first drop the partitioned
store procedures before dropping the column. Note that by dropping the partitioning column, you are also
automatically changing the table into a replicated table.

The most common dependency is if the table already has data in it. You can add, delete, and (within
reasonable bounds) modify the columns of a table with existing data as long as those columns are not
named in an index, view, or PARTITION statement. If a column is referenced in a view or index, you can
specify CASCADE when you drop the column to automatically drop the referring indexes and views.

When a table has records in it, data associated with dropped columns is deleted. Added columns are inter-
preted as null or filled in with the specified default value. (You cannot add a column that is defined as
NOT NULL, but without a default, if the table has existing data in it.) You can even change the datatype
of the column within reason. In other words, you can increase the size of the datatype (for example, from
INTEGER to BIGINT) but you cannot decrease the size (say, from INTEGER to TINYINT) since some
of the existing data may already violate the size constraint.

You can also add non-unique indexes to tables with existing data. However, you cannot add unique con-
straints (such as PRIMARY KEY) if data exists.

180

Supported SQL DDL Statements

If a table has no records in it, you can make almost any changes you like to it assuming, again, there are
no dependencies. You can add and remove unique constraints, add, remove, and modify columns, even
change column datatypes at will.

However, if there are dependencies, such as stored procedure queries that reference a dropped or modified
column, you may not be allowed to make the change. If there are such dependencies, it is often easier to
do drop the stored procedures before making the changes then recreate the stored procedures afterwards.

Examples
The following example uses ALTER TABLE to drop a unique constraint, add a new column, and then
recreate the constraint adding the new column.

ALTER TABLE Employee DROP CONSTRAINT UniqueNames;
ALTER TABLE Employee ADD COLUMN MiddleInitial VARCHAR(1);
ALTER TABLE Employee ADD CONSTRAINT UniqueNames
 UNIQUE (FirstName, MiddleInitial, LastName);

181

Supported SQL DDL Statements

ALTER TASK
ALTER TASK — Modifies an existing task schedule.

Syntax
ALTER TASK task-name [ENABLE | DISABLE]

ALTER TASK task-name ALTER ON ERROR {LOG | IGNORE | STOP}

Description
The ALTER TASK statement lets you modify an existing scheduled task. You can enable, disable, or
change the error handling for the task.

Examples
The following example changes the error handling for the task cleanup to log errors and continue, then
enables the task, in case it was previously disabled.

ALTER TASK cleanup ALTER ON ERROR LOG;
ALTER TASK cleanup ENABLE;

182

Supported SQL DDL Statements

CREATE AGGREGATE FUNCTION
CREATE AGGREGATE FUNCTION — Defines an aggregate SQL function and associates it with a Java
class.

Syntax
CREATE AGGREGATE FUNCTION function-name FROM CLASS class-path

Description
The CREATE AGGREGATE FUNCTION statement declares a user-defined aggregate function and as-
sociates it with a Java class. Aggregate functions process multiple values based on a query expression and
produce a single result. For example, the built-in AVG aggregate function calculates the average of the
values of a specific column or expression based on the query constraints.

The return value of a user-defined aggregate function matches the datatype of the Java method itself.
Similarly, the number and datatype of the function's arguments are defined by the arguments of the method.

User-defined aggregate functions allow you to extend the functionality of the SQL language by declaring
your own functions that can be used in SQL queries and data manipulation statements. The steps for
creating a user-defined aggregate function are:

1. Write, compile, and debug the program code for a class that performs the function's action. The class
must include the following methods:

• start() — Initializes the function. Called once for each invocation of the function.

• assemble(arg,...) — Processes the arguments to the function. called once for each record
matching the constraints of the query in which the function appears.

• combine(class-instance) — For partitioned queries, combines the results of one partition
into the results of another.

• end() — Finalizes the function and returns the function result. Called once at the completion of
the function invocation.

2. Package the class in a JAR file, just as you would a stored procedure. (Classes for functions and stored
procedures can be packaged in the same JAR file.)

3. Load the JAR file into the database using the LOAD CLASSES statement.

4. Declare and name the user-defined function using the CREATE AGGREGATE FUNCTION statement.

The Java methods that implement the user-defined function must follow the same rules for determinism
as user-defined stored procedures, as outlined in Section 5.1.2.2, “Avoid Introducing Non-deterministic
Values from External Functions”. See the chapter on "Creating Custom SQL Functions" in the VoltDB
Guide to Performance and Customization for details on designing the Java class and methods necessary
for a user-defined aggregate function.

To declare a scalar rather than an aggregate function, see the description of the CREATE FUNCTION
statement.

183

https://docs.voltdb.com/PerfGuide/ChapUDF.php
https://docs.voltdb.com/PerfGuide/
https://docs.voltdb.com/PerfGuide/

Supported SQL DDL Statements

Examples
The following example defines an aggregate function called longest_word from the start(), assemble(),
combine(), and end() methods in the class LongestWord:

CREATE AGGREGATE FUNCTION longest_word FROM CLASS myapp.functions.LongestWord;

184

Supported SQL DDL Statements

CREATE FUNCTION
CREATE FUNCTION — Defines a SQL scalar function and associates it with a Java method.

Syntax
CREATE FUNCTION function-name FROM METHOD class-path.method-name

Description
The CREATE FUNCTION statement declares a user-defined function and associates it with a Java method.
The return value of the function matches the datatype of the Java method itself. Similarly, the number and
datatype of the function's arguments are defined by the arguments of the method.

User-defined functions allow you to extend the functionality of the SQL language by declaring your own
functions that can be used in SQL queries and data manipulation statements. The steps for creating a user-
defined function are:

1. Write, compile, and debug the program code for the method that will perform the function's action.

2. Package the class and method in a JAR file, just as you would a stored procedure. (Classes for functions
and stored procedures can be packaged in the same JAR file.)

3. Load the JAR file into the database using the LOAD CLASSES statement.

4. Declare and name the user-defined function using the CREATE FUNCTION statement.

For example, let's say you want to create function that decodes an HTML-encoded string. The beginning
of the Java method might look like this, declaring a method of type String and accepting two arguments:
the string to encode and an integer value for the maximum length.

package myapp.datatypes;

 public class Html {

 public String decode(String html, int maxlength)
 throws VoltAbortException {

After compiling and packaging this class into a JAR file, you can load the class and declare it as a SQL
function:

sqlcmd
1> LOAD CLASSES myfunctions.jar;
2> CREATE FUNCTION html_decode FROM METHOD myapp.datatypes.Html.decode;

Note that the function name and method name do not have to be identical. Also, the function name is not
case sensitive. However, the Java class and method names are case sensitive. Finally, the Java methods
for user-defined functions must follow the same rules for determinism as user-defined stored procedures,
as outlined in Section 5.1.2.2, “Avoid Introducing Non-deterministic Values from External Functions”.

Examples
The following example defines a function called emoticon from a Java method findEmojiCode:

185

Supported SQL DDL Statements

CREATE FUNCTION emoticon FROM METHOD utils.Charcode.findEmojiCode;

186

Supported SQL DDL Statements

CREATE INDEX
CREATE INDEX — Creates an index for faster access to a table.

Syntax

CREATE [UNIQUE|ASSUMEUNIQUE] INDEX index-name
ON {table-name | view-name} (index-column [,...])
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description
Creating an index on a table or view makes read access to the data faster when using the columns of the
index as a key. Note that VoltDB creates an index automatically when you specify a constraint, such as
a primary key, in the CREATE TABLE statement.

When you specify that the index is UNIQUE, VoltDB constrains the table to at most one row for each set
of index column values. If an INSERT or UPDATE statement attempts to create a row where all the index
column values match an existing indexed row, the statement fails.

Because the uniqueness constraint is enforced separately within each partition, only indexes on replicated
tables or containing the partitioning column of partitioned tables can ensure global uniqueness for parti-
tioned tables and therefore support the UNIQUE keyword.

If you wish to create an index on a partitioned table that acts like a unique index but does not include the
partitioning column, use the keyword ASSUMEUNIQUE instead of UNIQUE. Assumed unique indexes
are treated like unique indexes (VoltDB verifies they are unique within the current partition). However,
it is your responsibility to ensure these indexes are actually globally unique. Otherwise, it is possible an
index will generate a constraint violation during an operation that modifies the partitioning of the database
(such as adding nodes on the fly or restoring a snapshot to a different cluster configuration).

The indexed items (index-column) are either columns of the specified table or expressions, including func-
tions, based on the table. For example, the following statements index a table based on the calculated area
and its distance from a set location:

CREATE INDEX areaofplot ON plot (width * height);
CREATE INDEX distancefrom49 ON plot (ABS(latitude - 49));

You can create a partial index by including a WHERE clause in the index definition. The WHERE clause
limits the number of rows that get indexed. This is useful if certain columns in the index are not evenly
distributed. For example, if you are not interested in records where a column is null, you can use a WHERE
clause to exclude those records and optimize the size and performance of the index.

The partial index is utilized by the database when a query's WHERE clause contains the same condition
as the partial index definition. A special case is if the index condition is {column} IS NOT NULL. In
this situation, the index may be applied even in the query does not contain that exact condition, as long as
the query contains a WHERE condition that implies the column is not null, such as {column} > 0.

VoltDB uses tree indexes. They provide the best general performance for a wide range of operations,
including exact value matches and queries involving a range of values, such as SELECT ... WHERE
Score > 1 AND Score < 10.

187

Supported SQL DDL Statements

Examples
The following example creates two indexes on a single table. The first is, by default, a non-unique index
based on the departure time The second is a unique index based on the columns for the airline and flight
number.

CREATE INDEX flightTimeIdx ON FLIGHT (departtime);
CREATE UNIQUE INDEX FlightKeyIdx ON FLIGHT (airline, flightID);

You can also use functions in the index definition. For example, the following is an index based on the
element movie within a JSON-encoded VARCHAR column named favorites and the member's ID.

CREATE INDEX FavoriteMovie ON MEMBER (
 FIELD(favorites, 'movie'), memberID
);

The following example demonstrates the use of a partial index, by including a WHERE clause, to exclude
records with a null column.

CREATE INDEX completed_tasks
 ON tasks (task_id, startdate, enddate)
 WHERE enddate IS NOT NULL;

188

Supported SQL DDL Statements

CREATE PROCEDURE AS
CREATE PROCEDURE AS — Defines a stored procedure composed of one or more SQL statements.

Syntax
CREATE PROCEDURE procedure-name

[PARTITION ON TABLE table-name COLUMN column-name [PARAMETER position]]
[ALLOW role-name [,...]]
AS {sql-statement; | multi-statement-procedure}

CREATE PROCEDURE procedure-name DIRECTED
[ALLOW role-name [,...]]
AS {sql-statement; | multi-statement-procedure}

multi-statement-procedure:
BEGIN
 sql-statement; [,...]
END;

Description
You must declare stored procedures as part of the schema to make them accessible at runtime. The CRE-
ATE PROCEDURE AS statement lets you create a procedure from one or more SQL statements directly
within the DDL statement. The SQL statements can contain question marks (?) as placeholders that are
filled in at runtime with the arguments to the procedure call.

There are two ways to define a procedure as part of the CREATE PROCEDURE AS statement:

• A single statement procedure where the CREATE PROCEDURE AS statement is followed by one SQL
statement terminated by a semi-colon.

• A multi-statement procedure where the CREATE PROCEDURE AS statement is followed by multiple
SQL statements enclosed in a BEGIN-END clause.

For a single statement, the stored procedure returns the results of the query as a VoltTable. For multi-state-
ment procedures, the results are returned as an array of VoltTable structures, one for each statement.

For all CREATE PROCEDURE AS statements, the procedure name must follow the naming conventions
for Java class names. For example, the name is case-sensitive and cannot contain any white space.

You can create three types of stored procedures:

• Multi-Partition Procedures — By default, the CREATE PROCEDURE statement declares a multi-par-
tition procedure. A multi-partition procedure runs as a single transaction and has access to data from
the entire database. However, it also means that the procedure will access all of the partitions at once,
blocking the transaction queues until the procedure is done.

• Single-Partition Procedures — If you include the PARTITION ON clause, the procedure is partitioned
and runs on only one partition of the database. The partition it runs on is determined by the value of one
of the parameters you pass to the procedure at runtime, as described below.

• Directed Procedures — if you include the DIRECTED clause, the procedure is a directed procedure
and will run separate transactions on each of the partitions. However, the individual transactions are not

189

Supported SQL DDL Statements

coordinated. Directed procedures must be invoked as a scheduled task or using the callAllParti-
tionProcedure method. See Section 7.5, “Directed Procedures: Distributing Transactions to Every
Partition” and the description of the CREATE TASK statement for more information on directed pro-
cedures.

When creating single-partitioned procedures, you specify the partitioning in the PARTITION ON clause.
Partitioning a stored procedure means that the procedure executes within a unique partition of the database.
The partition in which the procedure executes is chosen at runtime based on the table and column specified
by table-name and column-name. By default, VoltDB uses the first parameter to the stored procedure as the
partitioning value. However, you can use the PARAMETER clause to specify a different parameter. The
position value specifies the parameter position, counting from zero. (In other words, position 0 is the first
parameter, position 1 is the second, and so on.) The specified table must be a partitioned table or stream.

If security is enabled at runtime, only those roles named in the ALLOW clause (or with the ALLPROC or
ADMIN permissions) have permission to invoke the procedure. If security is not enabled at runtime, the
ALLOW clause is ignored and all users have access to the stored procedure.

Examples
The following example defines a stored procedure, CountUsersByCountry, as a single SQL query with a
placeholder for matching the country column:

CREATE PROCEDURE CountUsersByCountry AS
 SELECT COUNT(*) FROM Users WHERE country=?;

The next example restricts access to the stored procedure to only users with the operator role. It also
partitions the stored procedure on the userID column of the Accounts table. Note that the PARAMETER
clause is used since the userID is the second parameter to the procedure:

CREATE PROCEDURE ChangeUserPassword
 PARTITION ON TABLE Accounts COLUMN userID PARAMETER 1
 ALLOW operator
 AS UPDATE Accounts SET HashedPassword=? WHERE userID=?;

The last example uses a BEGIN-END clause to include four SQL statements in the procedure. In this case,
the procedure performs two INSERT INTO SELECT statements, a DELETE statement and then selects
the total count of records after the operation. The stored procedure returns four VoltTables, one for each
statement, with the last one containing the final record count since SELECT is the last statement in the
procedure.

CREATE PROCEDURE MoveOrders
 AS BEGIN
 INSERT INTO enroute SELECT * FROM Orders
 WHERE ship_date < NOW() AND delivery_date > NOW();
 INSERT INTO history SELECT * FROM enroute
 WHERE delivery_date < NOW();
 DELETE FROM enroute
 WHERE delivery_date < NOW();
 SELECT COUNT(*) FROM enroute;
 END;

190

Supported SQL DDL Statements

CREATE PROCEDURE FROM CLASS
CREATE PROCEDURE FROM CLASS — Defines a stored procedure associated with a Java class.

Syntax
CREATE PROCEDURE

[PARTITION ON TABLE table-name COLUMN column-name [PARAMETER position]]
[ALLOW role-name [,...]]
FROM CLASS class-name

CREATE PROCEDURE DIRECTED
[ALLOW role-name [,...]]
FROM CLASS class-name

Description
You must declare stored procedures to make them accessible to client applications and the sqlcmd utility.
CREATE PROCEDURE FROM CLASS lets you declare stored procedures that are written as Java class-
es.The class-name is the name of the Java class.

Before you declare the stored procedure, you must create, compile, and load the associated Java class. It
is usually easiest to do this by compiling all of your Java stored procedures and packaging the resulting
class files into a single JAR file that can be loaded once. For example:

$ javac -d ./obj src/procedures/*.java
$ jar cvf myprocs.jar –C obj .
$ sqlcmd
1> load classes myprocs.jar;
2> CREATE PROCEDURE FROM CLASS procedures.AddCustomer;

You can create three types of stored procedures:

• Multi-Partition Procedures — By default, the CREATE PROCEDURE statement declares a multi-par-
tition procedure. A multi-partition procedure runs as a single transaction and has access to data from
the entire database. However, it also means that the procedure will access all of the partitions at once,
blocking the transaction queues until the procedure is done.

• Single-Partition Procedures — If you include the PARTITION ON clause, the procedure is partitioned
and runs on only one partition of the database. The partition it runs on is determined by the value of one
of the parameters you pass to the procedure at runtime, as described below.

• Directed Procedures — if you include the DIRECTED clause, the procedure is a directed procedure
and will run separate transactions on each of the partitions. However, the individual transactions are not
coordinated. Directed procedures must be invoked as a scheduled task or using the callAllParti-
tionProcedure method. See Section 7.5, “Directed Procedures: Distributing Transactions to Every
Partition” and the description of the CREATE TASK statement for more information on directed pro-
cedures.

When creating single-partitioned procedures, you specify the partitioning in the PARTITION ON clause.
Partitioning a stored procedure means that the procedure executes within a unique partition of the database.
The partition in which the procedure executes is chosen at runtime based on the table and column specified
by table-name and column-name. By default, VoltDB uses the first parameter to the stored procedure as

191

Supported SQL DDL Statements

the partitioning value. However, you can use the PARAMETER clause to specify a different parameter.
The position value specifies the parameter position, counting from zero. (In other words, position 0 is the
first parameter, position 1 is the second, and so on.)

The specified table must be a partitioned table and cannot be an export stream or replicated table.

If security is enabled at runtime, only those roles named in the ALLOW clause (or with the ALLPROC or
ADMIN permissions) have permission to invoke the procedure. If security is not enabled at runtime, the
ALLOW clause is ignored and all users have access to the stored procedure.

Example
The following example declares a stored procedure matching the Java class MakeReservation. Note that
the class name includes its location within the current class path (in this case, as a child of flight and
procedures). However, the name itself, MakeReservation, must be unique within the schema because at
runtime stored procedures are invoked by name only.

CREATE PROCEDURE FROM CLASS flight.procedures.MakeReservation;

192

Supported SQL DDL Statements

CREATE ROLE
CREATE ROLE — Defines a role and the permissions associated with that role.

Syntax
CREATE ROLE role-name [WITH permission [,...]]

Description
The CREATE ROLE statement defines a named role that can be used to assign access rights to specific
procedures and functions. When security is enabled in the database configuration, the permissions assigned
in the CREATE ROLE and CREATE PROCEDURE statements specify which users can access which
functions.

Use the CREATE PROCEDURE statement to assign permissions to named roles for accessing specific
stored procedures. The CREATE ROLE statement lets you assign certain generic permissions. The fol-
lowing table describes the permissions that can be assigned the WITH clause.

Permission Description Inherits

DEFAULTPROCREAD Access to read-only default procedures (TABLE.se-
lect)

DEFAULTPROC Access to all default procedures (TABLE.select, TA-
BLE.insert, TABLE.delete, TABLE.update, and TA-
BLE.upsert)

DEFAULTPROCREAD

SQLREAD Access to read-only ad hoc SQL queries (SELECT) DEFAULTPROCREAD

SQL Access to all ad hoc SQL queries and default proce-
dures

SQLREAD, DEFAULT-
PROC

ALLPROC Access to all user-defined stored procedures

ADMIN Full access to all system procedures, all user-defined
procedures, as well as default procedures, ad hoc
SQL, and DDL statements.

ALLPROC, DEFAULT-
PROC, SQL

Note: For backwards compatibility, the special permissions ADHOC and SYSPROC are still recognized.
They are interpreted as synonyms for SQL and ADMIN, respectively.

The generic permissions are denied by default. So you must explicitly enable them for those roles that
need them. For example, if users assigned to the "interactive" role need to run ad hoc queries, you must
explicitly assign that permission in the CREATE ROLE statement:

CREATE ROLE interactive WITH sql;

Also note that the permissions are additive. So if a user is assigned to one role that allows access to
defaultproc but not allproc, but that user also is assigned to another role that allows allproc, the user has
both permissions.

Example
The following example defines three roles — admin, developer, and batch — each with a different set
of permissions:

193

Supported SQL DDL Statements

CREATE ROLE admin WITH admin;
CREATE ROLE developer WITH sql, allproc;
CREATE ROLE batch WITH defaultproc;

194

Supported SQL DDL Statements

CREATE STREAM
CREATE STREAM — Creates an output stream in the database.

Syntax
CREATE STREAM stream-name

[PARTITION ON COLUMN column-name]
[EXPORT TO TARGET export-target-name] (
column-definition [,...]

);

column-definition: column-name datatype [DEFAULT value] [NOT NULL]

Description
The CREATE STREAM statement defines a stream and its associated columns in the database. A stream
can be thought of as a virtual table. It has the same structure as a table, consisting of a list of columns
and supporting all the same datatypes (Table A.1, “Supported SQL Datatypes”) as tables. The columns
have the same rules in terms of naming and size. You can also use the INSERT statement to insert data
into the stream once it is defined.

The three differences between streams and tables are:

• No data is stored in the database for a stream, it is only used as a passthrough.

• Because no data is stored, you cannot SELECT, UPDATE, or DELETE the stream contents.

• No indexes or constraints (such as primary keys) are allowed on a stream.

Data inserted into the stream is not stored in the database. The stream is an ephemeral container used only
for analysis and/or passing data through VoltDB to other systems via the export function.

Combining streams with views lets you perform summary analysis on data passing through VoltDB with-
out having to store all of the underlying data. For example, you might want to know how many times
users access a website and their most recent visit. But you do not need to store a record for each visit.
In this case, you can create a stream, visits, to capture the event and a view, visit_by_user, to capture the
cumulative data:

CREATE STREAM visits PARTITION ON COLUMN user_id (
 user_id BIGINT NOT NULL,
 login TIMESTAMP
);
CREATE VIEW visit_by_user
 (user_id, total_visits, last_visit)
 AS SELECT user_id, COUNT(*), MAX(login)
 FROM visits GROUP BY user_id;

When creating a view on a stream, the stream must be partitioned and the partition column must appear in
the view. Another special feature of views on streams is that, because there is no underlying data stored
for the view, VoltDB lets you modify the views content manually by issuing UPDATE and DELETE
statements on the view. (This ability to manipulate the view is only available for views on streams. You
cannot UPDATE or DELETE a view on a table; you must modify the data in the underlying table instead.)

195

Supported SQL DDL Statements

For example, if you only care about a daily rollup of visits, you can use DELETE with the stream name
to clear the data at midnight every night:

DELETE FROM visit_by_user;

Or if you need to adjust the cumulative analysis to, say, "reset" the entry for a specific user, you can use
UPDATE:

UPDATE visit_by_user
 SET total_visits = 0, last_visit = NULL
 WHERE user_id = ?;

Streams can also be used to export data out of VoltDB into other systems, such as Kafka, CSV files, and
so on. To export data into another system, you start by declaring one or more streams defining the data
that will be sent to the external system. In the CREATE STREAM statement you also specify the named
target for the export:

CREATE STREAM visits
 EXPORT TO TARGET archive (
 user_id BIGINT NOT NULL,
 login TIMESTAMP
);

As soon as you declare the EXPORT TO TARGET clause for a stream, any data inserted into the stream
is queued for export. If the export target is not defined in the database configuration, then the data waits
in the queue. Once the export target is configured, the export connector begins sending the queued data
to the configured destination. See Chapter 15, Streaming Data: Import, Export, and Migration for more
information on configuring export targets.

Finally, you can combine analysis with export by creating a stream with an export target and also creating
a view on that stream. So in our earlier example, if we want to warehouse data about each visit but use
VoltDB to perform the real-time summary analysis, we would add an export definition, along with the
partitioning clause, to the CREATE STREAM statement for the visits stream:

CREATE STREAM visits
 PARTITION ON COLUMN user_id
 EXPORT TO TARGET warehouse (
 user_id BIGINT NOT NULL,
 login TIMESTAMP
);

Example
The following example defines a stream and a view on that stream. Note the use of the PARTITION ON
clause to ensure the stream is partitioned, since it is being used in a view.

CREATE STREAM flightdata
 PARTITION ON COLUMN airport (
 flight_id BIGINT NOT NULL,
 airport VARCHAR(3) NOT NULL,
 passengers INTEGER,
 eta TIMESTAMP
);
CREATE VIEW all_flights
 (airport, flight_count, passenger_count)

196

Supported SQL DDL Statements

 AS SELECT airport, count(*),sum(passengers)
 FROM flightdata GROUP BY airport;

197

Supported SQL DDL Statements

CREATE TABLE
CREATE TABLE — Creates a table in the database.

Syntax
CREATE TABLE table-name

[export-definition | migration-definition]

column-definition [,...]
[, constraint-definition [,...]]

) [ttl-definition] ;

export-definition: EXPORT TO TARGET target-name [ON action [,...]]

migration-definition: MIGRATE TO TARGET target-name

column-definition: column-name datatype [DEFAULT value] [NOT NULL] [index-type]

constraint-definition: [CONSTRAINT constraint-name] { index-definition }

index-definition: {index-type} (column-name [,...])

index-type: PRIMARY KEY | UNIQUE | ASSUMEUNIQUE

ttl-definition: USING TTL value [time-unit] ON COLUMN column-name
[BATCH_SIZE number-of-rows] [MAX_FREQUENCY value]

time-unit: SECONDS | MINUTES | HOURS | DAYS

Description
The CREATE TABLE statement creates a table and its associated columns in the database. The supported
datatypes are described in Table A.1, “Supported SQL Datatypes”.

Table A.1. Supported SQL Datatypes

SQL Datatype Equivalent Ja-
va Datatype

Description

TINYINT byte 1-byte signed integer, -127 to 127a

SMALLINT short 2-byte signed integer, -32,767 to 32,767

INTEGER int 4-byte signed integer, -2,147,483,647 to
2,147,483,647

BIGINT long 8-byte signed integer, -9,223,372,036,854,775,807
to 9,223,372,036,854,775,807

FLOAT double 8-byte numeric, -(2-2-52)·21023 to (2-2-52)·21023

(Note that values less than or equal to -1.7E+308
are interpreted as null.)

DECIMAL BigDecimal 16-byte fixed scale of 12 and precision of 38,
-99999999999999999999999999.999999999999
to 99999999999999999999999999.999999999999

198

Supported SQL DDL Statements

SQL Datatype Equivalent Ja-
va Datatype

Description

GEOGRAPHY or GE-
OGRAPHY()

 A geospatial region. The storage requirement for
geospatial data varies depending on the geometry.
The default maximum size in memory is 32768.
However, you can specify a different value by
specifying the maximum size (in bytes) in the dec-
laration. For example: GEOGRAPHY(80000). See
the section on entering geospatial data in the Volt-
DB Guide to Performance and Customization for
details.

GEOGRAPHY_POINT A geospatial location identified by its latitude and
longitude. Requires 16 bytes of storage.

VARCHAR() String Variable length text string, with a maximum length
specified in either characters (the default) or bytes.
To specify the length in bytes, use the BYTES
keyword after the length value. For example:
VARCHAR(28 BYTES).

VARBINARY() byte array Variable length binary string (sometimes referred
to as a "blob") with a maximum length specified in
bytes

TIMESTAMP long, VoltDB Time-
stampType

Time in microseconds

aFor integer and floating-point datatypes, VoltDB reserves the largest possible negative value to denote a null value. For example
-128 is interpreted as null for TINYINT, -32768 for SMALLINT, and so on.

The following limitations are important to note when using the CREATE TABLE statement in VoltDB:

• CHECK and FOREIGN KEY constraints are not supported.

• VoltDB does not support AUTO_INCREMENT, the automatic incrementing of column values.

• A table can have up to 1024 columns. Each column has a maximum size of 1 megabyte and the total
declared size of all of the columns in a table cannot exceed 2 megabytes. For VARCHAR columns
where the length is specified in characters, the declared size is calculated as 4 bytes per character to
allow for the longest potential UTF-8 string.

• If you intend to use a column to partition a table, that column cannot contain null values. You must
specify NOT NULL in the definition of the column or VoltDB issues an error when compiling the
schema.

• To specify an index — either for an individual column or as a table constraint — that is globally unique
across the database, use the standard SQL keywords UNIQUE and PRIMARY KEY. However, for
partitioned tables, VoltDB can only ensure uniqueness if the index includes the partitioning column.
Otherwise, these keywords are not allowed.

It can be a performance advantage to define indexes or constraints on non-partitioning columns that you,
as the developer, know are going to contain unique values. Although VoltDB cannot ensure uniqueness
across the entire database, it does allow you to define indexes that are assumed to be unique by using
the ASSUMEUNIQUE keyword.

When you define an index on a partitioned table as ASSUMEUNIQUE, VoltDB verifies uniqueness
within the current partition when creating an index entry. However, it is your responsibility as developer

199

https://docs.voltdb.com/PerfGuide/GeoWKT.php
https://docs.voltdb.com/PerfGuide/
https://docs.voltdb.com/PerfGuide/

Supported SQL DDL Statements

or administrator to ensure that the values are actually globally unique. If the database is repartitioned due
to adding new nodes or restoring a snapshot to a different cluster configuration, non-unique ASSUME-
UNIQUE index entries may collide. When this occurs it results in a constraint violation error and the
database will not be able to complete its current action.

Therefore, ASSUMEUNIQUE should be used with caution. Also, it is not necessary and should not
be used with replicated tables or indexes that contain the partitioning column, which can be defined
as UNIQUE.

• EXPORT TO TARGET allows you to connect a table to an export target, so that by default data written
into the table is also sent to the export connector for delivery to the specified target. By default, only
insert operations (INSERT and UPSERT when it inserts a new row) initiate export records. However,
you can use the ON clause to specify which actions you want to trigger export. For example, the fol-
lowing table declaration generates export records whenever rows are created or modified.

CREATE TABLE RESERVATION
 EXPORT TO TARGET airlines ON INSERT, UPDATE_NEW
 (reserv_id INT NOT NULL,
 flight_id INT NOT NULL,
 . . .);

The following table defines the actions that you can specify in the ON clause.

Keyword Description

INSERT Contents of new record from INSERT, or UPSERT that creates new record

DELETE Contents of a record that is deleted

UP-
DATE_OLD

Contents of a record before it is updated

UP-
DATE_NEW

Contents of a record after it is updated

UPDATE Two records are exported, the contents before and after a record is updated (shorthand
equivalent for specifying both UPDATE_OLD and UPDATE_NEW)

• The length of VARCHAR columns can be specified in either characters (the default) or bytes. To specify
the length in bytes, include the BYTES keyword after the length value; for example VARCHAR(16
BYTES).

Specifying the VARCHAR length in characters is recommended because UTF-8 characters can require
a variable number of bytes to store. By specifying the length in characters you can be sure the column
has sufficient space to store any string of the specified length. Specifying the length in bytes is only
recommended when all values contain only single byte (ASCII) characters or when conserving space is
required and the strings are less than 64 bytes in length.

• The VARBINARY datatype provides variable storage for arbitrary strings of binary data and operates
similarly to VARCHAR(n BYTES) strings. You assign byte arrays to a VARBINARY column when
passing in variables, or you can use a hexidecimal string for assigning literal values in the SQL statement.

• The VoltDB TIMESTAMP datatype is a long integer representing the number of microseconds since
the epoch. Two important points to note about this timestamp:

• The VoltDB TIMESTAMP is not the same as the Java Timestamp datatype or traditional Linux time
measurements, which are measured in milliseconds rather than microseconds. Appropriate conversion
is needed when casting values between a VoltDB TIMESTAMP and other timestamp datatypes.

200

Supported SQL DDL Statements

• The VoltDB TIMESTAMP is interpreted as a Greenwich Meantime (GMT) value. Depending on
how time values are created, their value may or may not account for the local machine's default time
zone. Mixing timestamps from different time zones (for example, in WHERE clause comparisons)
can result in unexpected behavior.

• For TIMESTAMP columns, you can define a default value using the NOW or CURRENT_TIMES-
TAMP keywords in place of a specific value. For example:

CREATE TABLE Event (
 Event_Id INTEGER UNIQUE NOT NULL,
 Event_Timestamp TIMESTAMP DEFAULT NOW,
 Event_Description VARCHAR(128)
);

The default value is evaluated at runtime as an approximation, in milliseconds, of when the transaction
begins execution.

Automatic Aging and Data Migration
When you define a database table you can also define a "time to live" (TTL) when records in the table
expire and are automatically deleted. The USING TTL clause specifies a lifetime for each record, based on
the difference between the specified TTL value, the value of the specified column, and the current time (in
GMT microseconds). In the simplest case, you can define a time to live based on a TIMESTAMP column
defined as DEFAULT NOW, so the record expires the specified amount of time after it is inserted. For
example, the records in the following table will be deleted five minutes after they are inserted into the
database (assuming the default value is used for the created column):

CREATE TABLE current_alerts (
 id BIGINT NOT NULL,
 message VARCHAR(128),
 created TIMESTAMP DEFAULT NOW NOT NULL,
) USING TTL 5 MINUTES ON COLUMN created;

You specify the time to live value as an integer number of seconds, minutes, hours, or days. (The default,
if you do not specify a time unit, is seconds.) The TTL column must be declared as a TIMESTAMP and
NOT NULL.

TTL records are evaluated and deleted by a parallel process within the database. As a result, records
are deleted shortly after the specified time to live arrives, rather than at the exact time specified. But
the deletion of records is handled as a proper database transaction, guaranteeing consistency with any
user-invoked transactions. One consequence of automating the expiration of database records, is that the
evaluation and deletion of records produces additional transactions that may impact database performance.

When you define an expiration time for database records, you can also specify an export target using
MIGRATE TO TARGET. If you specify both USING TTL and MIGRATE TO TARGET, before the data
is deleted by the TTL process, the data is migrated — through the specified export connector — to the
target location. The combination of TTL and data migration creates an automated archiving process, where
aged data is moved to another repository while VoltDB continues to operate on current data. Since VoltDB
does not delete the records until after the target system acknowledges their receipt, you are assured that
the data is always present in at least one of the participating systems.

For example, the following table definition establishes an automatic archiving policy that removes sessions
with no activity for an hour, migrating old records to a historical repository:

CREATE TABLE sessions

201

Supported SQL DDL Statements

 MIGRATE TO TARGET oldsessions
 (
 login TIMESTAMP DEFAULT NOW,
 last_update TIMESTAMP NOT NULL,
 user_id BIGINT NOT NULL
) USING TTL 1 HOURS ON COLUMN last_update;

It is also possible to migrate data manually. If you add the MIGRATE TO TARGET clause by itself,
without USING TTL, no data is automatically migrated. However, you can explicitly initiate migration
by invoking the MIGRATE SQL statement with the WHERE clause to specify which rows are migrated.
Use of MIGRATE TO TARGET without USING TTL is useful when the application logic to select what
data to migrate requires multiple or non-numeric variables. For example, if the schedule for archiving a
record varies based on which user created it:

CREATE TABLE messages
 MIGRATE TO TARGET oldmessages
 (
 posted TIMESTAMP DEFAULT NOW,
 message_text VARCHAR(128),
 user_id BIGINT NOT NULL,
 user_type VARCHAR(5) NOT NULL
);

In this case, no data is migrated until you explicitly initiate migration with the MIGRATE statement:

MIGRATE FROM messages
 WHERE
 ((posted < DATEADD(DAY,-3,NOW()) AND user_type='USER')
 OR (posted < DATEADD(DAY,-14,NOW()) AND user_type='ADMIN')
) AND NOT MIGRATING;

You can also migrate data manually, even if the table declaration includes the USING TTL clause. In this
case you can use MIGRATE to preemptively migrate data before the TTL column expires. For example,
using the sessions table defined above, you might want to migrate all sessions for a user when their account
is deleted:

MIGRATE FROM sessions WHERE user_id=? AND NOT MIGRATING;

Note that use of the MIGRATING function is not required to filter on rows that are not already migrating,
because the MIGRATE statement will not initiate export if rows are already migrating. However, explicitly
include AND NOT MIGRATING in your MIGRATE statement can improve performance.

The MIGRATING function is also useful so you can avoid accidentally modifying records that are already
marked for deletion, especially since any changes to migrating records will cancel the delete operation but
not the export. For example, if you want to update the last_update column of a user's records but only if
they are not already being migrated, your UPDATE statement should include NOT MIGRATING:

UPDATE sessions SET last_update=NOW() WHERE user_id=? AND NOT MIGRATING;

Time to live and data migration are powerful concepts. However, there are some important details to
consider when using these features:

• There must be a usable index on the TTL column for the table. VoltDB uses that index to optimize the
evaluation of the TTL values. If not, the USING TTL clause is accepted, but no automated deletion will
occur at runtime until a usable index is defined.

202

Supported SQL DDL Statements

• The CREATE TABLE... USING TTL statement is not rejected if the index is missing. This way you can
define the index in a subsequent DDL statement. However, a warning message is issued if the USING
TTL clause has no supporting index available. A similar warning is issued if you delete the last usable
index.

• When the table definition includes both USING TTL and MIGRATE TO TARGET, there must be an
index including the TTL column for the USING TTL clause and a separate index including only the
TTL column and a WHERE NOT MIGRATING clause. This index is required to effectively find and
schedule the migration of expired records. For example, the sessions table in the previous example
would require the following index. If the index is not present, records for the table will neither be deleted
nor migrated and a warning will be logged on the server:

CREATE INDEX sessions_migrate_index ON sessions
 (last_update) WHERE NOT MIGRATING;

• TTL clauses are most effective when used on partitioned tables. Defining TTL for a replicated table,
especially a large replicated table, can have a significant impact on database performance because the
TTL delete actions must be processed as multi-partition transactions.

• You can specify the frequency and maximum size of the TTL processing cycle.

• The BATCH_SIZE argument specifies the maximum number of records that will be deleted during
each processing cycle. Specify the batch size as a positive integer. The default is 1000 rows.

• The MAX_FREQUENCY argument specifies how often the TTL clause is evaluated. You specify
the frequency in terms of the maximum number of times it is processed per second. For example
a MAX_FREQUENCY of 10 means that the table's TTL value is processed at most 10 times per
second. Specify the frequency as a positive integer. The default frequency is once per second (1).

Under extreme loads or sudden bursts of inserts, it is possible for TTL processing to fall behind. Or if
the records are extremely large, attempting to delete too many records at one time can cause the TTL
process to exceed the temporary table limit. The BATCH_SIZE and MAX_FREQUENCY clauses let
you customize the TTL processing per table to meet the specific requirements of your application. The
TTL selector for the @Statistics system procedure can help you evaluate TTL performance against
your application workload to determine what settings you need.

• Evaluation of the time to live is made against the current value of the TTL column, not its initial value. So
if a subsequent transaction alters the column value (either increasing or decreasing it) that modification
will impact the subsequent lifetime of the record.

• When using database replication (DR), it is possible for the TTL transaction to exceed the 50MB limit
on the DR binary log. If this happens, a warning is issued and TTL processing is suspended.

• When using MIGRATION TO TARGET, there is an interval after the TTL value is triggered and before
the record is successfully exported and deleted from the VoltDB database. During this interval, the
record is available for read access from SELECT queries. You can also update or delete the record; but
modifying the record will cancel the pending delete. So if, for example, you update the record to extend
the TTL column, the record will remain in the database until the new TTL column value is reached.
However the update does not cancel the export of the original data to the specified target that had already
been triggered. So two records will eventually be migrated.

• In most cases, you can ignore whether a record is currently being migrated and scheduled for delete or
not. For example, if you delete a record that is currently being migrated, you cancel the pending delete
but you delete the record anyway, so the results end up the same. However, if you do want to distinguish
between currently active and currently migrating records, you can use the MIGRATING function, that

203

Supported SQL DDL Statements

identifies records that are currently "in flight". For example, to select records for a specific user ID and
only those records that are not being migrated, you can use the following query:

SELECT user_id, login FROM sessions WHERE user_id = ? AND NOT MIGRATING;

Example
The following example defines a table with five columns. The first column, Company, is not allowed
to be null, which is important since it is used as the partitioning column in the following PARTITION
TABLE statement. That column is also contained in the PRIMARY KEY constraint. Again, it is important
to include the partitioning column in any fully unique indexes for partitioned tables.

CREATE TABLE Inventory (
 Company VARCHAR(32) NOT NULL,
 ProductID BIGINT NOT NULL,
 Price DECIMAL,
 Category VARCHAR(32),
 Description VARCHAR(256),
 PRIMARY KEY (Company, ProductID)
);
PARTITION TABLE Inventory ON COLUMN Company;

204

Supported SQL DDL Statements

CREATE TASK
CREATE TASK — Schedules a procedure to run periodically.

Syntax
CREATE TASK task-name

ON SCHEDULE {CRON cron-definition | DELAY time-interval | EVERY time-interval |
FROM CLASS class-path}
PROCEDURE { procedure-name | FROM CLASS class-path } [WITH (argument [,...])]
[ON ERROR {LOG | IGNORE | STOP}]
[RUN ON {DATABASE | HOSTS | PARTITIONS}]
[AS USER user-name]
[ENABLE | DISABLE]

CREATE TASK task-name
FROM CLASS class-path [WITH (argument[,...])]
[ON ERROR {LOG | IGNORE | STOP}]
[RUN ON {DATABASE | HOSTS | PARTITIONS }]
[AS USER user-name]
[ENABLE | DISABLE]

time-interval: integer {MILLISECONDS | SECONDS | MINUTES | HOURS | DAYS}

Description
The CREATE TASK statement schedules a stored procedure to run iteratively on a set schedule. In its
simplest form, the CREATE TASK statement schedules a specified stored procedure to be run at a regular
interval. The PROCEDURE clause specifies the stored procedure and any arguments it requires. The ON
SCHEDULE clause specifies when the procedure will be run. You can schedule a procedure to run on
three types of schedule:

• CRON — Specifies a cron-style schedule to run the procedure as set times per day or week.

• DELAY — Specifies a time interval between each run of the stored procedure, where the time interval
starts at the end of each run.

• EVERY — Specifies a time interval between the start of each run of the stored procedure.

The difference between DELAY and EVERY is how the interval is measured. For example, if you specify
EVERY 5 SECONDS, the stored procedure runs every 5 seconds, no matter how long it takes to execute
(assuming it does not take more than 5 seconds). If, on the other hand, you specify DELAY 5 SECONDS,
each run starts 5 seconds after the previous run completes. In other words, EVERY results in invocations
at a regular interval no matter how long they take, while DELAY results in a regular interval between
when one run ends and the next begins.

For DELAY and EVERY you specify the interval as a positive integer and a time unit, where the supported
time units are milliseconds, seconds, minutes, hours, and days. For EVERY, if the previous run takes
longer than the interval to run, the schedule is reset at the end of the previous run. So, for example, if the
schedule specifies EVERY 2 SECONDS but the procedure takes 2.5 seconds to run, the next scheduled
interval will already be past when the previous run ends. In this case, the next invocation of the task is
reset to 2 seconds after the previous run ends.

205

Supported SQL DDL Statements

The CRON option requires a standard cron schedule, which consists of six values separated by spaces.
Cron schedules set specific times of day, week, or month, rather than an interval. The six values of the
cron string represent seconds, minutes, hours, day of the month, month, and day of the week. Asterisks
indicate all possible values. For example, the cron specification ON SCHEDULE CRON 0 0 * * *
* schedules the task on the hour, every hour of every day. More information about scheduling tasks with
cron can be found on the web.

You can also specify details about how the procedure is run:

• ON ERROR specifies how errors are handled. The default is ON ERROR STOP.

• ON ERROR LOG — The error is logged but the procedure continues to be scheduled and run.

• ON ERROR IGNORE — The procedure continues to be scheduled and run and the error is ignored
and not logged.

• ON ERROR STOP — The error is logged and the scheduling process stops. No further invocations
of the procedure will occur until the task is explicitly re-enabled (by using ALTER TASK to disable
and then enable the task) or the database restarts.

• RUN ON specifies where the procedure executes. The default is RUN ON DATABASE.

• RUN ON DATABASE — For multi-partitioned procedures, each invocation of the procedure is run
as a single transaction coordinated across all partitions.

• RUN ON PARTITIONS — For directed procedures, the procedure is scheduled and run indepen-
dently on all partitions in the database. Directed procedures are useful for performing distributed
tasks that are transactional on each partition but do not need to be coordinated and therefore are less
disruptive to the ongoing database workload.

• AS USER specifies the user account under which the procedure is run. When security is enabled, you
must specify a valid username and that user must have sufficient privileges to run the procedure.

When using passive database replication (DR), the replica cluster will automatically pause any scheduled
tasks that might modify the database (that is, procedures that are not read-only). If the cluster is promoted,
the tasks are resumed.

Finally, you can use the ENABLE and DISABLE keywords to specify whether the task is enabled or not.
(The task is enabled by default.) If the task is disabled, the procedure is not invoked. If the task is enabled,
the procedure is invoked according to the schedule until the database shuts down or the task is disabled by
an ALTER TASK statement or an error while ON ERROR STOP is active.

Creating Custom Tasks
If the standard schedules do not meet your needs — you want to change the interval between runs, modify
the arguments to the procedure , or the procedure itself — you can define a custom task using Java classes
that implement one of three special interfaces:

• When you only want to dynamically control the schedule of the procedure but keep the procedure and
its parameters the same, you can use the ON SCHEDULE FROM CLASS clause specifying a Java class
that implements the IntervalGenerator interface.

• When you want to use a regular schedule but dynamically change the procedure and/or its parameters,
you can use the PROCEDURE FROM CLASS clause specifying a Java class that implements the Ac-
tionGenerator interface.

206

Supported SQL DDL Statements

• When you want to dynamically control both the schedule and the procedure being invoked, you can
use the second form of the CREATE TASK syntax which replaces both the ON SCHEDULE and PRO-
CEDURE clauses with a single FROM CLASS clause specifying a Java class that implements the Ac-
tionScheduler interface.

Before declaring a custom task, you must load the specified Java class, the same way you load Java classes
before declaring a user-defined stored procedure, by packaging it in a JAR file and using the LOAD
CLASSES directive in sqlcmd. It is also important to note that the classes used for custom tasks are not
stored procedures and do not run in the normal transactional path for VoltDB transactions. The custom
task classes run in a separate thread to identify the characteristics of the next task invocation before the
specified stored procedure is run. For all three task interfaces, the task management infrastructure provides
the results from the previous run as input to the callback method, which can then use that information to
determine how to modify the next instantiation of the task's procedure, parameters, or run interval.

Many of the CREATE TASK statement's clauses — ON ERROR, AS USER, and ENABLE|DISABLE —
operate exactly the same for both custom tasks and the simple case of scheduling a single stored procedure.
The two exceptions are the WITH and RUN ON clauses.

For custom tasks that alter the procedure and procedure parameters, the arguments in the WITH clause
are passed to the custom task's initialize() method rather than to the stored procedure that it runs.
The custom task can then decide what to do with those arguments. For example, it may use them as initial,
maximum, and minimum values for adjusting arguments to the stored procedure.

The RUN ON clause for a custom task has one additional option beyond just DATABASE and
PARTITIONS. Custom tasks can also be RUN ON HOSTS, which means one instance of the task is run
on each server in the cluster.

Examples
The following example declares a procedure to reset the DailyStats view, and a task scheduled as a cron
event at midnight every night to run the procedure.

CREATE PROCEDURE ResetDailyStats AS
 DELETE FROM DailyStats;
CREATE TASK nightly
 ON SCHEDULE CRON 0 0 0 * * *
 PROCEDURE ResetDailyStats
 RUN ON DATABASE;

The next example creates a custom task that dynamically changes the interval between invocations of the
stored procedure. The example first loads the JAR file containing a custom task class that implements the
IntervalGenerator interface and then declares the task using PROCEDURE FROM CLASS clause.

sqlcmd
1> LOAD CLASSES mytasks.jar;
2> CREATE TASK DailyNoHolidays
 ON SCHEDULE FROM CLASS mytasks.NoHolidays
 PROCEDURE ResetDailyStats
 RUN ON DATABASE;

207

Supported SQL DDL Statements

CREATE VIEW
CREATE VIEW — Creates a view into one or more tables, optimizing access to a summary of their
contents.

Syntax
CREATE VIEW view-name (view-column-name [,...])

AS SELECT { column-name | selection-expression } [AS alias] [,...]
FROM table-reference [join-clause...]
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
[GROUP BY { column-name | selection-expression } [,...]]

table-reference:
{ table-name [AS alias] }

join-clause:
, table-reference
[INNER] JOIN [{table-reference}] [join-condition]

join-condition:
ON conditional-expression
USING (column-reference [,...])

Description
The CREATE VIEW statement creates a view of a table, a stream, or joined tables with selected columns
and aggregates. VoltDB implements views as materialized views. In other words, the view is stored as a
special table in the database and is updated each time the corresponding database contents are modified.
This means there is a small, incremental performance impact for any inserts or updates to the tables, but
selects on the view will execute efficiently.

The following limitations are important to note when using the CREATE VIEW statement with VoltDB:

• If the SELECT statement contains a GROUP BY clause, all of the columns and expressions listed in the
GROUP BY must be listed in the same order at the start of the SELECT statement. Aggregate functions,
including COUNT(*), are allowed following the GROUP BY columns.

