VOLTDB
Using VoltDB

Abstract

This book explains how to use VoltDB to design, build, and run high performance applica-
tions.

V10.2.6

Using VoltDB

V10.2.6
Copyright © 2008-2021 VoltDB, Inc.

The text and illustrations in this document are licensed under the terms of the GNU Affero General Public License Version 3 as published by the
Free Software Foundation. See the GNU Affero General Public License (http://www.gnu.org/licenses/) for more details.

Many of the core VoltDB database features described herein are part of the VoltDB Community Edition, which islicensed under the GNU Affero
Public License 3 as published by the Free Software Foundation. Other features are specific to the VoltDB Enterprise Edition and VVoltDB Pro, which
are distributed by VoltDB, Inc. under acommercial license.

The VoltDB client libraries, for accessing VoltDB databases programmatically, are licensed separately under the MIT license.

Y our rights to access and use VoltDB features described herein are defined by the license you received when you acquired the software.
VoltDB is atrademark of VoltDB, Inc.

VoltDB software is protected by U.S. Patent Nos. 9,600,514, 9,639,571, 10,067,999, 10,176,240, and 10,268,707. Other patents pending.

This document was generated on November 05, 2021.

http://www.gnu.org/licenses/

Table of Contents

ADOUL THIS BOOK ...ttt e e Xiv
Lo OVEIVIBIW ettt ettt ettt ettt na s 1
1.1 WHEE IS VOIIDB? ...ttt e e e e 1

1.2. Who Should USE VOIEDBoiiiiiiiieiiiii et 1

1.3. HOW VOIIDB WOTKS .. .ceiiiieiiii ettt ettt 2
1.3.0. PartitiONING ..ceeveneeeitieeeei ettt e ettt ettt e e e e e een 2

1.3.2. Serialized (Single-Threaded) PrOCESSINGccvvveneiiiiiiieeiei e 2

1.3.3. Partitioned vs. Replicated Tablescovvviiiiiii e 3

1.3.4. Ease of Scaling to Meet Application NEeaSccouvuiiiiiiiiieiiiii e 4

1.4. Working with VOItDB EffeCtiVEYcooviiiiiiii e 4

2. INSEAING VOITDB ...t et ettt e e et e et e e e e e eee 5
2.1. Operating System and Software REQUIFEMENTSvvieviiiiiiiiie e 5
2.2.INSAlING VOIIDBcuiiiiiiii ettt et et e e 6
2.2.1. Upgrading From Older VEISIONSccouuiieiiiiiieeeiiie et 6

2.2.2. Building a New VoItDB Distribution Kitcoooviiiiiiiiiiec e, 7

2.3. Setting Up YOUr ENVIFONMENTuniiiiiiie ettt e e e e e 7

2.4. What is Included in the VOItDB Distributionccooiiiiiiiiiiii e 7

2.5. VoltDB in Action: Running the Sample AppliCationSoveiiiiiieiiiiii e 8

3. SHArting the DALADESEccevii it 9
3.1. Initializing and Starting a VOItDB Dat@haSecccuvuieiiiiiiieiiiiieeeei e 9

3.2. Initializing and Starting a VoltDB Database on a CIUSEErcccovviiiiiiiiiiiiiiieeeeiie 10

3.3. Stopping & VOIIDB Dal@hasecccuuuiiiiiiiieeiiiii et 11

34, SAVING ThE DAceeeveeieii ettt 12

3.5. Restarting a VOItDB Datahaseuuiiieiuiiiiiiiiieeee et 12

3.6. Updating Nodes 0N the CIUSIEToiiiiiiieeiiii e 12

3.7. Defining the Cluster ConfigUIationuuiiieiuiieiiii e 13
3.7.1. Determining How Many Sites per HOSEc.uuiiiiiiiiiiiiii e 13