• Views are allowed on individual tables or streams, or joins of multiple tables. Joining streams is not
supported.

• Joins must be inner joins and cannot be self-joins. All other limitations for joins as described in the
SELECT statement also apply to joins in views.

• Views that join multiple tables must include a COUNT(*) field listed after all GROUP BY columns.

• To avoid performance problems when inserting data into a view that joins multiple tables, it is strongly
recommended you define indexes on the table columns involved in the join.

Examples
The following example defines a view that counts the number of records for a specific product item grouped
by its location (that is, the warehouse the item is in).

208

Supported SQL DDL Statements

CREATE VIEW inventory_count_by_warehouse (
 productID,
 warehouse,
 total_inventory
) AS SELECT
 productID,
 warehouse,
 COUNT(*)
FROM inventory GROUP BY productID, warehouse;

The next example uses a WHERE clause but no GROUP BY to provide a count and minimum and maxi-
mum aggregates of all records that meet a certain criteria.

CREATE VIEW small_towns (number, minimum, maximum)
 AS SELECT count(*), min(population), max(population)
 FROM TOWNS WHERE population < 10000;

The final example demonstrates joining two tables in a view. This definition provides a similar view to
the first example, except it uses the productID column to join two tables, Product and Inventory:

CREATE VIEW inventory_count_by_warehouse (
 productName,
 warehouse,
 total_inventory
) AS SELECT
 product.productName,
 inventory.warehouse,
 COUNT(*)
FROM product JOIN inventory
 ON product.productID = inventory.productID
 GROUP BY product.productName, inventory.warehouse;

209

Supported SQL DDL Statements

DR TABLE
DR TABLE — Identifies a table as a participant in database replication (DR)

Syntax
DR TABLE table-name [DISABLE]

Description
The DR TABLE statement identifies a table as a participant in database replication (DR). If DR is not
enabled, the DR TABLE statement has no effect on the operation of the table or the database as a whole.
However, once DR is enabled and if the current cluster is the master database for the DR operation, any
updates to the contents of tables identified in the DR TABLE statement are copied and applied to the
replica database as well.

The DR TABLE ... DISABLE statement reverses the effect of a previous DR TABLE statement, removing
the specified table from participation in DR. Because the replica database schema must have DR TABLE
statements for any tables being replicated by the master, if DR is actively occurring you must add the
DR TABLE statements to the replica before adding them to the master. In reverse, you must issue DR
TABLE... DISABLE statements on the master before you issue the matching statements on the replica.

See Chapter 11, Database Replication for more information about how database replication works.

Examples
The following example identifies the tables Employee and Department as participants in database repli-
cation.

DR TABLE Employee;
DR TABLE Department;

210

Supported SQL DDL Statements

DROP FUNCTION
DROP FUNCTION — Removes the definition of a SQL function.

Syntax
DROP FUNCTION function-name [IF EXISTS]

Description
The DROP FUNCTION statement deletes the definition of the specified user-defined function. Note that,
for functions declared using CREATE FUNCTION and a class file, the statement does not delete the class
that implements the function, it only deletes the definition. To remove the Java class that contains the
associated function method, you must first drop the function definition then use the sqlcmd remove classes
directive to remove the class.

The IF EXISTS clause allows the statement to succeed even if the specified function name does not exist. If
the function does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Examples
The following example removes the definitions of the HTML_ENCODE and HTML_DECODE functions,
then uses remove classes to remove the class containing their corresponding methods.

$ sqlcmd
1> DROP FUNCTION html_encode;
1> DROP FUNCTION html_decode;
2> remove classes "*.HtmlFunctions";

211

Supported SQL DDL Statements

DROP INDEX
DROP INDEX — Removes an index.

Syntax
DROP INDEX index-name [IF EXISTS]

Description
The DROP INDEX statement deletes the specified index, and any data associated with it, from the data-
base. The IF EXISTS clause allows the statement to succeed even if the specified index does not exist. If
the index does not exist and you do not include the IF EXISTS clause, the statement will return an error.

You must use the name of the index as specified in the original DDL when dropping the index. You cannot
drop an index if it was not explicitly named in the CREATE INDEX command. This is why you should
always name indexes and other constraints wherever possible.

Examples
The following example removes the index named employee_idx_by_lastname:

DROP INDEX Employee_idx_by_lastname;

212

Supported SQL DDL Statements

DROP PROCEDURE
DROP PROCEDURE — Removes the definition of a stored procedure.

Syntax
DROP PROCEDURE procedure-name [IF EXISTS]

Description
The DROP PROCEDURE statement deletes the definition of the named stored procedure. Note that, for
procedures declared using CREATE PROCEDURE FROM and a class file, the statement does not delete
the class that implements the procedure, it only deletes the definition and any partitioning information
associated with the procedure. To remove the associated stored procedure class, you must first drop the
procedure definition then use the sqlcmd remove classes directive to remove the class.

The IF EXISTS clause allows the statement to succeed even if the specified procedure name does not
exist. If the stored procedure does not exist and you do not include the IF EXISTS clause, the statement
will return an error.

Examples
The following example removes the definition of the FindCanceledReservations stored procedure, then
uses remove classes to remove the corresponding class.

$ sqlcmd
1> DROP PROCEDURE FindCanceledReservations;
2> remove classes "*.FindCanceledReservations";

213

Supported SQL DDL Statements

DROP ROLE
DROP ROLE — Removes a role.

Syntax
DROP ROLE role-name [IF EXISTS]

Description
The DROP ROLE statement deletes the specified role. The IF EXISTS clause allows the statement to
succeed even if the specified role does not exist. If the role does not exist and you do not include the IF
EXISTS clause, the statement will return an error.

Examples
The following example removes the role named debug:

DROP ROLE debug;

214

Supported SQL DDL Statements

DROP STREAM
DROP STREAM — Removes a stream and, optionally, any views associated with it.

Syntax
DROP STREAM stream-name [IF EXISTS] [CASCADE]

Description
The DROP STREAM statement deletes the specified stream from the database. The IF EXISTS clause
allows the statement to succeed even if the specified stream does not exist. If the stream does not exist and
you do not include the IF EXISTS clause, the statement will return an error.

If you use the CASCADE clause, VoltDB automatically drops any referencing views as well as the stream
itself.

If the stream is associated with an export target (that is, the stream was created with the EXPORT TO
TARGET clause), dropping the stream also deletes any pending records that were inserted into the stream
but have not been committed to the export target yet. If you want to change the stream definition without
losing any pending export data, use the ALTER STREAM statement. If you want to remove the stream
but ensure all export data is flushed before it is dropped, you can either use the voltadmin pause --wait
command (to flush all queues) or the @Statistics system procedure with the EXPORT selector to check
that the specified target has no pending records.

Example
The following example uses DROP STREAM with the IF EXISTS clause to remove the MeterReadings
stream definition.

DROP STREAM MeterReadings IF EXISTS;

215

Supported SQL DDL Statements

DROP TABLE
DROP TABLE — Removes a table and any data associated with it.

Syntax
DROP TABLE table-name [IF EXISTS] [CASCADE]

Description
The DROP TABLE statement deletes the specified table, and any data associated with it, from the database.
The IF EXISTS clause allows the statement to succeed even if the specified tables does not exist. If the
table does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Before dropping a table, you must first remove any stored procedures that reference the table. For exam-
ple, if the table EMPLOYEE is partitioned and the stored procedure AddEmployee is partitioned on the
EMPLOYEE table, you must drop the procedure first before dropping the table:

PARTITION TABLE Employee ON COLUMN EmpID;
CREATE PROCEDURE
 PARTITION ON TABLE Employee COLUMN EmpID
 FROM CLASS myapp.procedures.AddEmployee;

 [. . .]

DROP PROCEDURE AddEmployee;
DROP TABLE Employee;

Attempting to drop the table before dropping the procedure will result in an error. The same will normally
happen if there are any views or indexes that reference the table. However, if you use the CASCADE
clause VoltDB will automatically drop any referencing indexes and views as well as the table itself.

Examples
The following example uses DROP TABLE with the IF EXISTS clause to remove any existing MailAd-
dress table definition and data before adding a new definition.

DROP TABLE UserSignin IF EXISTS;
CREATE TABLE UserSignin (
 userID BIGINT NOT NULL,
 lastlogin TIMESTAMP DEFAULT NOW
);

216

Supported SQL DDL Statements

DROP TASK
DROP TASK — Removes a task and cancels any future execution.

Syntax
DROP TASK task-name [IF EXISTS]

Description
The DROP TASK statement deletes the specified task and cancels any future execution. The IF EXISTS
clause allows the statement to succeed even if the specified task does not exist. If the task does not exist
and you do not include the IF EXISTS clause, the statement will return an error.

Examples
The following example removes the task named cleanup:

DROP TASK cleanup;

217

Supported SQL DDL Statements

DROP VIEW
DROP VIEW — Removes a view and any data associated with it.

Syntax
DROP VIEW view-name [IF EXISTS]

Description
The DROP VIEW statement deletes the specified view, and any data associated with it, from the database.
The IF EXISTS clause allows the statement to succeed even if the specified view does not exist. If the
view does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Dropping a view has the same constraints as dropping a table, in that you cannot drop a view that is
referenced by existing stored procedure queries. Before dropping the view, you must drop any stored
procedures that reference it.

Examples
The following example removes the view named Votes_by_state:

DROP VIEW votes_by_state;

218

Supported SQL DDL Statements

PARTITION PROCEDURE
PARTITION PROCEDURE — Specifies that a stored procedure is partitioned.

Syntax
PARTITION PROCEDURE procedure-name ON TABLE table-name COLUMN column-name

[PARAMETER position]

Description
Warning

The PARTITION PROCEDURE statement is deprecated and may be removed in a future release.
Please use the PARTITION ON clause of the CREATE PARTITION statement to declare and
partition the procedure in a single combined statement.

Partitioning a stored procedure means that the procedure executes within a unique partition of the database.
The partition in which the procedure executes is chosen at runtime based on the table and column specified
by table-name and column-name and the value of the first parameter to the procedure. For example:

PARTITION TABLE Employees ON COLUMN BadgeNumber;
PARTITION PROCEDURE FindEmployee ON TABLE Employees COLUMN BadgeNumber;

The procedure FindEmployee is partitioned on the table Employees, and table Employees is in turn parti-
tioned on the column BadgeNumber. This means that when the stored procedure FindEmployee is invoked
VoltDB determines which partition to run the stored procedure in based on the value of the first parameter
to the procedure and the corresponding partitioning value for the column BadgeNumber. So to find the
employee with badge number 145303 you would invoke the stored procedure as follows:

clientResponse response = client.callProcedure("FindEmployee", 145303);

By default, VoltDB uses the first parameter to the stored procedure as the partitioning value. However, if
you want to use the value of a different parameter, you can use the PARAMETER clause. The PARAME-
TER clause specifies which procedure parameter to use as the partitioning value, with position specifying
the parameter position, counting from zero. (In other words, position 0 is the first parameter, position 1
is the second, and so on.)

The specified table must be a partitioned table and cannot be an export stream or replicated table.

You specify the procedure by its simplified class name. Do not include any other parts of the class path.
Note that the simple procedure name you specify in the PARTITION PROCEDURE may be different than
the class name you specify in the CREATE PARTITION statement, which can include a relative path. For
example, if the class for the stored procedure is mydb.procedures.FindEmployee, the procedure name in
the PARTITION PROCEDURE statement should be FindEmployee:

CREATE PROCEDURE FROM CLASS mydb.procedures.FindEmployee;
PARTITION PROCEDURE FindEmployee ON TABLE Employees COLUMN BadgeNumber;

Examples
The following example declares a stored procedure, using an inline SQL query, and then partitions the
procedure on the Customer table, Note that the PARTITION PROCEDURE statement includes the PA-

219

Supported SQL DDL Statements

RAMETER clause, since the partitioning column is not the first of the placeholders in the SQL query.
Also note that the PARTITION argument is zero-based, so the value "1" identifies the second placeholder.

CREATE PROCEDURE GetCustomerByName AS
 SELECT * from Customer WHERE FirstName=? AND LastName = ?
 ORDER BY LastName, FirstName, CustomerID;

PARTITION PROCEDURE GetCustomerByName
 ON TABLE Customer COLUMN LastName
 PARAMETER 1;

The next example declares a stored procedure as a Java class. Since the first argument to the procedure's
run method is the value for the LastName column, The PARTITION PROCEDURE statement does not
require a POSITION clause and can use the default.

CREATE PROCEDURE FROM CLASS org.mycompany.ChangeCustomerAddress;

PARTITION PROCEDURE ChangeCustomerAddress
 ON TABLE Customer COLUMN LastName;

220

Supported SQL DDL Statements

PARTITION TABLE
PARTITION TABLE — Specifies that a table is partitioned and which is the partitioning column.

Syntax
PARTITION TABLE table-name ON COLUMN column-name

Description
Partitioning a table specifies that different records are stored in different unique partitions, based on the
value of the specified column. The table table-name and column column-name must be valid, declared
elements in the current DDL file or VoltDB generates an error when compiling the schema.

For a table to be partitioned, the partitioning column must be declared as NOT NULL. If you do not declare
a partitioning column of a table in the DDL, the table is assumed to be a replicated table.

Example
The following example partitions the table Employee on the column EmployeeID.

PARTITION TABLE Employee on COLUMN EmployeeID;

221

Appendix B. Supported SQL Statements
This appendix describes the SQL syntax that VoltDB supports in stored procedures and ad hoc queries.

This is not intended as a complete description of the SQL language and how it operates. Instead, it summa-
rizes the subset of standard SQL statements that are allowed in VoltDB and any exceptions or limitations
that application developers should be aware of.

The supported SQL statements are:

• DELETE
• INSERT
• MIGRATE
• SELECT
• TRUNCATE TABLE
• UPDATE
• UPSERT

222

Supported SQL Statements

DELETE
DELETE — Deletes one or more records from the database.

Syntax
DELETE FROM table-name

[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
[ORDER BY {column-name [ASC | DESC]}[,...] [LIMIT integer] [OFFSET integer]]

Description
The DELETE statement deletes rows from the specified table that meet the constraints of the WHERE
clause. The following limitations are important to note when using the DELETE statement in VoltDB:

• The DELETE statement can operate on only one table at a time. It does not support joins. However, it
does support subqueries in the WHERE expression.

• The WHERE expression supports the boolean operators: equals (=), not equals (!= or <>), greater than
(>), less than (<), greater than or equal to (>=), less than or equal to (<=), IS NULL, AND, OR, and NOT.
Note, however, although OR is supported syntactically, VoltDB does not optimize these operations and
use of OR may impact the performance of your queries.

• You can use subqueries in the WHERE clause of the DELETE statement, with the following provisions:

• See the description of subqueries in the SELECT statement for general rules concerning the construc-
tion of subqueries.

• In a multi-partition procedure, subqueries of the DELETE statement can only reference replicated
tables.

• In single-partitioned procedures, the subquery can reference both partitioned and replicated tables.

• For ad hoc DELETE statements, the same rules apply except the SQL statement itself determines
whether VoltDB executes it as a single-partitoned or multi-partitioned procedure. Statements that
delete rows from a partitioned table based on a specific value of the partitioning column are executed
as single-partitioned procedures. All other statements are multi-partitioned.

• The ORDER BY clause lets you order the selection results and then select a subset of the ordered
records to delete. For example, you could delete only the five oldest records, chronologically, sorting
by timestamp:

DELETE FROM events ORDER BY event_time, event_id ASC LIMIT 5;

Similarly, you could choose to keep only the five most recent:

DELETE FROM events ORDER BY event_time, event_id DESC OFFSET 5;

• When using ORDER BY, the resulting sort order must be deterministic. In other words, the ORDER
BY must include enough columns to uniquely identify each row. (For example, listing all columns or
a primary key.)

• You cannot use ORDER BY to delete rows from a partitioned table in a multi-partitioned query. In other
words, for partitioned tables DELETE... ORDER BY must be executed as part of a single-partitioned

223

Supported SQL Statements

stored procedure or as an ad hoc query with a WHERE clause that uniquely identifies the partitioning
column value.

Examples
The following example removes rows from the EMPLOYEE table where the EMPLOYEE_ID column
is equal to 145303.

DELETE FROM employee WHERE employee_id = 145303;

The following example removes rows from the BID table where the BIDDERID is 12345 and the BID-
PRICE is less than 100.00.

DELETE FROM bid WHERE bidderid=12345 AND bidprice<100.0;

224

Supported SQL Statements

INSERT
INSERT — Creates new rows in the database, using the specified values for the columns.

Syntax
INSERT INTO table-name [(column-name [,...])] VALUES (value-expression [,...])

INSERT INTO table-name [(column-name [,...])] SELECT select-expression

Description
The INSERT statement creates one or more new rows in the database. There are two forms of the INSERT
statement, INSERT INTO... VALUES and INSERT INTO... SELECT. The INSERT INTO... VALUES
statement lets you enter specific values for a adding a single row to the database. The INSERT INTO...
SELECT statement lets you insert multiple rows into the database, depending upon the number of rows
returned by the select expression.

The INSERT INTO... SELECT statement is often used for copying rows from one table to another. For
example, say you want to export all of the records associated with a particular column value. The following
INSERT statement copies all of the records from the table ORDERS with a warehouseID of 25 into the
table EXPORT_ORDERS:

INSERT INTO Export_Orders SELECT * FROM Orders WHERE CustomerID=25;

However, the select expression can be more complex, including joining multiple tables. The following
limitations currently apply to the INSERT INTO... SELECT statement:

• INSERT INTO... SELECT can join partitioned tables only if they are joined on equality of the parti-
tioning columns. Also, the resulting INSERT must apply to a partitioned table and be inserted using the
same partition column value, whether the query is executed in a single-partitioned or multi-partitioned
stored procedure.

• INSERT INTO... SELECT does not support UNION statements.

In addition to the preceding limitations, there are certain instances where the select expression is too com-
plex to be processed. Cases of invalid select expressions in INSERT INTO... SELECT include:

• A LIMIT or TOP clause applied to a partitioned table in a multi-partitioned query

• A GROUP BY of a partitioned table where the partitioning column is not in the GROUP BY clause

Deterministic behavior is critical to maintaining the integrity of the data in a K-safe cluster. Because an
INSERT INTO... SELECT statement performs both a query and an insert based on the results of that query,
if the selection expression would produces non-deterministic results, the VoltDB query planner rejects the
statement and returns an error. See Section 5.1.2, “VoltDB Stored Procedures are Deterministic” for more
information on the importance of determinism in SQL queries.

If you specify the column names following the table name, the values will be assigned to the columns in
the order specified. If you do not specify the column names, values will be assigned to columns based on
the order specified in the schema definition. However, if you specify a subset of the columns, you must
specify values for any columns that are explicitly defined in the schema as NOT NULL and do not have
a default value assigned.

225

Supported SQL Statements

You can use subqueries within the VALUES clause of the INSERT statement, with the following provi-
sions:

• See the description of subqueries in the SELECT statement for general rules concerning the construction
of subqueries.

• In a multi-partition procedure, subqueries of the INSERT statement can only reference replicated tables.

• In single-partitioned procedures, the subquery can reference both partitioned and replicated tables.

• For ad hoc INSERT statements, the same rules apply except the SQL statement itself determines whether
VoltDB executes it as a single-partitoned or multi-partitioned procedure. Statements that insert rows into
a partitioned table based on a specific value of the partitioning column are executed as single-partitioned
procedures. All other statements are multi-partitioned.

Examples
The following example inserts values into the columns (firstname, mi, lastname, and emp_id) of an EM-
PLOYEE table:

INSERT INTO employee VALUES ('Jane', 'Q', 'Public', 145303);

The next example performs the same operation with the same results, except this INSERT statement ex-
plicitly identifies the column names and changes the order:

INSERT INTO employee (emp_id, lastname, firstname, mi)
 VALUES (145303, 'Public', 'Jane', 'Q');

The last example assigns values for the employee ID and the first and last names, but not the middle initial.
This query will only succeed if the MI column is nullable or has a default value defined in the database
schema.

INSERT INTO employee (emp_id, lastname, firstname)
 VALUES (145304, 'Doe', 'John');

226

Supported SQL Statements

MIGRATE
MIGRATE — queues table rows for migration to an export target.

Syntax
MIGRATE FROM table-name

[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description
The MIGRATE statement selects rows from the specified table for migration to an export target and marks
the rows for deletion. When rows are migrated, they are first exported to the export target defined in the
table definition (in the MIGRATE TO TARGET clause). Once the export target acknowledges receipt of
the data, the rows are deleted from the VoltDB table.

For example, assume the reservations table contains information about airline reservations. Once the flight
is over, you want to archive the reservation records. But you do not want them to be deleted until you are
sure they reach the archive. To achieve this you can declare the table using the MIGRATE TO TARGET
clause:

CREATE TABLE Reservation
 MIGRATE TO TARGET oldreserve
 (Reserve_ID INT NOT NULL,
 Flight_ID INT NOT NULL,
 Customer_ID INT);

Then, when the flight is completed, you can migrate all associated reservations to the external system
associated with the oldreserve target, ensuring they are not deleted from the VoltDB database until they
reach the target.

MIGRATE FROM Reservation WHERE Reserve_ID= ?;

The MIGRATE statement applies to any tables declared with a MIGRATE TO TARGET clause. You can
use MIGRATE to manually migrate rows from tables that do not have an automated "time to live" (USING
TTL) value defined or you can use it to preemptively migrate rows in a table declared with USING TTL.

Example
The following example migrates user accounts if the account type is "trial" and the user hasn't logged in
for two weeks.

MIGRATE FROM accounts
 WHERE acct_type="TRIAL" AND last_login < DATEADD(DAY,-14,NOW());

227

Supported SQL Statements

SELECT
SELECT — Fetches the specified rows and columns from the database.

Syntax
[common-table-expression] Select-statement [{set-operator} Select-statement] ...

Select-statement:
SELECT [TOP integer-value]
{ * | [ALL | DISTINCT] { column-name | selection-expression } [AS alias] [,...] }
FROM { table-reference } [join-clause]...
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
[clause...]

table-reference:
{ table-name [AS alias] | view-name [AS alias] | sub-query AS alias }

sub-query:
(Select-statement)

join-clause:
, table-reference
[INNER | {LEFT | RIGHT | FULL } [OUTER]] JOIN [{table-reference}] [join-condition]

join-condition:
ON conditional-expression
USING (column-reference [,...])

clause:
ORDER BY { column-name | alias } [ASC | DESC] [,...]
GROUP BY { column-name | alias } [,...]
HAVING boolean-expression
LIMIT integer-value [OFFSET row-count]

set-operator:
UNION [ALL]
INTERSECT [ALL]
EXCEPT

common-table-expression:
WITH common-table-name [(column-name [,...])] AS (Select-statement)
WITH RECURSIVE common-table-name [(column-name [,...])] AS (
 Select-statement UNION ALL Select-statement
)

Description
The SELECT statement retrieves the specified rows and columns from the database, filtered and sorted
by any clauses that are included in the statement. In its simplest form, the SELECT statement retrieves
the values associated with individual columns. However, the selection expression can be a function such
as COUNT and SUM.

The following features and limitations are important to note when using the SELECT statement with
VoltDB:

228

Supported SQL Statements

• See Appendix C, SQL Functions for a full list of the SQL functions that VoltDB supports.

• VoltDB supports the following operators in expressions: addition (+), subtraction (-), multiplication (*),
division (*) and string concatenation (||).

• TOP n is a synonym for LIMIT n.

• The WHERE expression supports the boolean operators: equals (=), not equals (!= or <>), greater than
(>), less than (<), greater than or equal to (>=), less than or equal to (<=), LIKE, STARTS WITH,
IS NULL, IS DISTINCT, IS NOT DISTINCT, AND, OR, and NOT. Note, however, although OR is
supported syntactically, VoltDB does not optimize these operations and use of OR may impact the
performance of your queries.

• The boolean expression LIKE provides text pattern matching in a VARCHAR column. The syntax of
the LIKE expression is {string-expression} LIKE '{pattern}' where the pattern can
contain text and wildcards, including the underscore (_) for matching a single character and the percent
sign (%) for matching zero or more characters. The string comparison is case sensitive.

Where an index exists on the column being scanned and the pattern starts with a text prefix (rather than
starting with a wildcard), VoltDB will attempt to use the index to maximize performance, For example, a
query limiting the results to rows from the EMPLOYEE table where the primary index¸ the JOB_CODE
column, begins with the characters "Temp" looks like this:

SELECT * from EMPLOYEE where JOB_CODE like 'Temp%';

• The STARTS WITH clause is useful in stored procedures because it uses indexed scans where the
LIKE clause cannot. The expression STARTS WITH '{string-expression}' is syntactically
identical to LIKE '{string-expression}%' in that it matches any string value that starts with
string-expression. The difference is that in a stored procedure, use of the STARTS WITH clause with a
placeholder (that is, "START WITH ?") utilizes available indexes, whereas LIKE ? requires a sequential
scan, since the compiler cannot tell if the replacement text ends in a percent sign or not and must plan
for any possible string value. For example, if KEYWORD is the primary key for the ENTRY table, then
VoltDB can use the primary key index to optimize the following stored procedure:

CREATE PROCEDURE SimpleSearch AS
 SELECT keyword FROM entry WHERE keyword STARTS WITH ?;

• The boolean expression IN determines if a given value is found within a list of alternatives. For exam-
ple, in the following code fragment the IN expression looks to see if a record is part of Hispaniola by
evaluating whether the column COUNTRY is equal to either "Dominican Republic" or "Haiti":

WHERE Country IN ('Dominican Republic', 'Haiti')

Note that the list of alternatives must be enclosed in parentheses. The result of an IN expression is
equivalent to a sequence of equality conditions separated by OR. So the preceding code fragment pro-
duces the same boolean result as:

WHERE Country='Dominican Republic' OR Country='Haiti'

The advantages are that the IN syntax provides more compact and readable code and can provide im-
proved performance by using an index on the initial expression where available.

• The boolean expression BETWEEN determines if a value falls within a given range. The evaluation is
inclusive of the end points. In this way BETWEEN is a convenient alias for two boolean expressions
determining if a value is greater than or equal to (>=) the starting value and less than or equal to (<=)
the end value. For example, the following two WHERE clauses are equivalent:

229

Supported SQL Statements

WHERE salary BETWEEN ? AND ?
WHERE salary >= ? AND salary <= ?

• The boolean expressions IS DISTINCT FROM and IS NOT DISTINCT FROM are similar to the equals
("=") and not equals ("<>") operators respectively, except when evaluating null operands. If either or
both operands are null, the equals and not equals operators return a boolean null value, or false. IS
DISTINCT FROM and IS NOT DISTINCT FROM consider null a valid operand. So if only one operand
is null IS DISTINCT FROM returns true and IS NOT DISTINCT FROM returns false. If both operands
are null IS DISTINCT FROM returns false and IS NOT DISTINCT FROM returns true.

• When using placeholders in SQL statements involving the IN list expression, you can either do replace-
ment of individual values within the list or replace the list as a whole. For example, consider the fol-
lowing statements:

SELECT * from EMPLOYEE where STATUS IN (?, ?,?);
SELECT * from EMPLOYEE where STATUS IN ?;

In the first statement, there are three parameters that replace individual values in the IN list, allowing
you to specify exactly three selection values. In the second statement the placeholder replaces the entire
list, including the parentheses. In this case the parameter to the procedure call must be an array and
allows you to change not only the values of the alternatives but the number of criteria considered.

The following Java code fragment demonstrates how these two queries can be used in a stored procedure,
resulting in equivalent SQL statements being executed:

String arg1 = "Salary";
String arg2 = "Hourly";
String arg3 = "Parttime";
voltQueueSQL(query1, arg1, arg2, arg3);

String listargs[] = new String[3];
listargs[0] = arg1;
listargs[1] = arg2;
listargs[2] = arg3;
voltQueueSQL(query2, (Object) listargs);

Note that when passing arrays as parameters in Java, it is a good practice to explicitly cast them as an
object to avoid the array being implicitly expanded into individual call parameters.

• VoltDB supports the use of CASE-WHEN-THEN-ELSE-END for conditional operations. For exam-
ple, the following SELECT expression uses a CASE statement to return different values based on the
contents of the price column:

SELECT Prod_name,
 CASE WHEN price > 100.00
 THEN 'Expensive'
 ELSE 'Cheap'
 END
FROM products ORDER BY Prod_name;

For more complex conditional operations with multiple alternatives, use of the DECODE() function is
recommended.

• VoltDB supports both inner and outer joins.

230

Supported SQL Statements

• The SELECT statement supports subqueries as a table reference in the FROM clause. Subqueries must
be enclosed in parentheses and must be assigned a table alias.

• You can only join two or more partitioned tables if those tables are partitioned on the same value and
joined on equality of the partitioning column. Joining two partitioned tables on non-partitioned columns
or on a range of values is not supported. However, there are no limitations on joining to replicated tables.

• Extremely large result sets (greater than 50 megabytes in size) are not supported. If you execute a
SELECT statement that generates a result set of more than 50 megabytes, VoltDB will return an error.

Window Functions
Window functions, which can appear in the selection list, allow you to perform more selective calculations
on the statement results than you can do with plain aggregation functions such as COUNT() or SUM().
Window functions execute the specified operation on a subset of the total selection results, controlled by
the PARTITION BY and ORDER BY clauses. The overall syntax for a window function is as follows:

function-name([expression])
 OVER ([PARTITION BY {expression [,...]}] [ORDER BY { expression [,...]}])

Where:

• The PARTITION BY1 clause defines how the selection results are grouped.

• The ORDER BY clause defines the order in which the rows are evaluated within each group.

An example may help explain the behavior of the two clauses. Say you have a database table that lists
the population of individual cities and includes columns for country and state. You can use the window
function COUNT(city) OVER (PARTITION BY state) to include a count of all of the cities
within each state as part of each city record. You can also control the order the records are evaluated using
the ORDER BY clause. Note, however, when you use the ORDER BY clause the window function results
are calculated sequentially. So rather than show the count of all cities in the state each time, the window
function will return the count of cities incrementally up to the current record in the group. So rather than
use COUNT() you can use RANK() to more accurately indicate the values being returned. For example,
RANK() OVER (PARTITION BY state, ORDER BY city_population) lists the cities for
each state with a rank value showing their ranking in order of their population.

Please be aware of the following limitations when using the window functions:

• There can be only one window function per SELECT statement.

• You cannot use a window function and GROUP BY in the same SELECT statement.

• The argument(s) to the ORDER BY clause can be either integer or TIMESTAMP expressions only.

The following list describes the operation and constraints for each window function separately.

RANK() OVER ([PARTITION BY {expression [,...]}] ORDER BY {expression [,...]})
The RANK() window function generates a BIGINT value (starting at 1) representing the ranking of
the current result within the group defined by the PARTITION BY expression(s) or of the entire result
set if PARTITION BY is not specified. No function argument is allowed and the ORDER BY clause
is required.

1Use of the keyword PARTITION is for compatibility with SQL syntax from other databases and is unrelated to the columns used to partition
single-partitioned tables. You can use the RANK() functions with either partitioned or replicated tables and the ranking column does not need to
be the same as the partitioning column for VoltDB partitioned tables.

231

Supported SQL Statements

For example, if you rank a column (say, city_population) and use the country column as the parti-
tioning column for the ranking, the cities of each country will be ranked separately. If you use both
state and country as partitioning columns, then the cities for each state in each country will be ranked
separately.

DENSE_RANK() OVER ([PARTITION BY {expression [,...]}] ORDER BY {expression [,...]})
The DENSE_RANK() window function generates a BIGINT value (starting at 1) representing the
ranking of the current result, in the same way the RANK() window function does. The difference
between RANK() and DENSE_RANK() is how they handle ranking when there is more than one row
with the same ORDER BY value.

If more than one row has the same ORDER BY value, those rows receive the same rank value in
both cases. However, with the RANK() function, the next rank value is incremented by the number
of preceding rows. For example, if the ORDER BY values of four rows are 100, 98, 98, and 73 the
respective rank values using RANK() will be 1, 2, 2, and 4. Whereas, with the DENSE_RANK()
function, the next rank value is always only incremented by one. So, if the ORDER BY values are
100, 98, 98, and 73, the respective rank values using DENSE_RANK() will be 1, 2, 2, and 3.

As with the RANK() window function, no function argument is allowed for the DENSE_RANK()
function and the ORDER BY clause is required.

ROW_NUMBER() OVER ([PARTITION BY {expression [,...]}] [ORDER BY {expression [,...]}])
The ROW_NUMBER() window function generates a BIGINT value representing the ordinal order
of the current result within the group defined by the PARTITION BY expression(s) or of the entire
result set if PARTITION BY is not specified. No function argument is allowed.

For example, if you order a column (say, animal) and use the class column as the partitioning column,
the animals in each class will be ordered separately. So "angelfish" might receive row number 1 in the
type "finned fish" while "aardvark" is row number 1 in the type "mammal". But if you do not specify
PARTITION BY, "angelfish" would be numbered after "aardvark".

Note that an ORDER BY clause is not required. However, use of ORDER BY is strongly recommend-
ed, preferably with sufficient columns to make the ordering unique. Without the ORDER BY clause
the results of the query are nondeterministic.

COUNT({expression}) OVER ([PARTITION BY {expression [,...]}] [ORDER BY {expression [,...]}])
The COUNT() window function generates a sub-count of the number of rows within the current result
set, where the PARTITION BY clause defines how the rows are grouped. The function argument is
required.

SUM({expression}) OVER ([PARTITION BY {expression [,...]}] [ORDER BY {expression [,...]}])
The SUM() window function generates a sub-total of the specified column within the current result
set, where the PARTITION BY clause defines how the rows are grouped. The function argument is
required.

MAX({expression}) OVER ([PARTITION BY {expression [,...]}] [ORDER BY {expression [,...]}])
The MAX() window function reports the maximum value of a column within the current result set,
where the PARTITION BY clause defines how the rows are grouped. If the ORDER BY clause is
specified, the maximum value is calculated incrementally over the rows in the order specified. The
function argument is required.

MIN({expression}) OVER ([PARTITION BY {expression [,...]}] [ORDER BY {expression [,...]}])
The MIN() window function reports the minimum value of a column within the current result set,
where the PARTITION BY clause defines how the rows are grouped. If the ORDER BY clause is
specified, the minimum value is calculated incrementally over the rows in the order specified. The
function argument is required.

232

Supported SQL Statements

Subqueries
The SELECT statement can include subqueries. Subqueries are separate SELECT statements, enclosed in
parentheses, where the results of the subquery are used as values, expressions, or arguments within the
surrounding SELECT statement.

Subqueries, like any SELECT statement, are extremely flexible and can return a wide array of information.
A subquery might return:

• A single row with a single column — this is sometimes known as a scalar subquery and represents a
single value

• A single row with multiple columns — this is also known as a row value expression

• Multiple rows with one or more columns

In general, VoltDB supports subqueries in the FROM clause, in the selection expression, and in boolean
expressions in the WHERE clause or in CASE-WHEN-THEN-ELSE-END operations. However, different
types of subqueries are allowed in different situations, depending on the type of data returned.

• In the FROM clause, the SELECT statement supports all types of subquery as a table reference. The
subquery must be enclosed in parentheses and must be assigned a table alias.

• In the selection expression, scalar subqueries can be used in place of a single column reference.

• In the WHERE clause and CASE operations, both scalar and non-scalar subqueries can be used as part
of boolean expressions. Scalar subqueries can be used in place of any single-valued expression. Non-
scalar subqueries can be used in the following situations:

• Row value comparisons — Boolean expressions that compare one row value expression to another
can use subqueries that resolve to one row with multiple columns. For example:

select * from t1
 where (a,c) > (select a, c from t2 where b=t1.b);

• IN and EXISTS — Subqueries that return multiple rows can be used as an argument to the IN or
EXISTS predicate to determine if a value (or set of values) exists within the rows returned by the
subquery. For example:

select * from t1
 where a in (select a from t2);
select * from t1
 where (a,c) in (select a, c from t2 where b=t1.b);
select * from t1 where c > 3 and
 exists (select a, b from t2 where a=t1.a);

• ANY and ALL — Multi-row subqueries can also be used as the target of an ANY or ALL comparison,
using either a scalar or row expression comparison. For example:

select * from t1
 where a > ALL (select a from t2);
select * from t1
 where (a,c) = ANY (select a, c from t2 where b=t1.b);

Note that VoltDB does not support subqueries in the HAVING, ORDER BY, or GROUP BY clauses.
Subqueries are also not supported for any of the data manipulation language (DML) statements: DELETE,
INSERT, UPDATE, and UPSERT.

233

Supported SQL Statements

For the initial release of subqueries in selection and boolean expressions, only replicated tables can be
used in the subquery. Both replicated and partitioned tables can be used in subqueries in place of table
references in the FROM clause.

Set Operations
VoltDB also supports the set operations UNION, INTERSECT, and EXCEPT. These keywords let you
perform set operations on two or more SELECT statements. UNION includes the combined results sets
from the two SELECT statements, INTERSECT includes only those rows that appear in both SELECT
statement result sets, and EXCEPT includes only those rows that appear in one result set but not the other.

Normally, UNION and INTERSECT provide a set including unique rows. That is, if a row appears in
both SELECT results, it only appears once in the combined result set. However, if you include the ALL
modifier, all matching rows are included. For example, UNION ALL will result in single entries for the
rows that appear in only one of the SELECT results, but two copies of any rows that appear in both.

The UNION, INTERSECT, and EXCEPT operations obey the same rules that apply to joins:

• You cannot perform set operations on SELECT statements that reference the same table.

• All tables in the SELECT statements must either be replicated tables or partitioned tables partitioned
on the same column value, using equality of the partitioning column in the WHERE clause.

Common Table Expressions
Common table expressions let you declare a named subquery that can be used in the main query the same
way regular tables and columns are used. Common expressions are useful for simplifying queries that use
an expression multiple times or for separating out two distinct aspects of a larger query. You declare a
common table expression by placing the WITH clause before the main SELECT query. The WITH clause:

• Defines the name of the common table expression

• Optionally, renames the resulting columns

• Declares the expression itself using standard SELECT statement syntax

VoltDB supports two forms of common table expressions:

• Basic common expressions, with a name, optional column names, and the expression itself

• Recursive expressions, using the WITH RECURSIVE keywords and merging two expressions with a
UNION ALL set operation

You can use the results of the common table expression in the subsequent SELECT statement the same way
you would reference regular tables in the database. For example, the following common table expression
determines how many members live in each city, then uses that information to return a list of members
who live in a city with fewer than the specified number of members:

WITH city_count (city,membercount) AS (
 SELECT cityname, count(*) FROM members
 GROUP BY cityname
)
SELECT m.fullname, m.cityname FROM members AS m
 JOIN city_count AS cc ON m.city = cc.city
 WHERE membercount < ?

234

Supported SQL Statements

 ORDER BY m.cityname,m.fullname;

Recursive common expressions are like regular table expressions, except they are self-referencing, so you
can iterate over the results in a recursive fashion. Recursive common expressions are particularly useful for
evaluating tree or graph structures that cannot be natively represented in flat database records or queries.

You declare a recursive expression with the WITH RECURSIVE keywords followed by:

• The table name and, optionally, alias names for the columns

• A base query that defines the starting condition

• A UNION ALL set operator

• A second, recursive query that iterates over the common table expression results

For example, assume you wanted to know all the employees in a specific branch of the company's organi-
zational structure. However, organizational charts are hierarchical. Each employee record may only record
that employee's direct manager. Recursive common expressions let you start at the top of a branch of the
organizational "tree" and iteratively look for any employee reporting to that manager, then employees re-
porting to that person, and so on. The common table expression might look like this.

WITH RECURSIVE org (id) AS (
 SELECT mgr_id AS mgr FROM department
 WHERE dept_name=?
 UNION ALL
 SELECT emp_id FROM employee, org
 WHERE employee.mgr_id = org.id
)
SELECT e.emp_id, e.emp_name, e.emp_address
 FROM employee AS e, org
 WHERE e.emp_id = org.id;

Warning

As with any recursive programming, you are responsible for ensuring the common table expres-
sion does not result in an infinite loop. VoltDB cannot determine at compile time whether the
expression is sufficiently bounded. The preceding example succeeds because the application en-
sures all employee/manager relationships are hierarchical — no manager reports to a employee
lower in the tree. If evaluation of a common table expression results in a loop, VoltDB will even-
tually exceed some limit (such as the query timeout or maximum temporary table space) and fail
the transaction. In certain cases, an infinite loop could use up so much memory it exceeds the
resource limit and pauses the database.

Common table expressions in VoltDB have the following limitations:

• There can be only one common table expression per query.

• In multi-partition transactions, the common expression can reference replicated tables only.

• In single-partition transactions, the common expression can reference both replicated and partitioned
table, with the caveat that as in any partitioned transaction partitioned tables have access to only that
data in the current partition.

• For basic (non-recursive) common table expressions, the common expression cannot be self-referencing.
That is, the SELECT statement within the WITH clause can reference actual database table and view
names only, it cannot reference the common expression name itself.

235

Supported SQL Statements

Examples
The following example retrieves all of the columns from the EMPLOYEE table where the last name is
"Smith":

SELECT * FROM employee WHERE lastname = 'Smith';

The following example retrieves selected columns for two tables at once, joined by the employee_id using
an implicit inner join and sorted by last name:

SELECT lastname, firstname, salary
 FROM employee AS e, compensation AS c
 WHERE e.employee_id = c.employee_id
 ORDER BY lastname DESC;

236

Supported SQL Statements

TRUNCATE TABLE
TRUNCATE TABLE — Deletes all records from the specified table.

Syntax
TRUNCATE TABLE table-name

Description
The TRUNCATE TABLE statement deletes all of the records from the specified table. TRUNCATE TA-
BLE is the same as the statement DELETE FROM {table-name} with no selection clause. These
statements contain optimizations to increase performance and reduce memory usage over an equivalent
DELETE statement containing a WHERE selection clause.

The goal of the TRUNCATE TABLE statement is to remove all records from a table. Since this is not
possible in a partitioned stored procedure, VoltDB does not allow TRUNCATE TABLE statements within
partitioned stored procedures. You can perform TRUNCATE TABLE statements in ad hoc or multi-par-
tition procedures only.

Examples
The following example removes all data from the CURRENT_STANDINGS table:

TRUNCATE TABLE Current_standings;

237

Supported SQL Statements

UPDATE
UPDATE — Updates the values within the specified columns and rows of the database.

Syntax
UPDATE table-name SET column-name = value-expression [, ...]

[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description
The UPDATE statement changes the values of columns within the specified records. The following limi-
tations are important to note when using the UPDATE statement with VoltDB:

• VoltDB supports the following arithmetic operators in expressions: addition (+), subtraction (-), multi-
plication (*), and division (*).

• The WHERE expression supports the boolean operators: equals (=), not equals (!= or <>), greater than
(>), less than (<), greater than or equal to (>=), less than or equal to (<=), IS NULL, AND, OR, and NOT.
Note, however, although OR is supported syntactically, VoltDB does not optimize these operations and
use of OR may impact the performance of your queries.

• You can use subqueries in place of value expressions within the SET and WHERE clauses of the UP-
DATE statement, with the following provisions:

• See the description of subqueries in the SELECT statement for general rules concerning the construc-
tion of subqueries.

• In a multi-partition procedure, subqueries of the UPDATE statement can only reference replicated
tables.

• In single-partitioned procedures, the subquery can reference both partitioned and replicated tables.

• For ad hoc UPDATE statements, the same rules apply except the SQL statement itself determines
whether VoltDB executes it as a single-partitoned or multi-partitioned procedure. Statements that
modify a partitioned table based on a specific value of the partitioning column are executed as sin-
gle-partitioned procedures. All other statements are multi-partitioned.

Examples
The following example changes the ADDRESS column of the EMPLOYEE record with an employee ID
of 145303:

UPDATE employee
 SET address = '49 Lavender Sweep'
 WHERE employee_id = 145303;

The following example increases the starting price by 25% for all ITEM records with a category ID of 7:

UPDATE item SET startprice = startprice * 1.25 WHERE categoryid = 7;

238

Supported SQL Statements

UPSERT
UPSERT — Either inserts new rows or updates existing rows depending on the primary key value.

Syntax
UPSERT INTO table-name [(column-name [,...])] VALUES (value-expression [,...])

UPSERT INTO table-name [(column-name [,...])] SELECT select-expression

Description
The UPSERT statement has the same syntax as the INSERT statement and will perform the same function,
assuming a record with a matching primary key does not already exist in the database. If such a record does
exist, UPSERT updates the existing record with the new column values. Note that the UPSERT statement
can only be executed on tables that have a primary key.

UPSERT has the same two forms as the INSERT statement: UPSERT INTO... VALUES and UPSERT
INTO... SELECT. The UPSERT statement also has similar constraints and limitations as the INSERT
statement with regards to joining partitioned tables and overly complex SELECT clauses. (See the de-
scription of the INSERT statement for details.)

However, UPSERT INTO... SELECT has an additional limitation: the SELECT statement must produce
deterministically ordered results. That is, the query must not only produce the same rows, they must be in
the same order to ensure the subsequent inserts and updates produce identical results.

You can use subqueries within the VALUES clause of the UPSERT statement, with the following provi-
sions:

• See the description of subqueries in the SELECT statement for general rules concerning the construction
of subqueries.

• In a multi-partition procedure, subqueries of the UPSERT statement can only reference replicated tables.

• In single-partitioned procedures, the subquery can reference both partitioned and replicated tables.

• For ad hoc UPSERT statements, the same rules apply except the SQL statement itself determines
whether VoltDB executes it as a single-partitoned or multi-partitioned procedure. Statements that mod-
ify a partitioned table based on a specific value of the partitioning column are executed as single-parti-
tioned procedures. All other statements are multi-partitioned.

Examples
The following examples use two tables, Employee and Manager, both of which define the column emp_id
as a primary key. In the first example, the UPSERT statement either creates a new row with the specified
values or updates an existing row with the primary key 145303.

UPSERT INTO employee (emp_id, lastname, firstname, title, department)
 VALUES (145303, 'Public', 'Jane', 'Manager', 'HR');

The next example copies records from the Employee table to the Manager table, if the employee's title
is "Manager". Again, new records will be created or existing records updated depending on whether the

239

Supported SQL Statements

employee already has a record in the Manager table. Notice the use of the primary key in an ORDER BY
clause to ensure deterministic results from the SELECT statement.

UPSERT INTO Manager (emp_id, lastname, firstname, title, department)
 SELECT * from Employee WHERE title='Manager' ORDER BY emp_id;

240

Appendix C. SQL Funcons
Functions let you aggregate column values and perform other calculations and transformations on data
within your SQL queries. This appendix lists the functions alphabetically, describing for each their syntax
and purpose. The functions can also be grouped by the type of data they produce or operate on, as listed
below.

Bitwise Functions

• BIT_SHIFT_LEFT()
• BIT_SHIFT_RIGHT()
• BITAND()
• BITNOT()
• BITOR()
• BITXOR()

Column Aggregation Functions

• APPROX_COUNT_DISTINCT()
• AVG()
• COUNT()
• MAX()
• MIN()
• SUM()

Date and Time Functions

• CURRENT_TIMESTAMP()
• DATEADD()
• DAY(), DAYOFMONTH()
• DAYOFWEEK()
• DAYOFYEAR()
• EXTRACT()
• FORMAT_TIMESTAMP()
• FROM_UNIXTIME()
• HOUR()
• IS_VALID_TIMESTAMP()
• MAX_VALID_TIMESTAMP()
• MIN_VALID_TIMESTAMP()
• MINUTE()
• MONTH()
• NOW()
• QUARTER()
• SECOND()
• SINCE_EPOCH()
• TO_TIMESTAMP()
• TRUNCATE()
• WEEK(), WEEKOFYEAR()
• WEEKDAY()
• YEAR()

241

SQL Functions

Geospatial Functions

• AREA()
• ASTEXT()
• CENTROID()
• CONTAINS()
• DISTANCE()
• DWITHIN()
• ISINVALIDREASON()
• ISVALID()
• LATITUDE()
• LONGITUDE()
• MAKEVALIDPOLYGON()
• NUMINTERIORRINGS()
• NUMPOINTS()
• POINTFROMTEXT()
• POLYGONFROMTEXT()
• VALIDPOLYGONFROMTEXT()

JSON Functions

• ARRAY_ELEMENT()
• ARRAY_LENGTH()
• FIELD()
• SET_FIELD()

Internet Functions

• INET6_ATON()
• INET6_NTOA()
• INET_ATON()
• INET_NTOA()

Logic and Conversion Functions

• CAST()
• COALESCE()
• DECODE()

Math Functions

• ABS()
• CEILING()
• EXP()
• FLOOR()
• LN(), LOG()
• LOG10()
• MOD()
• POWER()
• ROUND()
• SQRT()

242

SQL Functions

String Functions

• BIN()
• CHAR()
• CHAR_LENGTH()
• CONCAT()
• FORMAT_CURRENCY()
• HEX()
• LEFT()
• LOWER()
• OCTET_LENGTH()
• OVERLAY()
• POSITION()
• REGEXP_POSITION()
• REPEAT()
• REPLACE()
• RIGHT()
• SPACE()
• STR()
• SUBSTRING()
• TRIM()
• UPPER()

Trigonometric Functions

• COS()
• COT()
• CSC()
• DEGREES()
• PI()
• RADIANS()
• SEC()
• SIN()
• TAN()

Miscellaneous Functions

• MIGRATING()

243

SQL Functions

ABS()
ABS() — Returns the absolute value of a numeric expression.

Syntax
ABS(numeric-expression)

Description
The ABS() function returns the absolute value of the specified numeric expression.

Example
The following example sorts the results of a SELECT expression by its proximity to a target value (spec-
ified by a placeholder), using the ABS() function to normalize values both above and below the intended
target.

SELECT price, product_name FROM product_list
 ORDER BY ABS(price - ?) ASC;

244

SQL Functions

APPROX_COUNT_DISTINCT()
APPROX_COUNT_DISTINCT() — Returns an approximate count of the number of distinct values for
the specified column expression.

Syntax
APPROX_COUNT_DISTINCT(column-expression)

Description
The APPROX_COUNT_DISTINCT() function returns an approximation of the number of distinct values
for the specified column expression. APPROX_COUNT_DISTINCT(column-expression) is an alternative
to the SQL expression "COUNT(DISTINCT column-expression)".

The reason for using APPROX_COUNT_DISTINCT() is because it can be significantly faster and use
less temporary memory than performing a precise COUNT DISTINCT operation. This is particularly true
when calculating a distinct count of a partitioned table across all of the partitions. The approximation
usually falls within ±1% of the actual count.

You can use the APPROX_COUNT_DISTINCT() function on column expressions of decimal, timestamp,
or any size integer datatype. You cannot use the function on floating point (FLOAT) or variable length
(VARCHAR and VARBINARY) columns.

Example
The following example returns an approximation of the number of distinct products available in each store.

SELECT store, APPROX_COUNT_DISTINCT(product_id) FROM catalog
 GROUP BY store ORDER BY store;

245

SQL Functions

AREA()
AREA() — Returns the area of a polygon in square meters.

Syntax
AREA(polygon)

Description
The AREA() function returns the area of a GEOGRAPHY value in square meters. The area is the total area
of the outer ring minus the area of any inner rings within the polygon. The area is returned as a FLOAT
value.

Example
The following example calculates the sum of the areas of multiple polygons representing fields on a farm.

SELECT farmer, SUM(AREA(field)) FROM farm
 WHERE farmer = 'Old MacDonald' GROUP BY farmer;

246

SQL Functions

ARRAY_ELEMENT()
ARRAY_ELEMENT() — Returns the element at the specified location in a JSON array.

Syntax
ARRAY_ELEMENT(JSON-array, element-position)

Description
The ARRAY_ELEMENT() function extracts a single element from a JSON array. The array position is
zero-based. In other words, the first element in the array is in position "0". The function returns the element
as a string. For example, the following function invocation returns the string "two":

ARRAY_ELEMENT('["zero","one","two","three"]',2)

Note that the array element is always returned as a string. So in the following example, the function returns
"2" as a string rather than an integer:

ARRAY_ELEMENT('[0,1,2,3]',2)

Finally, the element may itself be a valid JSON-encoded object. For example, the following function
returns the string "[0,1,2,3]":

ARRAY_ELEMENT('[[0,1,2,3],["zero","one","two","three"]]',0)

The ARRAY_ELEMENT() function can be combined with other functions, such as FIELD(), to traverse
more complex JSON structures. The function returns a NULL value if any of the following conditions
are true:

• The position argument is less than zero

• The position argument is greater than or equal to the length of the array

• The JSON string does not represent an array (that is, the string is a valid JSON scalar value or object)

The function returns an error if the first argument is not a valid JSON string.

Example
The following example uses the ARRAY_ELEMENT() function along with FIELD() to extract specific
array elements from one field in a JSON-encoded VARCHAR column:

SELECT language,
 ARRAY_ELEMENT(FIELD(words,'colors'),1) AS color,
 ARRAY_ELEMENT(FIELD(words,'numbers'),2) AS number
 FROM world_languages WHERE language = 'French';

Assuming the column words has the following structure, the query returns the strings "French', "vert",
and "trois".

{"colors":["rouge","vert","bleu"],
 "numbers":["un","deux","trois"]}

247

SQL Functions

ARRAY_LENGTH()
ARRAY_LENGTH() — Returns the number of elements in a JSON array.

Syntax
ARRAY_LENGTH(JSON-array)

Description
The ARRAY_LENGTH() returns the length of a JSON array; that is, the number of elements the array
contains. The length is returned as an integer.

The ARRAY_LENGTH() function can be combined with other functions, such as FIELD(), to traverse
more complex JSON structures.

The function returns NULL if the argument is a valid JSON string but does not represent an array. The
function returns an error if the argument is not a valid JSON string.

Example
The following example uses the ARRAY_LENGTH(), ARRAY_ELEMENT(), and FIELD() functions to
return the last element of an array in a larger JSON string. The functions perform the following actions:

• Innermost, the FIELD() function extracts the JSON field "alerts", which is assumed to be an array, from
the column messages.

• ARRAY_LENGTH() determines the number of elements in the array.

• ARRAY_ELEMENT() returns the last element based on the value of ARRAY_LENGTH() minus one
(because the array positions are zero-based).

SELECT ARRAY_ELEMENT(FIELD(messages,'alerts'),
 ARRAY_LENGTH(FIELD(messages,'alerts'))-1) AS last_alert,
 station FROM reportlog
 WHERE station=?;

248

SQL Functions

ASTEXT()
ASTEXT() — Returns the Well Known Text (WKT) representation of a GEOGRAPHY or GEOGRA-
PHY_POINT value.

Syntax
ASTEXT(polygon | point)

Description
The ASTEXT() function returns a text string containing a Well Known Text (WKT) representation of a
GEOGRAPHY or GEOGRAPHY_POINT value. ASTEXT(value) produces the same results as calling
CAST(value AS VARCHAR).

Note that ASTEXT() does not return the identical text string that was originally input using POINTFROM-
TEXT() or POLYGONFROMTEXT(). When geospatial data is converted from WKT to its internal repre-
sentation, the string representations of longitude and latitude are converted to double floating point values.
Rounding and differing levels of precision may result in small differences in the stored values. The use
of spaces and capitalization may also vary between the original input strings and the computed output of
the ASTEXT() function.

Examples
The following SELECT statement uses the ASTEXT() function to return the WKT representation of a
GEOGRAPHY_POINT value in the column location.

SELECT name, ASTEXT(location) FROM city
 WHERE state = 'NY' ORDER BY name;

249

SQL Functions

AVG()
AVG() — Returns the average of a range of numeric column values.

Syntax
AVG(column-expression)

Description
The AVG() function returns the average of a range of numeric column values. The values being averaged
depend on the constraints defined by the WHERE and GROUP BY clauses.

Example
The following example returns the average price for each product category.

SELECT AVG(price), category FROM product_list
 GROUP BY category ORDER BY category;

250

SQL Functions

BIN()
BIN() — Returns the binary representation of a BIGINT value as a string.

Syntax
BIN(value)

Description
The BIN() function returns the binary representation of a BIGINT value as a string. The function will
return the shortest valid string representation, truncating any preceding zeros (except in the case of the
value zero, which is returned as the string "0").

Example
The following example use the BIN and BITAND functions to return the binary representations of two
BIGINT values and their binary intersection.

$ sqlcmd
1> create table bits (a bigint, b bigint);
2> insert into bits values(55,99);
3> select bin(a) as int1, bin(b) as int2,
4> bin(bitand(a,b)) as intersection from bits;
INT1 INT2 INTERSECTION
-------- --------- -------------
110111 1100011 100011

251

SQL Functions

BIT_SHIFT_LEFT()
BIT_SHIFT_LEFT() — Shifts the bits of a BIGINT value to the left a specified number of places.

Syntax
BIT_SHIFT_LEFT(value, offset)

Description
The BIT_SHIFT_LEFT() function shifts the bit values of a BIGINT value to the left the number of places
specified by offset. The offset must be a positive integer value. The unspecified bits to the right are padded
with zeros. So, for example, if the offset is 5, the left-most 5 bits are dropped, the remaining bits are shifted
5 places to the left, and the right-most 5 bits are set to zero. The result is returned as a new BIGINT value
— the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples
The following example shifts the bits in a BIGINT value three places to the left and displays the hexadec-
imal representation of both the initial value and the resulting value.

$ sqlcmd
1> create table bits (a bigint);
2> insert into bits values (112);
3> select hex(a), hex(bit_shift_left(a,3)) from bits;
C1 C2
-------- ---------
70 380

252

SQL Functions

BIT_SHIFT_RIGHT()
BIT_SHIFT_RIGHT() — Shifts the bits of a BIGINT value to the right a specified number of places.

Syntax
BIT_SHIFT_RIGHT(value, offset)

Description
The BIT_SHIFT_RIGHT() function shifts the bit values of a BIGINT value to the right the number of
places specified by offset. The offset must be a positive integer value. The unspecified bits to the left are
padded with zeros. So, for example, if the offset is 5, the right-most 5 bits are dropped, the remaining bits
are shifted 5 places to the right, and the left-most 5 bits are set to zero. The result is returned as a new
BIGINT value — the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples
The following example shifts the bits in a BIGINT value three places to the right and displays the hexa-
decimal representation of both the initial value and the resulting value.

$ sqlcmd
1> create table bits (a bigint);
2> insert into bits values (112);
3> select hex(a), hex(bit_shift_right(a,3)) from bits;
C1 C2
-------- -------
70 E

253

SQL Functions

BITAND()
BITAND() — Returns the mask of bits set in both of two BIGINT values

Syntax
BITAND(value, value)

Description
The BITAND() function returns the mask of bits set in both of two BIGINT integers. In other words, it
performs a bitwise AND operation on the two arguments. The result is returned as a new BIGINT value
— the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples
The following example writes values into two BIGINT columns of the table bits and then returns the
bitwise AND of the columns:

$ sqlcmd
1> create table bits (a bigint, b bigint);
2> insert into bits (a,b) values (7,13);
3> select bitand(a,b) from bits;
C1

 5

254

SQL Functions

BITNOT()
BITNOT() — Returns the mask reversing every bit of a BIGINT value.

Syntax
BITNOT(value)

Description
The BITNOT() function returns the mask reversing every bit in a BIGINT value. In other words, it performs
a bitwise NOT operation, returning the complement of the argument. The result is returned as a new
BIGINT value — the argument to the function is not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples
The following example writes a value into a BIGINT column of the table bits and then returns the bitwise
NOT of the column:

$ sqlcmd
1> create table bits (a bigint);
2> insert into bits (a) values (1234567890);
3> select bitnot(a) from bits;
C1

 -1234567891

255

SQL Functions

BITOR()
BITOR() — Returns the mask of bits set in either of two BIGINT values

Syntax
BITOR(value, value)

Description
The BITOR) function returns the mask of bits set in either of two BIGINT integers. In other words, it
performs a bitwise OR operation on the two arguments. The result is returned as a new BIGINT value —
the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples
The following example writes values into two BIGINT columns of the table bits and then returns the
bitwise OR of the columns:

$ sqlcmd
1> create table bits (a bigint, b bigint);
2> insert into bits (a,b) values (7,13);
3> select bitor(a,b) from bits;
C1

 15

256

SQL Functions

BITXOR()
BITXOR() — Returns the mask of bits set in one but not both of two BIGINT values

Syntax
BITXOR(value, value)

Description
The BITXOR() function returns the mask of bits set in one but not both of two BIGINT integers. In other
words, it performs a bitwise XOR operation on the two arguments. The result is returned as a new BIGINT
value — the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples
The following example writes values into two BIGINT columns of the table bits and then returns the
bitwise XOR of the columns:

$ sqlcmd
1> create table bits (a bigint, b bigint);
2> insert into bits (a,b) values (7,13);
3> select bitxor(a,b) from bits;
C1

 10

257

SQL Functions

CAST()
CAST() — Explicitly converts an expression to the specified datatype.

Syntax
CAST(expression AS datatype)

Description
The CAST() function converts an expression to a specified datatype. Cases where casting is beneficial
include when converting between numeric types (such as integer and float) or when converting a numeric
value to a string.

All numeric datatypes can be used as the source and numeric or string datatypes can be the target. When
converting from decimal values to integers, values are truncated. You can also cast from a TIMESTAMP
to a VARCHAR or from a VARCHAR to a TIMESTAMP, assuming the text string is formatted as YYYY-
MM-DD or YYYY-MM-DD HH:MM:SS.nnnnnnn. Where the runtime value cannot be converted (for ex-
ample, the value exceeds the maximum allowable value of the target datatype) an error is thrown.

You cannot use VARBINARY as either the target or the source datatype. To convert between numeric and
TIMESTAMP values, use the TO_TIMESTAMP(), FROM_UNIXTIME(), and EXTRACT() functions.

The result of the CAST() function of a null value is the corresponding null in the target datatype.

Example
The following example uses the CAST() function to ensure the result of an expression is also a floating
point number and does not truncate the decimal portion.

SELECT contestant, CAST((votes * 100) as FLOAT) / ? as percentage
 FROM contest ORDER BY votes, contestant;

258

SQL Functions

CEILING()
CEILING() — Returns the smallest integer value greater than or equal to a numeric expression.

Syntax
CEILING(numeric-expression)

Description
The CEILING() function returns the next integer greater than or equal to the specified numeric expression.
In other words, the CEILING() function "rounds up" numeric values. For example:

CEILING(3.1415) = 4
CEILING(2.0) = 2
CEILING(-5.32) = -5

Example
The following example uses the CEILING function to calculate the shipping costs for a product based on
its weight in the next whole number of pounds.

SELECT shipping.cost_per_lb * CEILING(product.weight),
 product.prod_id FROM product
 JOIN shipping ON product.prod_id=shipping.prod_id
 ORDER BY product.prod_id;

259

SQL Functions

CENTROID()
CENTROID() — Returns the central point of a polygon.

Syntax
CENTROID(polygon)

Description
The CENTROID() returns the central point of a GEOGRAPHY polygon. The centroid is the point where
any line passing through the centroid divides the polygon into two segments of equal area. The return value
of the CENTROID() function is a GEOGRAPHY_POINT value.

Note that the centroid may fall outside of the polygon itself. For example, if the polygon is a ring (that is,
a circle with an inner circle removed) or a horseshoe shape.

Example
The following example uses the CENTROID() and LATITUDE() functions to return a list of countries
where the majority of the land mass falls above the equator.

SELECT name, capital FROM country
 WHERE LATITUDE(CENTROID(outline)) > 0
 ORDER BY name, capital;

260

SQL Functions

CHAR()
CHAR() — Returns a string with a single UTF-8 character associated with the specified character code.

Syntax
CHAR(integer)

Description
The CHAR() function returns a string containing a single UTF-8 character that matches the specified
UNICODE character code. One use of the CHAR() function is to insert non-printing and other hard to
enter characters into string expressions.

Example
The following example uses CHAR() to add a copyright symbol into a VARCHAR field.

UPDATE book SET copyright_notice= CHAR(169) || CAST(? AS VARCHAR)
 WHERE isbn=?;

261

SQL Functions

CHAR_LENGTH()
CHAR_LENGTH() — Returns the number of characters in a string.

Syntax
CHAR_LENGTH(string-expression)

Description
The CHAR_LENGTH() function returns the number of text characters in a string.

Note that the number of characters and the amount of physical space required to store those characters can
differ. To measure the length of the string, in bytes, use the OCTET_LENGTH() function.

Example
The following example returns the string in the column LastName as well as the number of characters and
length in bytes of that string.

SELECT LastName, CHAR_LENGTH(LastName), OCTET_LENGTH(LastName)
 FROM Customers ORDER BY LastName, FirstName;

262

SQL Functions

COALESCE()
COALESCE() — Returns the first non-null argument, or null.

Syntax
COALESCE(expression [, ...])

Description
The COALESCE() function takes multiple arguments and returns the value of the first argument that is
not null, or — if all arguments are null — the function returns null.

Examples
The following example uses COALESCE to perform two functions:

• Replace possibly null column values with placeholder text

• Return one of several column values

In the second usage, the SELECT statement returns the value of the column State, Province, or Territory
depending on the first that contains a non-null value. Or the function returns a null value if none of the
columns are non-null.

SELECT lastname, firstname,
 COALESCE(address,'[address unkown]'),
 COALESCE(state, province, territory),
 country FROM users ORDER BY lastname;

263

SQL Functions

CONCAT()
CONCAT() — Concatenates two or more strings and returns the result.

Syntax
CONCAT(string-expression { , ... })

Description
The CONCAT() function concatenates two or more strings and returns the resulting string. The string
concatenation operator || performs the same function as CONCAT().

Example
The following example concatenates the contents of two columns as part of a SELECT expression.

SELECT price, CONCAT(category,part_name) AS full_part_name
 FROM product_list ORDER BY price;

The next example does something similar but uses the || operator as a shorthand to concatenate three strings,
two columns and a string constant, as part of a SELECT expression.

SELECT lastname || ', ' || firstname AS full_name
 FROM customers ORDER BY lastname, firstname;

264

SQL Functions

CONTAINS()
CONTAINS() — Returns true or false depending if a point falls within the specified polygon.

Syntax
CONTAINS(polygon, point)

Description
The CONTAINS() function determines if a given point falls within the specified GEOGRAPHY polygon.
If so, the function returns a boolean value of true. If not, it returns false.

Example
The following example uses the CONTAINS function to see if a specific user is with the boundaries of a
city or not by evaluating if the user.location GEOGRAPHY_POINT column value falls within the polygon
defined by the city.boundary GEOGRAPHY column.

SELECT user.name, user.id, city.name FROM user, city
 WHERE user.id = ? AND CONTAINS(city.boundary,user.location);

265

SQL Functions

COS()
COS() — Returns the cosine of an angle specified in radians.

Syntax
COS({numeric-expression})

Description
The COS() function returns the cosine of a specified angle as a FLOAT value. The angle must be specified
in radians as a numeric expression.

Example
The following example returns the sine, cosine, and tangent of angles from 0 to 90 degrees (where the
angle is specified in radians).

SELECT SIN(radians), COS(radians), TAN(radians)
 FROM triangles WHERE radians >= 0 AND radians <= PI()/2;

266

SQL Functions

COT()
COT() — Returns the cotangent of an angle specified in radians.

Syntax
COT({numeric-expression})

Description
The COT() function returns the cotangent of a specified angle as a FLOAT value. The angle must be
specified in radians as a numeric expression.

Examples
The following example returns the secant, cosecant, and cotangent of angles from 0 to 90 degrees (where
the angle is specified in radians).

SELECT SEC(radians), CSC(radians), COT(radians)
 FROM triangles WHERE radians >= 0 AND radians <= PI()/2;

267

SQL Functions

COUNT()
COUNT() — Returns the number of rows selected containing the specified column.

Syntax
COUNT(column-expression)

Description
The COUNT() function returns the number of rows selected for the specified column. Since the actual
value of the column is not used to calculate the count, you can use the asterisk (*) as a wildcard for any
column. For example the query SELECT COUNT(*) FROM widgets returns the number of rows in
the table widgets, without needing to know what columns the table contains.

The one case where the column name is significant is if you use the DISTINCT clause to constrain the
selection expression. For example, SELECT COUNT(DISTINCT last_name) FROM customer
returns the count of unique last names in the customer table.

Examples
The following example returns the number of rows where the product name starts with the captial letter A.

SELECT COUNT(*) FROM product_list
 WHERE product_name LIKE 'A%';

The next example returns the total number of unique product categories in the product list.

SELECT COUNT(DISTINCT category) FROM product_list;

268

SQL Functions

CSC()
CSC() — Returns the cosecant of an angle specified in radians.

Syntax
CSC({numeric-expression})

Description
The CSC() function returns the cosecant of a specified angle as a FLOAT value. The angle must be spec-
ified in radians as a numeric expression.

Examples
The following example returns the secant, cosecant, and cotangent of angles from 0 to 90 degrees (where
the angle is specified in radians).

SELECT SEC(radians), CSC(radians), COT(radians)
 FROM triangles WHERE radians >= 0 AND radians <= PI()/2;

269

SQL Functions

CURRENT_TIMESTAMP()
CURRENT_TIMESTAMP() — Returns the current time as a timestamp value.

Syntax
CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP

Description
The CURRENT_TIMESTAMP() function returns the current time as a VoltDB timestamp. The value of
the timestamp is determined when the query or stored procedure is invoked. Since there are no arguments
to the function, the parentheses following the function name are optional.

Several important aspects of how the CURRENT_TIMESTAMP() function operates are:

• The value returned is guaranteed to be identical for all partitions that execute the query.

• The value returned is measured in milliseconds then padded to create a timestamp value in microseconds.

• During command logging, the returned value is stored as part of the log, so when the command log is
replayed, the same value is used during the replay of the query.

• Similarly, for database replication (DR) the value returned is passed and reused by the replica database
when replaying the query.

• You can specify CURRENT_TIMESTAMP() as a default value in the CREATE TABLE statement
when defining the schema of a VoltDB database.

• The CURRENT_TIMESTAMP() function cannot be used in the CREATE INDEX or CREATE VIEW
statements.

The NOW() and CURRENT_TIMESTAMP() functions are synonyms and perform an identical function.

Example
The following example uses CURRENT_TIMESTAMP() in the WHERE clause to delete alert events that
occurred in the past:

DELETE FROM Alert_event WHERE event_timestamp < CURRENT_TIMESTAMP;

270

SQL Functions

DATEADD()
DATEADD() — Returns a new timestamp value by adding a specified time interval to an existing time-
stamp value.

Syntax
DATEADD(time-unit, interval, timestamp)

Description
The DATEADD() function creates a new TIMESTAMP value by adding (or subtracting for negative val-
ues) the specified time interval from another TIMESTAMP value. The first argument specifies the time
unit of the interval. The valid time unit keywords are:

• MICROSECOND (or MICROS)
• MILLISECOND (or MILLIS)
• SECOND
• MINUTE
• HOUR
• DAY
• MONTH
• QUARTER
• YEAR

The second argument is an integer value specifying the interval to add to the TIMESTAMP value. A
positive interval moves the time ahead. A negative interval moves the time value backwards. The third
argument specifies the TIMESTAMP value to which the interval is applied.

The DATEADD function takes into account leap years and the variable number of days in a month. There-
fore, if the year of either the specified timestamp or the resulting timestamp is a leap year, the day is ad-
justed to its correct value. For example, DATEADD(YEAR, 1, ‘2008-02-29’) returns ‘2009-02-28’. Sim-
ilarly, if the original timestamp is the last day of a month, then the resulting timestamp will be adjusted as
necessary. For example, DATEADD(MONTH, 1, ‘2008-03-31’) returns ‘2008-04-30’.

Example
The following example uses the DATEADD() function to find all records where the TIMESTAMP column,
incident, occurs within one day before a specified timestamp (entered as a POSIX time value).

SELECT incident, description FROM securityLog
 WHERE DATEADD(DAY, 1, incident) > FROM_UNIXTIME(?)
 AND incident < FROM_UNIXTIME(?)
 ORDER BY incident, description;

271

SQL Functions

DAY(), DAYOFMONTH()
DAY(), DAYOFMONTH() — Returns the day of the month as an integer value.

Syntax
DAY(timestamp-value)

DAYOFMONTH(timestamp-value)

Description
The DAY() function returns an integer value between 1 and 31 representing the timestamp's day of the
month. The DAY() and DAYOFMONTH() functions are synonyms. These functions produce the same
result as using the DAY or DAY_OF_MONTH keywords with the EXTRACT() function.

Examples
The following example uses the DAY(), MONTH(), and YEAR() functions to return a timestamp column
as a formatted date string.

SELECT CAST(MONTH(starttime) AS VARCHAR) || '/' ||
 CAST(DAY(starttime) AS VARCHAR) || '/' ||
 CAST(YEAR(starttime) AS VARCHAR), title, description
 FROM event ORDER BY starttime;

272

SQL Functions

DAYOFWEEK()
DAYOFWEEK() — Returns the day of the week as an integer between 1 and 7.

Syntax
DAYOFWEEK(timestamp-value)

Description
The DAYOFWEEK() function returns an integer value between 1 and 7 representing the day of the week
in a timestamp value. For the DAYOFTHEWEEK() function, the week starts (1) on Sunday and ends (7)
on Saturday.

This function produces the same result as using the DAY_OF_WEEK keyword with the EXTRACT()
function.

Examples
The following example uses DAYOFWEEK() and the DECODE() function to return a string value repre-
senting the day of the week for the specified TIMESTAMP value.

SELECT eventtime,
 DECODE(DAYOFWEEK(eventtime),
 1, 'Sunday',
 2, 'Monday',
 3, 'Tuesday',
 4, 'Wednesday',
 5, 'Thursday',
 6, 'Friday',
 7, 'Saturday') AS eventday
 FROM event ORDER BY eventtime;

273

SQL Functions

DAYOFYEAR()
DAYOFYEAR() — Returns the day of the year as an integer between 1 and 366.

Syntax
DAYOFYEAR(timestamp-value)

Description
The DAYOFYEAR() function returns an integer value between 1 and 366 representing the day of the year
of a timestamp value. This function produces the same result as using the DAY_OF_YEAR keyword with
the EXTRACT() function.

Examples
The following example uses the DAYOFYEAR() function to determine the number of days until an event
occurs.

SELECT DECODE(YEAR(NOW), YEAR(starttime),
 CAST(DAYOFYEAR(starttime) - DAYOFYEAR(NOW) AS VARCHAR)
 || ' days remaining',
 CAST(YEAR(starttime) - YEAR(NOW) AS VARCHAR)
 || ' years remaining'),
 eventname FROM event;

274

SQL Functions

DECODE()
DECODE() — Evaluates an expression against one or more alternatives and returns the matching response.

Syntax
DECODE(expression, { comparison-value, result } [,...] [,default-result])

Description
The DECODE() function compares an expression against one or more possible comparison values. If the
expression matches the comparison-value, the associated result is returned. If the expression does not
match any of the comparison values, the default-result is returned. If the expression does not match any
comparison value and no default result is specified, the function returns NULL.

The DECODE() function operates the same way an IF-THEN-ELSE, or CASE statement does in other
languages.

Example
The following example uses the DECODE() function to interpret a coded data column and replace it with
the appropriate meaning for each code.

SELECT title, industry, DECODE(salary_range,
 'A', 'under $25,000',
 'B', '$25,000 - $34,999',
 'C', '$35,000 - $49,999',
 'D', '$50,000 - $74,999',
 'E', '$75,000 - $99,000',
 'F', '$100,000 and over',
 'unspecified') from survey_results
 order by industry, title;

The next example tests a value against three columns and returns the name of the column when a match
is found, or a message indicating no match if none is found.

SELECT product_name, DECODE(?,product_name,'PRODUCT NAME',
 part_name, 'PART NAME',
 category, 'CATEGORY',
 'NO MATCH FOUND')
 FROM product_list ORDER BY product_name;

275

SQL Functions

DEGREES()
DEGREES() — Converts an angle in radians to degrees

Syntax
DEGREES(angle-in-radians)

Description
The DEGREES() function converts a floating-point value representing an angle measured in radians to
the equivalent angle measured in degrees.

Example
The following SELECT statement converts a column value stored in radians to degrees before returning
it to the user.

SELECT test_number, distance, DEGREES(angle) as angle_in_degrees
 FROM tests ORDER BY test_number;

276

SQL Functions

DISTANCE()
DISTANCE() — Returns the distance between two points or a point and a polygon.

Syntax
DISTANCE(point-or-polygon, point-or-polygon)

Description
The DISTANCE() function returns the distance, measured in meters, between two points or a point and a
polygon. The arguments to the function can be either two GEOGRAPHY_POINT values or a GEOGRA-
PHY_POINT and GEOGRAPHY value.

The DISTANCE() function accepts multiple datatypes for its two arguments, but there are constraints
on which combination of datatypes are allowed. For example, the two arguments cannot both be of type
GEOGRAPHY. Consequently, the VoltDB planner must know the datatype of the arguments when the
statement is compiled. So using generic, untyped placeholders for these arguments is not valid. This means
you cannot use syntax such as DISTANCE(?,?) in a stored procedure. However, you can use placeholders
as long as they are cast to specific types. For example:

DISTANCE(POINTFROMTEXT(?),POLYGONFROMTEXT(?))

Examples
The following example finds the closest city to a specified user, using the GEOGRAPHY_POINT column
user.location and the GEOGRAPHY column city.boundary.

SELECT TOP 1 user.name, city.name,
 DISTANCE(user.location, city.boundary)
 FROM user, city WHERE user.id = ?
 ORDER BY DISTANCE(user.location, city.boundary) ASC;

The next example finds the distance in kilometers from a truck to stores, listed in order with closest first,
using the two GEOGRAPHY_POINT columns truck.loc and store.loc.

SELECT store.address,
 DISTANCE(store.loc,truck.loc) / 1000 AS distance
 FROM store, truck WHERE truck.id = ?
 ORDER BY DISTANCE(store.loc,truck.loc)/1000 ASC;

277

SQL Functions

DWITHIN()
DWITHIN() — Returns true or false depending whether two geospatial entities are within a specified
distance of each other.

Syntax
DWITHIN(polygon-or-point, polygon-or-point, distance)

Description
The DWITHIN() function determines if two geospatial values are within the specified distance of each
other. The values can be two points (GEOGRAPHY_POINT) or a point and a polygon (GEOGRAPHY).
The maximum distance is specified as a numeric value measured in meters. If the distance between the
two geospatial values is less than or equal to the specified distance, the function returns true. If not, it
returns false.

The DWITHIN() function accepts multiple datatypes for its first two arguments, but there are constraints
on which combination of datatypes are allowed. For example, the two arguments cannot both be of type
GEOGRAPHY. Consequently, the VoltDB planner must know the datatype of the arguments when the
statement is compiled. So using generic, untyped placeholders for these arguments is not valid. This means
you cannot use syntax such as DWITHIN(?,?,?) in a stored procedure. However, you can use placeholders
as long as they are cast to specific types. For example:

DWITHIN(POINTFROMTEXT(?),POLYGONFROMTEXT(?), ?)

Examples
The following example finds all the cities within five kilometers of a given user, by evaluating the distance
between the GEOGRAPHY_POINT column user.loc and the GEOGRAPHY column city.boundary.

SELECT user.name, city.name, DISTANCE(user.loc, city.boundary)
 FROM user, city WHERE user.id=?
 AND DWITHIN(user.loc, city.boundary, 5000)
 ORDER BY DISTANCE(user.loc, city.boundary) ASC;

The next is a more generalized example, where the query returns all delivery trucks within a specified
distance of a store, where both the distance and the store ID are parameterized and can be input at runtime.

SELECT store.address, truck.license_number,
 DISTANCE(store.loc, truck.loc)/1000 AS distance_in_km
 FROM store, truck
 WHERE DWITHIN(store.loc, truck.loc, ?) and store.id=?
 ORDER BY DISTANCE(store.loc,truck.loc)/1000 ASC;

278

SQL Functions

EXP()
EXP() — Returns the exponential of the specified numeric expression.

Syntax
EXP(numeric-expression)

Description
The EXP() function returns the exponential of the specified numeric expression. In other words, EXP(x)
is the equivalent of the mathematical expression ex.

Example
The following example uses the EXP function to calculate the potential population of certain species of
animal projecting out ten years.

SELECT species, population AS current,
 (population/2.0) * EXP(10*(gestation/365.0)*litter) AS future
 FROM animals
 WHERE species = 'rabbit'
 ORDER BY population;

279

SQL Functions

EXTRACT()
EXTRACT() — Returns the value of a selected portion of a timestamp.

Syntax
EXTRACT(selection-keyword FROM timestamp-expression)

EXTRACT(selection-keyword, timestamp-expression)

Description
The EXTRACT() function returns the value of the selected portion of a timestamp. Table C.1, “Selectable
Values for the EXTRACT Function” lists the supported keywords, the datatype of the value returned by
the function, and a description of its contents.

Table C.1. Selectable Values for the EXTRACT Function

Keyword Datatype Description

YEAR INTEGER The year as a numeric value.

QUARTER TINYINT The quarter of the year as a single numeric value between 1
and 4.

MONTH TINYINT The month of the year as a numeric value between 1 and 12.

DAY TINYINT The day of the month as a numeric value between 1 and 31.

DAY_OF_MONTH TINYINT The day of the month as a numeric value between 1 and 31
(same as DAY).

DAY_OF_WEEK TINYINT The day of the week as a numeric value between 1 and 7, start-
ing with Sunday.

DAY_OF_YEAR SMALLINT The day of the year as a numeric value between 1 and 366.

WEEK TINYINT The week of the year as a numeric value between 1 and 52.

WEEK_OF_YEAR TINYINT The week of the year as a numeric value between 1 and 52
(same as WEEK).

WEEKDAY TINYINT The day of the week as a numeric value between 0 and 6, start-
ing with Monday.

HOUR TINYINT The hour of the day as a numeric value between 0 and 23.

MINUTE TINYINT The minute of the hour as a numeric value between 0 and 59.

SECOND DECIMAL The whole and fractional part of the number of seconds within
the minute as a floating point value between 0 and 60.

The timestamp expression is interpreted as a VoltDB timestamp; That is, time measured in microseconds.

Example
The following example lists all the contacts by name and birthday, listing the birthday as three separate
fields for month, day, and year.

SELECT Last_name, first_name, EXTRACT(MONTH FROM dateofbirth),

280

SQL Functions

 EXTRACT(DAY FROM dateofbirth), EXTRACT(YEAR FROM dateofbirth)
 FROM contact_list
 ORDER BY last_name, first_name;

281

SQL Functions

FIELD()
FIELD() — Extracts a field value from a JSON-encoded string column.

Syntax
FIELD(column, field-name-path)

Description
The FIELD() function extracts a field value from a JSON-encoded string. For example, assume the VAR-
CHAR column Profile contains the following JSON string:

{"first":"Charles","last":"Dickens","birth":1812,
 "description":{"genre":"fiction",
 "period":"Victorian",
 "output":"prolific",
 "children":["Charles","Mary","Kate","Walter","Francis",
 "Alfred","Sydney","Henry","Dora","Edward"]
 }
}

It is possible to extract individual field values using the FIELD() function, as in the following SELECT
statement:

SELECT FIELD(profile,'first') AS firstname,
 FIELD(profile,'last') AS lastname FROM Authors;

It is also possible to find records based on individual JSON fields by using the FIELD() function in the
WHERE clause. For example, the following query retrieves all records from the Authors table where the
JSON field birth is 1812. Note that the FIELD() function always returns a string, even if the JSON type is
numeric. The comparison must match the string datatype, so the constant '1812' is in quotation marks:

SELECT * FROM Authors WHERE FIELD(profile,'birth') = '1812';

The second argument to the FIELD() function can be a simple field name, as in the previous examples.
In which case the function returns a first-level field matching the specified name. Alternately, you can
specify a path representing a hierarchy of names separated by periods. For example, you can specify the
genre element of the description field by specifying "description.genre" as the second argument, like so

SELECT * FROM Authors WHERE
 FIELD(profile,'description.genre') = 'fiction';

You can also use array notation — with square brackets and an integer value — to identify array elements
by their position. So, for example, the function can return "Kate", the third child, by using the path spec-
ifier "description.children[2]", where "[2]" identifies the third array element because JSON arrays are ze-
ro-based.

Two important points to note concerning input to the FIELD() function:

• If the requested field name does not exist, the function returns a null value.

• The first argument to the FIELD() function must be a valid JSON-encoded string. However, the content
is not evaluated until the function is invoked at runtime. Therefore, it is the responsibility of the database

282

SQL Functions

application to ensure the validity of the content. If the FIELD() function encounters invalid content,
the query will fail.

Example
The following example uses the FIELD() function to both return specific JSON fields within a VARCHAR
column and filter the results based on the value of a third JSON field:

SELECT product_name, sku,
 FIELD(specification,'color') AS color,
 FIELD(specification,'weight') AS weight FROM Inventory
 WHERE FIELD(specification, 'category') = 'housewares'
 ORDER BY product_name, sku;

283

SQL Functions

FLOOR()
FLOOR() — Returns the largest integer value less than or equal to a numeric expression.

Syntax
FLOOR(numeric-expression)

Description
The FLOOR() function returns the largest integer less then or equal to the specified numeric expression.
In other words, the FLOOR() function truncates fractional numeric values. For example:

FLOOR(3.1415) = 3
FLOOR(2.0) = 2
FLOOR(-5.32) = -6

Example
The following example uses the FLOOR function to calculate the whole number of stocks owned by a
specific shareholder.

SELECT customer, company,
 FLOOR(num_of_stocks) AS stocks_available_for_sale
 FROM shareholders WHERE customer_id = ?
 ORDER BY company;

284

SQL Functions

FORMAT_CURRENCY()
FORMAT_CURRENCY() — Converts a DECIMAL to a text string as a monetary value.

Syntax
FORMAT_CURRENCY(decimal-value, rounding-position)

Description
The FORMAT_CURRENCY() function converts a DECIMAL value to its string representation, rounding
to the specified position. The resulting string is formatted with commas separating every three digits of
the whole portion of the number (indicating thousands, millions, and so on) and a decimal point before
the fractional portion, as needed.

The rounding-position argument must be an integer between 12 and -25 and indicates the place to which the
numeric value should be rounded. Positive values indicate a decimal place; for example 2 means round to
2 decimal places. Negative values indicate rounding to a whole number position; for example, -2 indicates
the number should be rounded to the nearest hundred. A zero indicates that the value should be rounded
to the nearest whole number.

Rounding is performed using "banker's rounding", in that any fractional half is rounded to the nearest even
number. So, for example, if the rounding-position is 2, the value 22.225 is rounded to 22.22, but the value
33.335 is rounded to 33.34. The following list demonstrates some sample results.

FORMAT_CURRENCY(.123456789, 4) = 0.1235
FORMAT_CURRENCY(123456789.123, 2) = 123,456,789.12
FORMAT_CURRENCY(123456789.123, 0) = 123,456,789
FORMAT_CURRENCY(123456789.123, -2) = 123,456,800
FORMAT_CURRENCY(123456789.123, -6) = 123,000,000
FORMAT_CURRENCY(123456789.123, 6) = 123,456,789.123000

Example
The following example uses the FORMAT_CURRENCY() function to return a DECIMAL column as a
string representation of its monetary value, rounding to two decimal places and appending the appropriate
currency symbol from a VARCHAR column.

SELECT country,
 currency_symbol || format_currency(budget,2) AS annual_budget
 FROM world_economy ORDER BY country;

285

SQL Functions

FORMAT_TIMESTAMP()
FORMAT_TIMESTAMP() — Takes a timestamp as input and returns a formatted string in the specified
timezone.

Syntax
FORMAT_TIMESTAMP(timestamp-value, timezone-or-offset)

Description
The FORMAT_TIMESTAMP() returns the timestamp input value as a formatted string in the speci-
fied timezone. VoltDB stores timestamps as a time value in Greenwich Mean Time (GMT). The FOR-
MAT_TIMESTAMP() function lets you return that value as a date and time string in a different timezone.
You can specify the timezone as a either an offset of GMT or as a region as described by the Internet
Assigned Numbers Authority (IANA) time zone database (tz). You can find a list of the IANA time zones
on the Wikipedia tz page.

Time zone names are case sensitive. Time offsets are specified as a time value preceded by a plus or minus
sign. The offset time value can be specified in hours (one or two digits); hours and minutes (four digits);
or hours, minutes, and seconds (six digits). You can optionally use colons to separate the time units. For
example, all of the following offsets specify the same amount of time — a positive offset of five hours:

+5
+05
+0500
+05:00
+050000
+05:00:00

Examples
The following example uses the FORMAT_TIMESTAMP() function to return a timestamp column as an
Eastern United States timezone date and time:

SELECT FORMAT_TIMESTAMP(e_time,'America/New_York'), e_log FROM event;

The next example uses an offset to go back 15 minutes:

SELECT FORMAT_TIMESTAMP(alarm.expires,'-00:15') AS warning FROM alarm;

The last example uses the FORMAT_TIMESTAMP() function to return timestamp values in the cus-
tomer's chosen timezone.

CREATE PROCEDURE get_reservation AS
 SELECT r.id,
 FORMAT_TIMESTAMP(r.departure,c.timezone) AS departure,
 FORMAT_TIMESTAMP(r.arrival,c.timezone) AS arrival
 FROM reservation AS r, customer AS c
 WHERE r.id = ?;

286

https://www.iana.org/time-zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

SQL Functions

FROM_UNIXTIME()
FROM_UNIXTIME() — Converts a UNIX time value to a VoltDB timestamp.

Syntax
FROM_UNIXTIME(integer-expression)

Description
The FROM_UNIXTIME() function converts an integer expression to a VoltDB timestamp, interpreting
the integer value as a POSIX time value; that is the number of seconds since the epoch (00:00.00 on
January 1, 1970 Consolidated Universal Time). This function is a synonym for TO_TIMESTAMP(second,
integer-expression).

Example
The following example inserts a record using FROM_UNIXTIME to convert the first argument, a POSIX
time value, into a VoltDB timestamp:

INSERT INTO event (e_when, e_what, e_where)
 VALUES (FROM_UNIXTIME(?),?,?);

287

SQL Functions

HEX()
HEX() — Returns the hexadecimal representation of a BIGINT value as a string.

Syntax
HEX(value)

Description
The HEX() function returns the hexadecimal representation of a BIGINT value as a string. The function
will return the shortest valid string representation, truncating any preceding zeros (except in the case of
the value zero, which is returned as the string "0").

Examples
The following example use the HEX and BITAND functions to return the hexadecimal representations of
two BIGINT values and their binary intersection.

$ sqlcmd
1> create table bits (a bigint, b bigint);
2> insert into bits values(555,999);
3> select hex(a) as int1, hex(b) as int2,
4> hex(bitand(a,b)) as intersection from bits;
INT1 INT2 INTERSECTION
-------- --------- -------------
22B 3E7 223

288

SQL Functions

HOUR()
HOUR() — Returns the hour of the day as an integer value.

Syntax
HOUR(timestamp-value)

Description
The HOUR() function returns an integer value between 0 and 23 representing the hour of the day in a time-
stamp value. This function produces the same result as using the HOUR keyword with the EXTRACT()
function.

Examples
The following example uses the HOUR(), MINUTE(), and SECOND() functions to return the time portion
of a TIMESTAMP value in a formatted string.

SELECT eventname,
 CAST(HOUR(starttime) AS VARCHAR) || ' hours, ' ||
 CAST(MINUTE(starttime) AS VARCHAR) || ' minutes, and ' ||
 CAST(SECOND(starttime) AS VARCHAR) || ' seconds.'
 AS timestring FROM event;

289

SQL Functions

INET6_ATON()
INET6_ATON() — Converts an IPv6 internet address from a string to a VARBINARY(16) value

Syntax
INET6_ATON({string})

Description
The INET6_ATON() function converts a VARCHAR value representing an IPv6 internet address in hex-
idecimal notation to a 16-byte VARBINARY value in network byte order. The VARCHAR value must
consist of up to eight hexidecimal values separated by colons, such as "2600:141b:4:290::2add", or a null
value. Note that in IPv6 addresses, two colons together ("::") can and should be used in place of two or
more consecutive zero values in the sequence.

You can use the INET6_NTOA() function to reverse the conversion or you can use the INET_ATON and
INET_NTOA functions to perform similar conversions on IPv4 addresses.

Example
The following example converts a string representation of an IPv6 internet address to a VARBINARY(16)
value before storing it in the Address table

INSERT INTO Address (v6ip, owner, date) VALUES (INET6_ATON(?),?,?);

290

SQL Functions

INET6_NTOA()
INET6_NTOA() — Converts an IPv6 internet address from a VARBINARY(16) value to a string

Syntax
INET_NTOA({binary-value})

Description
The INET6_NTOA() function converts a 16-byte VARBINARY value representing an IPv6 internet ad-
dress to its corresponding string representation as a VARCHAR value. Or, if the argument is null, the
function returns a null VARCHAR as the result.

You can use the INET6_ATON() function to perform the reverse operation, from a VARCHAR IPv6
address to a VARBINARY(16) value, or you can use the INET_ATON and INET_NTOA functions to
perform similar operations on IPv4 addresses.

Examples
The following example converts a VARBINARY(16) representation of an IPv6 internet address into its
string representation for output.

SELECT INET6_NTOA(v6ip), owner FROM Address
 WHERE owner=? ORDER BY v6ip;

291

SQL Functions

INET_ATON()
INET_ATON() — Converts an IPv4 internet address from a string to a numeric value

Syntax
INET_ATON({string})

Description
The INET_ATON() function converts a VARCHAR value representing an IPv4 internet address in dot
notation to a single BIGINT value. The VARCHAR value must consist of four integer values separated
by dots, such as "104.112.152.119", or a null value. The string representations of the integer values must
be between 0 and 256 and cannot contain any spaces or leading zeros. For example, string values of "0"
and "12" are valid but "012" is not.

You can use the INET_NTOA() function to reverse the conversion or you can use the INET6_ATON and
INET6_NTOA functions to perform similar conversions on IPv6 addresses.

Example
The following example converts a string representation of an internet address to a BIGINT value before
storing it in the Address table

INSERT INTO Address (ip, owner, date) VALUES (INET_ATON(?),?,?);

292

SQL Functions

INET_NTOA()
INET_NTOA() — Converts an IPv4 internet address from a numeric value to a string

Syntax
INET_NTOA({numeric-value})

Description
The INET_NTOA() function converts a BIGINT value representing an IPv4 internet address to its corre-
sponding dot representation as a VARCHAR value. Or, if the argument is null, the function returns a null
VARCHAR as the result.

You can use the INET_ATON() function to perform the reverse operation, from a VARCHAR IPv4 ad-
dress in dot notation to a BIGINT value, or you can use the INET6_ATON and INET6_NTOA functions
to perform similar operations on IPv6 addresses.

Examples
The following example converts a BIGINT representation of an internet address into its string represen-
tation for output.

SELECT INET_NTOA(ip), owner FROM Address
 WHERE owner=? ORDER BY ip;

293

SQL Functions

ISINVALIDREASON()
ISINVALIDREASON() — Explains why a GEOGRAPHY polygon is invalid

Syntax
ISINVALIDREASON(polygon)

Description
The ISINVALIDREASON() function returns a text string explaining if the specified GEOGRAPHY value
is valid or not and, if not, why not. The argument to the ISINVALIDREASON() function must be a GE-
OGRAPHY value describing a polygon. This function is especially useful when validating geospatial data.

Example
The following example uses the ISVALID() and ISINVALIDREASON() functions to report on any invalid
polygons in the border column of the country table.

SELECT country_name, ISINVALIDREASON(border)
 FROM Country WHERE NOT ISVALID(border);

294

SQL Functions

ISVALID()
ISVALID() — Determines if the specified GEOGRAPHY value is a valid polygon.

Syntax
ISVALID(polygon)

Description
The ISVALID() function returns true or false depending on whether the specified GEOGRAPHY value
is a valid polygon or not. Polygons must follow rules defined by the Open Geospatial Consortium (OGC)
standard for Well Known Text (WKT). Specifically:

• A GEOGRAPHY polygon consists of one or more rings, where a ring is a closed boundary described
by a sequence of vertices and the lines, or edges, between those vertices.

• The first ring must be the outer ring and the vertices must be listed in counter clockwise order.

• All subsequent rings represent "holes" in the outer ring. The inner rings must be wholly contained within
the outer ring and their vertices must be listed in clockwise order.

• Rings cannot intersect or have adjacent edges.

• The edges of an individual ring cannot cross (for example, a figure "8" is invalid).

• For each ring, the first vertex is listed twice: as both the first and last vertex.

If the specified GEOGRAPHY value is a valid polygon, the function returns true. If not, it returns false.

To maximize performance, VoltDB does not validate the GEOGRAPHY values when they are inserted.
However, if you are not sure the WKT strings are valid, you can use ISVALID() to validate the resulting
GEOGRAPHY values before inserting them or after they are inserted into the database.

Examples
The first example shows an UPDATE statement that uses the ISVALID() function to remove the contents
of a GEOGRAPHY column (by setting it to NULL), if the current contents are invalid.

UPDATE REGION SET border = NULL WHERE NOT ISVALID(border);

The next example shows part of a stored procedure that uses ISVALID() to conditionally set the value of a
column, mustbevalid, that is defined as NOT NULL. By setting the column valid to NULL, the procedure
ensures that the INSERT statement fails and the stored procedure rolls back if the WKT border column
is invalid.

public class ValidateBorders extends VoltProcedure {

 public final SQLStmt insertrec = new SQLStmt(
 "INSERT INTO REGION (name, border, mustbevalid)" +
 " SELECT name, border," +
 " CASE WHEN ISVALID(border) THEN 1 ELSE NULL END" +
 " FROM anothertable WHERE name = ? LIMIT 1;"

295

http://www.opengeospatial.org

SQL Functions

);

 public VoltTable[] run(String name)
 throws VoltAbortException
 { voltQueueSQL(insertrec, name); return voltExecuteSQL(); }
 }

296

SQL Functions

IS_VALID_TIMESTAMP()
IS_VALID_TIMESTAMP() — Identifies whether a given value is a valid timestamp.