3.7.2. Configuring Paths for RUNtime FEatUreSccooviiiiiiiiiiecii e 14

3.7.3. Verifying your Hardware Configurationcooveieeiinieiiiiinieiiiiieeeeeiieeees 15

4. Designing the Database SCNEMAccuuuuiiiiii e 16
4.1. How to Enter DDL SEABIEMENLSvvviiiiiiiiiiieiei et e e 17

4.2. Creating Tables and Primary KeYsSi oot 18

4.3. Analyzing Data Volume and Workloadooeeiiiiiiiiiiii e 19

4.4. Partitioning Database TabIESciiiiiiiiiiii e 20
4.4.1. Choosing a Column on which to Partition Table ROWSccooeviiiiiieiiiinnee, 20

4.4.2. Specifying Partitioned TableSccoouviiiiiiiiii e 21

4.4.3. Design Rules for Partitioning Tables ..o 21

4.5. Replicating Database TahlESiiiiiiiiiiei e 21
4.5.1. Choosing Replicated TableSuiiiiiiiiiiiii e 22

4.5.2. Specifying Replicated TableSviiiiiiiii e 22

4.6. Modifying the SChEMAccoiii e 22
4.6.1. Effects of Schema Changes on Data and CHentSoovevevviiiiiiinieiiiiineeeenns 23

4.6.2. Viewing the SCREMAcouuuiiiiiii e e 24

4.6.3. MOIfying TaDIEScoeiiieieii e 24

4.6.4. Adding and Dropping INAEXESccouuiiiiiiiiieiiiii e 26

4.6.5. Modifying Partitioning for Tables and Stored Procedurescooevvevevneeennnnns 27

5. Designing Stored Procedures to Access the Databasecoevvveeiiiiiiiciiii e 31
5.1. How Stored Procedures WOrKiiiiiiiiiiiiie ettt 31
5.1.1. VoltDB Stored Procedures are Transactionalocoveviieiiiiiineeiiiiieeeceiie, 31

5.1.2. VoItDB Stored Procedures are Deterministicc.vuveiiiiinieiiiiiieeeciieeeceie 31

5.2. The Anatomy of a VoItDB Stored ProCetureccuuviiiiiiiieiiiiie e 33

Using VoltDB

5.2.1. The Structure of the Stored ProCedureoooueuiieiiiiinieeiiii e 33

5.2.2. Passing Arguments to a Stored Procedurecooovvviveiiieiiiiiccieeeee e 35
5.2.3. Creating and Executing SQL Queriesin Stored Procedurescooevvvvevvnnennnnn. 36
5.2.4. Interpreting the Results of SQL QUENEScccviiiiiieiiiieiii e, 37
5.2.5. Returning Results from a Stored Procedureccoveviiiiiiiniiiiecieeceeeeiees 40
5.2.6. Rolling Back @ TranSaCtioncccuuviiuiieiiiieiiiieei e e e s e e e e e e e e eeen 41

5.3. Installing Stored Procedures into the Databasecoovvviviiiiiiiiii e 41
5.3.1. Compiling, Packaging, and Loading Stored Procedurescccccovvevineeennnnn. 42
5.3.2. Declaring Stored Procedures inthe Schema.........ccooveviviiiiiin e, 42
5.3.3. Partitioning Stored Proceduresinthe Schema..........cocccoeeviiiiiin i, 43

6. Designing VOItDB Client APPliCaHIONSoiiuniiiii i e 47
6.1. Connecting to the VOItDB DatabhaSecveiiiiiiiieiiii e 47
6.1.1. Connecting to MUItIPle SEIVEIScoviiii e 48
6.1.2. Using the Auto-Connecting Clientcccoeuiiiiiiiiiiieei e, 48

6.2. INVOKING StOred PrOCEAUIESccvuiiii e e e s 49
6.3. Invoking Stored Procedures ASynchronouSlYcocvuiiiiiiiiiiiiecieece e 49
6.4. CloSiNg the CONNECLIONuuiiiii i e e e e e e e e aaas 50
LRI o = o 1T a0 = £ PN 51
6.5.1. Interpreting EXECULION EITOrScouviiiiiiiii e e 51
6.5.2. HaNdliNg TIMEOULSuivuniiiiieiiie e e e e e e e e e e e e e e e e eaaeees 52
6.5.3. Writing a Status Listener to Interpret Other Errors..........cooevviveiiiieiiiiecineeennnn, 54