Syntax
IS_VALID_TIMESTAMP(value)

Description
The IS_VALID_TIMESTAMP() function returns either true or false depending on whether the specified
value is a valid timestamp or not. The minimum valid timestamp equates to the beginning of the year 1583.
That is, the first microsecond of that year. The maximum valid timestamp equates to the last microsecond
of the year 9999.

Because TIMESTAMP values are stored and can be entered as an eight byte integer, it is possible to
enter a numeric value that is not actually a valid timestamp. The functions MIN_VALID_TIMESTAMP()
and MAX_VALID_TIMESTAMP() give you access to the valid minimum and maximum values. The
function IS_VALID_TIMESTAMP() compares a TIMESTAMP value and returns true or false depending
on whether the value falls within the valid range or not.

Example
The following example uses the TIMESTAMP functions to return an informational string for any event
records that contain an invalid timestamp value.

SELECT 'TIMESTAMP must be between ' ||
 CAST(MIN_VALID_TIMESTAMP() as VARCHAR) ||
 ' and ' ||
 CAST(MAX_VALID_TIMESTAMP() as VARCHAR),
 log_time,
 log_event
 FROM events WHERE NOT IS_VALID_TIMESTAMP(log_time);

297

SQL Functions

LATITUDE()
LATITUDE() — Returns the latitude of a GEOGRAPHY_POINT value.

Syntax
LATITUDE(point)

Description
The LATITUDE() function returns the latitude, as a floating point value, from a GEOGRAPHY_POINT
expression.

Example
The following example returns all ships that are located in the northern hemisphere by examining the
latitude of their current location.

SELECT ship.number, ship.country FROM ship
 WHERE LATITUDE(ship.location) > 0;

298

SQL Functions

LEFT()
LEFT() — Returns a substring from the beginning of a string.

Syntax
LEFT(string-expression, numeric-expression)

Description
The LEFT() function returns the first n characters from a string expression, where n is the second argument
to the function.

Example
The following example uses the LEFT function to return an abbreviation (the first three characters) of the
product category as part of the SELECT expression.

SELECT LEFT(category,3), product_name, price FROM product_list
 ORDER BY category, product_name;

299

SQL Functions

LN(), LOG()
LN(), LOG() — Returns the natural logarithm of a numeric value.

Syntax
LN(numeric-value)

LOG(numeric-value)

Description
The LN() function returns the natural logarithm of the specified input value. The log is returned as a
floating point (FLOAT) value. LN() and LOG() are synonyms and perform the same function.

Example
The following example uses the LN() function to calculate the rate of population growth from census data.

SELECT city, current_population,
 ((LN(current_population) - LN(base_population))
 / (current_year - base_year)
) * 100.0 AS percent_growth
 FROM census ORDER BY city;

300

SQL Functions

LOG10()
LOG10() — Returns the base-10 logarithm of a numeric value.

Syntax
LOG10(numeric-value)

Description
The LOG10() function returns the base-10, or decimal, logarithm of the specified input value. The log is
returned as a floating point (FLOAT) value.

Example
The following example uses the LOG10() function to calculate the magnitude of difference between two
values.

SELECT LOG10(YR2.profit/YR1.profit) AS Magnitude_of_growth
 FROM account AS YR1, account AS YR2
 WHERE YR1.fiscalyear=? AND YR2.fiscalyear=?;

301

SQL Functions

LONGITUDE()
LONGITUDE() — Returns the longitude of a GEOGRAPHY_POINT value.

Syntax
LONGITUDE(point)

Description
The LONGITUDE() function returns the longitude, as a floating point value, from a GEOGRA-
PHY_POINT expression.

Example
The following example returns all ships that are located in the western hemisphere by examining the
longitude of their current location.

SELECT ship.number, ship.country FROM ship
 WHERE LONGITUDE(ship.location) < 0
 AND LONGITUDE(ship.location) > -180;

302

SQL Functions

LOWER()
LOWER() — Returns a string converted to all lowercase characters.

Syntax
LOWER(string-expression)

Description
The LOWER() function returns a copy of the input string converted to all lowercase characters.

Example
The following example uses the LOWER function to perform a case-insensitive search of a VARCHAR
field.

SELECT product_name, product_id FROM product_list
 WHERE LOWER(product_name) LIKE 'acme%'
 ORDER BY product_name, product_id;

303

SQL Functions

MAKEVALIDPOLYGON()
MAKEVALIDPOLYGON() — Attempts to return a valid GEOGRAPHY value from a GEOGRAPHY
polygon

Syntax
MAKEVALIDPOLYGON(polygon)

Description
A common problem when generating polygons from Well Known Text (WKT) is listing the rings within
the polygon in the correct orientation. The vertices of the outer ring must be listed counter-clockwise,
while the vertices of the inner rings must be listed in a clockwise direction.

If you use the POLYGONFROMTEXT() function to create GEOGRAPHY values from WKT strings, the
rings can be individually correct but, if they are not oriented properly, the resulting polygon will not match
your intended geographic region. As a consequence, using the polygon in VoltDB geospatial functions,
such as CONTAINS() and DISTANCE(), will produce unexpected answers. You can use ISVALID() to
test if the polygon is valid, but ISVALID() simply tests correctness, it does not fix simple errors, such
as ring orientation.

MAKEVALIDPOLYGON() both tests the polygon and corrects any errors in ring orientation. The argu-
ment to the MAKEVALIDPOLYGON() function is a GEOGRAPHY object representing a polygon. The
output is another GEOGRAPHY object, identical to the input if the input is valid, or with the orientation
of the rings corrected if they are listed in the wrong direction. If there are any other issues with the polygon
that cannot be corrected (such as an incomplete ring or crossed lines), the function throws an error.

Example
The following example uses the MAKEVALIDPOLYGON() function to correct any potential orientation
issues with the location column in the country table.

UPDATE country SET boundaries = MAKEVALIDPOLYGON(boundaries);

304

SQL Functions

MAX()
MAX() — Returns the maximum value from a range of column values.

Syntax
MAX(column-expression)

Description
The MAX() function returns the highest value from a range of column values. The range of values depends
on the constraints defined by the WHERE and GROUP BY clauses.

Example
The following example returns the highest price in the product list.

SELECT MAX(price) FROM product_list;

The next example returns the highest price for each product category.

SELECT category, MAX(price) FROM product_list
 GROUP BY category
 ORDER BY category;

305

SQL Functions

MAX_VALID_TIMESTAMP()
MAX_VALID_TIMESTAMP() — Returns the maximum valid timestamp.

Syntax
MAX_VALID_TIMESTAMP()

MAX_VALID_TIMESTAMP

Description
The MAX_VALID_TIMESTAMP() function returns the maximum valid value for the VoltDB TIMES-
TAMP datatype. The minimum valid timestamp equates to the beginning of the year 1583. That is, the first
microsecond of that year. The maximum valid timestamp equates to the last microsecond of the year 9999.

Because TIMESTAMP values are stored and can be entered as an eight byte integer, it is possible to
enter a numeric value that is not actually a valid timestamp. The functions MIN_VALID_TIMESTAMP()
and MAX_VALID_TIMESTAMP() give you access to the valid minimum and maximum values. The
function IS_VALID_TIMESTAMP() compares a TIMESTAMP value and returns true or false depending
on whether the value falls within the valid range or not.

Since there are no arguments to the function, the parentheses following the function name are optional.

Example
The following example uses the TIMESTAMP functions to return an informational string for any event
records that contain an invalid timestamp value.

SELECT 'TIMESTAMP must be between ' ||
 CAST(MIN_VALID_TIMESTAMP() as VARCHAR) ||
 ' and ' ||
 CAST(MAX_VALID_TIMESTAMP() as VARCHAR),
 log_time,
 log_event
 FROM events WHERE NOT IS_VALID_TIMESTAMP(log_time);

306

SQL Functions

MIGRATING()
MIGRATING() — Identifies table rows currently migrating to an export target.

Syntax
MIGRATING()

MIGRATING

Description
The MIGRATING function identifies rows of a table that are currently being migrated to an export target.

If a table declaration includes the MIGRATE TO TARGET clause, when the migration is triggered (either
by the USING TTL clause or an explicit MIGRATE statement), the row's contents are queued for export
to the specified export target. Until the export is completed and acknowledged, the row remains in the
database but marked for deletion. Once the export is acknowledged, the row is deleted. The MIGRATING
function lets you identify rows that have expired but not completed the export action.

The MIGRATING function can only be used in the WHERE clause under the following conditions:

• The selection expression selects from only one table.

• The table in question is declared with MIGRATE TO TARGET.

Examples
The following example selects records for a particular customer where the records are currently being
migrated to an export target.

SELECT * FROM Requests WHERE customer=? AND MIGRATING;

The next example performs the opposite operation — selecting only those records that are not currently
being migrated.

SELECT * FROM Requests WHERE customer=? AND NOT MIGRATING;

307

SQL Functions

MIN()
MIN() — Returns the minimum value from a range of column values.

Syntax
MIN(column-expression)

Description
The MIN() function returns the lowest value from a range of column values. The range of values depends
on the constraints defined by the WHERE and GROUP BY clauses.

Example
The following example returns the lowest price in the product list.

SELECT MIN(price) FROM product_list;

The next example returns the lowest price for each product category.

SELECT category, MIN(price) FROM product_list
 GROUP BY category
 ORDER BY category;

308

SQL Functions

MIN_VALID_TIMESTAMP()
MIN_VALID_TIMESTAMP() — Returns the minimum valid timestamp.

Syntax
MIN_VALID_TIMESTAMP()

MIN_VALID_TIMESTAMP

Description
The MIN_VALID_TIMESTAMP() function returns the minimum valid value for the VoltDB TIMES-
TAMP datatype. The minimum valid timestamp equates to the beginning of the year 1583. That is, the first
microsecond of that year. The maximum valid timestamp equates to the last microsecond of the year 9999.

Because TIMESTAMP values are stored and can be entered as an eight byte integer, it is possible to
enter a numeric value that is not actually a valid timestamp. The functions MIN_VALID_TIMESTAMP()
and MAX_VALID_TIMESTAMP() give you access to the valid minimum and maximum values. The
function IS_VALID_TIMESTAMP() compares a TIMESTAMP value and returns true or false depending
on whether the value falls within the valid range or not.

Since there are no arguments to the function, the parentheses following the function name are optional.

Example
The following example uses the TIMESTAMP functions to return an informational string for any event
records that contain an invalid timestamp value.

SELECT 'TIMESTAMP must be between ' ||
 CAST(MIN_VALID_TIMESTAMP() as VARCHAR) ||
 ' and ' ||
 CAST(MAX_VALID_TIMESTAMP() as VARCHAR),
 log_time,
 log_event
 FROM events WHERE NOT IS_VALID_TIMESTAMP(log_time);

309

SQL Functions

MINUTE()
MINUTE() — Returns the minute of the hour as an integer value.

Syntax
MINUTE(timestamp-value)

Description
The MINUTE() function returns an integer value between 0 and 59 representing the minute of the hour
in a timestamp value. This function produces the same result as using the MINUTE keyword with the
EXTRACT() function.

Examples
The following example uses the HOUR(), MINUTE(), and SECOND() functions to return the time portion
of a TIMESTAMP value in a formatted string.

SELECT eventname,
 CAST(HOUR(starttime) AS VARCHAR) || ' hours, ' ||
 CAST(MINUTE(starttime) AS VARCHAR) || ' minutes, and ' ||
 CAST(SECOND(starttime) AS VARCHAR) || ' seconds.'
 AS timestring FROM event;

310

SQL Functions

MOD()
MOD() — Returns the result of a modulo operation.

Syntax
MOD(dividend, divisor)

Description
The MOD() function performs a modulo operation. That is, it divides one value, the dividend, by another
value, the divisor, and returns the remainder of the division operation as a new integer value. The sign of
the result, whether positive or negative, matches the sign of the first argument, the dividend.

Both the dividend and the divisor must either both be integer values or both be DECIMAL values and the
divisor must not be zero. Use of mixed input datatypes or a divisor of zero will result in a runtime error.
When using DECIMAL input values, the result is the integer portion of the remainder. In other words, the
decimal result is truncated and returned as an integer using the following formula:

MOD(a,b) = a - INT(a/b) * b

Example
The following example uses the HOUR() and MOD() functions to return the hour of a timestamp in 12
hour format

SELECT event,
 MOD(HOUR(eventtime)+11, 12)+1,
 CASE WHEN HOUR(eventtime)/12 < 1
 THEN 'AM'
 ELSE 'PM'
 END
 FROM schedule ORDER BY 3, 2;

311

SQL Functions

MONTH()
MONTH() — Returns the month of the year as an integer value.

Syntax
MONTH(timestamp-value)

Description
The MONTH() function returns an integer value between 1 and 12 representing the timestamp's month
of the year. The MONTH() function produces the same result as using the MONTH keyword with the
EXTRACT() function.

Examples
The following example uses the DAY(), MONTH(), and YEAR() functions to return a timestamp column
as a formatted date string.

SELECT CAST(MONTH(starttime) AS VARCHAR) || '/' ||
 CAST(DAY(starttime) AS VARCHAR) || '/' ||
 CAST(YEAR(starttime) AS VARCHAR), title, description
 FROM event ORDER BY starttime;

312

SQL Functions

NOW()
NOW() — Returns the current time as a timestamp value.

Syntax
NOW()

NOW

Description
The NOW() function returns the current time as a VoltDB timestamp. The value of the timestamp is
determined when the query or stored procedure is invoked. Since there are no arguments to the function,
the parentheses following the function name are optional.

Several important aspects of how the NOW() function operates are:

• The value returned is guaranteed to be identical for all partitions that execute the query.

• The value returned is measured in milliseconds then padded to create a timestamp value in microseconds.

• During command logging, the returned value is stored as part of the log, so when the command log is
replayed, the same value is used during the replay of the query.

• Similarly, for database replication (DR) the value returned is passed and reused by the replica database
when replaying the query.

• You can specify NOW() as a default value in the CREATE TABLE statement when defining the schema
of a VoltDB database.

• The NOW() function cannot be used in the CREATE INDEX or CREATE VIEW statements.

The NOW() and CURRENT_TIMESTAMP() functions are synonyms and perform an identical function.

Example
The following example uses NOW(0 in the WHERE clause to delete alert events that occurred in the past:

DELETE FROM Alert_event WHERE event_timestamp < NOW;

313

SQL Functions

NUMINTERIORRINGS()
NUMINTERIORRINGS() — Returns the number of interior rings within a polygon GEOGRAPHY value.

Syntax
NUMINTERIORRINGS(polygon)

Description
The NUMINTERIORRINGS() function returns the number of interior rings within a polygon GEOGRA-
PHY value. Polygon GEOGRAPHY values can contain multiple polygons: one and only one outer polygon
and one or more optional inner polygons that define "holes" in the outer polygon. The NUMINTERIOR-
RINGS() function counts the number of inner polygons and returns the result as an integer value.

Example
The following example lists the countries of the world based on the number of interior polygons within
the outline GEOGRAPHY column.

SELECT NUMINTERIORRINGS(outline), name, capital FROM country
 ORDER BY NUMINTERIORRINGS(outline);

314

SQL Functions

NUMPOINTS()
NUMPOINTS() — Returns the number of points within a polygon GEOGRAPHY value.

Syntax
NUMPOINTS(polygon)

Description
The NUMPOINTS() function returns the total number of points that comprise a polygon GEOGRAPHY
value. The number of points includes the points from both the outer polygon and any inner polygons. It
also includes all of the points defining the polygon. Which means the starting point for each polygon is
counted twice — once as the starting point and once and the ending point — because this is required in
the WKT representation of a polygon.

Example
The following example lists the countries of the world based on the number of points in their outlines.

SELECT NUMPOINTS(outline), name, capital FROM country
 ORDER BY NUMPOINTS(outline);

315

SQL Functions

OCTET_LENGTH()
OCTET_LENGTH() — Returns the number of bytes in a string.

Syntax
OCTET_LENGTH(string-expression)

Description
The OCTET_LENGTH() function returns the number of bytes of data in a string.

Note that the number of bytes required to store a string and the actual characters that make up the string
can differ. To count the number of characters in the string use the CHAR_LENGTH() function.

Example
The following example returns the string in the column LastName as well as the number of characters and
length in bytes of that string.

SELECT LastName, CHAR_LENGTH(LastName), OCTET_LENGTH(LastName)
 FROM Customers ORDER BY LastName, FirstName;

316

SQL Functions

OVERLAY()
OVERLAY() — Returns a string overwriting a portion of the original string with the specified replacement.

Syntax
OVERLAY(string PLACING replacement-string FROM position [FOR length])

Description
The OVERLAY() function overwrites a portion of the original string with the replacement string and
returns the result. The replacement starts at the specified position in the original string and either replaces
the characters one-for-one for the length of the replacement string or, if a FOR length is specified, replaces
the specified number of characters.

For example, if the original string is 12 characters in length, the replacement string is 3 characters in length
and starts at position 4, and the FOR clause is left off, the resulting string consists of the first 3 characters
of the original string, the replacement string, and the last 6 characters of the original string:

OVERLAY('abcdefghijkl' PLACING 'XYZ' FROM 4) = 'abcXYZghijkl'

If the FOR clause is included specifying that the replacement string replaces 6 characters, the result is the
first 3 characters of the original string, the replacement string, and the last 3 characters of the original string:

OVERLAY('abcdefghijkl' PLACING 'XYZ' FROM 4 FOR 6) = 'abcXYZjkl'

If the combination of the starting position and the replacement length exceed the length of the original
string, the resulting output is extended as necessary to include all of the replacement string:

OVERLAY('abcdef' PLACING 'XYZ' FROM 5) = 'abcdXYZ'

If the starting position is greater than the length of the original string, the replacement string is appended
to the original string:

OVERLAY('abcdef' PLACING 'XYZ' FROM 20) = 'abcdefXYZ'

Similarly, if the combination of the starting position and the FOR length is greater than the length of the
original string, the replacement string simply overwrites the remainder of the original string:

OVERLAY('abcdef' PLACING 'XYZ' FROM 2 FOR 20) = 'aXYZ'

The starting position and length must be specified as non-negative integers. The starting position must be
greater than zero and the length can be zero or greater.

Example
The following example uses the OVERLAY function to redact part of a name.

SELECT OVERLAY(fullname PLACING '****' FROM 2
 FOR CHAR_LENGTH(fullname)-2
) FROM users ORDER BY fullname;

317

SQL Functions

PI()
PI() — Returns the value of the mathematical constant pi (π) as a FLOAT value.

Syntax
PI()

PI

Description
The PI() function returns the value of the mathematical constant pi (π) as a double floating point (FLOAT)
value. Since there are no arguments to the function, the parentheses following the function name are op-
tional.

Example
The following example uses the PI() function to return the surface area of a sphere.

SELECT radius, 4*PI*POWER(radius, 2) FROM Sphere ORDER BY radius;

318

SQL Functions

POINTFROMTEXT()
POINTFROMTEXT() — Returns a GEOGRAPHY_POINT value from the corresponding WKT

Syntax
POINTFROMTEXT(string)

Description
The POINTFROMTEXT() function generates a GEOGRAPHY_POINT value from a string containing
a well known text (WKT) representation of a geographic point. The WKT string must be in the form
'POINT(longitude latitude)' where longitude and latitude are floating point values.

if the argument is not a valid WKT representation of a point, the function generates an error.

Example
The following example uses the POINTFROMTEXT() function to update a record containing a GEOG-
RAPHY_POINT column using two floating point input values (representing longitude and latitude).

UPDATE user SET location =
 POINTFROMTEXT(
 CONCAT('POINT(',CAST(? AS VARCHAR),' ',CAST(? AS VARCHAR),')')
)
 WHERE id = ?;

319

SQL Functions

POLYGONFROMTEXT()
POLYGONFROMTEXT() — Returns a GEOGRAPHY value from the corresponding WKT

Syntax
POLYGONFROMTEXT(text)

Description
The POLYGONFROMTEXT() function generates a GEOGRAPHY value from a string containing a well
known text (WKT) representation of a geographic polygon. The WKT string must be a valid representation
of a polygon with only one outer polygon and, optionally, one or more inner polygons.

if the argument is not a valid WKT representation of a polygon, the function generates an error.

Example
The following example uses the POLYGONFROMTEXT() function to insert a record containing a GE-
OGRAPHY column using a text input value containing the WKT representation of a geographic polygon.

INSERT INTO city (name, state, boundary) VALUES(?, ?, POLYGONFROMTEXT(?));

320

SQL Functions

POSITION()
POSITION() — Returns the starting position of a substring in another string.

Syntax
POSITION(substring-expression IN string-expression)

Description
The POSITION() function returns the starting position of a substring in another string. The position, if a
match is found, is an integer number between one and the length of the string being searched. If no match
is found, the function returns zero.

Example
The following example selects all books where the title contains the word "poodle" and returns the book's
title and the position of the substring "poodle" in the title.

SELECT Title, POSITION('poodle' IN Title) FROM Books
 WHERE Title LIKE '%poodle%' ORDER BY Title;

321

SQL Functions

POWER()
POWER() — Returns the value of the first argument raised to the power of the second argument.

Syntax
POWER(numeric-expression, numeric-expression)

Description
The POWER() function takes two numeric expressions and returns the value of the first raised to the power
of the second. In other words, POWER(x,y) is the equivalent of the mathematical expression xy.

Example
The following example uses the POWER function to return the surface area and volume of a cube.

SELECT length, 6 * POWER(length,2) AS surface,
 POWER(length,3) AS volume FROM Cube
 ORDER BY length;

322

SQL Functions

QUARTER()
QUARTER() — Returns the quarter of the year as an integer value

Syntax
QUARTER(timestamp-value)

Description
The QUARTER() function returns an integer value between 1 and 4 representing the quarter of the year
in a TIMESTAMP value. The QUARTER() function produces the same result as using the QUARTER
keyword with the EXTRACT() function.

Examples
The following example uses the QUARTER() and YEAR() functions to group and sort records containing
a timestamp.

SELECT year(starttime), quarter(starttime),
 count(*) as eventsperquarter
 FROM event
 GROUP BY year(starttime), quarter(starttime)
 ORDER BY year(starttime), quarter(starttime);

323

SQL Functions

RADIANS()
RADIANS() — Converts an angle in degrees to radians

Syntax
RADIANS(angle-in-degrees)

Description
The RADIANS() function converts a floating-point value representing an angle measured in degrees to
the equivalent angle measured in radians.

Example
The following INSERT statement converts input entered in degrees to radians before inserting the record
into the database.

INSERT INTO tests (test_number, distance, angle)
 VALUES (?, ?, RADIANS(?));

324

SQL Functions

REGEXP_POSITION()
REGEXP_POSITION() — Returns the starting position of a regular expression within a text string.

Syntax
REGEXP_POSITION(string, pattern [, flag])

Description
The REGEXP_POSITION() function returns the starting position of the first instance of the specified
regular expression within a text string. The position value starts at one (1) for the first position in the string
and the functions returns zero (0) if the regular expression is not found.

The first argument to the function is the VARCHAR character string to be searched. The second argument
is the regular expression pattern to look for. The third argument is an optional flag that specifies whether
the search is case sensitive or not. The flag must be single character VARCHAR with one of the following
values:

Flag Description

c Case-sensitive matching (default)

i Case-insensitive matching

There are several different formats for regular expressions. The REGEXP_POSITION() uses the revised
Perl compatible regular expression (PCRE2) syntax, which is described in detail on the PCRE website.

Examples
The following example uses the REGEXP_POSITION() to filter all records where the column description
matches a specific pattern. The examples uses the optional flag argument to make the pattern match text
regardless of case.

SELECT incident, description FROM securityLog
 WHERE REGEXP_POSITION(description,
 'host:\s*10\.186\.[0-9]+\.[0-9]+',
 'i') > 0
 ORDER BY incident;

325

http://www.pcre.org/current/doc/html/pcre2syntax.html

SQL Functions

REPEAT()
REPEAT() — Returns a string composed of a substring repeated the specified number of times.

Syntax
REPEAT(string-expression, numeric-expression)

Description
The REPEAT() function returns a string composed of the substring string-expression repeated n times
where n is defined by the second argument to the function.

Example
The following example uses the REPEAT and the CHAR_LENGTH functions to replace a column's actual
contents with a mask composed of the letter "X" the same length as the original column value.

SELECT username, REPEAT('X', CHAR_LENGTH(password)) as Password
 FROM accounts ORDER BY username;

326

SQL Functions

REPLACE()
REPLACE() — Returns a string replacing the specified substring of the original string with new text.

Syntax
REPLACE(string, substring, replacement-string)

Description
The REPLACE() function returns a copy of the first argument, replacing all instances of the substring
identified by the second argument with the third argument. If the substring is not found, no changes are
made and a copy of the original string is returned.

Example
The following example uses the REPLACE function to update the Address column, replacing the string
"Ceylon" with "Sri Lanka".

UPDATE Customers SET address=REPLACE(address,'Ceylon', 'Sri Lanka')
 WHERE address LIKE '%Ceylon%';

327

SQL Functions

RIGHT()
RIGHT() — Returns a substring from the end of a string.

Syntax
RIGHT(string-expression, numeric-expression)

Description
The RIGHT() function returns the last n characters from a string expression, where n is the second argument
to the function.

Example
The following example uses the LEFT() and RIGHT() functions to return an abbreviated summary of the
Description column, ensuring the result fits within 20 characters.

SELECT product_name,
 LEFT(description,10) || '...' || RIGHT(description,7)
 FROM product_list ORDER BY product_name;

328

SQL Functions

ROUND()
ROUND() — Returns a numeric value rounded to the specified decimal place

Syntax
ROUND(numeric-value, rounding-position)

Description
The ROUND() functions returns the input value rounded to the specific decimal place. The result is re-
turned as a DECIMAL value.

The numeric-value argument must be a FLOAT or DECIMAL value. The rounding-position argument
must be an integer between 12 and -25 and indicates the place to which the numeric value should be
rounded. Positive values indicate a decimal place; for example 2 means round to 2 decimal places. Negative
values indicate rounding to a whole number position; for example, -2 indicates the number should be
rounded to the nearest hundred. A zero indicates that the value should be rounded to the nearest whole
number.

Rounding is performed using "banker's rounding", in that any fractional half is rounded to the nearest even
number. So, for example, if the rounding-position is 2, the value 22.225 is rounded to 22.22, but the value
33.335 is rounded to 33.34. The following list demonstrates some sample results.

ROUND (.123456789, 4) = 0.123500000000
ROUND(123456789.123, 2) = 123456789.120000000000
ROUND(123456789.123, 0) = 123456789.000000000000
ROUND(123456789.123, -2) = 123456800.000000000000
ROUND(123456789.123, -6) = 123000000.000000000000
ROUND(123456789.123, 6) = 123456789.123000000000

Examples
The following example uses the ROUND() function to return a DECIMAL value, rounding the value of
the budget column to two decimal places.

SELECT country, ROUND(budget,2) AS annual_budget
 FROM world_economy ORDER BY country;

329

SQL Functions

SEC()
SEC() — Returns the secant of an angle specified in radians.

Syntax
SEC({numeric-expression})

Description
The SEC() function returns the secant of a specified angle as a FLOAT value. The angle must be specified
in radians as a numeric expression.

Examples
The following example returns the secant, cosecant, and cotangent of angles from 0 to 90 degrees (where
the angle is specified in radians).

SELECT SEC(radians), CSC(radians), COT(radians)
 FROM triangles WHERE radians >= 0 AND radians <= PI()/2;

330

SQL Functions

SECOND()
SECOND() — Returns the seconds of the minute as a floating point value.

Syntax
SECOND(timestamp-value)

Description
The SECOND() function returns an floating point value between 0 and 60 representing the whole and
fractional part of the number of seconds in the minute of a timestamp value. This function produces the
same result as using the SECOND keyword with the EXTRACT() function.

Examples
The following example uses the HOUR(), MINUTE(), and SECOND() functions to return the time portion
of a TIMESTAMP value in a formatted string.

SELECT eventname,
 CAST(HOUR(starttime) AS VARCHAR) || ' hours, ' ||
 CAST(MINUTE(starttime) AS VARCHAR) || ' minutes, and ' ||
 CAST(SECOND(starttime) AS VARCHAR) || ' seconds.'
 AS timestring FROM event;

331

SQL Functions

SET_FIELD()
SET_FIELD() — Returns a copy of a JSON-encoded string, replacing the specified field value.

Syntax
SET_FIELD(column, field-name-path, string-value)

Description
The SET_FIELD() function finds the specified field within a JSON-encoded string and returns a copy of
the string with the new value replacing that field's previous value. Note that the SET_FIELD() function
returns an altered copy of the JSON-encoded string — it does not change any column values in place. So
to change existing database columns, you must use SET_FIELD() with an UPDATE statement.

For example, assume the Product table contains a VARCHAR column Productinfo which for one row
contains the following JSON string:

{"product":"Acme widget",
 "availability":"plenty",
 "info": { "description": "A fancy widget.",
 "sku":"ABCXYZ",
 "part_number":1234},
 "warehouse":[{"location":"Dallas","units":25},
 {"location":"Chicago","units":14},
 {"location":"Troy","units":67}]
}

It is possible to change the value of the availability field using the SET_FIELD function, like so:

UPDATE Product SET Productinfo =
 SET_FIELD(Productinfo,'availability','"limited"')
 WHERE FIELD(Productinfo,'product') = 'Acme widget';

The second argument to the SET_FIELD() function can be a simple field name, as in the previous example,
In which case the function replaces the value of the top field matching the specified name. Alternately, you
can specify a path representing a hierarchy of names separated by periods. For example, you can replace
the SKU number by specifying "info.sku" as the second argument, or you can replace the number of units
in the second warehouse by specifying the field path "warehouse[1].units". For example, the following
UPDATE statement does both by nesting SET_FIELD commands:

UPDATE Product SET Productinfo =
 SET_FIELD(
 SET_FIELD(Productinfo,'info.sku','"DEFGHI"'),
 'warehouse[1].units', '128')
 WHERE FIELD(Productinfo,'product') = 'Acme widget';

Note that the third argument is the string value that will be inserted into the JSON-encoded string. To insert
a numeric value, you enclose the value in single quotation marks, as in the preceding example where '128'
is used as the replacement value for the warehouse[1].units field. To insert a string value, you must
include the string quotation marks within the replacement string itself. For example, the preceding code
uses the SQL string constant '"DEFGHI"' to specify the replacement value for the text field info.sku.

332

SQL Functions

Finally, the replacement string value can be any valid JSON value, including another JSON-encoded object
or array. It does not have to be a scalar string or numeric value.

Example
The following example uses the SET_FIELD() function to add a new array element to the warehouse field.

UPDATE Product SET Productinfo =
 SET_FIELD(Productinfo,'warehouse',
 '[{"location":"Dallas","units":25},
 {"location":"Chicago","units":14},
 {"location":"Troy","units":67},
 {"location":"Phoenix","units":23}]')
 WHERE FIELD(Productinfo,'product') = 'Acme widget';

333

SQL Functions

SIN()
SIN() — Returns the sine of an angle specified in radians.

Syntax
SIN({numeric-expression})

Description
The SIN() function returns the sine of a specified angle as a FLOAT value. The angle must be specified
in radians as a numeric expression.

Example
The following example returns the sine, cosine, and tangent of angles from 0 to 90 degrees (where the
angle is specified in radians).

SELECT SIN(radians), COS(radians), TAN(radians)
 FROM triangles WHERE radians >= 0 AND radians <= PI()/2;

334

SQL Functions

SINCE_EPOCH()
SINCE_EPOCH() — Converts a VoltDB timestamp to an integer number of time units since the POSIX
epoch.

Syntax
SINCE_EPOCH(time-unit, timestamp-expression)

Description
The SINCE_EPOCH() function converts a VoltDB timestamp into an 64-bit integer value (BIGINT) rep-
resenting the equivalent number since the POSIX epoch in a specified time unit. POSIX time is usually
represented as the number of seconds since the epoch; that is, since 00:00.00 on January 1, 1970 Consoli-
dated Universal Time (UTC). So the function SINCE_EPOCH(SECONDS, timestamp) returns the POSIX
time equivalent for the value of timestamp. However, you can also request the number of milliseconds or
microseconds since the epoch. The valid keywords for specifying the time units are:

• SECOND — Seconds since the epoch

• MILLISECOND, MILLIS — Milliseconds since the epoch

• MICROSECOND, MICROS — Microseconds since the epoch

You cannot perform arithmetic on timestamps directly. So SINCE_EPOCH() is useful for performing
calculations on timestamp values in SQL expressions. For example, the following SQL statement looks for
events that are less than a minute in length, based on the timestamp columns STARTTIME and ENDTIME:

SELECT * FROM Event
 WHERE (SINCE_EPOCH(Second, endtime)
 - SINCE_EPOCH(Second, starttime)) < 60;

The TO_TIMESTAMP() function performs the inverse of SINCE_EPOCH(), by converting an integer
value to a VoltDB timestamp based on the specified time units.

Example
The following example returns a timestamp column as the equivalent POSIX time value.

SELECT event_id, event_name,
 SINCE_EPOCH(Second, starttime) as posix_time FROM Event
 ORDER BY event_id;

The next example uses SINCE_EPOCH() to return the length of an event, in microseconds, by calculating
the difference between two timestamp columns.

SELECT event_id, event_type,
 SINCE_EPOCH(Microsecond, endtime)
 -SINCE_EPOCH(Microsecond, starttime) AS delta
 FROM Event ORDER BY event_id;

335

SQL Functions

SPACE()
SPACE() — Returns a string of spaces of the specified length.

Syntax
SPACE(numeric-expression)

Description
The SPACE() function returns a string composed of n spaces where the string length n is specified by the
function's argument. SPACE(n) is a synonym for REPEAT(' ', n).

Example
The following example uses the SPACE and CHAR_LENGTH functions to ensure the result is a fixed
length, padded with blank spaces.

 SELECT product_name || SPACE(80 - CHAR_LENGTH(product_name))
 FROM product_list ORDER BY product_name;

336

SQL Functions

SQRT()
SQRT() — Returns the square root of a numeric expression.

Syntax
SQRT(numeric-expression)

Description
The SQRT() function returns the square root of the specified numeric expression.

Example
The following example uses the SQRT and POWER functions to return the distance of a graph point from
the origin.

SELECT location, x, y,
 SQRT(POWER(x,2) + POWER(y,2)) AS distance
 FROM points ORDER BY location;

337

SQL Functions

STR()
STR() — Returns the string representation of a numeric value.

Syntax
STR(numeric-value [string-length [decimal-precision]])

Description
The STR() function returns a string representation of the numeric input. The first argument can be either
a FLOAT or DECIMAL value.

The optional second argument specifies the maximum size of the output string and must be an integer be-
tween 0 and 38. If the maximum string length is less than the number of characters required to represent the
numeric value, the resulting string is filled with asterisk (*) characters. The default length is 10 characters.

The optional third argument specifies the number of decimal places included in the output, which is spec-
ified as an integer between 0 and 12. If the numeric value requires more decimal places than specified, the
value is rounded using "banker's rounding". (See the description of the FORMAT_CURRENCY() func-
tion for a description of banker's rounding.) If the decimal precision is not specified, the value is rounded
and only the integer portion is returned.

Example
The following example uses STR() to return a percentage, rounded to two decimal places and including
the percent sign.

SELECT STR(100.0 * c.population / total_pop) || '%'
 FROM countries AS c,
 (SELECT SUM(population) AS total_pop FROM countries) as w
 WHERE c.name=?;

338

SQL Functions

SUBSTRING()
SUBSTRING() — Returns the specified portion of a string expression.

Syntax
SUBSTRING(string-expression FROM position [FOR length])

SUBSTRING(string-expression, position [, length])

Description
The SUBSTRING() function returns a specified portion of the string expression, where position specifies
the starting position of the substring (starting at position 1) and length specifies the maximum length of
the substring. The length of the returned substring is the lower of the remaining characters in the string
expression or the value specified by length.

For example, if the string expression is "ABCDEF" and position is specified as 3, the substring starts with
the character "C". If length is also specified as 3, the return value is "CDE". If, however, the length is
specified as 5, only the remaining four characters "CDEF" are returned.

If length is not specified, the remainder of the string, starting from the specified by position, is returned.
For example, SUBSTRING("ABCDEF",3) and SUBSTRING("ABCDEF"3,4) return the same value.

Example
The following example uses the SUBSTRING function to return the month of the year, which is a VAR-
CHAR column, as a three letter abbreviation.

SELECT event, SUBSTRING(month,1,3), day, year FROM calendar
 ORDER BY event ASC;

339

SQL Functions

SUM()
SUM() — Returns the sum of a range of numeric column values.

Syntax
SUM(column-expression)

Description
The SUM() function returns the sum of a range of numeric column values. The values being added together
depend on the constraints defined by the WHERE and GROUP BY clauses.

Example
The following example uses the SUM() function to determine how much inventory exists for each product
type in the catalog.

SELECT category, SUM(quantity) AS inventory FROM product_list
 GROUP BY category ORDER BY category;

340

SQL Functions

TAN()
TAN() — Returns the tangent of an angle specified in radians.

Syntax
TAN({numeric-expression})

Description
The TAN() function returns the tangent of a specified angle as a FLOAT value. The angle must be specified
in radians as a numeric expression.

Example
The following example returns the sine, cosine, and tangent of angles from 0 to 90 degrees (where the
angle is specified in radians).

SELECT SIN(radians), COS(radians), TAN(radians)
 FROM triangles WHERE radians >= 0 AND radians <= PI()/2;

341

SQL Functions

TO_TIMESTAMP()
TO_TIMESTAMP() — Converts an integer value to a VoltDB timestamp based on the time unit specified.

Syntax
TO_TIMESTAMP(time-unit, integer-expression)

Description
The TO_TIMESTAMP() function converts an integer expression to a VoltDB timestamp, interpreting the
integer value as the number of specified time units since the POSIX epoch. POSIX time is usually repre-
sented as the number of seconds since the epoch; that is, since 00:00.00 on January 1, 1970 Consolidat-
ed Universal Time (UTC). So the function TO_TIMESTAMP(Second, timeinsecs) returns the VoltDB
TIMESTAMP equivalent of timeinsecs as a POSIX time value. However, you can also request the integer
value be interpreted as milliseconds or microseconds since the epoch. The valid keywords for specifying
the time units are:

• SECOND — Seconds since the epoch

• MILLISECOND. MILLIS — Milliseconds since the epoch

• MICROSECOND, MICROS — Microseconds since the epoch

You cannot perform arithmetic on timestamps directly. So TO_TIMESTAMP() is useful for converting the
results of arithmetic expressions to VoltDB TIMESTAMP values. For example, the following SQL state-
ment uses TO_TIMESTAMP to convert a POSIX time value before inserting it into a VoltDB TIMES-
TAMP column:

INSERT INTO Event
 (event_id,event_name,event_type, starttime)
 VALUES(?,?,?,TO_TIMESTAMP(Second, ?));

The SINCE_EPOCH() function performs the inverse of TO_TIMESTAMP(), by converting a VoltDB
TIMESTAMP to an integer value based on the specified time units.

Example
The following example updates a TIMESTAMP column, adding one hour (in seconds) to the current value
using SINCE_EPOCH() and TO_TIMESTAMP() to perform the conversion and arithmetic:

UPDATE Contest
 SET deadline=TO_TIMESTAMP(Second, SINCE_EPOCH(Second,deadline) + 3600)
 WHERE expired=1;

342

SQL Functions

TRIM()
TRIM() — Returns a string with leading and/or training spaces removed.

Syntax
TRIM([[LEADING | TRAILING | BOTH] [character] FROM] string-expression)

Description
The TRIM() function returns a string with leading and/or trailing spaces removed. By default, the TRIM
function removes spaces from both the beginning and end of the string. If you specify the LEADING or
TRAILING clause, spaces are removed from either the beginning or end of the string only.

You can also specify an alternate character to remove. By default only spaces (UTF-8 character code 32)
are removed. If you specify a different character, only that character will be removed. For example, the
following INSERT statement uses the TRIM function to remove any TAB characters from the beginning
of the string input for the ADDRESS column:

INSERT INTO Customers (first, last, address)
 VALUES(?, ?,
 TRIM(LEADING CHAR(9) FROM CAST(? AS VARCHAR))
);

Example
The following example uses TRIM() to remove extraneous leading and trailing spaces from the output for
three VARCHAR columns:

SELECT TRIM(first), TRIM(last), TRIM(address) FROM Customer
 ORDER BY last, first;

343

SQL Functions

TRUNCATE()
TRUNCATE() — Truncates a VoltDB timestamp to the specified time unit.

Syntax
TRUNCATE(time-unit, timestamp)

Description
The TRUNCATE() function truncates a timestamp value to the specified time unit. For example, if the
timestamp column Apollo has the value July 20, 1969 4:17:40 P.M, then using the function TRUN-
CATE(hour,apollo) would return the value July 20, 1969 4:00:00 P.M. Allowable time units for truncation
include the following:

• YEAR
• QUARTER
• MONTH
• DAY
• HOUR
• MINUTE
• SECOND
• MILLISECOND, MILLIS

Example
The following example uses the TRUNCATE function to find records where the timestamp column, inci-
dent, falls within a specific day, entered as a POSIX time value.

SELECT incident, description FROM securitylog
 WHERE TRUNCATE(DAY, incident) = TRUNCATE(DAY,FROM_UNIXTIME(?))
 ORDER BY incident, description;

344

SQL Functions

UPPER()
UPPER() — Returns a string converted to all uppercase characters.

Syntax
UPPER(string-expression)

Description
The UPPER() function returns a copy of the input string converted to all uppercase characters.

Example
The following example uses the UPPER function to return results alphabetically regardless of case.

SELECT UPPER(product_name), product_id FROM product_list
 ORDER BY UPPER(product_name);

345

SQL Functions

VALIDPOLYGONFROMTEXT()
VALIDPOLYGONFROMTEXT() — Returns a validated GEOGRAPHY value from the corresponding
WKT

Syntax
VALIDPOLYGONFROMTEXT(text)

Description
The VALIDPOLYGONFROMTEXT() function generates a valid GEOGRAPHY value from a string con-
taining a well known text (WKT) representation of a geographic polygon. If the GEOGRAPHY value re-
sulting from the WKT string cannot be made into a valid representation of a polygon, the function returns
an error. The error message includes an explanation of why the WKT is not valid. If the polygon is valid
except the rings are drawn in the wrong direction (that is, the outer ring is clockwise or the inner rings
are counterclockwise), the VALIDPOLYGONFROMTEXT() function will correct the rings and generate
a valid polygon.

The difference between the POLYGONFROMTEXT() function and the VALIDPOLYGONFROM-
TEXT() function is that the VALIDPOLYGONFROMTEXT() verifies that the resulting polygon meets
all of the requirements for use by VoltDB. If a valid polygon cannot be generated, the VALIDPOLY-
GONFROMTEXT() function returns an error. The POLYGONFROMTEXT() function, on the other hand,
simply constructs a GEOGRAPHY value without validating all of the requirements of a VoltDB polygon
and may need separate validation (using the ISVALID() or MAKEVALIDPOLYGON() function) before
it can be used effectively with other geospatial functions. See the description of the ISVALID() function
for a description of the requirements for a valid polygon.

Example
The following example uses the VALIDPOLYGONFROMTEXT() function to insert a record containing
a GEOGRAPHY column using a text input value containing the WKT representation of a geographic
polygon. Note that if

INSERT INTO city (name, state, boundary)
 VALUES(?, ?, VALIDPOLYGONFROMTEXT(?));

346

SQL Functions

WEEK(), WEEKOFYEAR()
WEEK(), WEEKOFYEAR() — Returns the week of the year as an integer value.

Syntax
WEEK(timestamp-value)

WEEKOFYEAR(timestamp-value)

Description
The WEEK() and WEEKOFYEAR() functions are synonyms and return an integer value between 1 and
52 representing the timestamp's week of the year. These functions produce the same result as using the
WEEK_OF_YEAR keyword with the EXTRACT() fucntion.

Examples
The following example uses the WEEK() function to group and sort records containing a timestamp.

SELECT week(starttime), count(*) as eventsperweek
 FROM event GROUP BY week(starttime) ORDER BY week(starttime);

347

SQL Functions

WEEKDAY()
WEEKDAY() — Returns the day of the week as an integer between 0 and 6.

Syntax
WEEKDAY(timestamp-value)

Description
The WEEKDAY() function returns an integer value between 0 and 6 representing the day of the week in a
timestamp value. For the WEEKDAY() function, the week starts (0) on Monday and ends (6) on Sunday.

This function is provided for compatibility with MySQL and produces the same result as using the WEEK-
DAY keyword with the EXTRACT() function.

Examples
The following example uses WEEKDAY() and the DECODE() function to return a string value represent-
ing the day of the week for the specified TIMESTAMP value.

SELECT eventtime,
 DECODE(WEEKDAY(eventtime),
 0, 'Monday',
 1, 'Tuesday',
 2, 'Wednesday',
 3, 'Thursday',
 4, 'Friday',
 5, 'Saturday',
 6, 'Sunday') AS eventday
 FROM event ORDER BY eventtime;

348

SQL Functions

YEAR()
YEAR() — Returns the year as an integer value.

Syntax
YEAR(timestamp-value)

Description
The YEAR() function returns an integer value representing the year of a TIMESTAMP value. The YEAR()
function produces the same result as using the YEAR keyword with the EXTRACT() function.

Examples
The following example uses the DAY(), MONTH(), and YEAR() functions to return a timestamp column
as a formatted date string.

SELECT CAST(MONTH(starttime) AS VARCHAR) || '/' ||
 CAST(DAY(starttime) AS VARCHAR) || '/' ||
 CAST(YEAR(starttime) AS VARCHAR), title, description
 FROM event ORDER BY starttime;

349

Appendix D. VoltDB CLI Commands
VoltDB provides shell or CLI (command line interpreter) commands to perform common functions for
developing, starting, and managing VoltDB applications and databases. This appendix describes those
shell commands in detail.

The commands are listed in alphabetical order.

• csvloader
• jdbcloader
• kafkaloader
• sqlcmd
• voltadmin
• voltdb

Using CLI Commands with TLS/SSL
When TLS (Transport Layer Security) encryption is enabled for the cluster external ports (that is, the client
and admin ports, not just the httpd port), you must explicitly tell VoltDB CLI commands that interact with
a running cluster to use TLS. The simplest way to do this, if you are using a certificate from an external
certificate authority, is to include the --ssl flag on the command line. For example:

$ sqlcmd --ssl

Alternately, if you are using a locally generated certificate, you must specify an Java properties file that
points to the trust store as an argument to the flag, like so:

$ sqlcmd --ssl=mytruststore.conf

The properties file verifies that the database server is passing credentials that you trust. That is, credentials
that match the trust store you reference. The format of file is a Java properties files declaring two properties,
one per line, that identify the trust store and trust store password:

trustStore={path-to-trust-store}
trustStorePassword={trust-store password}

See Section 12.7, “Encrypting VoltDB Communication Using TLS/SSL” for more information on config-
uring TLS encryption on the external ports.

350

VoltDB CLI Commands

csvloader
csvloader — Imports the contents of a CSV file and inserts it into a VoltDB table.

Syntax
csvloader table-name [arguments]

csvloader -p procedure-name [arguments]

Description
The csvloader command reads comma-separated values and inserts each valid line of data into the specified
table in a VoltDB database. The most common way to use csvloader is to specify the database table to be
loaded and a CSV file containing the data, like so:

$ csvloader employees -f acme_employees.csv

Alternately, you can use standard input as the source of the data:

$ csvloader employees < acme_employees.csv

In addition to inserting all valid content into the specified database table, csvloader creates three output
files:

• Error log — The error log provides details concerning any errors that occur while processing the input
file. This includes errors in the format of the input as well as errors that occur attempting the insert into
VoltDB. For example, if two rows contain the same value for a column that is declared as unique, the
error log indicates that the second insert fails due to a constraint violation.

• Failed input — A separate file contains the contents of each line that failed to load. This file is useful
because it allows you to correct any formatting issues and retry just the failed content, rather than having
to restart and reload the entire table.

• Summary report — Once all input lines are processed, csvloader generates a summary report listing
how many lines were read, how many were successfully loaded and how long the operation took.

All three files are created, by default, in the current working directory using "csvloader" and the table
name as prefixes. For example, using csvloader to insert contestants into the sample voter database creates
the following files:

csvloader_contestants_insert_log.log
csvloader_contestants_invalidrows.csv
csvloader_contestants_insert_report.log

It is possible to use csvloader to load text files other than CSV files, using the --separator, --
quotechar, and --escape flags. Note that csvloader uses Python to process the command line argu-
ments. So to enter certain non-alphanumeric characters, you must use the appropriate escaping mechanism
for Python command lines. For example, to use a tab-delimited file as input, you need to use the --sep-
arator flag, escaping the tab character like so:

$ csvloader --separator=$'\t' \

351

VoltDB CLI Commands

 -f employees.tab employees

It is also important to note that, unlike VoltDB native clients, when interpreting string values for TIMES-
TAMP columns, csvloader evaluates the value in the local timezone. That is, the timezone set by the local
system. To have string values interpreted as Greenwich Mean Time, set the system variable TZ to "GMT"
prior to invoking the csvloader. For example:

$ export TZ=GMT; csvloader employees -f employees.csv

Arguments
--batch {integer}

Specifies the number of rows to submit in a batch. If you do not specify an insert procedure, rows of
input are sent in batches to maximize overall throughput. You can specify how many rows are sent
in each batch using the --batch flag. The default batch size is 200. If you use the --procedure
flag, no batching occurs and each row is sent separately.

--blank {error | null | empty }
Specifies what to do with missing values in the input. By default, if a line contains a missing value,
it is interpreted as a null value in the appropriate datatype. If you do not want missing values to
be interpreted as nulls, you can use the --blank argument to specify other behaviors. Specifying --
blank error results in an error if a line contains any missing values and the line is not inserted.
Specifying --blank empty returns the corresponding "empty" value in the appropriate datatype.
An empty value is interpreted as the following:

• Zero for all numeric columns

• Zero, or the Unix epoch value, for timestamp columns

• An empty or zero-length string for VARCHAR and VARBINARY columns

-c, --charset {character-set}
Specifies the character set of the input file. The default character set is UTF-8.

--columnsizelimit {integer}
Specifies the maximum size of quoted column input, in bytes. Mismatched quotation marks in the
input can cause csvloader to read all subsequent input — including line breaks — as part of the column.
To avoid excessive memory use in this situation, the flag sets a limit on the maximum number of bytes
that will be accepted as input for a column that is enclosed in quotation marks and spans multiple
lines. The default is 16777216 (that is, 16MB).

--credentials={properties-file}
Specifies a file that lists the username and password of the account to use when connecting to a
database with security enabled. This is useful when writing shell scripts because it avoids having to
hardcode the password as plain text in the script. The credentials file is interpreted as a Java properties
file defining the properties username and password. For example:

username: johndoe
password: 4tUn8

Because it is a Java properties file, you must escape certain special characters in the username or
password, including the colon or equals sign.

--escape {character}
Specifies the escape character that must precede a separator or quotation character that is supposed to
be interpreted as a literal character in the CSV input. The default escape character is the backslash (\).

352

VoltDB CLI Commands

-f, --file {file-specification}
Specifies the location of a CSV file to read as input. If you do not specify an input file, csvloader
reads input from standard input.

--header
Specifies that the first line of the CSV file is a header row, containing the names of the columns. The
column names must match columns in the VoltDB table. However, by using --header, the columns
can appear in a different order in the CSV file from the order in the database schema. Note that you
must specify all of the table column names in the header. The arguments --header and --procedure
are mutually exclusive.

--kerberos={service-name}
Specifies the use of kerberos authentication when connecting to the database server(s). The service
name identifies the Kerberos client service module, as defined by the JAAS login configuration file.

--limitrows {integer}
Specifies the maximum number of rows to be read from the input stream. This argument (along with
--skip) lets you load a subset of a larger CSV file.

-m, --maxerrors {integer}
Specifies the target number of errors before csvloader stops processing input. Once csvloader encoun-
ters the specified number of errors while trying to insert rows, it will stop reading input and end the
process. Note that, since csvloader performs inserts asynchronously, it often attempts more inserts
before the target number of exceptions are returned from the database. So it is possible more errors
could be returned after the target is met. This argument lets you conditionally stop a large loading
process if more than an acceptable number of errors occur.

--noquotechar
Disables the interpretation of quotation characters in the CSV input. All input other than the separator
character and line break will be treated as literal input characters.

--nowhitespace
Specifies that the CSV input must not contain any whitespace between data values and separators. By
default, csvloader ignores extra space between values, quotation marks, and the value separators. If
you use this argument, any input lines containing whitespace will generate an error and not be inserted
into the database.

--password {text}
Specifies the password to use when connecting to the database. You must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument
but not the --password argument, VoltDB prompts for the password. This is useful when writing shell
scripts because it avoids having to hardcode passwords as plain text in the script.

--port {port-number}
Specifies the network port to use when connecting to the database. If you do not specify a port,
csvloader uses the default client port 21212.

-p, --procedure {procedure-name}
Specifies a stored procedure to use for loading each record from the data file. The named procedure
must exist in the database schema and must accept the fields of the data record as input parameters.
By default, csvloader uses a custom procedure to batch multiple rows into a single insert operation.
If you explicitly name a procedure, batching does not occur.

--quotechar {character}
Specifies the quotation character that is used to enclose values. By default, the quotation character is
the double quotation mark (").

353

VoltDB CLI Commands

-r, --reportdir {directory}
Specifies the directory where csvloader writes the three output files. By default, csvloader writes
output files to the current working directory. This argument lets you redirect output to an alternative
location.

--s, --servers {server-id}[,...]
Specifies the network address of one or more nodes of a database cluster. When specifying an IPv6
address, enclose the address in square brackets. By default, csvloader attempts to insert the CSV data
into a database on the local system (localhost). To load data into a remote database, use the --servers
argument to specify the database nodes the loader should connect to.

--separator {charactor}
Specifies the character used to separate individual values in the input. By default, the separator char-
acter is the comma (,).

--skip {integer}
Specifies the number of lines from the input stream to skip before inserting rows into the database.
This argument (along with --limitrows) lets you load a subset of a larger CSV file.

--ssl[=ssl-config-file]
Specifies the use of TLS encryption when communicating with the server. Only necessary if the cluster
is configured to use TLS encryption for the external ports. See Section D, “Using CLI Commands
with TLS/SSL” for more information.

--stopondisconnect
Specifies that if connections to all of the VoltDB servers are broken, the loader will stop. Normally,
if the connection to the database is lost, csvloader periodically attempts to reconnect until the servers
come back online and it can complete the loading process. However, you can use this argument to
have the loader process stop if the VoltDB cluster becomes unavailable.

--strictquotes
Specifies that all values in the CSV input must be enclosed in quotation marks. If you use this argu-
ment, any input lines containing unquoted values will generate an error and not be inserted into the
database.

--update
Specifies that existing records with a matching primary key are updated, rather than being rejected. By
default, csvloader attempts to create new records. The --update flag lets you load updates to existing
records — and create new records where the primary key does not already exist. To use --update, the
table must have a primary key.

--user {text}
Specifies the username to use when connecting to the database. You must specify a username and
password if security is enabled for the database.

Examples
The following example loads the data from a CSV file, languages.csv, into the helloworld table from
the Hello World example database and redirects the output files to the ./logs subfolder.

$ csvloader helloworld -f languages.csv -r ./logs

The following example performs the same function, providing the input interactively.

$ csvloader helloworld -r ./logs

354

VoltDB CLI Commands

"Hello", "World", "English"
"Bonjour", "Monde", "French"
"Hola", "Mundo", "Spanish"
"Hej", "Verden", "Danish"
"Ciao", "Mondo", "Italian"
CTRL-D

355

VoltDB CLI Commands

jdbcloader
jdbcloader — Extracts a table from another database via JDBC and inserts it into a VoltDB table.

Syntax
jdbcloader table-name [arguments]

jdbcloader -p procedure-name [arguments]

Description
The jdbcloader command uses the JDBC interface to fetch all records from the specified table in a remote
database and then insert those records into a matching table in VoltDB. The most common way to use
jdbcloader is to copy matching tables from another database to VoltDB. In this case, you specify the name
of the table, plus any JDBC-specific arguments that are needed. Usually, the required arguments are the
JDBC connection URL, the source table, the username, password, and local JDBC driver. For example:

$ jdbcloader employees \
 --jdbcurl=jdbc:postgresql://remotesvr/corphr \
 --jdbctable=employees \
 --jdbcuser=charlesdickens \
 --jdbcpassword=bleakhouse \
 --jdbcdriver=org.postgresql.Driver

In addition to inserting all valid content into the specified database table, jdbcloader creates three output
files:

• Error log — The error log provides details concerning any errors that occur while processing the input
file. This includes errors that occur attempting the insert into VoltDB. For example, if two rows contain
the same value for a column that is declared as unique, the error log indicates that the second insert fails
due to a constraint violation.

• Failed input — A separate file contains the contents of each record that failed to load. The records are
stored in CSV (comma-separated value) format. This file is useful because it allows you to correct any
formatting issues and retry just the failed content using the csvloader.

• Summary report — Once all input records are processed, jdbcloader generates a summary report listing
how many records were read, how many were successfully loaded and how long the operation took.

All three files are created, by default, in the current working directory using "jdbcloader" and the table
name as prefixes. For example, using jdbcloader to insert contestants into the sample voter database creates
the following files:

jdbcloader_contestants_insert_log.log
jdbcloader_contestants_insert_invalidrows.csv
jdbcloader_contestants_insert_report.log

It is possible to use jdbcloader to perform other input operations. For example, if the source table does
not have the same structure as the target table, you can use a custom stored procedure to perform the
necessary translation from one to the other by specifying the procedure name on the command line with
the --procedure flag:

356

VoltDB CLI Commands

$ jdbcloader --procedure translateEmpRecords \
 --jdbcurl=jdbc:postgresql://remotesvr/corphr \
 --jdbctable=employees \
 --jdbcuser=charlesdickens \
 --jdbcpassword=bleakhouse \
 --jdbcdriver=org.postgresql.Driver

Arguments
--batch {integer}

Specifies the number of rows to submit in a batch to the target VoltDB database. If you do not specify
an insert procedure, rows of input are sent in batches to maximize overall throughput. You can specify
how many rows are sent in each batch using the --batch flag. The default batch size is 200. If you
use the --procedure flag, no batching occurs and each row is sent separately.

--credentials={properties-file}
Specifies a file that lists the username and password of the account to use when connecting to a
database with security enabled. This is useful when writing shell scripts because it avoids having to
hardcode the password as plain text in the script. The credentials file is interpreted as a Java properties
file defining the properties username and password. For example:

username: johndoe
password: 4tUn8

Because it is a Java properties file, you must escape certain special characters in the username or
password, including the colon or equals sign.

--fetchsize {integer}
Specifies the number of records to fetch in each JDBC call to the source database. The default fetch
size is 100 records,

--jdbcdriver {class-name}
Specifies the class name of the JDBC driver to invoke. The driver must exist locally and be accessible
either from the CLASSPATH environment variable or in the lib/extension directory where
VoltDB is installed.

--jdbcpassword {text}
Specifies the password to use when connecting to the source database via JDBC. You must specify a
username and password if security is enabled on the source database.

--jdbctable {table-name}
Specifies the name of source table on the remote database. By default, jdbcloader assumes the source
table has the same name as the target VoltDB table.

--jdbcurl {connection-URL}
Specifies the JDBC connection URL for the source database. This argument is required.

--jdbcuser {text}
Specifies the username to use when connecting to the source database via JDBC. You must specify a
username and password if security is enabled on the source database.

--limitrows {integer}
Specifies the maximum number of rows to be read from the input stream. This argument lets you load
a subset of a remote database table.

357

VoltDB CLI Commands

-m, --maxerrors {integer}
Specifies the target number of errors before jdbcloader stops processing input. Once jdbcloader en-
counters the specified number of errors while trying to insert rows, it will stop reading input and end
the process. Note that, since jdbcloader performs inserts asynchronously, it often attempts more inserts
before the target number of exceptions are returned from the database. So it is possible more errors
could be returned after the target is met. This argument lets you conditionally stop a large loading
process if more than an acceptable number of errors occur.

--password {text}
Specifies the password to use when connecting to the database. You must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument
but not the --password argument, VoltDB prompts for the password. This is useful when writing shell
scripts because it avoids having to hardcode passwords as plain text in the script.

--port {port-number}
Specifies the network port to use when connecting to the VoltDB database. If you do not specify a
port, jdbcloader uses the default client port 21212.

-p, --procedure {procedure-name}
Specifies a stored procedure to use for loading each record from the input source. The named procedure
must exist in the VoltDB database schema and must accept the fields of the data record as input
parameters. By default, jdbcloader uses a custom procedure to batch multiple rows into a single insert
operation. If you explicitly name a procedure, batching does not occur.

-r, --reportdir {directory}
Specifies the directory where jdbcloader writes the three output files. By default, jdbcloader writes
output files to the current working directory. This argument lets you redirect output to an alternative
location.

--s, --servers {server-id}[,...]
Specifies the network address of one or more nodes of a VoltDB cluster. When specifying an IPv6
address, enclose the address in square brackets. By default, jdbcloader attempts to insert the data into
a VoltDB database on the local system (localhost). To load data into a remote database, use the --
servers argument to specify the VoltDB database nodes the loader should connect to.

--ssl[=ssl-config-file]
Specifies the use of TLS encryption when communicating with the server. Only necessary if the cluster
is configured to use TLS encryption for the external ports. See Section D, “Using CLI Commands
with TLS/SSL” for more information.

--stopondisconnect
Specifies that if connections to all of the VoltDB servers are broken, the loader will stop. Normally, if
the connection to the database is lost, jdbcloader periodically attempts to reconnect until the servers
come back online and it can complete the loading process. However, you can use this argument to
have the loader process stop if the VoltDB cluster becomes unavailable.

--user {text}
Specifies the username to use when connecting to the VoltDB database. You must specify a username
and password if security is enabled on the target database.

Example
The following example loads records from the Products table of the Warehouse database on server hq.my-
company.com and writes the records into the Products table of the VoltDB database on servers svrA, svrB,

358

VoltDB CLI Commands

and svrC, using the MySQL JDBC driver to access to source database. Note that the --jdbctable flag is not
needed since the source and target tables have the same name.

$ jdbcloader Products --servers="svrA,svrB,svrC" \
 --jdbcurl="jdbc:mysql://hq.mycompany.com/warehouse" \
 --jdbcdriver="com.mysql.jdbc.Driver" \
 --jdbcuser="ceo" \
 --jdbcpassword="headhoncho"

359

VoltDB CLI Commands

kaaloader
kafkaloader — Imports data from a Kafka message queue into the specified database table.

Syntax

kafkaloader table-name [arguments]

Description
The kafkaloader utility loads data from a Kafka message queue and inserts each message as a separate
record into the specified database table. Apache Kafka is a distributed messaging service that lets you set
up message queues which are written to and read from by "producers" and "consumers", respectively. In
the Apache Kafka model, the kafkaloader acts as a "consumer".

When you start the kafkaloader, you must specify at least three arguments:

• The database table

• The Kafka server to read messages from, specified using the --brokers flag

• The Kafka "topic" where the messages are stored, specified using the --topic flag

For example:

$ kafkaloader --brokers=quesvr:2181 --topic=voltdb_customer customer

Note that Kafka does not impose any specific format on the messages it manages. The format of the
messages are application specific. In the case of kafkaloader, VoltDB assumes the messages are encoded
as standard comma-separated value (CSV) strings, with the values representing the columns of the table
in the order listed in the schema definition. Each Kafka message contains a single row to be inserted into
the database table.

It is also important to note that, unlike the csvloader which reads a static file, the kafkaloader is reading
from a queue where messages can be written at any time, on an ongoing basis. Therefore, the kafkaloader
process does not stop when it reads the last message on the queue; instead it continues to monitor the queue
and process any new messages it receives. The kafkaloader process will continue to read from the queue
until one of the following events occur:

• The maximum number of errors (specified by --maxerrors) is reached.

• The user explicitly stops the process.

• If --stopondisconnect is specified and connection to all of the VoltDB servers is broken (that is,
kafkaloader can no longer access the VoltDB database).

The kafkaloader will not terminate if it loses its connection to the Kafka zookeeper. Therefore, it is impor-
tant to monitor the Kafka service and restart the kafkaloader if and when the Kafka service is interrupted.
Similarly, the kafkaloader will not stop if it loses connection to the VoltDB database, unless you include
the --stopondisconnect argument on the command line.

360

http://kafka.apache.org/

VoltDB CLI Commands

Arguments
Note

The arguments --servers and --port are deprecated in favor of the new, more flexible ar-
gument --host. Also, the argument --zookeeper is deprecated in favor of the new argu-
ment --brokers. The deprecated arguments continue to work but may be removed in a future
major release.

--batch {integer}
Specifies the number of rows to submit in a batch. By default, rows of input are sent in batches to
maximize overall throughput. You can specify how many rows are sent in each batch using the --
batch flag. The default batch size is 200.

Note that --batch and --flush work together. Whichever limit is reached first triggers an insert to the
database.

-b, -brokers {kafka-broker[:port]}[,...]
Specifies one or more Kafka brokers to connect to. Specify multiple brokers as a comma-separated
list. The Kafka service must be running Kafka 0.10.2 or later (including 1.0.0).

-c, --config {file}
Specifies a Kafka configuration file that lets you set Kafka consumer properties, such as group.id. The
file should contain the names of the properties you want to set, one per line, followed by an equals
sign and the desired value. For example:

group.id=mydb
client.id=myappname

--commitpolicy {interval}
Because the loader performs two distinct tasks — retrieving records from Kafka and then inserting
them into VoltDB — Kafka's automated tracking of the current offset may not match what records
are successfully inserted into the database. Therefore, by default, the importer uses a manual commit
policy to ensure the Kafka offset matches the completed inserts.

Use of the default commit policy is recommended. However, you can, if you choose, use Kafka's
automated commit policy by specifying a commit interval, in milliseconds, using this property.

--credentials={properties-file}
Specifies a file that lists the username and password of the account to use when connecting to a
database with security enabled. This is useful when writing shell scripts because it avoids having to
hardcode the password as plain text in the script. The credentials file is interpreted as a Java properties
file defining the properties username and password. For example:

username: johndoe
password: 4tUn8

Because it is a Java properties file, you must escape certain special characters in the username or
password, including the colon or equals sign.

-f, --flush {integer}
Specifies the maximum number of seconds before pending data is written to the database. The default
flush period is 10 seconds.

If data is inserted into the kafka queue intermittently, there could be a long delay between when data
is read from the queue and when enough records have been read to meet the --batch limit. The

361

VoltDB CLI Commands

flush value avoids unnecessary delays in this situation by periodically writing all pending data. If the
flush limit is reached, all pending records are written to the database, even if the --batch limit has
not been satisfied.

--formatter {file}
Specifies a configuration file identifying properties for a custom formatter. The file must set the prop-
erty formatter to the class for the custom implementation of the Formatter interface. (Note, this
is different than the attribute set when declaring a formatter for a built-in import connector. For the
kaflaloader utility you specify the Formatter class, not the Formatter Factory.) You can also declare
additional custom properties used by the formatter itself. For example:

formatter=myformatter.MyFormatter
column_width=12

Before running kafkaloader with a custom formatter, you must define two environment variables:
ZK_LIB pointing to the location of the Apache Zookeeper libraries and FORMATTER_LIB pointing
to the location of your custom formatter JAR file. See the chapter on "Custom Importers,Exporters,
and Formatters" in the VoltDB Guide to Performance and Customization for more information about
using custom formatters.

-H, --host {server[:port]}[,...]
Specifies one or more nodes of the database cluster where the records are to be inserted. You can
specify servers as a network address or hostname, plus an optional port number. When specifying an
IPv6 address, enclose the address (exclusive of the optional colon and port number) in square brackets.
By default, kafkaloader attempts to connect to the default client port on the local system (localhost).
To load data into a remote database, use the --host argument to specify one or more VoltDB servers the
loader should connect to. Once kafkaloader connects to at least one cluster node, it will automatically
connect to the other servers in the cluster.

-m, --maxerrors {integer}
Specifies the target number of input errors before kafkaloader stops processing input. Once
kafkaloader encounters the specified number of errors while trying to insert rows, it will stop reading
input and end the process.

The default maximum error count is 100. Since kafka import can be an persistent process, you can
avoid having input errors cancel ongoing import by setting the maximum error count to zero, which
means that the loader will continue to run no matter how many input errors are generated.

--maxpollinterval {integer}
Specifies the maximum time (in milliseconds) allowed between polls of the Kafka brokers before
Kafka assumes the kafkaloader client has failed and drops it from the client group. The default poll
interval is 300 seconds (5 minutes).

--maxpollrecords {integer}
Specifies the maximum number of records fetched in each batch from the kafka brokers. The default
maximum is 500 records.

--maxrequesttimeout{integer}
Specifies the maximum length of time (in milliseconds) VoltDB waits for a response from the Kafka
brokers before retrying the request or timing out the session. The default time out is 305 seconds (just
over 5 minutes).

--maxsessiontimeout{integer}
Specifies the maximum interval between heart beats from the consumer (kafkaloader) and the Kafka
brokers before Kafka drops the kafkaloader from the client group identified by group.id. The default
time out is 20 seconds.

362

VoltDB CLI Commands

-n, --consumercount {integer}
Specifies the number of concurrent Kafka consumers kafakloader uses to pull data from the brokers.
The default is one consumer.

--password {text}
Specifies the password to use when connecting to the database. You must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument
but not the --password argument, VoltDB prompts for the password. This is useful when writing shell
scripts because it avoids having to hardcode passwords as plain text in the script.

-p, --procedure {procedure-name}
Specifies a stored procedure to use for loading each record from the data file. The named procedure
must exist in the database schema and must accept the fields of the data record as input parameters.
By default, kafkaloader uses a custom procedure to batch multiple rows into a single insert operation.
If you explicitly name a procedure, batching does not occur.

--ssl[=ssl-config-file]
Specifies the use of TLS encryption when communicating with the server. Only necessary if the cluster
is configured to use TLS encryption for the external ports. See Section D, “Using CLI Commands
with TLS/SSL” for more information.

--stopondisconnect
Specifies that if connections to all of the VoltDB servers are broken, the kafkaloader process will stop.
The kafkaloader connects to servers automatically as the topology of the cluster changes. Normally, if
all connections are broken, kafkaloader will periodically attempt to reconnect until the servers come
back online. However, you can use this argument to have the loader process stop when the VoltDB
cluster becomes unavailable.

-t, --topic {kafka-topic}
Specifies the Kafka topic to read from the Kafka queue.

--update
Specifies that existing records with a matching primary key are updated, rather than being rejected.
By default, kafkaloader attempts to create new records. The --update flag lets you load updates to
existing records — and create new records where the primary key does not already exist. To use --
update, the table must have a primary key.

--user {text}
Specifies the username to use when connecting to the database. You must specify a username and
password if security is enabled for the database.

Examples
The following example starts the kafkaloader to read messages from the voltdb_customer topic on the
Kafka broker quebkr:9092, inserting the resulting records into the CUSTOMER table in the VoltDB cluster
that includes the servers dbsvr1, dbsvr2, and dbsvr3. The process will continue, regardless of errors, until
the user explicitly ends the process.

$ kafkaloader --maxerrors=0 customer \
 --brokers=quebkr:2181 --topic=voltdb_customer \
 --host=dbsvr1,dbsvr2,dbsvr3

363

VoltDB CLI Commands

sqlcmd
sqlcmd — Starts an interactive command prompt for issuing SQL queries to a running VoltDB database

Syntax
sqlcmd [args...]

Description
The sqlcmd command lets you query a VoltDB database interactively. You can execute SQL statements,
invoke stored procedures, or use directives to examine the structure of the database. When sqlcmd starts
it provides its own command line prompt until you exit the session. When you start the session, you can
optionally specify one or more database servers to access. By default, sqlcmd accesses the database on
the local system via localhost.

At the sqlcmd prompt, you have several options:

• SQL queries — You can enter ad hoc SQL queries that are run against the database and the results
displayed. You must terminate the query with a semi-colon and carriage return.

• Procedure calls — You can have sqlcmd execute a stored procedure. You identify a procedure call
with the exec directive, followed by the procedure class name, the procedure parameters, and a closing
semi-colon. For example, the following sqlcmd directive executes the @SystemCatalog system proce-
dure requesting information about the stored procedures.

$ sqlcmd
1> exec @SystemCatalog procedures;

Note that string values can be entered as plain text or enclosed in single quotation marks. Also, the exec
directive must be terminated by a semi-colon.

• Echo directives — The echo and echoerror directives let you add comments or informational messages
to the sqlcmd output. Any text following the directive up to and including the line break or carriage
return is repeated verbatim:

• ECHO [text] — Writes the specified text, as is, to standard output (stdout).

• ECHOERROR [text] — Writes the specified text, as is, to standard error (stderr).

• Show, Describe, and Explain directives — The show, describe, and explain directives let you exam-
ine the structure of the schema and user-defined stored procedures. Valid directives are:

• SHOW CLASSES — Lists the user-defined classes in the database. Classes are grouped into proce-
dures classes (those that can be invoked as a stored procedure) and non-procedure classes (shared
classes that cannot themselves be called as stored procedures but can be invoked from within stored
procedures).

• SHOW PROCEDURES — Lists the user-defined, default, and system procedures for the current
database, including the type and number of arguments for each.

• SHOW TABLES — Lists the tables in the schema.

• DESCRIBE {table-name} — Lists the columns of a table, stream, or view.

364

VoltDB CLI Commands

• EXPLAIN {sql-query} — Displays the execution plan for the specified SQL statement.

• EXPLAINPROC {procedure-name} — Displays the execution plans for the specified stored proce-
dure.

• EXPLAINVIEW {view-name} — Displays the execution plans for the components of the specified
view.

• Query statistics directive — The querystats directive lets you select and format the output of the
@Statistics system procedure using SQL-like syntax. In the directive you specify a SELECT statement
identifying the columns you want returned, using FROM STATISTICS(selector, delta-flag) in place of
the table name. You can also use the WHERE, ORDER BY, and GROUP BY clauses to filter the results
as desired. For example, the following directive returns the total number of rows in each table:

$ sqlcmd
1> querystats select table_name, sum(tuple_count) from statistics(table,0) group by table_name;

Known Limitations
• Column aliases are not supported.
• Query must be on a single line.
• Errors are reported on the console but not returned to the user.

• Class management directives — The load classes and remove classes directives let you add and
remove Java classes from the database:

• LOAD CLASSES —Loads any classes or resource files in the specified JAR file. If a class or resource
already exists in the database, it is replaced by the new definition from the JAR file.

• REMOVE CLASSES — Removes any classes that match the specified class name string. The class
specification can include wildcards.

• Command recall — You can recall previous commands using the up and down arrow keys. Or you
can recall a specific command by line number (the command prompt shows the line number) using the
recall command. For example:

$ sqlcmd
1> select * from votes;
2> show procedures;
3> recall 1
select * from votes;

Once recalled, you can edit the command before reissuing it using typical editing keys, such as the left
and right arrow keys and backspace and delete.

• Script files — You can run multiple queries or stored procedures in a single command using the file
directive. The file directive takes one or more text files as an argument and executes all of the SQL
queries and exec directives in the file(s) as if they were entered interactively. (Do not use control di-
rectives such as recall and exit in script files.) Separate multiple script files with spaces. Enclose file
names that contain spaces with single quotation marks. For example, the first command in the following
example processes all of the SQL queries and procedure invocations in the file myscript.sql. The
second command processes the SQL queries from two files:

$ sqlcmd
1> file myscript.sql;
2> file yourscript.sql 'their script.sql';

365

VoltDB CLI Commands

If the file(s) contain only data definition language (DDL) statements, you can also have the files
processed as a single batch by including the -batch argument:

$ sqlcmd
1> file -batch myscript.sql;

If a file or set of statements includes both DDL and DML statements, you can still batch process a
group of DDL statements by enclosing the statements in a file -inlinebatch directive and the
specified end marker. For example, in the following code the three CREATE PROCEDURE statements
are processed as a batch:

load classes myprocs.jar;
file -inlinebatch END_OF_BATCH
CREATE PROCEDURE FROM CLASS procs.AddEmployee;
CREATE PROCEDURE FROM CLASS procs.ChangeDept;
CREATE PROCEDURE FROM CLASS procs.PromoteEmployee;
END_OF_BATCH

Batch processing the DDL statements has two effects:

• Batch processing can significantly improve performance since all of the schema changes are
processed and distributed to the cluster nodes at one time, rather than individually for each statement.

• The batch operates as a transaction, succeeding or failing as a unit. If any statement fails, all of the
schema changes are rolled back.

• Exit — When you are done with your interactive session, enter the exit directive to end the session and
return to the shell prompt.

To run a sqlcmd command without starting the interactive prompt, you can pipe the command through
standard input to the sqlcmd command. For example:

$ echo "select * from contestants;" | sqlcmd

In general, the sqlcmd commands are not case sensitive and must be terminated by a semi-colon. However,
the semi-colon is optional for the exit, file, and recall directives. Also, list and quit are supported as
synonyms for the show and exit directives, respectively.

Arguments
--help

Displays the sqlcmd help text then returns to the shell prompt.

--servers=server-id[,...]
Specifies the network address of one or more nodes in the database cluster. When specifying an IPv6
address, enclose the address in square brackets. By default, sqlcmd attempts to connect to a database
on localhost.

--port=port-num
Specifies the port number to use when connecting to the database servers. All servers must be using
the same port number. By default, sqlcmd connects to the standard client port (21212).

--user=user-id
Specifies the username to use for authenticating to the database. The username is required if the
database has security enabled.

366

VoltDB CLI Commands

--password={text}
Specifies the password to use when connecting to the database. You must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument
but not the --password argument, VoltDB prompts for the password. \

--credentials={properties-file}
Specifies a file that lists the username and password of the account to use when connecting to a
database with security enabled. This is useful when writing shell scripts because it avoids having to
hardcode the password as plain text in the script. The credentials file is interpreted as a Java properties
file defining the properties username and password. For example:

username: johndoe
password: 4tUn8

Because it is a Java properties file, you must escape certain special characters in the username or
password, including the colon or equals sign.

--kerberos={service-name}
Specifies the use of kerberos authentication when connecting to the database server(s). The service
name identifies the Kerberos client service module, as defined by the JAAS login configuration file.

--output-format={csv | fixed | tab}
Specifies the format of the output of query results. Output can be formatted as comma-separated values
(csv), fixed monospaced text (fixed), or tab-separated text fields (tab). By default, the output is in
fixed monospaced text.

--output-skip-metadata
Specifies that the column headings and other metadata associated with query results are not displayed.
By default, the output includes such metadata. However, you can use this argument, along with the
--output-format argument, to write just the data itself to an output file.

--query-timeout=time-limit
Specifies a time limit for read-only queries. Any read-only queries that exceed the time limit are
canceled and control returned to the user. Specify the time out as an integer number of milliseconds.
The default timeout is set in the cluster configuration (or set to 10 seconds by default). Only users
with ADMIN privileges can set a sqlcmd timeout longer than the cluster-wide setting.

--ssl[=ssl-config-file]
Specifies the use of TLS encryption when communicating with the server. Only necessary if the cluster
is configured to use TLS encryption for the external ports. See Section D, “Using CLI Commands
with TLS/SSL” for more information.

Example
The following example demonstrates an sqlcmd session, accessing the voter sample database running on
node zeus.

$ sqlcmd --servers=zeus
SQL Command :: zeus:21212
1> select * from contestants;
 1 Edwina Burnam
 2 Tabatha Gehling
 3 Kelly Clauss
 4 Jessie Alloway
 5 Alana Bregman

367

VoltDB CLI Commands

 6 Jessie Eichman

(6 row(s) affected)
2> select sum(num_votes) as total, contestant_number from
v_votes_by_contestant_number_State group by contestant_number
order by total desc;
TOTAL CONTESTANT_NUMBER
------- ------------------
 757240 1
 630429 6
 442962 5
 390353 4
 384743 2
 375260 3

(6 row(s) affected)
3> exit
$

368

VoltDB CLI Commands

voltadmin
voltadmin — Performs administrative functions on a VoltDB database.

Syntax
voltadmin dr drop

voltadmin dr reset [--all | --cluster={cluster-id} [--force]]

voltadmin export release --source={source-table} --target={export-target}

voltadmin help [command]

voltadmin inspect

voltadmin license {license-file}

voltadmin log4j {log4j-configuration-file}

voltadmin pause [--wait [--timeout={seconds}]]

voltadmin promote

voltadmin resize [--ignore=disabled_export] [--retry] [--test] [--yes]

voltadmin restore [--skiptables={table-name[,..]}] [--tables={table-name[,..]}]

voltadmin resume

voltadmin save [{directory} {unique-id}] [--format={csv|native}] [--blocking}]
[--skiptables={table-name[,..]}] [tables={table-name[,..]}]

voltadmin show [license|snapshots]

voltadmin shutdown [--cancel|--force|--save] [--timeout={seconds}]

voltadmin status [--continuous] [--dr] [--json]

voltadmin stop {server-id} [--force]

voltadmin update {configuration-file}

global qualifiers:
--credentials={properties-file}
--help
--host={server-id}
--kerberos
--password={text}
--ssl={ssl-config-file}
--user={user-id}

Description
The voltadmin command allows you to perform administrative tasks on a VoltDB database. You specify
the database server to access and, optionally, authentication credentials using arguments to the voltadmin
command. Individual administrative commands may have they own unique arguments as well.

369

VoltDB CLI Commands

Arguments
The following global arguments are available for all voltadmin commands.

--credentials={properties-file}
Specifies a file that lists the username and password of the account to use when connecting to a
database with security enabled. This is useful when writing shell scripts because it avoids having to
hardcode the password as plain text in the script. The credentials file is interpreted as a Java properties
file defining the properties username and password. For example:

username: johndoe
password: 4tUn8

Because it is a Java properties file, you must escape certain special characters in the username or
password, including the colon or equals sign.

-h, --help
Displays information about how to use a command. The --help flag and the help command perform
the same function.

-H, --host=server-id[:port]
Specifies which database server to connect to. You can specify the server as a network address or
hostname. When specifying an IPv6 address, enclose the address (exclusive of the optional colon and
port number) in square brackets. By default, voltadmin attempts to connect to a database on localhost.
You can optionally specify the port number. If you do not specify a port, voltadmin uses the default
admin port.

--kerberos
Specifies the use of Kerberos authentication when connecting to the database. You must login to your
Kerberos account using kinit before issuing the voltadmin with this argument.

-p, --password={text}
Specifies the password to use when connecting to the database. You must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument
but not the --password argument, VoltDB prompts for the password. This is useful when writing shell
scripts because it avoids having to hardcode passwords as plain text in the script.

--ssl[=ssl-config-file]
Specifies the use of TLS encryption when communicating with the server. Only necessary if the cluster
is configured to use TLS encryption for the external ports. See Section D, “Using CLI Commands
with TLS/SSL” for more information.

-u, --user=user-id
Specifies the username to use for authenticating to the database. The username is required if the
database has security enabled.

-v, -verbose
Displays additional information about the specific commands being executed.

Commands
The following are the administrative functions that you can invoke using voltadmin.

help [command]
Displays information about the usage of individual commands or, if you do not specify a command,
summarizes usage information for all commands. The help command and --help qualifier are syn-
onymous.

370

VoltDB CLI Commands

dr drop
Removes the current cluster from an XDCR environment. Performing a drop breaks existing DR
connections, deletes pending binary logs and stops the queuing of DR data on the current cluster. It
also tells all other clusters in the XDCR relationship to drop their connection to the current cluster
and remove any associated binary logs for that cluster.

This command will wait until all other clusters respond before returning to the shell prompt. If one
(or more) of the clusters are unreachable, the command will periodically report which clusters it is
waiting for. Be aware that if you CTRL-C out of the command before it returns to the shell prompt,
one or more of the remote clusters will not have received the appropriate message and will not have
cleared their logs for the targeted cluster. In that case, you need to clear that cluster's queues manually
after it comes back online using the dr reset --cluster command.

The dr drop command lets you effectively remove a single cluster — the cluster on which the the
command is executed — from a multi-cluster XDCR environment in a single command.

dr reset
Resets the database replication (DR) connection(s) for the database. Performing a reset breaks existing
DR connections, deletes pending binary logs and stops the queuing of DR data on the current cluster.

This command is useful in passive DR for eliminating unnecessary resource usage on a master data-
base after the replica stops or is promoted. Note, however, after a reset DR must start over from scratch;
it cannot be restarted where it left off. Similarly, if there are two clusters in an XDCR environment,
you can use dr reset for one cluster to drop the connection to the other cluster.

If you are using multiple XDCR clusters, the dr drop command is the recommended way to remove a
running cluster from the environment. Otherwise, if you use the dr reset command you must choose
between removing the connections to all other clusters or just one cluster using the following options.
You must issue the appropriate command on all applicable clusters:

--all
Resets DR connections and queues to all other clusters on the current cluster. Choose this option
if you want the current cluster to survive and then restart DR from scratch on the other remaining
clusters.

--cluster={remote-cluster-ID}
Drops the connection to just one cluster. Specify the ID of the remote cluster you wish to drop
from the XDCR environment as an argument to the --cluster option. For example, if one cluster
has stopped and you want to remove it from the XDCR environment, you can reset the connections
to that cluster by issuing the dr reset --cluster={id} command on all the remaining clusters. You
must also specify --force when you specify --cluster.

--force
Verifies that you want to drop one cluster from a multi-cluster XDCR environment. There is a
risk, when a cluster fails, that it has not sent the same binary logs to all other clusters. In this
situation, if you drop the one cluster from the XDCR environment, the remaining clusters can
diverge. Which is why you must confirm that you really want to drop just one cluster.

Stopping the remote cluster with an orderly shutdown (voltadmin shutdown) ensures that all
binary logs are delivered. So it is then safe to do a dr reset with --cluster and --force. Otherwise,
the recommended approach is to choose one cluster as the source, stop all DR connections from
that cluster, then restart DR from scratch on the remaining clusters. However, you can, if you
choose, use --force to drop the one cluster if you are sure no divergence has occurred.

The --all and --cluster options are mutually exclusive.

371

VoltDB CLI Commands

export release --source={source-table} --target={export-target}
Resets any blocked export queues, resuming export at the next available export record. You must
specify both of the export release qualifiers:

-s, --source={source-table}
Specifies the source stream of the table whose queue you want to reset.

-t, --target={export-target}
Specifies the export target you want to reset.

inspect
Displays information about the software, license, and cluster operating environment. Primarily used
when communicating with customer support.

license {license-file}
Updates the software license for the database. After validating the license matches the current config-
uration, the license is saved to the database root directory for each node in the cluster.

log4j {configuration-file}
Updates the logging configuration. You specify the new configuration as a Log4j XML configuration
file.

pause [--wait [--timeout={seconds}]]
Pauses the database, stopping any additional activity on the client port. Normally, pause returns im-
mediately. However, you can use the --wait flag to have the command wait until all pending transac-
tions are processed and all database replication (DR) and export queues are flushed. Use of --wait is
recommended if you are shutting down the database and do not intend to restart with recover, since
--wait ensures all associated DR or export data is delivered prior to shutdown.

Since it is possible that lost connections to external systems or other abnormal conditions can cause
queues to hang, the pause --wait command waits for up to two minutes if transactions are pending but
not being cleared. After two minutes of inactivity, the command times out and stops waiting, leaving
the database in a paused state. You can change the timeout period by using the --timeout (or -t) flag
and specifying a different timeout period in seconds.

If the pause --wait command times out, review any error messages to determine the cause of the
delay. Once you correct the problem, you can either reissue the pause --wait command or check the
@Statistics system procedure results to make sure all pending transactions and queues are clear.

promote
Promotes a replica database, stopping replication and enabling read/write queries on the client port.

resize
Begins the resize process for reducing the size of a K-safe cluster. See Section 9.3.2, “Removing
Nodes with Elastic Scaling” for more information on resizing clusters. The following qualifiers affect
what actions are taken. Without qualifiers, the command tests to ensure a resize is possible, reports
which nodes will be removed, and prompts before starting the resize process.

--ignore=disabled_export
Ignores any pending data for export targets that are disabled when performing the resize process.
Normally, resize waits for all export queues to drain before starting the resize process, even if the
target is currently disabled in the database configuration.

-r, --retry
Restarts the resize process after an unexpected failure.

372

VoltDB CLI Commands

-t, --test
Tests to see if the cluster has enough nodes to perform a resize operation while retaining its K-
safety factor. If so, it reports which nodes would be removed during resizing.

-y, --yes
Skips the prompt when starting the resize process. This qualifier is useful when including the
voltadmin resize command in scripts where you are sure you want to start the process and do
not want interactive prompts.

resume
Resumes normal database operation after a pause.

save [{directory} {unique-ID}]
Creates a snapshot containing the current database contents. Snapshot files are saved to each server in
the cluster. If you use save without any arguments, the snapshot is saved into the database's snapshots
directory where it can automatically be restored the next time the database starts. If you specify an
alternate directory and ID, the snapshot files are saved to the specified path using the unique ID as
a file prefix.

When saving into the default snapshots directory, VoltDB automatically performs a full snapshot
in native mode. The following are additional arguments you can specify when saving to a specific
location and unique ID. (Only the --blocking argument is allowed when saving to the default snapshots
directory.)

--format={ csv | native }
Specifies the format of the snapshot files. The allowable formats are CSV (comma-separated
value) and native formats. Native format snapshots can be used for restoring the database. CSV
files can be used by other utilities (such as spreadsheets or the VoltDB CSV loader) but cannot
be restored using the voltadmin restore command.

--blocking
Specifies that the snapshot will block all other transactions until the snapshot is complete. The
advantage of blocking snapshots is that once the command completes you know the snapshot is
finished. The disadvantage is that the snapshot blocks ongoing use of the database.

By default, voltadmin performs non-blocking snapshots so as not to interfere with ongoing data-
base operation. However, note that the non-blocking save command only starts the snapshot. You
must use show snapshots to determine when the snapshot process is finished if you want to know
when it is safe, for example, to shutdown the database.

--skiptables={ table-name [,...] }
Specifies one or more tables to leave out of the snapshot. Separate multiple table names with
commas.

--tables={ table-name [,...] }
Specifies what table(s) to include in the snapshot. Only the specified tables will be included.
Separate multiple table names with commas.

restore {directory} {unique-ID}
Restores the data from a snapshot to the database. The data is read from a snapshot using the same
unique ID and directory path that were used when the snapshot was created. If no tables exist in the
database (that is, no schema has been defined) the restore command will also restore the original
schema, including stored procedure classes, before restoring the data.

The following arguments let you selectively include or exclude data from certain tables during the
restore operation.

373

VoltDB CLI Commands

--skiptables={ table-name [,...] }
Data for the specified tables is not restored. All other tables are restored. Separate multiple table
names with commas.

--tables={ table-name [,...] }
Only data for the specified tables is restored. Data for all other tables is ignored. Separate multiple
table names with commas.

Note that if the database is empty (that is, has no existing schema), the full schema from the snapshot
is always loaded even if you choose not to load the data for certain tables. Also, you can specify either
--skiptables or --tables but not both on the same command.

show license
Displays information about the cluster's current license.

show snapshots
Displays information about up to ten previous snapshots. This command is useful for determining the
success or failure of snapshots started with the save command.

status
Displays information on the state of the cluster, such as the number of nodes and uptime. You can use
the following options to customize the content and presentation of the status information:

--dr
Adds information about the current status of data replication to the display.

-j, --json
Outputs the information in JSON format.

--continuous
Specifies that the information be continuously updated until you interrupt the command (with
CTRL-C, for example).

update {configuration}
Updates the configuration on a running database. There are limitations on what changes can be made
to the configuration of a running database cluster. Allowable changes include the following:

• Security settings, including user accounts

• Import and export settings

• Database replication settings (except the DR cluster ID)

• Automated snapshots

• System settings:

Flush interval
Heartbeat timeout
Query Timeout
Resource Limit — Disk Limit
Resource Limit — Memory Limit

You cannot use the update command to change paths, ports, command logging, partition detection,
or <cluster> attributes (such as K safety or sites per host).

374

VoltDB CLI Commands

stop [--force] {server-id}
Stops an individual node in the cluster. The voltadmin stop command can only be used on a K-safe
cluster and will not intentionally shutdown the database. That is, the command will only stop a node
if there are enough nodes left for the cluster to remain viable.

By default, the stop command waits for all partition and export leadership on the specified node to
be redistributed to other nodes in the cluster in an orderly fashion before stopping the node. You
can use the --force argument to stop the node immediately. However, if you force the node to stop,
the remainder of the cluster must negotiate leadership after the node stops, which can have several
negative effects. The advantages of using the default, orderly stop command are:

• In-flight transactions queued to the stopped node are completed and returned to the client. A forced
stop interrupts these transactions resulting in lost connection and other errors being returned to the
clients.

• Stopping the node has reduced impact on the ongoing transactions and workload for the database.
A forced stop disrupts ongoing transactions while the cluster negotiates the migration of partition
leadership.

• Export queues are transitioned correctly, avoiding gaps and potentially lost export data that can
result if nodes are interrupted and restarted in quick succession.

shutdown [--force | --save | --cancel] [--timeout={seconds}]
Shuts down the database process on all nodes of the cluster. By default, voltadmin shutdown per-
forms an orderly shutdown, pausing the database, completing all pending transactions and writing any
queued export, import, or DR data to disk before shutting down the database. You can also use one
of the following arguments to modify the behavior of shutdown:

--force
Stops the database immediately. If you do not need to save any in-process work, you can use the
--force argument to stop the database immediately.

--save
Specifies that not only will all data be made durable, all pending DR and export data will be
sent to the corresponding external systems and a final snapshot will be taken before the cluster
is shutdown. The resulting snapshot will be used, in place of command logs, the next time the
database is started with the voltdb start command. Using the final snapshot on startup permits
changes not normally allowed by command logs, such as upgrading the VoltDB software.

--cancel
Cancels a pending shutdown. The shutdown --save command can be blocked if the targets for
pending DR or export are currently unavailable. If this happens, you can do a CTRL-C to interrupt
the shutdown --save command, but that does not cancel the shutdown itself and your database
is not operational. The shutdown --cancel command cancels the shutdown operation and returns
the database to an operational state.

Since it is possible that lost connections to external systems or other abnormal conditions can cause
queues to hang, the shutdown command (without the --force flag) waits for up to two minutes if
transactions are pending but not being cleared. After two minutes of inactivity, the command times
out, leaving the database in a paused state but not shutdown. You can change the timeout period by
using the --timeout (or -t) flag and specifying a different timeout period in seconds.

If the shutdown command times out, review any error messages to determine the cause of the delay.
You can:

• Do a shutdown --cancel to cancel the shutdown, correct the problem, then reissue the shutdown
command

375

VoltDB CLI Commands

• Do a shutdown --cancel to cancel the shutdown and resume normal database operations

• Do a shutdown --force to initiate an immediate shutdown

Note that if you do a shutdown --force after a shutdown --save command, the system will not have
created a final snapshot.

Examples
The following example performs an orderly shutdown.

$ voltadmin shutdown

The next example uses pause and save to create a snapshot of the database contents as a backup before
shutting down.

$ voltadmin pause --wait
$ voltadmin save --blocking ./ mydb
$ voltadmin shutdown

The last example uses the shutdown --save command to create a snapshot of the database contents, similar
to the previous example. However, in this case, the snapshot that is created will be used automatically to
restore the database on the next start command.

$ voltadmin shutdown --save

376

VoltDB CLI Commands

voltdb
voltdb — Performs management tasks on the current server, such as starting and recovering the database.

Syntax
voltdb collect [args]

voltdb get classes [args]

voltdb get deployment [args]

voltdb get schema [args]

voltdb mask [args] source-configuration-file [new-configuration-file]

voltdb init [args]

voltdb start [args]

Description
The voltdb command performs local management functions on the current system, including:

• Initializing the database root directory and setting configuration options

• Starting the database process

• Collecting log files into a single compressed file

• Retrieving the classes, deployment, or schema from a database root directory

• Hiding passwords in the configuration file

The action that is performed depends on which start action you specify to the voltdb command:

• collect — the collect option collects system and process logs related to the VoltDB database process
on the current system and compresses them into a single file. This command is helpful when reporting
problems to VoltDB support.

• get — the get option retrieves the current configuration, procedure classes, or schema from the database
root directory. The requested item is then written to a file. This command can be used whether the
database is running or not. You can use options to specify either or both the parent of the root directory
(--dir) or the name and location of the output file (--output). Note that the get option can only be
used on databases created using init and start.

• mask — the mask option disguises the passwords associated with user accounts in the security section
of the configuration file. The output of the voltdb mask command is either a new configuration file with
hashed passwords or, if you do not specify an output file, the original input file is modified in place.

• init — the init option initializes the root directory VoltDB uses for storing the configuration, logs, and
other disk-based information (such as snapshots and command logs) for the database process. You only
need to initialize the root directory once. After that, VoltDB manages the content and selecting the

377

VoltDB CLI Commands

appropriate start actions to maintain the database state. If you choose to re-initialize an existing root
directory, you can use the --force argument to delete any previous data.1

• start — the starts option starts the database process after the root directory has been initialized. The
actual action that VoltDB takes depends on the current state of the database cluster:

• If this is the first time the database has started, it creates a new database.