6.6. Compiling and Running Client AppliCatioNSoovvuieiiiieiii e 56
6.6.1. Starting the Client ApPliCationcouiiiiiiiii e 56
6.6.2. Running Clients from Outside the Clusterccooveiiiiiiiiiiii e, 56

7. Simplifying Application DeVEIOPMENTuiiiiiiiiiee e e e aaaas 58
7.1. Using Default ProCEAUIESccuuiiiiiiciiie e e e e e e e e e e e e e aes 58
7.2. Shorteut for Defining Simple Stored Proceduresoveviiieiiiieiii e 59
7.3. Verifying Expected QUEry RESUILSuiiiiieiii e e 60
7.4. Scheduling Stored Procedures @S TasKScc.uuiiiiuieiiiieiiiieeiie e e e e e e 61
7.5. Directed Procedures. Distributing Transactions to Every Partitioncccooeeevenennn. 62
8. Using VolItDB with Other Programming LanQUAgEScceuuieiiiieiiiieeiie e e e e e 64
8.1, Ctt CleNt INEITACE .vvvuieiiii e e e e e et e eeeataaaees 64
8.1.1. Writing VoltDB Client Applications in CH+coiiiiiiiiiiiicii e 64
8.1.2. Creating a Connection to the Database CIUStErcocovieiiiiiiiiiiiii e 65
8.1.3. Invoking Stored ProCeAUIEScc.uiiiiinieii e e e 65
8.1.4. Invoking Stored Procedures ASynchronouslyc.oveeuiiiiiiiiiiieeiineceeeeieees 66
8.1.5. Interpreting the RESUILSccuviiiii e e 67

8.2. JISON HTTP INLEITACE .oieeieieiieii ettt e e eeeaanns 67
8.2.1. How the JSON Interface WOIKSccovuuiiiiiiiieeeee e 67
8.2.2. Using the JSON Interface from Client AppliCationscoocvvveiiiieiiineenineennnn. 69
8.2.3. How Parameters Are INterpretedo.vuvviiiiiiiieiie e 71
8.2.4. Interpreting the JSON RESUILSociviiiiii e 72
8.2.5. Error Handling using the JSON INterfacec.ccvveviiiiiiiiiiiieecieece e, 73

8.3, IDBC INEEITACE ... et 74
8.3.1. Using JDBC to Connect to a VoItDB Databasecooevvviviiieeiiiieciineeiieee, 74
8.3.2. Using JDBC to Query aVoItDB Databaseovvvvnveeiiciiiieciie e 75

9. USING VOIIDB IN @ CIUSIESiiiiiiiieiieee e e e e e e e e e e e et e e e e aaes 77
9.1. Starting a Datahase ClIUSLENociiiiiiiiiieiii e e e e e e e aaeees 77
9.2. Updating the Cluster Configurationccoeuuieiiiieiiieci e e e e e e e e eees 77
9.3. Elastic Scaling to ReSIZE the CIUSLErc.uiiiiiii e e 78
9.3.1. Adding Nodes with Elastic SCalingcccoveiiiiiiiiiiei e, 79
9.3.2. Removing Nodes with Elastic SCalingcccoviviiiiiiiiiiiii e 80
9.3.3. Configuring How VoltDB Rebalances Nodes During Elastic Scaling 80