• If the database has run before and is configured to use command logs or there is at least one snapshot
in the snapshots directory, the database is restarted and previous data recovered.

• If the cluster is already running and a server is missing (assuming the use of K-safety) the current
node will rejoin the running cluster.

• If the cluster is already running with all servers present, the current node will be added to expand the
size of the cluster — as long as you use the --add argument on the start command.

The voltdb start command uses Java to instantiate the process. It is possible to customize the Java envi-
ronment, if necessary, by passing command line arguments to Java through the following environment
variables:

• LOG4J_CONFIG_PATH — Specifies an alternate Log4J configuration file.

• VOLTDB_HEAPMAX — Specifies the maximum heap size for the Java process. Specify the value
as an integer number of megabytes. By default, the maximum heap size is set to 2048.

• VOLTDB_OPTS — Specifies all other Java command line arguments. You must include both the
command line flag and argument. For example, this environment variable can be used to specify system
properties using the -D flag:

export VOLTDB_OPTS="-DmyApp.DebugFlag=true"

Log Collection (voltdb collect) Arguments
The following arguments apply specifically to the collect action.

-D --dir={directory}
Specifies the parent location for the database root directory from which to collect information. The
default, if you do not specify a directory, is the current working directory.

--days={integer}
Specifies the number of days of log files to collect. For example, using --days=1 will collect data
from the last 24 hours. By default, VoltDB collects 14 days (2 weeks) worth of logs.

--dry-run
Lists the actions that will be taken, including the files that will be collected, but does not actually
perform the collection or upload.

--no-prompt
Specifies that the process will not prompt for input, such as whether to delete the output file after
uploading is complete. This argument is useful when starting the collect action from within a script.

1The init --force command deletes command logs and overflow subfolders within the database root directory. However, to avoid accidentally
deleting backups, the snapshots subfolder is renamed rather than deleted. This way, it is possible to restore a snapshot in case of an unintended re-
initialization. On the other hand, this means you should periodically check your database root directories and purge any archived snapshots folders
(named snapshots.nn) that are no longer needed.

378

VoltDB CLI Commands

--output={file}
Specifies the name and location of the resulting output file. The default output file name starts with
"voltdb_collect_" and includes the current server IP or hostname, with a file extension of ".zip" saved
to the current working directory.

--skip-heap-dump
Specifies that the heap dump not be included in the collection. The heap dump is usually significantly
larger than the other log files and can be excluded to save space.

Get Resource (voltdb get) Arguments
The following arguments apply specifically to the get classes, get deployment, and get schema actions.

-D --dir={directory}
Specifies the parent location for the database root directory. The default, if you do not specify a
directory, is the current working directory.

-f, --force
Allows the command to overwrite an existing file. By default, the get actions will not overwrite ex-
isting files.

-o --output={file-path}
Specifies the name and, optionally, location for the resulting output file. The default location is the
current working directory. The default file depends on the resource being requested:
• procedures.jar for get classes
• deployment.xml for get deployment
• schema.sql for get schema

Initialization (voltdb init) Arguments
The following arguments apply to the voltdb init command.

-C, --config={configuration-file}
Specifies the location of the database configuration file. The configuration file is an XML file that
defines the database configuration, including which options to enable when the database starts. See
Appendix E, Configuration File (deployment.xml) for a complete description of the syntax of the
configuration file.

The default, if you do not specify a configuration file, is a default configuration that includes command
logging (where available), no K-safety, and eight sites per host.

-D --dir={directory}
Specifies the parent location for the database root directory. The root directory is named voltdb-
root and is created if it does not already exist in the specified location. If a voltdbroot directory
does already exist, you must use the --force argument to override any existing data. The default, if
you do not specify a directory, is the current working directory.

-f, --force
Initializes the database root directory, even if files (such as command logs or snapshots) already exist
in the specified directory. Initializing the root directory after previously running a database could
overwrite and therefore erase old command logs. Therefore, VoltDB will not, by default, initialize the
database if such files exist. If you do not need the files from the previous session, you can use the --
force argument to overwrite these files.

379

VoltDB CLI Commands

-j, --classes={JAR-file} [, ...]
Specifies the location of one or more JAR files containing classes used to declare user-defined stored
procedures. The JAR files (and any schema definitions included with the --schema argument) are
loaded automatically when the database starts. Separate multiple file names with commas. You can
also use asterisk (*) as a wildcard character in the file specification. If durability is enabled (through
command logs or a shutdown snapshot) the classes specified on the init command are loaded only the
first time the database starts and the command logs are used for subsequent starts. If no durability is
provided, the initialized classes are loaded on every start.

-l, --license={license-file}
Specifies the location of the license file, which is required when using the VoltDB Enterprise Edition.
The argument is ignored when using the community edition.

-s, --schema={schema-file} [, ...]
Specifies the location of one or more files containing database definition language (DDL) statements.
The DDL statements (and any classes included with the --classes argument) are loaded automatically
when the database starts. Separate multiple file names with commas. You can also use asterisk (*)
as a wildcard character in the file specification. If durability is enabled (through command logs or
a shutdown snapshot) the schema specified on the init command is loaded only the first time the
database starts and the command logs are used for subsequent starts. If no durability is provided, the
initialized schema is loaded on every start.

Database Startup (voltdb start) Arguments
The following arguments apply to the voltdb start command.

-D --dir={directory}
Specifies the parent location for the database root directory. This is the same directory specified on
the voltdb init command. (You must initialize the root directory before you can start the database.)
The default, if you do not specify a directory, is the current working directory.

-H, --host={ host-id [,...] }
Specifies the network address of one or more nodes in the database cluster. VoltDB selects one of
these nodes to coordinate the start of the database or the adding or rejoining of servers. When starting
a database, all nodes must specify the same list of host addresses. Note that once the database starts
and the cluster is complete, the role of the host node is complete and all nodes become peers.

When rejoining or adding a server to a running cluster, you can specify any node(s) still in the cluster.
The host for an add or rejoin operation does not have to be the same node specified when the database
started.

The default if you do not specify a host when creating or recovering the database is localhost.
In other words, a single node cluster running on the current system. You must specify a host on the
command line when adding or rejoining a node or when starting a cluster.

If the host node is using an internal port other than the default (3021), you must specify the port as
part of the host string, in the format host:port.

When used in conjunction with the --missing flag, the first host in the list must be one of the current
hosts, not one of the missing nodes.

-c, --count={number-of-nodes}
Specifies the number of nodes in the database cluster.

--add
When joining a running cluster, specifies that the new node can be "added", elastically expanding the
size of the cluster. The --add flag only takes affect when a node is joining a complete, running cluster.

380

VoltDB CLI Commands

If the cluster is starting or if a node is missing from a K-safe cluster, the current node will join the
cluster as normal. But if the cluster is already running and has its full complement of members, you
must specify --add if you want to increase the size of the cluster.

-B, --background
Starts the server process in the background (as a daemon process).

-g, --placement-group={group-name}
Specifies the location of the server. When the K-safety value is greater than zero, VoltDB uses this
argument to assist in rack-aware partitioning. The cluster will attempt to place multiple copies of each
partition on different nodes to keep them physically as far apart as possible. The physical location is
specified by the group-name, which is an alphanumeric name. The names might represent physical
servers, racks, switches, or anything meaningful to the user to avoid multiple copies failing at the
same time.

To be effective, placement groups must adhere to the following rules:

• There must be more than one placement group specified for the cluster

• The same number of nodes must be included in each placement group

• The number of partition copies (that is, K+1) must be a multiple of the number of placement groups

Otherwise, VoltDB issues a warning on startup and there are no guarantees the partitions will be
evenly distributed.

--ignore=thp
For Linux systems, allows the database to start even if the server is configured to use Transparent
Huge Pages (THP). THP is a known problem for memory-intense applications like VoltDB. So under
normal conditions VoltDB will not start if the use of THP is enabled. This flag allows you to ignore
that restriction for test purposes. Do not use this flag on production systems.

--missing={number-of-nodes}
Allows a K-safe cluster to start without the full complement of nodes. This argument specifies how
many nodes are missing from the cluster at startup. For example, if the arguments are --count=5
and --missing=2, then the database will start once three nodes join the cluster, assuming those nodes
can support at least one copy of each partition. Note that use of the --missing option means that
the cluster is not fully K-safe until the specified number of missing nodes rejoin the cluster after the
database starts. Also, the --hosts flag should list currently available hosts, not the missing nodes.

--pause
For the create and recover operations only, starts the database in admin mode. Admin mode stops
applications from performing write operations to the database through the client interface. This is
useful when performing administrative functions such as restoring a snapshot before allowing client
access. Once all administrative operations are complete, you can use the voltadmin resume command
to resume normal operation for the database. If any nodes in the cluster start with the --pause switch,
the entire cluster starts paused.

--safemode
When using command logs to recover an existing database that cannot recover under normal circum-
stances, the --safemode argument recovers the database to the last valid transaction. This argument
should only be used when troubleshooting a failed recovery. See the description of safe mode recovery
in the VoltDB Administrator's Guide for details.

381

https://docs.voltdb.com/AdminGuide/Troubleshootrecovery.php#Troubleshootsafemode
https://docs.voltdb.com/AdminGuide/

VoltDB CLI Commands

Network Configuration Arguments
In addition to the arguments listed above for the voltdb start command, there are additional arguments
that specify the network configuration for server ports and interfaces when starting a VoltDB database.
In most cases, the default values can and should be accepted for these settings. The exceptions are the
external and internal interfaces that should be specified whenever there are multiple network interfaces
on a single machine.

You can also, optionally, specify a unique network interface for individual ports by preceding the port
number with the interface's IP address (or hostname) followed by a colon. Specifying the network interface
as part of an individual port setting overrides the default interface for that port set by --externalinterface
or --internalinterface.

The network configuration arguments to the voltdb start command are listed below. See the appendix
on server configuration options in the VoltDB Administrator's Guide for more information about network
configuration options.

--externalinterface={ip-address}
Specifies the default network interface to use for external ports, such as the admin and client ports.

--internalinterface ={ip-address}
Specifies the default network interface to use for internal communication, such as the internal port.

--publicinterface={ip-address}
Specifies the public network interface. This argument is useful for hosted systems where the internal
and external interfaces may not be generally reachable from the Internet. In which case, specifying
the public interface helps the VoltDB Management Center provide publicly accessible links for the
cluster nodes.

--drpublic={ip-address[:port-number]}
Specifies the publicly advertised network interface and, optionally, port number for database replica-
tion (DR) communication. This is the address that is sent from the producer cluster to consumers. This
argument is useful for hosted systems where the internal interfaces are not reachable from outside the
hosted environment and the producer cluster must return an externally mapped port as the public DR
interface to remote consumers.

--admin=[ip-address:]{port-number}
Specifies the admin port. The --admin flag overrides the admin port setting in the configuration file.

--client=[ip-address:]{port-number}
Specifies the client port.

--http=[ip-address:]{port-number}
Specifies the http port. The --http flag both sets the port number (and optionally the interface) and
enables the http port, overriding the http setting, if any, in the configuration file.

--internal=[ip-address:]{port-number}
Specifies the internal port used to communicate between cluster nodes.

--replication=[ip-address:]{port-number}
Specifies the replication port used for database replication. The --replication flag overrides the repli-
cation port setting in the configuration file.

--zookeeper=[ip-address:]{port-number}
Specifies the zookeeper port. By default, the zookeeper port is bound to the server's internal interface
(127.0.0.1).

382

http://docs.voltdb.com/AdminGuide/

VoltDB CLI Commands

Examples
The first example shows the commands for initializing and starting a three-node database cluster using a
custom configuration file, deploy.xml, and the node zeus as the host.

$ voltdb init --dir=~/mydb --config=deploy.xml
$ voltdb start --dir=~/mydb --count=3 --host=zeus

The second example takes advantage of the defaults for the host and configuration arguments to initialize
and start a single-node database in the current directory.

$ voltdb init
$ voltdb start

The next example shows the use of the --force argument to re-initialize the directory used in the first
example, to delete old data and set new configuration options from a different configuration file.

$ voltdb init --dir=~/mydb --config=newdeploy.xml --force

383

Appendix E. Configuraon File
(deployment.xml)

The configuration file describes the physical configuration of a VoltDB database cluster at runtime, in-
cluding the number of sites per hosts and K-safety value, among other things. This appendix describes the
syntax for each component within the configuration file.

The configuration file is a fully-conformant XML file. If you are unfamiliar with XML, see Section E.1,
“Understanding XML Syntax” for a brief explanation of XML syntax.

E.1. Understanding XML Syntax
The configuration file is a fully-conformant XML file. XML files consist of a series of nested elements
identified by beginning and ending "tags". The beginning tag is the element name enclosed in angle brack-
ets and the ending tag is the same except that the element name is preceded by a slash. For example:

<deployment>
 <cluster>
 </cluster>
</deployment>

Elements can be nested. In the preceding example cluster is a child of the element deployment.

Elements can also have attributes that are specified within the starting tag by the attribute name, an equals
sign, and its value enclosed in single or double quotes. In the following example the hostcount and sites-
perhost attributes of the cluster element are assigned values of "2" and "4", respectively.

<deployment>
 <cluster hostcount="2" sitesperhost="4">
 </cluster>
</deployment>

Finally, as a shorthand, elements that do not contain any children can be entered without an ending tag by
adding the slash to the end of the initial tag. In the following example, the cluster and heartbeat
tags use this form of shorthand:

<deployment>
 <cluster hostcount="2" sitesperhost="4"/>
 <heartbeat timeout="10"/>
</deployment>

For complete information about the XML standard and XML syntax, see the official XML site at http://
www.w3.org/XML/.

E.2. The Structure of the Configuration File
The configuration file starts with the XML declaration. After the XML declaration, the root element of the
configuration file is the deployment element. The remainder of the XML document consists of elements
that are children of the deployment element.

384

http://www.w3.org/XML/
http://www.w3.org/XML/

Configuration File (deployment.xml)

Figure E.1, “Configuration XML Structure” shows the structure of the configuration file. The indentation
indicates the hierarchical parent-child relationships of the elements and an ellipsis (...) shows where an
element may appear multiple times.

385

Configuration File (deployment.xml)

Figure E.1. Configuration XML Structure

<deployment>
 <cluster/>
 <paths>
 <commandlog/>
 <commandlogsnapshot/>
 <exportoverflow/>
 <snapshots/>
 <voltdbroot/>
 </paths>
 <commandlog>
 <frequency/>
 </commandlog>
 <dr>
 <connection/>
 </dr>
 <export>
 <configuration>
 <property/>...
 </configuration>...
 </export>
 <heartbeat/>
 <httpd/>
 <import>
 <configuration>
 <property/>...
 </configuration>...
 </import>
 <partition-detection/>
 <security/>
 <snapshot/>
 <ssl>
 <keystore/>
 <truststore/>
 </ssl>
 <snmp/>
 <systemsettings>
 <elastic/>
 <flushinterval>
 <dr/>
 <export/>
 </flushinterval>
 <procedure/>
 <query/>
 <resourcemonitor>
 <disklimit>
 <feature/>...
 </disklimit>
 <memorylimit/>
 </resourcemonitor>
 <snapshot/>
 <temptables/>
 </systemsettings>
 <users>
 <user/>...
 </users>
</deployment>

386

Configuration File (deployment.xml)

Table E.1, “Configuration File Elements and Attributes” provides further detail on the elements, including
their relationships (as child or parent) and the allowable attributes for each.

Table E.1. Configuration File Elements and Attributes

Element Child of Parent of Attributes

deployment* (root element) cluster, commandlog,
dr, export, heartbeat,
httpd, import, parti-
tion-detection, paths,
security, snapshot, sn-
mp, ssl, systemset-
tings, users

cluster* deployment kfactor={int}
sitesperhost={int}

heartbeat deployment timeout={int}*

partition-detection deployment enabled={true|false}

commandlog deployment frequency enabled={true|false}
logsize={int}
synchronous={true|false}

frequency commandlog time={int}
transactions={int}

dr deployment connection id={int}*

role={master|replica|xdcr}

connection dr source={server[,...]}*

enabled={true|false}
preferred-source={int}
ssl=[file-path]

export deployment configuration

configuration* export property target={text}*

enabled={true|false}
exportconnectorclass={class-name}
type={file|http|jdbc|kafka|custom}

property configuration name={text}*

import deployment configuration

configuration* import property type={kafka|custom}*

enabled={true|false}
format={csv|tsv}
module={text}

property configuration name={text}

httpd deployment enabled={true|false}

paths deployment commandlog, com-
mandlogsnapshot,
droverflow, expor-
toverflow, snapshots,
voltdbroot

commandlog paths path={directory-path}*

387

Configuration File (deployment.xml)

Element Child of Parent of Attributes

commandlogsnapshot paths path={directory-path}*

droverflow paths path={directory-path}*

exportoverflow paths path={directory-path}*

snapshots paths path={directory-path}*

voltdbroot paths path={directory-path}*

security deployment enabled={true|false}
provider={hash|kerberos}

snapshot deployment enabled={true|false}
frequency={int}{s|m|h}
prefix={text}
retain={int}

ssl deployment keystore, truststore enabled={true|false}
external={true|false}
internal={true|false}

keystore* ssl path={file-path}*

password={text}*

truststore ssl path={file-path}*

password={text}

snmp deployment target={IP-address}*

authkey={text}
authprotocol={SHA|MD5|NoAuth}
community={text}
enabled={true|false}
privacykey={text}
privacyprotocol={text}
username={text}

systemsettings deployment elastic, flushinterval,
procedure, query, re-
sourcemonitor, snap-
shot, temptables

elastic systemsettings duration={int}
throughput={int}

flushinterval systemsettings dr, export minimum={int}

dr flushinterval interval={int}

export flushinterval interval={int}

procedure systemsettings loginfo={int}*

query systemsettings timeout={int}*

resourcemonitor systemsettings disklimit, memo-
rylimit

frequency={int}

disklimit resourcemonitor feature

feature disklimit name={text}*

size={int[%]}*

alert={int[%]}

memorylimit resourcemonitor size={int[%]}*

388

Configuration File (deployment.xml)

Element Child of Parent of Attributes

alert={int[%]}

snapshot systemsettings priority={int}*

temptables systemsettings maxsize={int}*

users deployment user

user users name={text}*

password={text}*

roles={role-name[,..]}
*Required

389

Appendix F. VoltDB Datatype
Compability

VoltDB supports eleven datatypes. When invoking stored procedures from different programming lan-
guages or queuing SQL statements within a Java stored procedure, you must use an appropriate lan-
guage-specific value and datatype for arguments corresponding to placeholders in the query. This appen-
dix provides the mapping of language-specific datatypes to the corresponding VoltDB datatype.

In several cases, there are multiple possible language-specific datatypes that can be used. The following
tables highlight the best possible matches in bold.

F.1. Java and VoltDB Datatype Compatibility
Table F.1, “Java and VoltDB Datatype Compatibility” shows the compatible Java datatypes for each Volt-
DB datatype when:

• Calling simple stored procedures defined using the CREATE PROCEDURE AS statement

• Calling default stored procedures created for each table in the schema

In reverse, the table also shows which SQL datatype is used for the arguments and return values of user-
defined functions written in Java. The highlighted Java datatype listed in the second column results in the
corresponding SQL datatype being accepted or returned at runtime.

Note that when calling user-defined stored procedures written in Java, you can use additional datatypes,
including arrays and the VoltTable object, as arguments to the stored procedure, as long as the actual
query invocations within the stored procedure use the following datatypes. Within the stored procedure,
when queuing SQL statements using the voltdbQueueSql method, implicit type casting is not guaranteed
so using the highlighted Java type is recommended.

VoltDB accepts both primitive numeric types (byte, short, int, and so on) and their reference type equiv-
alents (Byte, Short, Integer, etc.). The reference types can be useful, especially when passing null values,
where you can send a Java null. In most cases when using the primitive types, you must pass the largest
possible negative value for the type in place of null.

Table F.1. Java and VoltDB Datatype Compatibility

SQL Datatype Compatible Java Datatypes Notes

TINYINT byte/Byte
short/Short
int/Integer
long/Long
BigDecimal
String

Larger datatypes (short, int, long, and BigDec-
imal) are valid input types. However, VoltDB
throws a runtime error if the value exceeds the al-
lowable range of a TINYINT.

String input must be a properly formatted text
representation of an integer value in the correct
range.

SMALLINT byte/Byte
short/Short
int/Integer
long/Long
BigDecimal
String

Larger datatypes (int, long, and BigDecimal) are
valid input types. However, VoltDB throws a run-
time error if the value exceeds the allowable range
of a SMALLINT.

390

VoltDB Datatype Compatibility

SQL Datatype Compatible Java Datatypes Notes

String input must be a properly formatted text
representation of an integer value in the correct
range.

INTEGER byte/Byte
short/Short
int/Integer
long/Long
BigDecimal
String

Larger datatypes (long and BigDecimal) are valid
input type. However, VoltDB throws a runtime er-
ror if the value exceeds the allowable range of an
INTEGER.

String input must be a properly formatted text
representation of an integer value in the correct
range.

BIGINT byte/Byte
short/Short
int/Integer
long/Long
BigDecimal
String

String input must be a properly formatted text
representation of an integer value in the correct
range.

FLOAT double/Double
byte/Byte
short/Short
int/Integer
long/Long
BigDecimal
String

Because of the difference in how numbers are rep-
resented in the two types, there can be a loss of
precision when using BigDecimal as input to a
FLOAT value.

String input must be a properly formatted text rep-
resentation of a floating point value.

DECIMAL BigDecimal
double/Double
byte/Byte
short/Short
int/Integer
long/Long
String

String input must be a properly formatted text rep-
resentation of a decimal number.

GEOGRAPHY (none) Geospatial input should be converted from Well
Known Text (WKT) to a VoltDB native for-
mat either using the GeographyValue.fromWK-
T() method or by passing a String and using the
POLYGONFROMTEXT function within the SQL
statement.

GEOGRAPHY_POINT (none) Geospatial input should be converted from Well
Known Text (WKT) to a VoltDB native format
either using the GeographyPointValue.fromWK-
T() method or by passing a String and using the
POINTFROMTEXT function within the SQL
statement.

VARCHAR() String
byte[]
byte/Byte
short/Short
int/Integer
long/Long
BigDecimal

Byte arrays are interpreted as UTF-8 encoded
string values. String objects can use other encod-
ings.

Numeric and timestamp values are converted to
their string representation. For example, the dou-

391

VoltDB Datatype Compatibility

SQL Datatype Compatible Java Datatypes Notes

VoltDB TimestampType ble value 13.25 is interpreted as "13.25" when
converted to a VARCHAR.

VARBINARY() String
byte[]
ByteBuffer

String input is interpreted as a hex-encoded binary
value.

For ByteBuffers, the starting position and limit
properties are ignored and the entire buffer is in-
terpreted as a byte array starting in position zero.

TIMESTAMP VoltDB TimestampType
int/Integer
long/Long
String

For String variables, the text must be formatted as
either YYYY-MM-DD hh.mm.ss.nnnnnn or
just the date portion YYYY-MM-DD.

392

Appendix G. System Procedures
VoltDB provides system procedures that perform system-wide administrative functions. You can invoke
system procedures interactively using the sqlcmd utility, or you can invoke them programmatically like
other stored procedures, using the VoltDB client method callProcedure.

This appendix describes the following system procedures.

• @AdHoc
• @Explain
• @ExplainProc
• @ExplainView
• @GetPartitionKeys
• @Pause
• @Ping
• @Promote
• @QueryStats
• @Quiesce
• @Resume
• @Shutdown
• @SnapshotDelete
• @SnapshotRestore
• @SnapshotSave
• @SnapshotScan
• @Statistics
• @StopNode
• @SwapTables
• @SystemCatalog
• @SystemInformation
• @UpdateApplicationCatalog
• @UpdateClasses
• @UpdateLogging

393

System Procedures

@AdHoc
@AdHoc — Executes an SQL statement specified at runtime.

Syntax
@AdHoc String SQL-statement [, statement-parameter ...]

Description
The @AdHoc system procedure lets you perform arbitrary SQL statements on a running VoltDB database.

You can execute multiple SQL statements — either queries or data definition language (DDL) statements
— in a single call to @AdHoc by separating the individual statements with semicolons. When you do this,
the statements are performed as a single transaction. That is, the statements all succeed as a group or they
all roll back if any of them fail. You cannot mix SQL queries and DDL in a single @AdHoc call.

You can use question marks in the SQL statement as placeholders that are replaced by parameters you
provide as additional arguments to the call. For example:

sql = "SELECT * FROM Products WHERE partnumber=? AND vendor=?;"
results = client.callProcedure("@AdHoc",sql, productid, vendorid);

Performance of ad hoc queries is optimized, where possible. However, it is important to note that ad hoc
queries are not pre-compiled, like queries in stored procedures. Therefore, use of stored procedures is
recommended over @AdHoc for frequent, repetitive, or performance-sensitive queries.

Return Values
Returns one VoltTable for each statement, with as many rows as there are records returned by the statement.
The column names and datatypes match the names and datatypes of the fields returned by the query.

Examples
The following program example uses @AdHoc to execute an SQL SELECT statement and display the
number of reservations for a specific customer in the flight reservation database.

try {
 VoltTable[] results = client.callProcedure("@AdHoc",
 "SELECT COUNT(*) FROM RESERVATION " +
 "WHERE CUSTOMERID=" + custid).getResults();
 System.out.printf("%d reservations found.\n",
 results[0].fetchRow(0).getLong(0));
}
catch (Exception e) {
 e.printStackTrace();
}

Note that you do not need to explicitly invoke @AdHoc when using sqlcmd. You can type your statement
directly into the sqlcmd prompt, like so:

$ sqlcmd

394

System Procedures

1> SELECT COUNT(*) FROM RESERVATION WHERE CUSTOMERID=12345;

395

System Procedures

@Explain
@Explain — Returns the execution plan for the specified SQL query.

Syntax
@Explain String SQL-statement

Description
The @Explain system procedure evaluates the specified SQL query and returns the resulting execution
plan. Execution, or explain, plans describe how VoltDB expects to execute the query at runtime, including
what indexes are used, the order the tables are joined, and so on. Execution plans are useful for identifying
performance issues in query design. See the chapter on execution plans in the VoltDB Guide to Perfor-
mance and Customization for information on how to interpret the plans.

Return Values
Returns one VoltTable with one row and one column.

Name Datatype Description

EXECUTION_PLAN VARCHAR The execution plan as text.

Examples
The following program example uses @Explain to evaluate an ad hoc SQL SELECT statement against
the voter sample application.

try {
 String query = "SELECT COUNT(*) FROM CONTESTANTS;";
 VoltTable[] results = client.callProcedure("@Explain",
 query).getResults();
 System.out.printf("Query: %d\nPlan:\n%d",
 query, results[0].fetchRow(0).getString(0));
}
catch (Exception e) {
 e.printStackTrace();
}

In the sqlcmd utility, the "explain" command is a shortcut for "exec @Explain". So the following two
commands are equivalent:

$ sqlcmd
1> exec @Explain 'SELECT COUNT(*) FROM CONTESTANTS';
2> explain SELECT COUNT(*) FROM CONTESTANTS;

396

http://community.voltdb.com/docs/PerfGuide/ChapExecPlans
http://community.voltdb.com/docs/PerfGuide/index
http://community.voltdb.com/docs/PerfGuide/index

System Procedures

@ExplainProc
@ExplainProc — Returns the execution plans for all SQL queries in the specified stored procedure.

Syntax
@ExplainProc String procedure-name

Description
The @ExplainProc system procedure returns the execution plans for all of the SQL queries within the spec-
ified stored procedure. Execution, or explain, plans describe how VoltDB expects to execute the queries
at runtime, including what indexes are used, the order the tables are joined, and so on. Execution plans
are useful for identifying performance issues in query and stored procedure design. See the chapter on
execution plans in the VoltDB Guide to Performance and Customization for information on how to inter-
pret the plans.

Return Values
Returns one VoltTable with one row for each query in the stored procedure.

Name Datatype Description

SQL_STATEMENT VARCHAR The SQL query.

EXECUTION_PLAN VARCHAR The execution plan as text.

Examples
The following example uses @ExplainProc to evaluate the execution plans associated with the Contes-
tantWinningStates stored procedure in the voter sample application.

try {
 VoltTable[] results = client.callProcedure("@ExplainProc",
 "ContestantWinningStates").getResults();
 results[0].resetRowPosition();
 while (results[0].advanceRow()) {
 System.out.printf("Query: %d\nPlan:\n%d",
 results[0].getString(0),results[0].getString(1));
 }
}
catch (Exception e) {
 e.printStackTrace();
}

In the sqlcmd utility, the "explainproc" command is a shortcut for "exec @ExplainProc". So the following
two commands are equivalent:

$ sqlcmd
1> exec @ExplainProc 'ContestantWinningStates';
2> explainproc ContestantWinningStates;

397

http://community.voltdb.com/docs/PerfGuide/ChapExecPlans
http://community.voltdb.com/docs/PerfGuide/index

System Procedures

@ExplainView
@ExplainView — Returns the execution plans for the components of the specified view.

Syntax
@ExplainView String view-name

Description
The @ExplainView system procedure returns the execution plans for certain components of the specified
view. Execution plans describe how VoltDB expects to calculate the component values as the referenced
tables or streams are updated. The plans include what indexes are used, the order the tables are joined, and
so on. Execution plans are useful for identifying performance issues in the design of the view statement.
See the chapter on execution plans in the VoltDB Guide to Performance and Customization for information
on how to interpret the plans.

For views, execution plans are listed for the calculation of MIN() and MAX() functions and multi-table
joins only. For simple views — that is, views on a single table with aggregate functions other than MIN()
or MAX() — the system procedure returns no rows.

Return Values
Returns one VoltTable with one row for each component of the view.

Name Datatype Description

TASK VARCHAR The function or join statement

EXECUTION_PLAN VARCHAR The execution plan as text.

Examples
The following example uses @ExplainView to evaluate the execution plans associated with a view that
joins two tables.

try {
 VoltTable[] results = client.callProcedure("@ExplainView",
 "stats_by_city_and_state").getResults();
 results[0].resetRowPosition();
 while (results[0].advanceRow()) {
 System.out.printf("Task: %d\nPlan:\n%d",
 results[0].getString(0),results[0].getString(1));
 }
}
catch (Exception e) {
 e.printStackTrace();
}

In the sqlcmd utility, the "explainview" command is a shortcut for "exec @ExplainView". So the following
two commands are equivalent:

$ sqlcmd

398

http://community.voltdb.com/docs/PerfGuide/ChapExecPlans
http://community.voltdb.com/docs/PerfGuide/index

System Procedures

1> exec @ExplainView 'stats_by_city_and_state';
2> explainview stats_by_city_and_state;

399

System Procedures

@GetParonKeys
@GetPartitionKeys — Returns a list of partition values, one for every partition in the database.

Syntax
@GetPartitionKeys String datatype

Description
The @GetPartitionKeys system procedure returns a set of partition values that you can use to reach every
partition in the database. This procedure is useful when you want to run a stored procedure in every partition
but you do not want to use a multi-partition procedure. By running multiple single-partition procedures,
you avoid the impact on latency and throughput that can result from a multi-partition procedure. This
is particularly true for longer running procedures. Using multiple, smaller procedures can also help for
queries that modify large volumes of data, such as large deletes.

When you call @GetPartitionKeys you specify the datatype of the keys to return as the second parameter.
You specify the datatype as a case-insensitive string. Valid options are "INTEGER", "STRING", and
"VARCHAR" (where "STRING" and "VARCHAR" are synonyms).

Note that the results of the system procedure are valid at the time they are generated. If the cluster is static
(that is, no nodes are being added and any rebalancing is complete), the results remain valid until the next
elastic event. However, during rebalancing, the distribution of partitions is likely to change. So it is a good
idea to call @GetPartitionKeys once to get the keys, act on them, then call the system procedure again to
verify that the partitions have not changed.

Return Values
Returns one VoltTable with a row for every unique partition in the cluster.

Name Datatype Description

PARTITION_ID INTEGER The numeric ID of the partition.

PARTITION_KEY INTEGER or
STRING

A valid partition key for the partition. The datatype of the
key matches the type requested in the procedure call.

Examples
The following example shows the use of sqlcmd to get integer key values from @GetPartitionKeys:

$sqlcmd
1> exec @GetPartitionKeys integer;

The next example shows a Java program using @GetPartitionKeys to execute a stored procedure to clear
out old records, one partition at a time.

VoltTable[] results = client.callProcedure("@GetPartitionKeys",
 "INTEGER").getResults();
VoltTable keys = results[0];
for (int k=0;k<keys.getRowCount();k++) {
 long key = keys.fetchRow(k).getLong(1);

400

System Procedures

 client.callProcedure("PurgeOldData", key);
}

401

System Procedures

@Pause
@Pause — Initiates read-only mode on the cluster.

Syntax
@Pause

Description
The @Pause system procedure initiates admin mode on the cluster. Admin mode puts the database into
read-only mode and ensures no further changes to the database can be made through the client port when
performing sensitive administrative operations, such as taking a snapshot before shutting down.

While in admin mode, any write transactions on the client port are rejected and return an error status. Read-
only transactions, including system procedures, are allowed. However, write transactions such as inserts,
deletes, or schema changes are only allowed through the admin port.

Several important points to consider concerning @Pause are:

• @Pause must be called through the admin port, not the standard client port.

• Although write transactions on the client port are rejected in admin mode, existing connections from
client applications are not removed.

• To return to normal database operation, you must call the system procedure @Resume on the admin port.

Return Values
Returns one VoltTable with one row.

Name Datatype Description

STATUS BIGINT Always returns the value zero (0) indicating success.

Examples
It is possible to call @Pause using the sqlcmd utility. However, you must explicitly connect to the admin
port when starting sqlcmd to do this. Also, it is often easier to use the voltadmin utility, which connects
to the admin port by default. For example, the following commands demonstrate pausing and resuming
the database using both sqlcmd and voltadmin:

$ sqlcmd --port=21211
1> exec @Pause;
2> exec @Resume;

$ voltadmin pause
$ voltadmin resume

The following program example, if called through the admin port, initiates admin mode on the database
cluster.

client.callProcedure("@Pause");

402

System Procedures

@Ping
@Ping — Indicates whether the database is currently running.

Syntax
@Ping

Description
The @Ping system procedure returns a value of zero (0) indicating that the database is up and running.
The system procedure does not respond until the database completes its startup process.

The @Ping system procedure is a lightweight procedure and does not require any interaction between
cluster nodes, which makes it a better choice than other system procedures (such as @Statistics) if all you
need to do is check if the database is running.

Return Values
Returns one VoltTable with one row

Name Datatype Description

STATUS BIGINT Always returns the value zero (0) indicating success.

Examples
The following program fragment calls @Ping to determine if the database is still available. For example,
if the client application has not sent any data for awhile, it can check to see if the server is running before
sending any new transactions. Note that you can either check the response value or the status value to
determine if the call succeeded or not.

ClientResponse response = client.callProcedure("@Ping");
if (response.getStatus() == ClientResponse.SUCCESS) {
 /* We can continue */
} else {
 /* Server is not ready */
}

403

System Procedures

@Promote
@Promote — Promotes a replica database to normal operation.

Syntax
@Promote

Description
The @Promote system procedure promotes a replica database to normal operation. During database repli-
cation, the replica database only accepts input from the master database. If, for any reason, the master
database fails and replication stops, you can use @Promote to change the replica database from a replica
to a normal database. When you invoke the @Promote system procedure, the replica exits read-only mode
and becomes a fully operational VoltDB database that can receive and execute both read-only and read/
write queries.

Note that once a database is promoted, it cannot return to its original role as the receiving end of database
replication without first stopping and reinitializing the database as a replica. If the database is not a replica,
invoking @Promote returns an error.

Return Values
Returns one VoltTable with one row.

Name Datatype Description

STATUS BIGINT Always returns the value zero (0) indicating success.

Examples
The following programming example promotes a database cluster.

client.callProcedure("@Promote");

It is also possible to promote a replica database using sqlcmd or the voltadmin promote command. The
following commands are equivalent:

$ sqlcmd
1> exec @Promote;

$ voltadmin promote

404

System Procedures

@QueryStats
@QueryStats — Queries statistics like a SQL table.

Syntax
@QueryStats String query-statement

Description
The @QueryStats system procedure lets you query the results of the @Statistics system procedure as if it
were a database table, filtering, aggregating, and ordering the results as you wish. You specify the query
in a SQL-like statement as an argument to the procedure.

The query string is formatted as a SELECT statement, using the statistics result columns as selection ex-
pressions and FROM STATISTICS(selector,delta-flag) as the table specifier. For example, the following
query string returns the names of all export targets and their associated tables:

SELECT target, source from STATISTICS(EXPORT,0);

You can also use standard SQL functions and clauses such as WHERE, GROUP BY, and ORDER BY
to filter, aggregate, and re-order the output. For example, the following query reports the total number of
pending rows for each currently active export target, sorted in descending order:

SELECT target, SUM(tuple_pending) from STATISTICS(EXPORT,0)
 WHERE active = 'TRUE' GROUP BY target ORDER BY SUM(tuple_pending) DESC;

Note that although the query string is SQL like, it is not a true SQL statement and not all SQL expres-
sions are supported. For instance, you cannot use complex arithmetic expressions or all forms of joins or
subclauses. However, you can join multiple results as long as you separate the "tables" with commas and
specify the join constraints in the WHERE clause. For example, the following example joins information
about transaction invocations with the resulting output size per host and connection:

SELECT a.hostname, a.connection_id,
 SUM(a.invocations), SUM(b.bytes_written)
 from STATISTICS(initiator,0) AS a, STATISTICS(iostats,0) as b
 WHERE a.connection_id = b.connection_id
 GROUP BY a.hostname, a.connection_id;

Return Values
Returns one VoltTable with the results of the query. The name, number, and datatype of the columns
correspond to the columns in the query. The number of rows matches the number of @Statistics results
matching the query.

Examples
The following program example uses @QueryStats to determine how many clients are connected to each
host of the cluster.

try {
 String query = "SELECT hostname, count(*)" +

405

System Procedures

 " from statistics(liveclients,0) group by hostname;";
 VoltTable[] results = client.callProcedure("@QueryStats",
 query).getResults();
 return results;
}
catch (Exception e) {
 e.printStackTrace();
}

In the sqlcmd utility, you can use the querystats directive as a short cut for invoking the @QueryStats
system procedure.

$ sqlcmd
1> querystats SELECT hostname,count(*) from statistics(liveclients,0) group by hostname;

406

System Procedures

@Quiesce
@Quiesce — Waits for all queued export and DR data to be processed or saved to disk

Syntax
@Quiesce

Description
The @Quiesce system procedure waits for any pending export or database replication (DR) data to be
cleared before returning to the calling application. @Quiesce waits for export data to either be written to
the export connector or to the export overflow on disk. Similarly, it waits for pending DR data to be written
to DR overflow then does an fsync to ensure all disk I/O is completed. Note that a graceful shutdown
(using the voltadmin shutdown command without the --force argument) performs a quiesce as part of
the shutdown process.

If export and DR are not enabled, the procedure returns immediately.

Return Values
Returns one VoltTable with one row.

Name Datatype Description

STATUS BIGINT Always returns the value zero (0) indicating success.

Examples
The following example calls @Quiesce using sqlcmd:

$ sqlcmd
1> exec @Quiesce;

The following program example uses drain and @Quiesce to complete any asynchronous transactions and
clear the export and DR queues before shutting down the database.

 // Complete all outstanding activities
try {
 client.drain();
 client.callProcedure("@Quiesce");
}
catch (Exception e) {
 e.printStackTrace();
}

 // Shutdown the database.
try {
 client.callProcedure("@Shutdown");
}
 // We expect an exception when the connection drops.
 // Report any other exception.

407

System Procedures

catch (org.voltdb.client.ProcCallException e) { }
catch (Exception e) { e.printStackTrace(); }

408

System Procedures

@Resume
@Resume — Returns a paused database to normal operating mode.

Syntax
@Resume

Description
The @Resume system procedure switches all nodes in a database cluster from admin mode to normal
operating mode. In other words, @Resume is the opposite of @Pause.

After calling this procedure, the cluster returns to accepting read/write ad hoc queries and stored procedure
invocations from clients connected to the standard client port.

@Resume must be invoked from a connection to the admin port.

Return Values
Returns one VoltTable with one row.

Name Datatype Description

STATUS BIGINT Always returns the value zero (0) indicating success.

Examples
You can call @Resume using the sqlcmd utility. However, you must explicitly connect to the admin port
when starting sqlcmd to do this. It is often easier to use the voltadmin resume command, which connects
to the admin port by default. For example, the following commands are equivalent:

$ sqlcmd --port=21211
1> exec @Resume;

$ voltadmin resume

The following program example uses @Resume to return the cluster to normal operation.

client.callProcedure("@Resume");

409

System Procedures

@Shutdown
@Shutdown — Shuts down the database.

Syntax
@Shutdown

Description
The @Shutdown system procedure performs an immediate shut down of a VoltDB database on all nodes
of the cluster.

Note

The @Shutdown system procedure does not wait for running transactions to complete or queued
data to be written to disk before stopping the database process, which can result in loss of data.
Therefore, using the voltadmin shutdown command to perform an orderly shutdown, making
all data durable, is the recommended method for stopping a VoltDB database.

Note that once the database shuts down, the client connection is lost and the calling program cannot make
any further requests to the server.

Examples
The first example shows the recommended way to shutdown a VoltDB database, using the voltadmin
shutdown command to perform an orderly shutdown:

$ voltadmin shutdown

The next example shows calling @Shutdown from sqlcmd. This is equivalent to the voltdb shutdown
--force command:

$ sqlcmd
1> exec @Shutdown;

The following program example uses @Shutdown to stop the database cluster programmatically. Note
the use of catch to separate out a VoltDB call procedure exception (which is expected) from any other
exception.

try {
 client.callProcedure("@Shutdown");
}

 // we expect an exception when the connection drops.
catch (org.voltdb.client.ProcCallException e) {
 System.out.println("Database shutdown initiated.");
}
 // report any other exception.
catch (Exception e) {
 e.printStackTrace();
}

410

System Procedures

@SnapshotDelete
@SnapshotDelete — Deletes one or more native snapshots.

Syntax
@SnapshotDelete String[] directory-paths, String[] Unique-IDs

Description
The @SnapshotDelete system procedure deletes native snapshots from the database cluster. This is a clus-
ter-wide operation and a single invocation will remove the snapshot files from all of the nodes.

The procedure takes two parameters: a String array of directory paths and a String array of unique IDs
(prefixes).

The two arrays are read as a series of value pairs, so that the first element of the directory path array and
the first element of the unique ID array will be used to identify the first snapshot to delete. The second
element of each array will identify the second snapshot to delete. And so on.

@SnapshotDelete can delete native format snapshots only. The procedure cannot delete CSV format snap-
shots.

Return Values
Returns one VoltTable with a row for every snapshot file affected by the operation.

Name Datatype Description

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path where the snapshot file resides.

NONCE STRING The unique identifier for the snapshot.

NAME STRING The file name.

SIZE BIGINT The total size, in bytes, of the file.

DELETED STRING String value indicating whether the file was successfully
deleted ("TRUE") or not ("FALSE").

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

Example
The following example uses @SnapshotScan to identify all of the snapshots in the directory /tmp/volt-
db/backup/. This information is then used by @SnapshotDelete to delete those snapshots.

try {
 results = client.callProcedure("@SnapshotScan",

411

System Procedures

 "/tmp/voltdb/backup/").getResults();
}
catch (Exception e) { e.printStackTrace(); }

VoltTable table = results[0];
int numofsnapshots = table.getRowCount();
int i = 0;

if (numofsnapshots > 0) {
 String[] paths = new String[numofsnapshots];
 String[] nonces = new String[numofsnapshots];
 for (i=0;i<numofsnapshots;i++) { paths[i] = "/etc/voltdb/backup/"; }
 table.resetRowPosition();
 i = 0;
 while (table.advanceRow()) {
 nonces[i] = table.getString("NONCE");
 i++;
 }

 try {
 client.callProcedure("@SnapshotDelete",paths,nonces);
 }
 catch (Exception e) { e.printStackTrace(); }
}

412

System Procedures

@SnapshotRestore
@SnapshotRestore — Restores a database from disk using a native format snapshot.

Syntax
@SnapshotRestore String directory-path, String unique-ID

@SnapshotRestore String json-encoded-options

Description
The @SnapshotRestore system procedure restores a previously saved database from disk to memory. The
snapshot must be in native format. (You cannot restore a CSV format snapshot using @SnapshotRestore.)
The restore request is propagated to all nodes of the cluster, so a single call to @SnapshotRestore will
restore the entire database cluster.

If the database is empty — that is, there is no data or schema defined in the database — the restore operation
restores the schema and the requested data. If a schema is already defined, the restore operation restores
data only for those tables defined in the current schema.

There are two forms of the @SnapshotRestroe procedure, as described below. See Chapter 13, Saving &
Restoring a VoltDB Database for more information about saving and restoring VoltDB databases.

Individual Arguments
When you specify the arguments as individual parameters, you must specify two arguments:

1. The directory path where the snapshot files are stored

2. An identifier that uniquely identifies the snapshot

JSON-Encoded Arguments
When you specify the arguments as a JSON-encoded string, you can specify not only what snapshot to
use, but what data to restore from that snapshot. Table G.1, “@SnapshotRestoreOptions” describes the
possible options when restoring a snapshot using JSON-encoded arguments.

Table G.1. @SnapshotRestoreOptions

Option Description

path Specifies the path where the snapshot files are stored.

nonce Specifies the unique identifier for the snapshot.

skiptables Specifies tables to leave out when restoring the snapshot. Use of tables or skiptables
allows you to restore part of a snapshot. Specify the list of tables as a JSON array.
For example, the following JSON argument excludes the Areacode and Country
tables from the restore operation:

"skiptables":["areacode","country"]

tables Specifies tables to include when restoring the snapshot. Use of tables or skiptables
allows you to restore part of a snapshot. Specify the list of tables as a JSON array. For

413

System Procedures

Option Description

example, the following JSON argument includes only the Employee and Company
tables in the restore operation:

"tables":["employee","company"]

For example, the JSON-encoded arguments to restore the tables Employee and Company from the "mydb"
snapshot in the /tmp directory is the following:

{path:"/tmp",nonce:"mydb",tables:["employee","company"]}

Return Values
Returns one VoltTable with a row for every table restored at each execution site.

Name Datatype Description

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

TABLE STRING The name of the table being restored.

PARTITION_ID INTEGER The numeric ID for the logical partition that this site rep-
resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

Examples
The following example uses @SnapshotRestore to restore previously saved database content from the path
/tmp/voltdb/backup/ using the unique identifier flight.

$ sqlcmd
1> exec @SnapshotRestore '/tmp/voltdb/backup/', 'flight';

Alternately, you can use the voltadmin restore command to perform the same function:

$ voltadmin restore /tmp/voltdb/backup/ flight

Since there are a number of situations that impact what data is restored, it is a good idea to review the return
values to see what tables and partitions were affected. In the following program example, the contents of
the VoltTable array is written to standard output so the operator can confirm that the restore completed
as expected.

VoltTable[] results = null;

try {
 results = client.callProcedure("@SnapshotRestore",
 "/tmp/voltdb/backup/",
 "flight").getResults();

414

System Procedures

}
catch (Exception e) {
 e.printStackTrace();
}

for (int t=0; t<results.length; t++) {
 VoltTable table = results[t];
 for (int r=0;r<table.getRowCount();r++) {
 VoltTableRow row = table.fetchRow(r);
 System.out.printf("Node %d Site %d restoring " +
 "table %s partition %d.\n",
 row.getLong("HOST_ID"), row.getLong("SITE_ID"),
 row.getString("TABLE"),row.getLong("PARTITION"));
 }
}

415

System Procedures

@SnapshotSave
@SnapshotSave — Saves the current database contents to disk.

Syntax
@SnapshotSave String directory-path, String unique-ID, Integer blocking-flag

@SnapshotSave String json-encoded-options

@SnapshotSave

Description
The @SnapshotSave system procedure saves the contents of the current in-memory database to disk. Each
node of the database cluster saves its portion of the database locally.

There are three forms of the @SnapshotSave stored procedure: a procedure call with individual argument
parameters, with all arguments in a single JSON-encoded string, or with no arguments. When you specify
the arguments as individual parameters, VoltDB creates a native mode snapshot that can be used to recover
or restore the database. When you specify the arguments as a JSON-encoded string, you can request a
different format for the snapshot, including CSV (comma-separated value) files that can be used for import
into other databases or utilities. When you specify no arguments a full, native snapshot is saved into the
default snapshots directory in the database root directory.

Individual Arguments
When you specify the arguments as individual parameters, you must specify three arguments:

1. The directory path where the snapshot files are stored

2. An identifier that is included in the file names to uniquely identify the files that make up a single
snapshot

3. A flag value indicating whether the snapshot should block other transactions until it is complete or not

The resulting snapshot consists of multiple files saved to the directory specified by directory-path using
unique-ID as a filename prefix. The third argument, blocking-flag, specifies whether the save is performed
synchronously (thereby blocking any following transactions until the save completes) or asynchronously.
If this parameter is set to any non-zero value, the save operation will block any following transactions. If
it is zero, others transactions will be executed in parallel.

The files created using this invocation are in native VoltDB snapshot format and can be used to restore
or recover the database at some later time. This is the same format used for automatic snapshots. See
Chapter 13, Saving & Restoring a VoltDB Database for more information about saving and restoring
VoltDB databases.

JSON-Encoded Arguments
When you specify the arguments as a JSON-encoded string, you can specify what snapshot format you
want to create. Table G.2, “@SnapshotSave Options” describes all possible options when creating a snap-
shot using JSON-encoded arguments.

416

System Procedures

Table G.2. @SnapshotSave Options

Option Description

uripath Specifies the path where the snapshot files are created. Note that, as a JSON-encoded
argument, the path must be specified as a URI, not just a system directory path.
Therefore, a local directory must be specified using the file:// identifier, such
as "file:///tmp", and the path must exist on all nodes of the cluster.

nonce Specifies the unique identifier for the snapshot.

block Specifies whether the snapshot should be synchronous (true) and block other trans-
actions or asynchronous (false).

format Specifies the format of the snapshot. Valid formats are "csv" and "native".

When you save a snapshot in CSV format, the resulting files are in standard com-
ma-separated value format, with only one file for each table. In other words, dupli-
cates (from replicated tables or duplicate partitions due to K-safety) are eliminated.
CSV formatted snapshots are useful for import or reuse by other databases or utili-
ties. However, they cannot be used to restore or recover a VoltDB database.

When you save a snapshot in native format, each node and partition saves its contents
to separate files. These files can then be used to restore or recover the database. It
is also possible to later convert native format snapshots to CSV using the snapshot
utilities described in the VoltDB Administrator's Guide.

skiptables Specifies tables to leave out of the snapshot. Use of tables or skiptables allows you
to create a partial snapshot of the larger database. Specify the list of tables as a
JSON array. For example, the following JSON argument excludes the Areacode and
Country tables from the snapshot:

"skiptables":["areacode","country"]

tables Specifies tables to include in the snapshot. Use of tables or skiptables allows you to
create a partial snapshot of the larger database. Specify the list of tables as a JSON
array. For example, the following JSON argument includes only the Employee and
Company tables in the snapshot:

"tables":["employee","company"]

For example, the JSON-encoded arguments to synchronously save a CSV formatted snapshot to /tmp using
the unique identifier "mydb" is the following:

{uripath:"file:///tmp",nonce:"mydb",block:true,format:"csv"}

The block and format arguments are optional. If you do not specify them they default to block:false
and format:"native". The arguments uripath and nonce are required. The tables and skiptables
arguments are mutually exclusive.

Because the unique identifier is used in the resulting filenames, the identifier can contain only characters
that are valid for Linux file names. In addition, hyphens ("-") and commas (",") are not permitted.

Note that it is normal to perform manual saves synchronously, to ensure the snapshot represents a known
state of the database. However, automatic snapshots are performed asynchronously to reduce the impact
on ongoing database activity.

417

http://community.voltdb.com/docs/AdminGuide/

System Procedures

Return Values
The @SnapshotSave system procedure returns two different VoltTables, depending on the outcome of
the request.

Option #1: one VoltTable with a row for every execution site. (That is, the number of hosts multiplied
by the number of sites per host.).

Name Datatype Description

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

Option #2: one VoltTable with a variable number of rows.

Name Datatype Description

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

TABLE STRING The name of the database table. The contents of each table
is saved to a separate file. Therefore it is possible for the
snapshot of each table to succeed or fail independently.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

Examples
The following example uses @SnapshotSave to save the current database content in native snapshot format
to the path /tmp/voltdb/backup/ using the unique identifier flight on each node of the cluster.

$ sqlcmd
1> exec @SnapshotSave '/tmp/voltdb/backup/', 'flight', 1;

Alternately, you can use the voltadmin save command to perform the same function. When using the
voltadmin save command, you use the --blocking flag instead of a third parameter to request a block-
ing save:

$ voltadmin save --blocking /tmp/voltdb/backup/ flight

Note that the procedure call will return successfully even if the save was not entirely successful. The
information returned in the VoltTable array tells you what parts of the operation were successful or not.
For example, save may succeed on one node but not on another.

The following code sample performs the same function, but also checks the return values and notifies the
operator when portions of the save operation are not successful.

418

System Procedures

VoltTable[] results = null;

try { results = client.callProcedure("@SnapshotSave",
 "/tmp/voltdb/backup/",
 "flight", 1).getResults(); }
catch (Exception e) { e.printStackTrace(); }

for (int table=0; table<results.length; table++) {
 for (int r=0;r<results[table].getRowCount();r++) {
 VoltTableRow row = results[table].fetchRow(r);
 if (row.getString("RESULT").compareTo("SUCCESS") != 0) {
 System.out.printf("Site %s failed to write " +
 "table %s because %s.\n",
 row.getString("HOSTNAME"), row.getString("TABLE"),
 row.getString("ERR_MSG"));
 }
 }
}

419

System Procedures

@SnapshotScan
@SnapshotScan — Lists information about existing native snapshots in a given directory path.

Syntax
@SnapshotScan String directory-path

Description
The @SnapshotScan system procedure provides information about any native snapshots that exist within
the specified directory path for all nodes on the cluster. The procedure reports the name (prefix) of the
snapshot, when it was created, how long it took to create, and the size of the individual files that make
up the snapshot(s).

@SnapshotScan does not include CSV format snapshots in its output. Only native format snapshots are
listed.

Return Values
On successful completion, this system procedure returns three VoltTables providing the following infor-
mation:

• A summary of the snapshots found

• Available space in the directories scanned

• Details concerning the Individual files that make up the snapshots

The first table contains one row for every snapshot found.

Name Datatype Description

PATH STRING The directory path where the snapshot resides.

NONCE STRING The unique identifier for the snapshot.

TXNID BIGINT The transaction ID of the snapshot.

CREATED BIGINT The timestamp when the snapshot was created (in millisec-
onds).

SIZE BIGINT The total size, in bytes, of all the snapshot data.

TABLES_REQUIRED STRING A comma-separated list of all the table names listed in the
snapshot digest file. In other words, all of the tables that
make up the snapshot.

TABLES_MISSING STRING A comma-separated list of database tables for which no data
can be found. (That is, the corresponding files are missing
or unreadable.)

TABLES_INCOMPLETE STRING A comma-separated list of database tables with only partial
data saved in the snapshot. (That is, data from some parti-
tions is missing.)

COMPLETE STRING A string value indicating whether the snapshot as a whole is
complete ("TRUE") or incomplete ("FALSE"). If this col-

420

System Procedures

Name Datatype Description

umn is "FALSE", the preceding two columns provide addi-
tional information concerning what is missing.

PATHTYPE STRING A string value indicating the type of snapshot and its lo-
cation, where the type can be "SNAP_PATH" for manu-
al snapshots, "SNAP_CL" for command log snapshots, and
"SNAP_AUTO" for automated snapshots.

The second table contains one row for every host.

Name Datatype Description

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path specified in the call to the procedure.

TOTAL BIGINT The total space (in bytes) on the device.

FREE BIGINT The available free space (in bytes) on the device.

USED BIGINT The total space currently in use (in bytes) on the device.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

The third table contains one row for every file in the snapshot collection.

Name Datatype Description

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path where the snapshot file resides.

NAME STRING The file name.

TXNID BIGINT The transaction ID of the snapshot.

CREATED BIGINT The timestamp when the snapshot was created (in millisec-
onds).

TABLE STRING The name of the database table the data comes from.

COMPLETED STRING A string indicating whether all of the data was successfully
written to the file ("TRUE") or not ("FALSE").

SIZE BIGINT The total size, in bytes, of the file.

IS_REPLICATED STRING A string indicating whether the table in question is replicat-
ed ("TRUE") or partitioned ("FALSE").

PARTITIONS STRING A comma-separated string of partition (or site) IDs from
which data was taken during the snapshot. For partitioned
tables where there are multiple sites per host, there can be
data from multiple partitions in each snapshot file. For repli-
cated tables, data from only one copy (and therefore one
partition) is required.

TOTAL_PARTITIONS BIGINT The total number of partitions from which data was taken.

421

System Procedures

Name Datatype Description

READABLE STRING A string indicating whether the file is accessible ("TRUE")
or not ("FALSE").

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

If the system procedure fails because it cannot access the specified path, it returns a single VoltTable with
one row and one column.

Name Datatype Description

ERR_MSG STRING A message explaining the cause of the failure.

Examples
The following example uses @SnapshotScan to list information about the snapshots in the directory /
tmp/voltdb/backup/.

$ sqlcmd
1> exec @SnapshotScan /tmp/voltdb/backup/;

The following program example performs the same function, using the VoltTable toString() method
to display the results of the procedure call:

VoltTable[] results = null;

try { results = client.callProcedure("@SnapshotScan",
 "/tmp/voltdb/backup/").getResults();
}
catch (Exception e) { e.printStackTrace(); }

for (VoltTable t: results) {
 System.out.println(t.toString());
}

In the return value, the first VoltTable in the array lists the snapshots and certain status information. The
second element of the array provides information about the directory itself (such as used, free, and total disk
space). The third element of the array lists specific information about the individual files in the snapshot(s).

422

System Procedures

@Stascs
@Statistics — Returns statistics about the usage of the VoltDB database.

Syntax

@Statistics String component, Integer delta-flag

Description
The @Statistics system procedure returns information about the VoltDB database. The first argument,
component, specifies what aspect of VoltDB to return statistics about. The second argument, delta-flag,
specifies whether statistics are reported from when the database started or since the last call to @Statistics
where the flag was set.

Some components report statistics at the moment, collected when you make the procedure call. While
other components report statistics over time. For cumulative components, if the delta flag is set to zero,
the system procedure returns statistics since the database started. If the delta flag is non-zero, the system
procedure returns statistics for the interval since the last time @Statistics was called with a non-zero flag.
(If @Statistics has not been called with a non-zero flag before, the first call with the flag set returns sta-
tistics since startup.) The statistics that are affected by the delta flag are EXPORT, GC, IDLETIME, IM-
PORT, INITIATOR, IOSTATS, PLANNER, QUEUE, TTL, and the procedure statistics (PROCEDURE,
PROCEDUREDETAIL, PROCEDUREINPUT, PROCEDUREOUTPUT, and PROCEDUREPROFILE).

Note that in a cluster with K-safety, if a node fails, the statistics reported by this procedure are reset to
zero for the node when it rejoins the cluster.

The following are the allowable values of component:

"COMMANDLOG" Returns information about the progress of command logging, including the
number of segment files in use and the amount of command log data waiting
to be written to disk.

"CPU" Returns information about the amount of CPU used by each VoltDB server
process. CPU usage is returned as a number between 0 and 100 representing
the amount of CPU used by the VoltDB process out of the total CPU avail-
able for that server.

"DRCONSUMER" Returns information about the status of database replication on a DR con-
sumer, including the status and data replication rate of each partition. This
information is available only if the database is licensed for database replica-
tion and operating as a passive DR replica or an active XDCR database.

"DRPRODUCER" Returns information about the status of database replication on a producer
database, including how much data is waiting to be sent to the consumer.
This information is available only if the database is licensed for database
replication and is operating as a passive master or an active XDCR database.

"DRROLE" Returns information about the current state of database replication (DR), in-
cluding the role of the cluster (master, replica, or XDCR) and whether DR
has started, is running, stopped, or been disabled.

423

System Procedures

"EXPORT" Returns statistics on the export streams and targets, including how many
records have be written, how many are pending, and the status of the export
connection.

"GC" Returns statistics on Java garbage collection associated with the server
process on each host.

"IDLETIME" Returns statistics on how busy the partitions are. For each execution site, the
results provide a minimum, maximum, and average amount of time the site
waited without any transactions to process, as well as the overall percentage
of time the site was waiting (that is, the partition was "idle").

"IMPORT" Returns statistics on the import streams, including how many import trans-
actions have succeeded, failed, and been retried and how many rows have
been read but not applied yet.

"INDEX" Returns information about the indexes in the database, including the number
of keys for each index and the estimated amount of memory used to store
those keys. Separate information is returned for each partition in the data-
base.

"INITIATOR" Returns information on the number of procedure invocations for each stored
procedure (including system and import procedures). The count of invoca-
tions is reported for each connection to the database.

"IOSTATS" Returns information on the number of messages and amount of data (in
bytes) sent to and from each connection to the database.

"LATENCY" Returns statistics on the latency of transactions. The information reports on
median, percentage (99% through 99.999%), and maximum latency over the
most recent five second sampling period.

"LIVECLIENTS" Returns information about the number of outstanding requests per client.
You can use this information to determine how much work is waiting in the
execution queues.

"MANAGEMENT" Returns the same information as MEMORY, INITIATOR, PROCEDURE,
IOSTATS, TABLE, INDEX, IDLETIME [432], QUEUE [440], and
CPU, except all in a single procedure call.

"MEMORY" Returns statistics on the use of memory for each node in the cluster. MEMO-
RY statistics include the current resident set size (RSS) of the VoltDB server
process; the amount of memory used for Java temporary storage, database
tables, indexes, and string (including varbinary) storage; as well as other in-
formation.

"PARTITIONCOUNT" Returns information on the number of unique partitions in the cluster. The
VoltDB cluster creates multiple partitions based on the number of servers
and the number of sites per host requested. So, for example, a 2 node cluster
with 4 sites per host will have 8 partitions. However, when you define a
cluster with K-safety, there are duplicate partitions. PARTITIONCOUNT
only reports the number of unique partitions available in the cluster.

"PLANNER" Returns information on the use of cached plans within each partition. Queries
in stored procedures are planned when the procedure is declared in the
schema. However, ad hoc queries must be planned at runtime. To improve

424

System Procedures

performance, VoltDB caches plans for ad hoc queries so they can be reused
when a similar query is encountered later. There are two caches: the level
1 cache performs exact matches on queries and the level 2 cache parameter-
izes constants so it can match queries with the same plan but different input.
The planner statistics provide information about the size of each cache, how
frequently it is used, and the minimum, maximum, and average execution
time of ad hoc queries as a result.

"PROCEDURE" Returns information on the usage of stored procedures for each site within
the database cluster sorted by partition. The information includes the name
of the procedure, the number of invocations (for each site), and selected per-
formance information on minimum, maximum, and average execution time.

"PROCEDUREDETAIL" Returns detailed performance information about the individual statements
within each stored procedure. PROCEDUREDETAIL returns information
for each statement in each procedure, grouped by site and partition within
the database cluster. The information includes the name of the procedure, the
name of the statement, the number of invocations (for each site), and selected
performance information on minimum, maximum, and average execution
time.

"PROCEDUREINPUT" Returns summary information on the size of the input data submitted with
stored procedure invocations. PROCEDUREINPUT uses information from
PROCEDURE, except it focuses on the input parameters and aggregates data
for the entire cluster.

"PROCEDUREOUTPUT" Returns summary information on the size of the result sets returned by
stored procedure invocations. PROCEDUREOUTPUT uses information
from PROCEDURE, except it focuses on the result sets and aggregates data
for the entire cluster.

"PROCEDURE-
PROFILE"

Returns summary information on the usage of stored procedures averaged
across all partitions in the cluster. The information from PROCEDURE-
PROFILE is similar to the information from PROCEDURE, except it focus-
es on the performance of the individual procedures rather than on procedures
by partition. The weighted average across partitions is helpful for determin-
ing which stored procedures the application is spending most of its time in.

"QUEUE" Returns statistics on the number of tasks in each partition's process queue
and the average and maximum time tasks were waiting in the queue.

"REBALANCE" Returns information on the current progress of rebalancing on the cluster.
Rebalancing occurs when one or more nodes are added "on the fly" to an
elastic cluster. If no rebalancing is occurring, no data is returned. During a
rebalance, this selector returns information about the speed of migration of
the data, the latency of rebalance tasks, and the estimated time until comple-
tion. All rebalance statistics are cumulative for the current rebalance activity.

"SNAPSHOTSTATUS" Returns information about the individual files of up to ten recent snapshots
performed by the database. The results include the directory path and prefix
for the snapshot, when it occurred, how long it took, and whether the snap-
shot was completed successfully or not. The results report on both native and
CSV snapshots, as well as manual, automated, and command log snapshots.
Note that this selector does not tell you whether the snapshot files still exist,
only that the snapshot was performed. Use the @SnapshotScan procedure to
determine what snapshots are available.

425

System Procedures

"SNAPSHOTSUMMA-
RY"

Returns information about up to ten recent snapshots performed by the
database. Unlike SNAPSHOTSTATUS, which reports on individual files,
SNAPSHOTSUMMARY provides a one row summary for each snapshot.
The results include the directory path and prefix, when the snapshot start-
ed, how long it took, and whether the snapshot was completed successfully
or not. If the snapshot is still in progress, the results include the percentage
complete. Note that this selector does not tell you whether the snapshot files
still exist, only that the snapshot was started. Use the @SnapshotScan pro-
cedure to determine what snapshot files are available.

"TABLE" Returns information about the database tables, including the number of rows
per site for each table. This information can be useful for seeing how well
the rows are distributed across the cluster for partitioned tables.

"TASK" Returns information about scheduled tasks and their current status. There are
separate queues for the task schedulers and the task procedures, which run
on the standard transactional partition queues. The TASK selector reports
on both. Separate selectors for TASK_SCHEDULER and TASK_PROCE-
DURE report on a corresponding subset of the columns.

"TOPIC" Returns statistics about the queues for outbound topics (that is, data fetched
by consumers) including throughput, offsets, and retention policy, as well as
how much data is currently stored on disk.

"TTL" Returns information about the processing of expired data in "time to
live" (TTL) tables, including how recently and how many records have been
deleted.

Note that INITIATOR and PROCEDURE report information on both user-declared stored procedures and
system procedures. These include certain system procedures that are used internally by VoltDB and are
not intended to be called by client applications. Only the system procedures documented in this appendix
are intended for client invocation.

Return Values
Returns different VoltTables depending on which component is requested. The following tables identify
the structure of the return values for each component. (Note that the MANAGEMENT component returns
seven VoltTables.)

COMMANDLOG — Returns a row for every server in the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

OUTSTANDING_BYTES BIGINT The size, in bytes, of pending command log data. That is,
data for transactions that have been initiated but the log has
yet to be written to disk. For synchronous logging, this value
is always zero.

OUTSTANDING_TXNS BIGINT The size, in number of transactions, of pending command
log data. That is, the number of transactions that have been

426

System Procedures

Name Datatype Description

initiated for which the log has yet to be written to disk. For
synchronous logging, this value is always zero.

IN_USE_SEGMENT
_COUNT

INTEGER The total number of segment files currently in use for com-
mand logging.

SEGMENT_COUNT INTEGER The number of segment files allocated, including currently
unused segments.

FSYNC_INTERVAL INTEGER The average interval, in milliseconds, between the last 10
fsync system calls.

CPU — Returns a row for every server in the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PERCENT_USED BIGINT The percentage of total CPU available used by the database
server process.

DRCONSUMER — Returns two VoltTables. The first table returns a row for every host in the cluster,
showing whether a replication snapshot is in progress and if it is, the status of transmission to the consumer.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CLUSTER_ID INTEGER The numeric ID of the current cluster.

REMOTE_CLUSTER_ID INTEGER The numeric ID of the producer cluster.

STATE STRING A text string indicating the current state of replication. Pos-
sible values are:

• UNINITIALIZED — DR has not begun yet or has
stopped

• INITIALIZE — DR is enabled and the replica is attempt-
ing to contact the producer

• SYNC — DR has started and the consumer is synchro-
nizing by receiving snapshots of existing data from the
master

• RECEIVE — DR is underway and the consumer is re-
ceiving binary logs from the master

• DISABLE — DR has been canceled for some reason and
the consumer is stopping DR

REPLI-
CATION_RATE_1M

BIGINT The average rate of replication over the past minute. The
data rate is measured in bytes per second.

REPLI-
CATION_RATE_5M

BIGINT The average rate of replication over the past five minutes.
The data rate is measured in bytes per second.

427

System Procedures

The second table contains information about the replication streams, which consist of a row per partition
for each server. The data shows the current state of replication and how much data has been received by
the consumer from each producer.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CLUSTER_ID INTEGER The numeric ID of the current cluster.

REMOTE_CLUSTER_ID INTEGER The numeric ID of the producer cluster.

PARTITION_ID INTEGER The numeric ID for the logical partition.

IS_COVERED STRING A text string of "true" or "false" indicating whether this par-
tition is currently connected to and receiving data from a
matching partition on the producer cluster.

COVERING_HOST STRING The host name of the server in the producer cluster that
is providing DR data to this partition. If IS_COVERED is
"false", this field is empty.

LAST_RECEIVED
_TIMESTAMP

TIMES-
TAMP

The timestamp of the last transaction received from the pro-
ducer.

LAST_APPLIED
_TIMESTAMP

TIMES-
TAMP

The timestamp of the last transaction successfully applied
to this partition on the consumer.

IS_PAUSED STRING A text string of "true" or "false" indicating whether this par-
tition is paused. A partition "pauses" when the schema of
the DR tables on the producer change to no longer match
the consumer and all binary logs prior to the change have
been processed.

DUPLICATE_BUFFERS BIGINT The number of repeated buffers received after the initial
packets were dropped because the queue was full.

IGNORED_BUFFERS BIGINT The number of buffers received but dropped because the
queue was full.

AVAILABLE_BYTES INTEGER The number of free bytes left in the DR queue.

AVAILABLE_BUFFERS INTEGER The number of free buffers left in the DR queue.

CONSUMER_LIMIT_TYPE STRING The type of limit on the DR queue. The response is either
BYTES or BUFFERS.

DRPRODUCER — Returns two VoltTables. The first table contains information about the replication
streams, which consist of a row per partition for each server. The data shows the current state of replication
and how much data is currently queued for each consumer.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CLUSTER_ID INTEGER The numeric ID of the current cluster.

428

System Procedures

Name Datatype Description

REMOTE_CLUSTER_ID INTEGER The numeric ID of the consumer cluster.

PARTITION_ID INTEGER The numeric ID for the logical partition.

STREAMTYPE STRING The type of stream, which can either be "TRANSAC-
TIONS" or "SNAPSHOT".

TOTALBYTES BIGINT The total number of bytes currently queued for transmission
to the replica.

TOTALBYTESIN
MEMORY

BIGINT The total number of bytes of queued data currently held
in memory. If the amount of total bytes is larger than the
amount in memory, the remainder is kept in overflow stor-
age on disk.

TOTALBUFFERS BIGINT The total number of buffers in this partition currently wait-
ing for acknowledgement from the replica. The partitions
buffer the binary logs to reduce overhead and optimize net-
work transfers.

LASTQUEUEDDRID BIGINT The ID of the last transaction queued for transmission to the
consumer.

LASTACKDRID BIGINT The ID of the last transaction acknowledged by the con-
sumer.

LASTQUEUEDTIMES-
TAMP

TIMES-
TAMP

The timestamp of the last transaction queued for transmis-
sion to the consumer.

LASTACKTIMESTAMP TIMES-
TAMP

The timestamp of the last transaction acknowledged by the
consumer.

ISSYNCED STRING A text string indicating whether the database is currently be-
ing replicated. If replication has not started, or the overflow
capacity has been exceeded (that is, replication has failed),
the value of ISSYNCED is "false". If replication is current-
ly in progress, the value is "true".

MODE STRING A text string indicating whether this particular partition
is replicating data to the consumer ("NORMAL") or not
("PAUSED"). Only one copy of each logical partition actu-
ally sends data during replication. So for clusters with a K-
safety value greater than zero, not all physical partitions will
report "NORMAL" even when replication is in progress.

QUEUE_GAP BIGINT The number of missing transactions between those already
acknowledged by the consumer and the next available for
transmission. Under normal operating conditions, this value
is zero.

CONNECTION_STATUS STRING A text string indicating whether the connection to the con-
sumer is operational ("UP") or not ("DOWN"). If the con-
nection between the producer and consumer is broken or if
the producer does not hear from the consumer for more than
30 seconds, the connection is marked as "DOWN".

AVAILABLE_BYTES INTEGER The number of bytes waiting to be sent to the consumer

AVAILABLE_BUFFERS INTEGER The number of buffers waiting to be sent to the consumer.

CONSUMER_LIMIT_TYPE STRING The type of limit on the DR queue. The response is either
BYTES or BUFFERS.

429

System Procedures

The second table returns a row for every host in the cluster, showing whether a replication snapshot is in
progress and if it is, the status of transmission to the consumer.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CLUSTER_ID INTEGER The numeric ID of the current cluster.

REMOTE_CLUSTER_ID INTEGER The numeric ID of the consumer cluster.

STATE STRING A text string indicating the current state of replication.
Possible values are "OFF" (replication is not enabled),
"PENDING" (replication is enabled but not occurring), and
"ACTIVE" (replication is enabled and a replica database
has initiated DR).

SYNCSNAPSHOTSTATE STRING A text string indicating the current state of the synchroniza-
tion snapshot that begins replication. During normal opera-
tion, this value is "NONE" indicating either that replication
is not active or that transactions are actively being replicat-
ed. If a synchronization snapshot is in progress, this value
provides additional information about the specific activity
underway.

ROWSINSYNC
SNAPSHOT

BIGINT Reserved for future use.

ROWSACKEDFORSYNC
SNAPSHOT

BIGINT Reserved for future use.

DRROLE — Returns one row per connection showing the current status of DR for that cluster.

Name Datatype Description

ROLE STRING The role of the current cluster in a DR relationship. Possi-
ble values are NONE, MASTER, REPLICA, and XDCR.
(None indicates that no DR ID is defined and the cluster
cannot participate in DR.)

STATE STRING The current state of the DR relationship. Possible values are
the following:

• DISABLED — DR is not enabled for the cluster
• PENDING — DR is enabled but communication with the

other cluster has not begun
• ACTIVE — Communication with the other cluster has

begun
• STOPPED — Communication with the other cluster has

stopped due to a failure of some kind

Note that if DR stops, issuing the voltadmin dr reset com-
mand will return the cluster to the PENDING state.

REMOTE_CLUSTER_ID INTEGER The DR ID of the other DR cluster, or -1 if not available
(for example, when DR is disabled or communication has
not begun).

430

System Procedures

EXPORT — Returns a separate row for each export stream per partition.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

PARTITION_ID INTEGER The numeric ID for the logical partition.

SOURCE STRING The name of the export stream.

TARGET STRING The name of the export target.

ACTIVE STRING Whether this site is currently actively exporting data. For
normal export in a K-safe cluster, only one copy of each
partition actively exports data at any given time. Possible
values for user export are "TRUE" and "FALSE".

Note that cross datacenter replication (XDCR) uses the ex-
port infrastructure to write the DR conflict logs. In this case,
all copies of the partition write the logs and the ACTIVE
column is marked as "XDCR" to distinguish it from user-
defined export streams.

TUPLE_COUNT BIGINT The total number of records queued to the export target.

TUPLE_PENDING BIGINT The number of records out of TUPLE_COUNT still waiting
to be written to or acknowledged by the target.

LAST_QUEUED_TIMES-
TAMP

TIMES-
TAMP

The timestamp when the most recent tuple was added to the
export queue for this partition (in milliseconds).

LAST_ACKED_TIMES-
TAMP

TIMES-
TAMP

The timestamp when the last tuple was acknowledged as
received by the target (in milliseconds).

AVERAGE_LATENCY BIGINT The average time between when records are inserted and
they are acknowledged by the target.

MAXIMUM_LATENCY BIGINT The maximum time between when a record was inserted
and it was acknowledged by the target.

QUEUE_GAP BIGINT The number of records missing from the queue for the cur-
rent stream and partition.

STATUS STRING The current status of the export connection. Possible values
are the following:

• ACTIVE — Queue is currently exporting to the target
• BLOCKED — There is a gap in the queue and export

is waiting to see if the missing records become available
when a missing node rejoins

• DROPPED — either the source stream has been dropped
from the schema or the export configuration has been re-
moved from the configuration and queue is draining any
remaining records

Note that if the queue is blocked, the voltadmin export re-
lease command returns the queue to the ACTIVE state.

431

System Procedures

GC — Returns a separate row for each host.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

NEWGEN_GC_COUNT INTEGER The number of times "young generation" garbage collection
was performed.

NEW-
GEN_AVG_GC_TIME

BIGINT The average time (in milliseconds) taken by young genera-
tion collections.

OLDGEN_GC_COUNT INTEGER The number of times "old generation" garbage collection
was performed.

OLD-
GEN_AVG_GC_TIME

BIGINT The average time (in milliseconds) taken by old generation
collections.

IDLETIME — Returns a separate row for each execution site and host.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

COUNT BIGINT The number of times the execution site had to wait for a new
task (that is, the queue was empty).

PERCENT FLOAT The percentage of time the execution site was waiting for a
new task (that is, the site was "idle").

AVG BIGINT The average amount of time the execution site had to wait
for a new task (in microseconds).

MIN BIGINT The minimum amount of time the execution site had to wait
for a new task (in nanoseconds).

MAX BIGINT The maximum amount of time the execution site had to wait
for a new task (in nanoseconds).

STDDEV BIGINT The standard deviation of the waiting time (in microsec-
onds).

IMPORT — Returns a separate row for each import stream and each server.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

IMPORTER_NAME STRING The name of the import stream.

432

System Procedures

Name Datatype Description

PROCEDURE_NAME STRING The name of the stored procedure invoked by the import
stream to insert the incoming data.

SUCCESSES BIGINT The number of import transactions that succeeded.

FAILURES BIGINT The number of import transactions that failed.

OUTSTANDING
_REQUESTS

BIGINT The number of records read from the import stream and
waiting to be inserted into the database.

RETRIES BIGINT The number of attempts to replay failed transactions.

INDEX — Returns a row for every index in every execution site.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

PARTITION_ID BIGINT The numeric ID for the logical partition that this site rep-
resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

INDEX_NAME STRING The name of the index.

TABLE_NAME STRING The name of the database table to which the index applies.

INDEX_TYPE STRING A text string identifying whether the index is unique or not.
Possible values include the following:

CompactingTreeMultiMapIndex
CompactingTreeUniqueIndex

IS_UNIQUE TINYINT A byte value specifying whether the index is unique (1) or
not (0).

IS_COUNTABLE TINYINT A byte value specifying whether the index maintains a
counter to optimize COUNT(*) queries.

ENTRY_COUNT BIGINT The number of index entries currently in the partition.

MEMORY_ESTIMATE BIGINT The estimated amount of memory (in kilobytes) consumed
by the current index entries.

INITIATOR — Returns a separate row for each connection and the stored procedures initiated by that
connection.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

CONNECTION_ID BIGINT Numeric ID of the client connection invoking the proce-
dure.

433

System Procedures

Name Datatype Description

CONNECTION_HOST
NAME

STRING The server name of the node from which the client connec-
tion originates. In the case of import procedures, the name
of the importer is reported here.

PROCEDURE_NAME STRING The name of the stored procedure. If import is enabled, im-
port procedures are included as well.

INVOCATIONS BIGINT The number of times the stored procedure has been invoked
by this connection on this host node.

AVG_EXECUTION_TIME INTEGER The average length of time (in milliseconds) it took to exe-
cute the stored procedure.

MIN_EXECUTION_TIME INTEGER The minimum length of time (in milliseconds) it took to ex-
ecute the stored procedure.

MAX_EXECUTION_TIME INTEGER The maximum length of time (in milliseconds) it took to
execute the stored procedure.

ABORTS BIGINT The number of times the procedure was aborted.

FAILURES BIGINT The number of times the procedure failed unexpectedly. (As
opposed to user aborts or expected errors, such as constraint
violations.)

IOSTATS — Returns one row for every client connection on the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CONNECTION_ID BIGINT Numeric ID of the client connection invoking the proce-
dure.

CONNECTION_HOST
NAME

STRING The server name of the node from which the client connec-
tion originates.

BYTES_READ BIGINT The number of bytes of data sent from the client to the host.

MESSAGES_READ BIGINT The number of individual messages sent from the client to
the host.

BYTES_WRITTEN BIGINT The number of bytes of data sent from the host to the client.

MESSAGES_WRITTEN BIGINT The number of individual messages sent from the host to
the client.

LATENCY — Returns a row for every server in the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp, in milliseconds, when the data was collect-
ed (not when the call was processed). If two calls to this
selector return the same timestamp, the data being returned
is identical.

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

434

System Procedures

Name Datatype Description

INTERVAL INTEGER The length of the measurement interval, in milliseconds.
The interval is five seconds (5000).

COUNT INTEGER The total number of transactions during the interval.

TPS INTEGER The number of transactions per second during the interval.

P50 BIGINT The 50th percentile latency, in microseconds. This value
measures the median latency.

P95 BIGINT The 95h percentile latency, in microseconds.

P99 BIGINT The 99th percentile latency, in microseconds.

P99.9 BIGINT The 99.9th percentile latency, in microseconds.

P99.99 BIGINT The 99.99th percentile latency, in microseconds.

P99.999 BIGINT The 99.999th percentile latency, in microseconds.

MAX BIGINT The maximum latency during the interval, in microseconds.

LIVECLIENTS — Returns a row for every client connection currently active on the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CONNECTION_ID BIGINT Numeric ID of the client connection invoking the proce-
dure.

CLIENT_HOSTNAME STRING The server name of the node from which the client connec-
tion originates.

ADMIN TINYINT A byte value specifying whether the connection is to the
client port (0) or the admin port (1).

OUTSTANDING_
REQUEST_BYTES

BIGINT The number of bytes of data sent from the client currently
pending on the host.

OUTSTANDING_
RESPONSE_MESSAGES

BIGINT The number of messages on the host queue waiting to be
retrieved by the client.

OUTSTANDING_
TRANSACTIONS

BIGINT The number of transactions (that is, stored procedures) ini-
tiated on behalf of the client that have yet to be completed.

MEMORY — Returns a row for every server in the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

RSS INTEGER The current resident set size. That is, the total amount of
memory allocated to the VoltDB processes on the server.

JAVAUSED INTEGER The amount of memory (in kilobytes) allocated by Java and
currently in use by VoltDB.

435

System Procedures

Name Datatype Description

JAVAUNUSED INTEGER The amount of memory (in kilobytes) allocated by Java but
unused. (In other words, free space in the Java heap.)

TUPLEDATA BIGINT The amount of memory (in kilobytes) currently in use for
storing database records.

TUPLEALLOCATED BIGINT The amount of memory (in kilobytes) allocated for the stor-
age of database records (including free space).

INDEXMEMORY BIGINT The amount of memory (in kilobytes) currently in use for
storing database indexes.

STRINGMEMORY BIGINT The amount of memory (in kilobytes) currently in use for
storing string, binary, and geospatial data that is not stored
"in-line" in the database record.

TUPLECOUNT BIGINT The total number of database records currently in memory.

POOLEDMEMORY BIGINT The total size of memory (in kilobytes) allocated for tasks
other than database records, indexes, and strings. (For ex-
ample, pooled memory is used for temporary tables while
processing stored procedures.)

PHYSICALMEMORY BIGINT The total size of physical memory (in kilobytes) on the serv-
er.

JAVAMAXHEAP INTEGER The maximum heap size (in kilobytes) of the Java runtime
environment.

PARTITIONCOUNT — Returns one row identifying the total number of partitions and the host that
provided that information.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PARTITION_COUNT INTEGER The number of unique or logical partitions on the cluster.
When using a K value greater than zero, there are multiple
copies of each logical partition.

PLANNER — Returns a row for every planner cache. That is, one cache per execution site, plus one
global cache per server. (The global cache is identified by a site and partition ID of minus one.)

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

PARTITION_ID INTEGER The numeric ID for the logical partition that this site rep-
resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

CACHE1_LEVEL INTEGER The number of query plans in the level 1 cache.

436

System Procedures

Name Datatype Description

CACHE2_LEVEL INTEGER The number of query plans in the level 2 cache.

CACHE1_HITS BIGINT The number of queries that matched and reused a plan in
the level 1 cache.

CACHE2_HITS BIGINT The number of queries that matched and reused a plan in
the level 2 cache.

CACHE_MISSES BIGINT The number of queries that had no match in the cache and
had to be planned from scratch

PLAN_TIME_MIN BIGINT The minimum length of time (in nanoseconds) it took to
complete the planning of ad hoc queries.

PLAN_TIME_MAX BIGINT The maximum length of time (in nanoseconds) it took to
complete the planning of ad hoc queries.

PLAN_TIME_AVG BIGINT The average length of time (in nanoseconds) it took to com-
plete the planning of ad hoc queries.

FAILURES BIGINT The number of times planning for an ad hoc query failed.

PROCEDURE — Returns a row for every stored procedure that has been executed on the cluster, grouped
by execution site.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

PARTITION_ID INTEGER The numeric ID for the logical partition that this site rep-
resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

PROCEDURE STRING The class name of the stored procedure.

INVOCATIONS BIGINT The total number of invocations of this procedure at this
site.

TIMED_INVOCATIONS BIGINT The number of invocations used to measure the minimum,
maximum, and average execution time.

MIN_EXECUTION_TIME BIGINT The minimum length of time (in nanoseconds) it took to
execute the stored procedure.

MAX_EXECUTION_TIME BIGINT The maximum length of time (in nanoseconds) it took to
execute the stored procedure.

AVG_EXECUTION_TIME BIGINT The average length of time (in nanoseconds) it took to exe-
cute the stored procedure.

MIN_RESULT_SIZE INTEGER The minimum size (in bytes) of the results returned by the
procedure.

MAX_RESULT_SIZE INTEGER The maximum size (in bytes) of the results returned by the
procedure.

AVG_RESULT_SIZE INTEGER The average size (in bytes) of the results returned by the
procedure.

437

System Procedures

Name Datatype Description

MIN_PARAMETER
_SET_SIZE

INTEGER The minimum size (in bytes) of the parameters passed as
input to the procedure.

MAX_PARAMETER
_SET_SIZE

INTEGER The maximum size (in bytes) of the parameters passed as
input to the procedure.

AVG_PARAMETER
_SET_SIZE

INTEGER The average size (in bytes) of the parameters passed as input
to the procedure.

ABORTS BIGINT The number of times the procedure was aborted.

FAILURES BIGINT The number of times the procedure failed unexpectedly. (As
opposed to user aborts or expected errors, such as constraint
violations.)

TRANSACTIONAL TINYINT 0 or 1. Reserved for future use.

PROCEDUREDETAIL — Returns a row for every statement in every stored procedure that has been
executed on the cluster, grouped by execution site.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

PARTITION_ID INTEGER The numeric ID for the logical partition that this site rep-
resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

PROCEDURE STRING The class name of the stored procedure.

STATEMENT STRING The name of the statement in the stored procedure. Cumula-
tive statistics for all statements in the procedure are includ-
ed in a separate row labeled "<ALL>".

INVOCATIONS BIGINT The total number of invocations of the statement at this site.

TIMED_INVOCATIONS BIGINT The number of invocations used to measure the minimum,
maximum, and average execution time.

MIN_EXECUTION_TIME BIGINT The minimum length of time (in nanoseconds) it took to
execute the statement.

MAX_EXECUTION_TIME BIGINT The maximum length of time (in nanoseconds) it took to
execute the statement.

AVG_EXECUTION_TIME BIGINT The average length of time (in nanoseconds) it took to exe-
cute the statement.

MIN_RESULT_SIZE INTEGER The minimum size (in bytes) of the results returned by the
statement.

MAX_RESULT_SIZE INTEGER The maximum size (in bytes) of the results returned by the
statement.

AVG_RESULT_SIZE INTEGER The average size (in bytes) of the results returned by the
statement.

438

System Procedures

Name Datatype Description

MIN_PARAMETER
_SET_SIZE

INTEGER The minimum size (in bytes) of the parameters passed as
input to the statement.

MAX_PARAMETER
_SET_SIZE

INTEGER The maximum size (in bytes) of the parameters passed as
input to the statement.

AVG_PARAMETER
_SET_SIZE

INTEGER The average size (in bytes) of the parameters passed as input
to the statement.

ABORTS BIGINT In the cumulative row for each procedure ("<ALL>"), the
number of times the procedure was aborted. For individual
statements, this column is set to zero.

FAILURES BIGINT The number of times the statement failed unexpectedly. (As
opposed to user aborts or expected errors, such as constraint
violations.)

PROCEDUREINPUT — Returns a row for every stored procedure that has been executed on the cluster,
summarized across the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

PROCEDURE STRING The class name of the stored procedure.

WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the para-
meter set size for invocations of this stored procedure com-
pared to all stored procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

MIN_PARAMETER
_SET_SIZE

BIGINT The minimum parameter set size in bytes.

MAX_PARAMETER
_SET_SIZE

BIGINT The maximum parameter set size in bytes.

AVG_PARAMETER
_SET_SIZE

BIGINT The average parameter set size in bytes.

TOTAL_PARAMETER
_SET_SIZE_MB

BIGINT The total input for all invocations of this stored procedure
measured in megabytes.

PROCEDUREOUTPUT — Returns a row for every stored procedure that has been executed on the
cluster, summarized across the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

PROCEDURE STRING The class name of the stored procedure.

WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the re-
sult set size returned by invocations of this stored procedure
compared to all stored procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

MIN_RESULT_SIZE BIGINT The minimum result set size in bytes.

MAX_RESULT_SIZE BIGINT The maximum result set size in bytes.

439

System Procedures

Name Datatype Description

AVG_RESULT_SIZE BIGINT The average result set size in bytes.

TOTAL_RESULT
_SIZE_MB

BIGINT The total output returned by all invocations of this stored
procedure measured in megabytes.

PROCEDUREPROFILE — Returns a row for every stored procedure that has been executed on the
cluster, summarized across the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

PROCEDURE STRING The class name of the stored procedure.

WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the exe-
cution time for this stored procedure compared to all stored
procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

AVG BIGINT The average length of time (in nanoseconds) it took to exe-
cute the stored procedure.

MIN BIGINT The minimum length of time (in nanoseconds) it took to
execute the stored procedure.

MAX BIGINT The maximum length of time (in nanoseconds) it took to
execute the stored procedure.

ABORTS BIGINT The number of times the procedure was aborted.

FAILURES BIGINT The number of times the procedure failed unexpectedly. (As
opposed to user aborts or expected errors, such as constraint
violations.)

QUEUE — Returns a separate row for each partition and host listing the current state of the process queue
for that execution site.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

CURRENT_DEPTH INTEGER The number of tasks currently in the queue.

POLL_COUNT BIGINT The number of tasks that left the queue (and started execut-
ing) in the past five seconds.

AVG_WAIT BIGINT The average length of time (in microseconds) tasks were
waiting in the queue in the last five seconds.

MAX_WAIT BIGINT The maximum length of time (in microseconds) tasks were
waiting in the queue in the last five seconds.

REBALANCE — Returns one row if the cluster is rebalancing. No data is returned if the cluster is not
rebalancing.

440

System Procedures

Name Datatype Description

TOTAL_RANGES BIGINT The total number of partition segments to be migrated.

PERCENTAGE_MOVED FLOAT The percentage of the total segments that have already been
moved.

MOVED_ROWS BIGINT The number of rows of data that have been moved.

ROWS_PER_SECOND FLOAT The average number of rows moved per second.

ESTIMATED
_REMAINING

BIGINT The estimated time remaining until the rebalance is com-
plete, in milliseconds.

MEGABYTES_PER
_SECOND

FLOAT The average volume of data moved per second, measured
in megabytes.

CALLS_PER_SECOND FLOAT The average number of rebalance work units, or transac-
tions, executed per second.

CALLS_LATENCY FLOAT The average execution time for rebalance transactions, in
milliseconds.

SNAPSHOTSTATUS — Returns a row for every snapshot file in the recent snapshots performed on the
cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

TABLE STRING The name of the database table whose data the file contains.

PATH STRING The directory path where the snapshot file resides.

FILENAME STRING The file name.

NONCE STRING The unique identifier for the snapshot.

TXNID BIGINT The transaction ID of the snapshot.

START_TIME BIGINT The timestamp when the snapshot began (in milliseconds).

END_TIME BIGINT The timestamp when the snapshot was completed (in mil-
liseconds).

SIZE BIGINT The total size, in bytes, of the file.

DURATION BIGINT The length of time (in seconds) it took to complete the snap-
shot.

THROUGHPUT FLOAT The average number of bytes per second written to the file
during the snapshot process.

RESULT STRING String value indicating whether the writing of the snapshot
file was successful ("SUCCESS") or not ("FAILURE").

TYPE STRING String value indicating how the snapshot was initiated. Pos-
sible values are:

• AUTO — an automated snapshot as defined by the con-
figuration file

• COMMANDLOG — a command log snapshot
• MANUAL — a manual snapshot initiated by a user

441

System Procedures

SNAPSHOTSUMMARY — Returns a row for every snapshot performed by the cluster, including up
to ten snapshots

Name Datatype Description

NONCE STRING The unique identifier for the snapshot.

TXNID BIGINT The transaction ID of the snapshot.

TYPE STRING String value indicating how the snapshot was initiated. Pos-
sible values are:

• AUTO — an automated snapshot as defined by the con-
figuration file

• COMMANDLOG — a command log snapshot
• MANUAL — a manual snapshot initiated by a user

PATH STRING The target directory path for the snapshot files.

START_TIME BIGINT The timestamp when the snapshot began (in milliseconds).

END_TIME BIGINT The timestamp when the snapshot was completed (in mil-
liseconds).

DURATION BIGINT The length of time (in seconds) it took to complete the snap-
shot.

PROGRESS_PCT FLOAT For snapshots currently in progress, the percent complete at
the time of the call.

RESULT STRING String value indicating whether the writing of the snapshot
was successful ("SUCCESS") or not ("FAILURE").

TABLE — Returns a row for every table, per partition. In other words, the number of tables, multiplied
by the number of sites per host and the number of hosts.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID BIGINT Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID BIGINT Numeric ID of the execution site on the host node.

PARTITION_ID BIGINT The numeric ID for the logical partition that this site rep-
resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

TABLE_NAME STRING The name of the database table.

TABLE_TYPE STRING The type of the table. Values returned include "Persistent-
Table" for normal data tables and views and "Streamed-
Table" for streams.

TUPLE_COUNT BIGINT The number of rows currently stored for this table in the
current partition. For streams, the cumulative total number
of rows inserted into the stream.

TUPLE_ALLOCATED
_MEMORY

BIGINT The total size of memory, in kilobytes, allocated for storing
inline data associated with this table in this partition. The
allocated memory can exceed the currently used memory
(TUPLE_DATA_MEMORY). For streams, this field iden-
tifies the amount of memory currently in use to queue ex-

442

System Procedures

Name Datatype Description

port data (both in memory and as export overflow) prior to
its being passed to the export target.

TUPLE_DATA_MEMORY BIGINT The total memory, in kilobytes, used for storing inline data
associated with this table in this partition. The total memo-
ry used for storing data for this table is the combination of
memory used for inline (tuple) and non-inline (string) data.

STRING_DATA
_MEMORY

BIGINT The total memory, in kilobytes, used for storing non-inline
variable length data (VARCHAR, VARBINARY, and GE-
OGRAPHY) associated with this table in this partition. The
total memory used for storing data for this table is the com-
bination of memory used for inline (tuple) and non-inline
(string) data.

TUPLE_LIMIT INTEGER The row limit for this table. Row limits are optional and are
defined in the schema as a maximum number of rows that
any partition can contain. If no row limit is set, this value
is null.

PERCENT_FULL INTEGER The percentage of the row limit currently in use by table
rows in this partition. If no row limit is set, this value is zero.

DR STRING A text string of "true" or "false" indicating whether the table
is a DR table or not.

EXPORT STRING If the table or stream is configured with MIGRATE or EX-
PORT TO TARGET, the name of the associated export tar-
get.

TASK — Returns a row for every task, per logical partition.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID BIGINT Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PARTITION_ID BIGINT The numeric ID for the logical partition running the task
procedure. Directed procedures run on each logical parti-
tion. Multi-partition procedures run on the multi-partition
initiator.

TASK_NAME STRING The name of the task.

STATE STRING The current status of the task. Possible values include:

• RUNNING — The task is enabled and running normally.
• DISABLED — The task is disabled and not running.
• ERROR — The task returned an error and was stopped

due to the ON ERROR STOP attribute.
• PAUSED — The database is paused or is running on a

DR replica, so the task is not currently running but will
restart when the database resumes or is promoted.

SCOPE STRING The execution scope of the task, which matches the RUN
ON attribute. Possible values are DATABASE, HOSTS, or
PARTITIONS.

443

System Procedures

Name Datatype Description

SCHEDULER_INVO-
CATIONS

BIGINT The total number of invocations of the task's schedule. For
example, if the task is scheduled for every 5 minutes, after
20 minutes of normal operation you would expect 4 invo-
cations.

SCHEDULER_TO-
TAL_EXECUTION

BIGINT The total time, in nanoseconds, consumed by the scheduler
for scheduling the task.

SCHEDULER_MIN_EXE-
CUTION

BIGINT The minimum amount of time, in nanoseconds, taken by the
scheduler to schedule an instance of the task.

SCHEDULER_MAX_EXE-
CUTION

BIGINT The maximum amount of time, in nanoseconds, taken by
the scheduler to schedule an instance of the task.

SCHEDULER_AVG_EXE-
CUTION

BIGINT The average amount of time, in nanoseconds, taken by the
scheduler to schedule instances of the task.

SCHEDULER_TO-
TAL_WAIT_TIME

BIGINT The total time, in nanoseconds, between the task's sched-
uled start and when the scheduler was invoked.

SCHED-
ULER_MIN_WAIT_TIME

BIGINT The minimum difference, in nanoseconds, between when
the task was scheduled to run and when the scheduler was
invoked.

SCHED-
ULER_MAX_WAIT_TIME

BIGINT The maximum difference, in nanoseconds, between when
the task was scheduled to run and when the scheduler was
invoked.

SCHED-
ULER_AVG_WAIT_TIME

BIGINT The average difference, in nanoseconds, between when the
task was scheduled to run and when the scheduler was in-
voked.

SCHEDULER_STATUS STRING For future use.

PROCEDURE_INVO-
CATIONS

BIGINT The total number of invocations of the task's procedure.

PROCEDURE_TO-
TAL_EXECUTION

BIGINT The total time, in nanoseconds, consumed by the task for
all of its invocations.

PROCEDURE_MIN_EXE-
CUTION

BIGINT The minimum amount of time, in nanoseconds, an instance
of the task took to execute.

PROCEDURE_MAX_EX-
ECUTION

BIGINT The maximum amount of time, in nanoseconds, an instance
of the task took to execute.

PROCEDURE_AVG_EXE-
CUTION

BIGINT The average amount of time, in nanoseconds, instances of
the task took to execute.

PROCEDURE_TO-
TAL_WAIT_TIME

BIGINT The total time, in nanoseconds, between when the proce-
dure was scheduled to run and when it was invoked.

PROCE-
DURE_MIN_WAIT_TIME

BIGINT The minimum difference, in nanoseconds, between when
the procedure was scheduled to run and when it was in-
voked.

PROCE-
DURE_MAX_WAIT_TIME

BIGINT The maximum difference, in nanoseconds, between when
the procedure was scheduled to run and when it was in-
voked.

PROCE-
DURE_AVG_WAIT_TIME

BIGINT The average difference, in nanoseconds, between when the
procedure was scheduled to run and when it was invoked.

444

System Procedures

Name Datatype Description

PROCEDURE_FAILURES BIGINT The number of times the procedure generated an error when
run.

TOPIC — Returns a separate row for each topic and partition.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST_ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER Numeric ID of the execution site on the host node.

TOPIC STRING The name of the topic.

PARTITION_ID INTEGER The numeric ID for the logical partition.

FIRST_OFFSET BIGINT The value of the first offset currently available in the topic.

LAST_OFFSET BIGINT The value of the last offset in the topic.

FIRST_OFFSET_TIMES-
TAMP

TIMES-
TAMP

The timestamp when the first offset was inserted into the
queue.

LAST_OFFSET_TIMES-
TAMP

TIMES-
TAMP

The timestamp when the most recent message (the last off-
set) was inserted into the queue.

BYTES_ON_DISK BIGINT The size, in bytes, of data stored on disk for this partition
and topic.

BYTES_FETCHED BIGINT The size, in bytes, of data sent to consumers for this partition
and topic.

STATE STRING The current level of completeness for this topic in this par-
tition. If the server was down at any point, it may be miss-
ing records that were queued while the partition was offline.
Possible values are:

• STABLE — the queue is complete.
• BACKFILLING — records are missing but are being re-

trieved from other servers.
• BLOCKED — records are missing from all copies of the

partition.
• ORPHANED — the queue is no longer being served by

this partition, but is saved in case other copies of the
queue are blocked or backfilling and need the data. This
is a transitional state and the queue is deleted as soon as
no other copies need its records.

If a topic becomes blocked and the cluster is complete (has
no missing nodes), you can use the voltadmin topic release
command to "jump" past the missing offsets.

MASTER STRING A text string of "true" or "false" indicating whether the cur-
rent site is the master for the logical partition.

RETENTION_POLICY STRING The retention policy for this topic.

ROWS_SKIPPED BIGINT Reserved for future use.

445

System Procedures

Name Datatype Description

ERROR_OFFSET BIGINT If an error occurs while encoding a message for consumers,
an error is returned to the consumer, the offset of the mes-
sage is recoded here, and a description of the error stored
in the next column.

ERROR_MESSAGE BIGINT A description of the last error that occurred while encoding
messages for consumers.

TTL — Returns a separate row for each table in the database where TTL processing is currently active.
It does not list tables that do not have TTL defined or where TTL processing has been cancelled due to
an error or lack of a suitable index.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

TABLE_NAME STRING The name of the table.

ROWS_DELETED BIGINT The total number of rows expired and deleted by the TTL
attribute.

ROWS_DELETED_LAST
_ROUND

BIGINT The number of rows expired and deleted during the last TTL
processing.

ROWS_REMAINING BIGINT The number of expired rows not deleted during the last TTL
processing due to batch size limits. If TTL processing is
keeping up with the throughput, this value should tend to-
wards zero.

LAST_DELETE
_TIMESTAMP

BIGINT The timestamp when the last round of TTL processing oc-
curred (in milliseconds).

Examples
The following example uses @Statistics to gather information about the distribution of table rows within
the cluster:

$ sqlcmd
1> exec @Statistics TABLE, 0;

The next program example shows a procedure that collects and displays the number of transactions (i.e.
stored procedures) during a given interval, by setting the delta flag to a non-zero value. By calling this
procedure iteratively (for example, every five minutes), it is possible to identify fluctuations in the database
workload over time (as measured by the number of transactions processed).

446

System Procedures

void measureWorkload() {
 VoltTable[] results = null;
 String procName;
 int procCount = 0;
 int sysprocCount = 0;

 try { results = client.callProcedure("@Statistics",
 "INITIATOR",1).getResults(); }
 catch (Exception e) { e.printStackTrace(); }

 for (VoltTable t: results) {
 for (int r=0;r<t.getRowCount();r++) {
 VoltTableRow row = t.fetchRow(r);
 procName = row.getString("PROCEDURE_NAME");
 /* Count system procedures separately */
 if (procName.substring(0,1).compareTo("@") == 0)
 { sysprocCount += row.getLong("INVOCATIONS"); }
 else
 { procCount += row.getLong("INVOCATIONS"); }
 }
 }
 System.out.printf("System procedures: %d\n" +
 "User-defined procedures: %d\n",+
 sysprocCount,procCount);
}

447

System Procedures

@StopNode
@StopNode — Stops a VoltDB server process, removing the node from the cluster.

Syntax
@StopNode Integer host-ID

Description
The @StopNode system procedure lets you stop a specific server in a K-safe cluster. You specify which
node to stop using the host ID, which is the unique identifier for the node assigned by VoltDB when the
server joins the cluster.

Note that by calling the @StopNode procedure on a node other than the node being stopped, you will
receive a return status indicating the success or failure of the call. If you call the procedure on the node that
you are requesting to stop, the return status can only indicate that the call was interrupted (by the VoltDB
process on the node stopping), not whether it was successfully completed or not.

If you call @StopNode on a node or cluster that is not K-safe — either because it was started with a K-
safety value of zero or one or more nodes have failed so any further failure could crash the database — the
@StopNode procedure will not be executed. You can only stop nodes on a cluster that will remain viable
after the node stops. To stop the entire cluster, please use the voltadmin shutdown command.

Return Values
Returns one VoltTable with one row.

Name Datatype Description

STATUS BIGINT Always returns the value zero (0) indicating success.

Examples
The following program example uses grep, sqlcmd, and the @SystemInformation stored procedure to
identify the host ID for a specific node (doodah) of the cluster. The example then uses that host ID (2) to
call @StopNode and stop the desired node.

$ echo "exec @SystemInformation overview;" | sqlcmd | grep "doodah"
 2 HOSTNAME doodah
$ sqlcmd
1> exec @StopNode 2;

The next example uses the voltadmin stop command to perform the same action. Note that voltadmin
stop performs the translation from a network name to a host ID for you.

$ voltadmin stop doodah

The following Java code fragment performs the same function programmatically.

try {
 results = client.callProcedure("@SystemInformation",

448

System Procedures

 "overview").getResults();
}
catch (Exception e) { e.printStackTrace(); }

VoltTable table = results[0];
table.resetRowPosition();
int targetHostID = -1;

while (table.advanceRow() && targetHostId < 0) {
 if ((table.getString("KEY") == "HOSTNAME") &&
 (table.getString("VALUE") == targetHostName)) {
 targetHostId = (int) table.getLong("HOST_ID");
 }
}

try {
 client.callProcedure("@SStopNode",
 targetHostId).getResults();
 }
 catch (Exception e) { e.printStackTrace(); }

449

System Procedures

@SwapTables
@SwapTables — Swaps the contents of one table for another

Syntax
@SwapTables String[] table-name, String[] table-name

Description
The @SwapTables system procedure swaps the contents of one table for another. So, for example, if table
A has 2 rows and table B has 10 rows, after executing the following system procedure call table A would
have 10 rows and table B would have 2 rows:

sqlcmd> exec @SwapTables 'A' 'B';

The tables being swapped must have identical schema. That is the names, datatype, and order of the
columns must be the same and the tables must have the same indexes and other constraints. Also there
cannot be any views on either table. If these requirements are not met, or if either of the named tables does
not exist, the system procedure returns an error.

The system procedure provides a significant performance advantage over any comparable SQL statements
when swapping large tables because the operation does not actually move any data. The pointers for the
two tables are switched, eliminating any need for excessive temporary storage or data movement.

When using database replication (DR), the @SwapTables procedure is treated like a schema change and
will pause replication. To use @SwapTables in a DR environment, follow the procedures for schema
changes. That is:

• When using passive DR:

1. Pause the master database with voltadmin pause --wait.

2. Invoke @SwapTables on the master database.

3. Resume the master database with voltadmin resume.

4. Invoke the same @SwapTables call on the replica.

• When using XDCR:

1. Pause all of the clusters in the XDCR relationshp with voltadmin pause --wait.

2. Invoke the same @SwapTables call on all of the databases.

3. Resume all the databases with voltadmin resume.

Return Values
Returns one VoltTable with one row and one column.

Name Datatype Description

MODIFIED_TUPLES BIGINT The number of tuples affected by the swap. In other words,
the sum of the tuples in both tables.

450

System Procedures

Examples
The following example uses the @SwapTables system procedure to replace a lookup table of hot topics
with an updated list in a single statement.

sqlcmd> exec @SwapTables Hot_Topics Hot_Topics_Update;

451

System Procedures

@SystemCatalog
@SystemCatalog — Returns metadata about the database schema.

Syntax
@SystemCatalog String component

Description
The @SystemCatalog system procedure returns information about the schema of the VoltDB database, de-
pending upon the component keyword you specify. The following are the allowable values of component:

"COLUMNS" Returns a list of columns for all of the tables in the database.

"FUNCTIONS" Returns information about user-defined functions in the database.

"INDEXINFO" Returns information about the indexes in the database schema. Note that the
procedure returns information for each column in the index. In other words,
if an index is composed of three columns, the result set will include three
separate entries for the index, one for each column.

"PRIMARYKEYS" Returns information about the primary keys in the database schema. Note
that the procedure returns information for each column in the primary key.
If an primary key is composed of three columns, the result set will include
three separate entries.

"PROCEDURECOLUM-
NS"

Returns information about the arguments to the stored procedures.

"PROCEDURES" Returns information about the stored procedures defined in the database.

"TABLES" Returns information about the tables in the database.

Return Values
Returns a different VoltTable for each component. The layout of the VoltTables is designed to match the
corresponding JDBC data structures. Columns are provided for all JDBC properties, but where VoltDB
has no corresponding element the column is unused and a null value is returned.

For the COLUMNS component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table the column belongs to.

COLUMN_NAME STRING The name of the column.

DATA_TYPE INTEGER An enumerated value specifying the corresponding Java
SQL datatype of the column.

TYPE_NAME STRING A string value specifying the datatype of the column.

452

System Procedures

Name Datatype Description

COLUMN_SIZE INTEGER The length of the column in bits, characters, or digits, de-
pending on the datatype.

BUFFER_LENGTH INTEGER Unused.

DECIMAL_DIGITS INTEGER The number of fractional digits in a DECIMAL datatype
column. (Null for all other datatypes.)

NUM_PREC_RADIX INTEGER Specifies the radix, or numeric base, for calculating the col-
umn size. A radix of 2 indicates the column size is measured
in bits while a radix of 10 indicates a measurement in bytes
or digits.

NULLABLE INTEGER Indicates whether the column value can be null (1) or not
(0).

REMARKS STRING Contains the string "PARTITION_COLUMN" if the col-
umn is the partitioning key for a partitioned table. Other-
wise null.

COLUMN_DEF STRING The default value for the column.

SQL_DATA_TYPE INTEGER Unused.

SQL_DATETIME_SUB INTEGER Unused.

CHAR_OCTET_LENGTH INTEGER For variable length columns (VARCHAR and VARBI-
NARY), the maximum length of the column. Null for all
other datatypes.

ORDINAL_POSITION INTEGER An index specifying the position of the column in the list of
columns for the table, starting at 1.

IS_NULLABLE STRING Specifies whether the column can contain a null value
("YES") or not ("NO").

SCOPE_CATALOG STRING Unused.

SCOPE_SCHEMA STRING Unused.

SCOPE_TABLE STRING Unused.

SOURCE_DATE_TYPE SMALLINT Unused.

IS_AUTOINCREMENT STRING Specifies whether the column is auto-incrementing or not.
(Always returns "NO").

For the FUNCTIONS component, the VoltTable has the following columns:

Name Datatype Description

FUNCTION_TYPE STRING The function type is always "scalar".

FUNCTION_NAME STRING The name of the user-defined function.

CLASS_NAME STRING The Java class name that contains the user-defined function
method.

METHOD_NAME STRING The name of the method that implements the user-defined
function.

For the INDEXINFO component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

453

System Procedures

Name Datatype Description

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table the index applies to.

NON_UNIQUE TINYINT Value specifying whether the index is unique (0) or not (1).

INDEX_QUALIFIER STRING Unused.

INDEX_NAME STRING The name of the index that includes the current column.

TYPE SMALLINT A value indicating the type of index, which is always three
(3).

ORDINAL_POSITION SMALLINT An index specifying the position of the column in the index,
starting at 1.

COLUMN_NAME STRING The name of the column.

ASC_OR_DESC STRING A string value specifying the sort order of the index. Pos-
sible values are "A" for ascending or null for unsorted in-
dexes.

CARDINALITY INTEGER Unused.

PAGES INTEGER Unused.

FILTER_CONDITION STRING Unused.

For the PRIMARYKEYS component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table.

COLUMN_NAME STRING The name of the column in the primary key.

KEY_SEQ SMALLINT An index specifying the position of the column in the pri-
mary key, starting at 1.

PK_NAME STRING The name of the primary key.

For the PROCEDURECOLUMNS component, the VoltTable has the following columns:

Name Datatype Description

PROCEDURE_CAT STRING Unused.

PROCEDURE_SCHEM STRING Unused.

PROCEDURE_NAME STRING The name of the stored procedure.

COLUMN_NAME STRING The name of the procedure parameter.

COLUMN_TYPE SMALLINT An enumerated value specifying the parameter type. Al-
ways returns 1, corresponding to procedureColumnIn.

DATA_TYPE INTEGER An enumerated value specifying the corresponding Java
SQL datatype of the column.

TYPE_NAME STRING A string value specifying the datatype of the parameter.

PRECISION INTEGER The length of the parameter in bits, characters, or digits,
depending on the datatype.

454

System Procedures

Name Datatype Description

LENGTH INTEGER The length of the parameter in bytes. For variable length
datatypes (VARCHAR and VARBINARY), this value
specifies the maximum possible length.

SCALE SMALLINT The number of fractional digits in a DECIMAL datatype
parameter. (Null for all other datatypes.)

RADIX SMALLINT Specifies the radix, or numeric base, for calculating the pre-
cision. A radix of 2 indicates the precision is measured in
bits while a radix of 10 indicates a measurement in bytes
or digits.

NULLABLE SMALLINT Unused.

REMARKS STRING If this column contains the string "PARTITION_PARA-
METER", the parameter is the partitioning key for a sin-
gle-partitioned procedure. If the column contains the string
"ARRAY_PARAMETER" the parameter is a native Java
array. Otherwise this column is null.

COLUMN_DEF STRING Unused.

SQL_DATA_TYPE INTEGER Unused.

SQL_DATETIME_SUB INTEGER Unused.

CHAR_OCTET_LENGTH INTEGER For variable length columns (VARCHAR and VARBI-
NARY), the maximum length of the column. Null for all
other datatypes.

ORDINAL_POSITION INTEGER An index specifying the position in the parameter list for the
procedure, starting at 1.

IS_NULLABLE STRING Unused.

SPECIFIC_NAME STRING Same as COLUMN_NAME

For the PROCEDURES component, the VoltTable has the following columns:

Name Datatype Description

PROCEDURE_CAT STRING Unused.

PROCEDURE_SCHEM STRING Unused.

PROCEDURE_NAME STRING The name of the stored procedure.

RESERVED1 STRING Unused.

RESERVED2 STRING Unused.

RESERVED3 STRING Unused.

REMARKS STRING Unused.

PROCEDURE_TYPE SMALLINT An enumerated value that specifies the type of procedure.
Always returns zero (0), indicating "unknown".

SPECIFIC_NAME STRING Same as PROCEDURE_NAME.

For the TABLES component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

455

System Procedures

Name Datatype Description

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table.

TABLE_TYPE STRING Specifies whether the table is a data table ("TABLE"), a ma-
terialized view ("VIEW"), or a stream ('EXPORT").

REMARKS STRING Unused.

TYPE_CAT STRING Unused.

TYPE_SCHEM STRING Unused.

TYPE_NAME STRING Unused.

SELF_REFERENCING
_COL_NAME

STRING Unused.

REF_GENERATION STRING Unused.

Examples
The following example calls @SystemCatalog to list the stored procedures in the active database schema:

$ sqlcmd
1> exec @SystemCatalog procedures;

The next program example uses @SystemCatalog to display information about the tables in the database
schema.

VoltTable[] results = null;
try {
 results = client.callProcedure("@SystemCatalog",
 "TABLES").getResults();
 System.out.println("Information about the database schema:");
 for (VoltTable node : results) System.out.println(node.toString());
}
catch (Exception e) {
 e.printStackTrace();
}

456

System Procedures

@SystemInformaon
@SystemInformation — Returns configuration information about VoltDB and the individual nodes of the
database cluster.

Syntax
@SystemInformation

@SystemInformation String component

Description
The @SystemInformation system procedure returns information about the configuration of the VoltDB
database or the individual nodes of the database cluster, depending upon the component keyword you
specify. The following are the allowable values of component:

"DEPLOY-
MENT"

Returns information about the configuration of the database. In particular, this key-
word returns information about the various features and settings enabled through the
configuration file, such as export, snapshots, K-safety, and so on. These properties
are returned in a single VoltTable of name/value pairs.

"LICENSE" Returns information about the license in use by the database. The license properties
are returned in a single VoltTable of name/value pairs.

"OVERVIEW" Returns information about the individual servers in the database cluster, including the
host name, the IP address, the version of VoltDB running on the server, as well as the
path to the configuration file in use. The overview also includes entries for the start
time of the server and length of time the server has been running.

If you do not specify a component, @SystemInformation returns the results of the OVERVIEW component
(to provide compatibility with previous versions of the procedure).

Return Values
Returns one of two VoltTables depending upon which component is requested.

DEPLOYMENT — returns one row for each configuration property.

Name Datatype Description

PROPERTY STRING The name of the configuration property. The system procedure reports
the following properties, depending on what features are enabled in
the database configuration:

• adminport — admin port number
• commandlogenabled — whether command logging is enabled or

not
• commandlogfreqtime — frequency of command logging in mil-

liseconds
• commandlogfreqtxns — frequency of command logging in number

of transactions
• commandlogmode — command logging mode, sync or async
• commandlogpath — directory path to command log segments

457

System Procedures

Name Datatype Description

• commandlogsnapshotpath — directory path to command log snap-
shots

• droverflowpath — directory path for DR overflow
• elasticduration — target duration of rebalance transactions in mil-

liseconds
• elasticthroughput — target throughput of rebalance transactions in

MB/second
• export — whether export is enabled or not
• exportcursorpath — directory path for storing the current cursor

location for export queues
• exportoverflowpath — directory path to export overflow
• heartbeattimeout — heartbeat timeout setting in seconds
• hostcount — full number of servers in the cluster
• httpenabled — whether the httpd port is enabled or not
• httpport — httpd port number
• jsonenabled — whether JSON is enabled on the httpd port or not
• kfactor — K-safety value
• largequeryswappath — directory path used as temporary storage

for processing large queries
• partitiondetection — whether network partition detection is en-

abled or not
• querytimeout — default query timeout in seconds
• sitesperhost — number of sites per host
• snapshotenabled — whether automatic snapshots are enabled or not
• snapshotfrequency — frequency of automatic snapshots
• snapshotpath — directory path to automatic snapshot files
• snapshotprefix — unique file prefix for automatic snapshots
• snapshotpriority — system priority of automatic snapshots
• snapshotretain — number of automatic snapshots to retain
• temptablesmaxsize — maximum size of the temp tables
• users — list of user names and their roles
• voltdbroot — path of database root directory

VALUE STRING The corresponding value of that property in the configuration file (ei-
ther explicitly or by default).

LICENSE — returns one row for each license property.

Name Datatype Description

PROPERTY STRING The name of the license property. The system procedure reports the
following properties, depending on what license features are enabled:

• PERMIT_VERSION — for internal use
• PERMIT_SCHEME — for internal use
• TYPE — the type of license in use
• ISSUER_COMPANY — the company that issued the license
• ISSUER_EMAIL — the email address of the company that issued

the license
• ISSUER_URL — the website of the company that issued the li-

cense
• ISSUER_PHONE — the telephone number of the company that

issued the license
• ISSUE_DATE — the date the license was issued

458

System Procedures

Name Datatype Description

• LICENSEE — who the license was issued to
• EXPIRATION — the date the license expires
• HOSTCOUNT_MAX — the maximum number of hosts supported

by the license
• FEATURES_TRIAL — whether this is a trial license or not
• FEATURES_UNRESTRICTED — whether the license allows un-

restricted access to all features
• FEATURES_COMMANDLOGGING — whether the license sup-

ports the use of command logging
• FEATURES_DRREPLICATION — whether the license supports

the use of passive database replication (DR)
• FEATURES_DRACTIVEACTIVE — whether the license sup-

ports the use of cross data center replication (XDCR)
• NOTE — notes regarding the license
• SIGNATURE — an encrypted signature identifying the license (for

internal use)

VALUE STRING The corresponding value of the property (either set explicitly by the
license or by default).

OVERVIEW — returns a row for every system attribute one every node of the cluster. The rows contain
an additional column to identify the host node associated with the attribute.

Name Datatype Description

HOST_ID INTEGER A numeric identifier for the host node.

KEY STRING The name of the system attribute.

VALUE STRING The corresponding value of that attribute for the specified host. The
system procedure reports the following properties:

• ADMININTERFACE — admin network interface
• ADMINPORT — admin port number
• BUILDSTRING — VoltDB software build string including version

number
• CATALOG — for internal use
• CATALOGCRC — for internal use
• CLIENTINTERFACE — client network interface
• CLUSTERID — DR cluster ID
• CLUSTERSAFETY — whether the database is running in normal

K-safe mode (FULL), or if it has reduced k-safety due to non-de-
terministic results from a transaction (REDUCED)

• CLUSTERSTATE — whether the database is running normally or
paused (that is, in admin mode)

• DEPLOYMENT — path to current configuration in root directory
• DRINTERFACE — database replication (DR) network interface
• DRPORT — database replication (DR) port number
• DRPUBLICINTERFACE — network interface advertised to mem-

ber clusters as DR interface
• DRPUBLICPORT — port advertised to member clusters as DR

port
• FULLCLUSTERSIZE — initial cluster size
• HOSTNAME — server host name
• HTTPINTERFACE — httpd network interface

459

System Procedures

Name Datatype Description

• HTTPPORT — httpd port number
• INITIALIZED — for internal use
• INTERNALINTERFACE — internal network interface
• INTERNALPORT — internal port number
• IPADDRESS — server IP address
• IV2ENABLED — for internal use
• KUBERNETES — whether the database is running under Kuber-

netes (true or false)
• LAST_UPDATECORE_DURATION — length of last schema

change transaction
• LICENSE — product license information
• LOG4JPORT — log4J port number
• PARTITIONGROUP — for internal use
• PLACEMENTGROUP — name of the placement group the server

belongs to
• PUBLICINTERFACE — network interface advertised by VoltDB

Management Center as the external interface
• REPLICATIONROLE — database replication (DR) role,

MASTER, REPLICA, XDCR, or none
• STARTTIME — timestamp when cluster started
• UPTIME — how long the cluster has been running
• VERSION — VoltDB software version number
• VOLTDBROOT — path of database root directory
• ZKINTERFACE — ZooKeeper network interface
• ZKPORT — ZooKeeper port number

Examples
The first example displays information about the individual servers in the database cluster:

$ sqlcmd
1> exec @SystemInformation overview;

The following program example uses @SystemInformation to display information about the nodes in the
cluster and then about the database itself.

VoltTable[] results = null;
try {
 results = client.callProcedure("@SystemInformation",
 "OVERVIEW").getResults();
 System.out.println("Information about the database cluster:");
 for (VoltTable node : results) System.out.println(node.toString());

 results = client.callProcedure("@SystemInformation",
 "DEPLOYMENT").getResults();
 System.out.println("Information about the database configuration:");
 for (VoltTable node : results) System.out.println(node.toString());

}
catch (Exception e) {
 e.printStackTrace();
}

460

System Procedures

@UpdateApplicaonCatalog
@UpdateApplicationCatalog — Reconfigures the database by replacing the configuration file.

Syntax
@UpdateApplicationCatalog byte[] null, String configuration

Description
The @UpdateApplicationCatalog system procedure lets you modify the configuration of a running data-
base without having to shutdown and restart.

Note

The @UpdateApplicationCatalog system procedure originally supported updating a precompiled
schema called an application catalog. Application catalogs are no longer supported in favor of
interactive DDL statements. However, the first argument is still required and should be sent as
a null value. See the voltadmin update command for an easier way to update the configuration
from the command line.

The arguments to the system procedure are a null value and a string containing the contents of the config-
uration file. That is, you pass the actual contents of the configuration file as a string. The new settings
must not contain any changes other than the allowed modifications listed in the description of the voltad-
min update command. If there are any other changes, the procedure returns an error indicating that an
incompatible change has been found.

To simplify the process of encoding the configuration file contents, the Java client interface includes two
helper methods (one synchronous and one asynchronous) to encode the file and issue the stored procedure
request:

ClientResponse client.updateApplicationCatalog(null, File configuration-file)

ClientResponse client.updateApplicationCatalog(clientCallback callback, null, File configura-
tion-file)

Similarly, the sqlcmd utility interprets the configuration argument as a filename.

Examples
The following example uses sqlcmd to update the configuration using the file myconfig.xml:

$ sqlcmd
1> exec @UpdateApplicationCatalog null, myconfig.xml;

An alternative is to use the voltadmin update command. In which case, the following command performs
the same function as the preceding sqlcmd example:

$ voltadmin update myconfig.xml

The following program example uses the @UpdateApplicationCatalog procedure to update the current
database catalog, using the configuration file at project/production.xml with the synchronous
helper method.

461

System Procedures

String newconfig = "project/production.xml";
try {
 client.updateApplicationCatalog(null, new File(newconfig));
}
catch (Exception e) { e.printStackTrace(); }

462

System Procedures

@UpdateClasses
@UpdateClasses — Adds and removes Java classes from the database.

Syntax
@UpdateClasses byte[] JAR-file, String class-selector

Description
The @UpdateClasses system procedure performs two functions:

• Loads into the database any Java classes and resources in the JAR file passed as the first parameter

• Removes any classes matching the class selector string passed as the second parameter

You need to compile and pack your stored procedure classes into a JAR file and load them into the database
using @UpdateClasses before entering the CREATE PROCEDURE statements that define those classes
as VoltDB stored procedures. Note that, for interactive use, the sqlcmd utility has two directives, load
classes and remove classes, that perform these actions in separate steps.

To remove classes, you specify the class names in the second parameter, the class selector. You can include
multiple class selectors using a comma-separated list. You can also use Ant-style wildcards in the class
specification to identify multiple classes. For example, the following command deletes all classes that are
children of org.mycompany.utils as well as *.DebugHandler:

sqlcmd
1> exec @UpdateClasses NULL "org.mycompany.utils.*,*.DebugHandler";

You can also use the @UpdateClasses system procedure to include reusable code that is accessed by
multiple stored procedures. Reusable code includes both resource files, such as XML or other data files,
as well as classes accessed by stored procedures.

• Resource files must be stored in a subfolder within the JAR. Resources in the root directory are ignored.

• Any classes and methods called by stored procedures must follow the same rules for deterministic be-
havior that stored procedures follow, as described in Section 5.1.2, “VoltDB Stored Procedures are De-
terministic”.

• Use of @UpdateClasses is not recommended for large, established libraries of classes used by stored
procedures. For larger, static libraries that do not need to be modified on the fly, the preferred approach
is to include the code by placing JAR files in the /lib directory where VoltDB is installed on the database
servers.

Classes can be overwritten by loading a new class with the same path. Similarly, resource files can be
updated by reloading a file with the same name and location. Classes can be removed using the second
argument to the system procedure (or the remove classes directive). However, there is no mechanism for
removing resources files other than classes once they are loaded.

Examples
The following example compiles and packs Java stored procedures into the file myapp.jar. The example
then uses @UpdateClasses to load the classes from the JAR file, then defines and partitions a stored pro-
cedure based on the uploaded classes.

463

System Procedures

$ javac -cp "/opt/voltdb/voltdb/*" -d obj src/myapp/*.java
$ jar cvf myapp.jar -C obj .
$ sqlcmd
1> exec @UpdateClasses myapp.jar "";
2> CREATE PROCEDURE
3> PARTITION ON TABLE Customer COLUMN CustomerID
4> FROM CLASS myapp.procedures.AddCustomer;

The second example removes the class added and defined in the preceding example. Note that you must
drop the procedure definition first; you cannot delete classes that are referenced by defined stored proce-
dures.

$ sqlcmd
1> DROP PROCEDURE AddCustomer;
2> exec @UpdateClasses NULL "myapp.procedures.AddCustomer";

As an alternative, the loading and removing of classes can be performed using native sqlcmd directives
load classes and remove classes. So the previous tasks can be performed using the following commands:

$ sqlcmd
1> load classes myapp.jar "";
2> CREATE PROCEDURE
3> PARTITION ON TABLE Customer COLUMN CustomerID
4> FROM CLASS myapp.procedures.AddCustomer;

 [. . .]

1> DROP PROCEDURE AddCustomer;
2> remove classes "myapp.procedures.AddCustomer";

464

System Procedures

@UpdateLogging
@UpdateLogging — Changes the logging configuration for a running database.

Syntax
@UpdateLogging CString configuration

Description
The @UpdateLogging system procedure lets you change the logging configuration for VoltDB. The second
argument, configuration, is a text string containing the Log4J XML configuration definition.

Return Values
Returns one VoltTable with one row.

Name Datatype Description

STATUS BIGINT Always returns the value zero (0) indicating success.

Examples
It is possible to use sqlcmd to update the logging configuration. However, the argument is interpreted as
raw XML content rather than as a file specification. Consequently, it can be difficult to use interactively.
But you can write the file contents to an input file and then pipe that to sqlcmd, like so:

$ echo "exec @UpdateLogging '" > sqlcmd.input
$ cat mylog4j.xml >> sqlcmd.input
$ echo "';" >> sqlcmd.input
$ cat sqlcmd.input | sqlcmd

The following program example demonstrates another way to update the logging, using the contents of an
XML file (identified by the string xmlfilename).

try {
 Scanner scan = new Scanner(new File(xmlfilename));
 scan.useDelimiter("\\Z");
 String content = scan.next();
 client.callProcedure("@UpdateLogging",content);
}
catch (Exception e) {
 e.printStackTrace();
}

465

	Using VoltDB
	Table of Contents
	About This Book
	Chapter 1. Overview
	1.1. What is VoltDB?
	1.2. Who Should Use VoltDB
	1.3. How VoltDB Works
	1.3.1. Partitioning
	1.3.2. Serialized (Single-Threaded) Processing
	1.3.3. Partitioned vs. Replicated Tables
	1.3.4. Ease of Scaling to Meet Application Needs

	1.4. Working with VoltDB Effectively

	Chapter 2. Installing VoltDB
	2.1. Operating System and Software Requirements
	2.2. Installing VoltDB
	2.2.1. Upgrading From Older Versions
	2.2.2. Building a New VoltDB Distribution Kit

	2.3. Setting Up Your Environment
	2.4. What is Included in the VoltDB Distribution
	2.5. VoltDB in Action: Running the Sample Applications

	Chapter 3. Starting the Database
	3.1. Initializing and Starting a VoltDB Database
	3.2. Initializing and Starting a VoltDB Database on a Cluster
	3.3. Stopping a VoltDB Database
	3.4. Saving the Data
	3.5. Restarting a VoltDB Database
	3.6. Updating Nodes on the Cluster
	3.7. Defining the Cluster Configuration
	3.7.1. Determining How Many Sites per Host
	3.7.2. Configuring Paths for Runtime Features
	3.7.3. Verifying your Hardware Configuration

	Chapter 4. Designing the Database Schema
	4.1. How to Enter DDL Statements
	4.2. Creating Tables and Primary Keys
	4.3. Analyzing Data Volume and Workload
	4.4. Partitioning Database Tables
	4.4.1. Choosing a Column on which to Partition Table Rows
	4.4.2. Specifying Partitioned Tables
	4.4.3. Design Rules for Partitioning Tables

	4.5. Replicating Database Tables
	4.5.1. Choosing Replicated Tables
	4.5.2. Specifying Replicated Tables

	4.6. Modifying the Schema
	4.6.1. Effects of Schema Changes on Data and Clients
	4.6.2. Viewing the Schema
	4.6.3. Modifying Tables
	4.6.3.1. Altering a Table Column's Data Definition
	4.6.3.2. Adding and Dropping Table Columns
	4.6.3.3. Adding and Dropping Table Constraints

	4.6.4. Adding and Dropping Indexes
	4.6.5. Modifying Partitioning for Tables and Stored Procedures
	4.6.5.1. Un-partitioning a Stored Procedure
	4.6.5.2. Changing a Partitioned Table to a Replicated Table
	4.6.5.3. Re-partitioning a Table to a Different Column
	4.6.5.4. Updating a Stored Procedure
	4.6.5.5. Removing a Stored Procedure from the Database

	Chapter 5. Designing Stored Procedures to Access the Database
	5.1. How Stored Procedures Work
	5.1.1. VoltDB Stored Procedures are Transactional
	5.1.2. VoltDB Stored Procedures are Deterministic
	5.1.2.1. Use Sorted SQL Queries
	5.1.2.2. Avoid Introducing Non-deterministic Values from External Functions
	5.1.2.3. Stored Procedures have no Persistence

	5.2. The Anatomy of a VoltDB Stored Procedure
	5.2.1. The Structure of the Stored Procedure
	5.2.2. Passing Arguments to a Stored Procedure
	5.2.3. Creating and Executing SQL Queries in Stored Procedures
	5.2.4. Interpreting the Results of SQL Queries
	5.2.5. Returning Results from a Stored Procedure
	5.2.6. Rolling Back a Transaction

	5.3. Installing Stored Procedures into the Database
	5.3.1. Compiling, Packaging, and Loading Stored Procedures
	5.3.2. Declaring Stored Procedures in the Schema
	5.3.3. Partitioning Stored Procedures in the Schema
	5.3.3.1. How to Declare Single-Partition Procedures
	5.3.3.2. Queries in Single-Partitioned Stored Procedures

	Chapter 6. Designing VoltDB Client Applications
	6.1. Connecting to the VoltDB Database
	6.1.1. Connecting to Multiple Servers
	6.1.2. Using the Auto-Connecting Client

	6.2. Invoking Stored Procedures
	6.3. Invoking Stored Procedures Asynchronously
	6.4. Closing the Connection
	6.5. Handling Errors
	6.5.1. Interpreting Execution Errors
	6.5.2. Handling Timeouts
	6.5.3. Writing a Status Listener to Interpret Other Errors

	6.6. Compiling and Running Client Applications
	6.6.1. Starting the Client Application
	6.6.2. Running Clients from Outside the Cluster

	Chapter 7. Simplifying Application Development
	7.1. Using Default Procedures
	7.2. Shortcut for Defining Simple Stored Procedures
	7.3. Verifying Expected Query Results
	7.4. Scheduling Stored Procedures as Tasks
	7.5. Directed Procedures: Distributing Transactions to Every Partition

	Chapter 8. Using VoltDB with Other Programming Languages
	8.1. C++ Client Interface
	8.1.1. Writing VoltDB Client Applications in C++
	8.1.2. Creating a Connection to the Database Cluster
	8.1.3. Invoking Stored Procedures
	8.1.4. Invoking Stored Procedures Asynchronously
	8.1.5. Interpreting the Results

	8.2. JSON HTTP Interface
	8.2.1. How the JSON Interface Works
	8.2.2. Using the JSON Interface from Client Applications
	8.2.3. How Parameters Are Interpreted
	8.2.4. Interpreting the JSON Results
	8.2.5. Error Handling using the JSON Interface

	8.3. JDBC Interface
	8.3.1. Using JDBC to Connect to a VoltDB Database
	8.3.2. Using JDBC to Query a VoltDB Database

	Chapter 9. Using VoltDB in a Cluster
	9.1. Starting a Database Cluster
	9.2. Updating the Cluster Configuration
	9.3. Elastic Scaling to Resize the Cluster
	9.3.1. Adding Nodes with Elastic Scaling
	9.3.2. Removing Nodes with Elastic Scaling
	9.3.3. Configuring How VoltDB Rebalances Nodes During Elastic Scaling

	Chapter 10. Availability
	10.1. How K-Safety Works
	10.2. Enabling K-Safety
	10.2.1. What Happens When You Enable K-Safety
	10.2.2. Calculating the Appropriate Number of Nodes for K-Safety

	10.3. Recovering from System Failures
	10.3.1. What Happens When a Node Rejoins the Cluster
	10.3.2. Where and When Recovery May Fail

	10.4. Avoiding Network Partitions
	10.4.1. K-Safety and Network Partitions
	10.4.2. Using Network Fault Protection

	Chapter 11. Database Replication
	11.1. How Database Replication Works
	11.1.1. Starting Database Replication
	11.1.2. Database Replication, Availability, and Disaster Recovery
	11.1.3. Database Replication and Completeness

	11.2. Using Passive Database Replication
	11.2.1. Specifying the DR Tables in the Schema
	11.2.2. Configuring the Clusters
	11.2.3. Starting the Clusters
	11.2.4. Loading the Schema and Starting Replication
	11.2.5. Updating the Schema During Replication
	11.2.6. Stopping Replication
	11.2.6.1. Stopping Replication on the Master if the Replica Becomes Unavailable
	11.2.6.2. Database Replication and Disaster Recovery
	11.2.6.3. Promoting the Replica When the Master Becomes Unavailable
	11.2.6.4. Reversing the Master/Replica Roles

	11.2.7. Database Replication and Read-only Clients

	11.3. Using Cross Datacenter Replication
	11.3.1. Designing Your Schema for Active Replication
	11.3.2. Configuring the Database Clusters
	11.3.2.1. Choosing Unique IDs
	11.3.2.2. Identifying the DR Connections

	11.3.3. Starting the Database Clusters
	11.3.4. Loading a Matching Schema and Starting Replication
	11.3.5. Updating the Schema During Active Replication
	11.3.6. Stopping Replication
	11.3.7. Example XDCR Configurations
	11.3.8. Understanding Conflict Resolution
	11.3.8.1. Designing Your Application to Avoid Conflicts
	11.3.8.2. How Conflicts are Resolved
	11.3.8.3. What Types of Conflict Can Occur
	11.3.8.4. Reporting Conflicts

	11.4. Monitoring Database Replication

	Chapter 12. Security
	12.1. How Security Works in VoltDB
	12.2. Enabling Authentication and Authorization
	12.3. Defining Users and Roles
	12.4. Assigning Access to Stored Procedures
	12.5. Assigning Access by Function (System Procedures, SQL Queries, and Default Procedures)
	12.6. Using Built-in Roles
	12.7. Encrypting VoltDB Communication Using TLS/SSL
	12.7.1. Configuring TLS/SSL on the VoltDB Server
	12.7.2. Choosing What Ports to Encrypt with TLS/SSL
	12.7.3. Using the VoltDB Command Line Utilities with TLS/SSL
	12.7.4. Implementing TLS/SSL in the Java Client Applications
	12.7.5. Configuring Database Replication (DR) With TLS/SSL

	12.8. Integrating Kerberos Security with VoltDB
	12.8.1. Installing and Configuring Kerberos
	12.8.2. Installing and Configuring the Java Security Extensions
	12.8.3. Configuring the VoltDB Servers and Clients
	12.8.4. Accessing the Database from the Command Line and the Web

	Chapter 13. Saving & Restoring a VoltDB Database
	13.1. Performing a Manual Save and Restore of a VoltDB Cluster
	13.1.1. How to Save the Contents of a VoltDB Database
	13.1.2. How to Restore the Contents of a VoltDB Database Manually
	13.1.3. Changing the Cluster Configuration Using Save and Restore
	13.1.3.1. Adding and Removing Nodes from the Database
	13.1.3.2. Modifying the Database Schema and Stored Procedures

	13.2. Scheduling Automated Snapshots
	13.3. Managing Snapshots
	13.4. Special Notes Concerning Save and Restore

	Chapter 14. Command Logging and Recovery
	14.1. How Command Logging Works
	14.2. Controlling Command Logging
	14.3. Configuring Command Logging for Optimal Performance
	14.3.1. Log Size
	14.3.2. Log Frequency
	14.3.3. Synchronous vs. Asynchronous Logging
	14.3.4. Hardware Considerations

	Chapter 15. Streaming Data: Import, Export, and Migration
	15.1. How Data Streaming Works in VoltDB
	15.1.1. Understanding Import
	15.1.2. Understanding Export
	15.1.3. Understanding Migration
	15.1.4. Understanding Topics

	15.2. The Business Case for Streaming Data
	15.2.1. Extract, Transform, Load (ETL)
	15.2.2. Change Data Capture
	15.2.3. Streaming Data Validation
	15.2.4. Caching
	15.2.5. Archiving

	15.3. VoltDB Export Connectors
	15.3.1. How Export Works
	15.3.1.1. Export Overflow
	15.3.1.2. Persistence Across Database Sessions

	15.3.2. The File Export Connector
	15.3.3. The HTTP Export Connector
	15.3.3.1. Understanding HTTP Properties
	15.3.3.2. Exporting to Hadoop via WebHDFS
	15.3.3.3. Exporting to Hadoop Using Kerberos Security

	15.3.4. The JDBC Export Connector
	15.3.5. The Kafka Export Connector
	15.3.6. The Elasticsearch Export Connector

	15.4. VoltDB Import Connectors
	15.4.1. Bulk Loading Data Using VoltDB Standalone Utilities
	15.4.2. Streaming Import Using Built-in Import Features
	15.4.3. The Kafka Importer
	15.4.4. The Kinesis Importer

	15.5. VoltDB Import Formatters
	15.6. VoltDB Topics
	15.6.1. Types of VoltDB Topics
	15.6.2. Declaring VoltDB Topics
	15.6.2.1. Processing Topic Output
	15.6.2.2. Processing Topic Input

	15.6.3. Configuring and Managing Topics
	15.6.3.1. Permissions
	15.6.3.2. Retention
	15.6.3.3. Data Format

	15.6.4. Configuring the Topic Server
	15.6.5. Calling Topics from Consumers and Producers
	15.6.6. Using Opaque Topics

	Appendix A. Supported SQL DDL Statements
	ALTER STREAM
	ALTER TABLE
	ALTER TASK
	CREATE AGGREGATE FUNCTION
	CREATE FUNCTION
	CREATE INDEX
	CREATE PROCEDURE AS
	CREATE PROCEDURE FROM CLASS
	CREATE ROLE
	CREATE STREAM
	CREATE TABLE
	CREATE TASK
	CREATE VIEW
	DR TABLE
	DROP FUNCTION
	DROP INDEX
	DROP PROCEDURE
	DROP ROLE
	DROP STREAM
	DROP TABLE
	DROP TASK
	DROP VIEW
	PARTITION PROCEDURE
	PARTITION TABLE

	Appendix B. Supported SQL Statements
	DELETE
	INSERT
	MIGRATE
	SELECT
	TRUNCATE TABLE
	UPDATE
	UPSERT

	Appendix C. SQL Functions
	ABS()
	APPROX_COUNT_DISTINCT()
	AREA()
	ARRAY_ELEMENT()
	ARRAY_LENGTH()
	ASTEXT()
	AVG()
	BIN()
	BIT_SHIFT_LEFT()
	BIT_SHIFT_RIGHT()
	BITAND()
	BITNOT()
	BITOR()
	BITXOR()
	CAST()
	CEILING()
	CENTROID()
	CHAR()
	CHAR_LENGTH()
	COALESCE()
	CONCAT()
	CONTAINS()
	COS()
	COT()
	COUNT()
	CSC()
	CURRENT_TIMESTAMP()
	DATEADD()
	DAY(), DAYOFMONTH()
	DAYOFWEEK()
	DAYOFYEAR()
	DECODE()
	DEGREES()
	DISTANCE()
	DWITHIN()
	EXP()
	EXTRACT()
	FIELD()
	FLOOR()
	FORMAT_CURRENCY()
	FORMAT_TIMESTAMP()
	FROM_UNIXTIME()
	HEX()
	HOUR()
	INET6_ATON()
	INET6_NTOA()
	INET_ATON()
	INET_NTOA()
	ISINVALIDREASON()
	ISVALID()
	IS_VALID_TIMESTAMP()
	LATITUDE()
	LEFT()
	LN(), LOG()
	LOG10()
	LONGITUDE()
	LOWER()
	MAKEVALIDPOLYGON()
	MAX()
	MAX_VALID_TIMESTAMP()
	MIGRATING()
	MIN()
	MIN_VALID_TIMESTAMP()
	MINUTE()
	MOD()
	MONTH()
	NOW()
	NUMINTERIORRINGS()
	NUMPOINTS()
	OCTET_LENGTH()
	OVERLAY()
	PI()
	POINTFROMTEXT()
	POLYGONFROMTEXT()
	POSITION()
	POWER()
	QUARTER()
	RADIANS()
	REGEXP_POSITION()
	REPEAT()
	REPLACE()
	RIGHT()
	ROUND()
	SEC()
	SECOND()
	SET_FIELD()
	SIN()
	SINCE_EPOCH()
	SPACE()
	SQRT()
	STR()
	SUBSTRING()
	SUM()
	TAN()
	TO_TIMESTAMP()
	TRIM()
	TRUNCATE()
	UPPER()
	VALIDPOLYGONFROMTEXT()
	WEEK(), WEEKOFYEAR()
	WEEKDAY()
	YEAR()

	Appendix D. VoltDB CLI Commands
	csvloader
	jdbcloader
	kafkaloader
	sqlcmd
	voltadmin
	voltdb

	Appendix E. Configuration File (deployment.xml)
	E.1. Understanding XML Syntax
	E.2. The Structure of the Configuration File

	Appendix F. VoltDB Datatype Compatibility
	F.1. Java and VoltDB Datatype Compatibility

	Appendix G. System Procedures
	@AdHoc
	@Explain
	@ExplainProc
	@ExplainView
	@GetPartitionKeys
	@Pause
	@Ping
	@Promote
	@QueryStats
	@Quiesce
	@Resume
	@Shutdown
	@SnapshotDelete
	@SnapshotRestore
	@SnapshotSave
	@SnapshotScan
	@Statistics
	@StopNode
	@SwapTables
	@SystemCatalog
	@SystemInformation
	@UpdateApplicationCatalog
	@UpdateClasses
	@UpdateLogging