O N Y=] = o 1) Y PP 82

Using VoltDB

10.1. HOW K-Safety WOTKSiiiiiciieci et e e e e e eeas 82
10.2. ENabling K-Saf@LYuuiiieiiiii i e e e e 83
10.2.1. What Happens When You Enable K-Safetycccocoiviiiiiiiiiiiicceeeie 84
10.2.2. Calculating the Appropriate Number of Nodes for K-Safetyc.cccevevvnnnnenn. 84
10.3. Recovering from System FaillUreScc.uieiiiiiiii e 85
10.3.1. What Happens When a Node Rejoinsthe Clustercccoovviiiiiiiiiiineeine, 85
10.3.2. Where and When Recovery May Failccooeiiiiiiiiiiiiiiii e, 86
10.4. Avoiding NEtWOrk Partitionsoieiuiiiiiiiiiii e e e 86
10.4.1. K-Safety and Network Partitionscc.couvveiiiiiiiiiei e, 86
10.4.2. Using Network Fault ProteCtionooveeuiiiiiiiiiie e 87
I DT = o= S I o= o o= o) o 90
11.1. How Database Replication WOIKSccouuiiiiiiiiii e 91
11.1.1. Starting Database ReEPlICAtiONcc.uviiiiiiiiii e 92
11.1.2. Database Replication, Availability, and Disaster RECOVENYcccevvvevinnerinnnnnn. 93
11.1.3. Database Replication and Completenessc..ovvvviieiiiieiiii i 94
11.2. Using Passive Database ReEPlICatioNoeiviiiiiiiiiiiiiciie e e e 95
11.2.1. Specifying the DR Tablesinthe Schemaccoocoiviiiiiiiiin e, 95
11.2.2. Configuring the CIUSLErSoiiiiiiiii e e e e 96
11.2.3. Starting the CIUSLErSccvviiiii e e 96
11.2.4. Loading the Schema and Starting Replicationcccoviviiiiiineiiin e, 96
11.2.5. Updating the Schema During Replicationc.cocciiiiiiiiiiin i, 97
11.2.6. Stopping REPIICALONccvvniiiiiciie e e e 98
11.2.7. Database Replication and Read-only ClientSc.ccoeviiiiiiiiiieiinnececeie, 100
11.3. Using Cross Datacenter REPlICAIIONuiiiiniiiiiicii e e e 100
11.3.1. Designing Your Schema for Active Replicationccoocvviviiiiieiiineciinecennn, 101
11.3.2. Configuring the Databhase CIUSLErSccuuviivieiiii e 101
11.3.3. Starting the Databhase CIUSLEScccviiiiici e 103
11.3.4. Loading a Matching Schema and Starting Replicationc.cccoevevvneeennnn. 104
11.3.5. Updating the Schema During Active Replicationcccoeeviiiiiiineein e, 104
11.3.6. Stopping REPIICALIONccvuiiii e 105
11.3.7. Example XDCR Configuraionscceuuieieiiieeiieeriiieeeineeeineesieesannesaneens 106
11.3.8. Understanding Conflict RESOIULIONocvviiiiiiiiiie e, 106
11.4. Monitoring Database REPIICAIONcevuiiiiiiiiie e 113
S o U) YO 115
12.1. How Security WOrkS in VOIIDBcoouiiiiiiie e 115
12.2. Enabling Authentication and AUthOFZationcccceiiiiiiieiii e 115
12.3. Defining UsSers and ROIESuiiiiiiiii e 116
12.4. Assigning Access to Stored ProCedUIEScovueiiiieiiii e e e e 117
12.5. Assigning Access by Function (System Procedures, SQL Queries, and Default Proce-
(0 LU= PP 117
12.6. USING BUIt-IN ROIES ... 118
12.7. Encrypting VoltDB Communication UsSing TLS/SSLcovviiiiiiiiiiiii e 118
12.7.1. Configuring TLS/SSL on the VOIIDB SErVErcocovvviiiiiiiiiece e 119
12.7.2. Choosing What Ports to Encrypt with TLS/SSLccoviiiiiiiiineienece e 120
12.7.3. Using the VoltDB Command Line Utilitieswith TLS/SSLccooevvvneennnn. 120
12.7.4. Implementing TLS/SSL in the Java Client Applicationsc.cccevevevnennnnn. 121
12.7.5. Configuring Database Replication (DR) With TLS/SSLccocovviviiiiiiinnennnnn. 121
12.8. Integrating Kerberos Security With VOItDBcocviiiiiiiiiiiiie e 122
12.8.1. Installing and Configuring Kerberosccooviviiiiii i, 122
12.8.2. Installing and Configuring the Java Security EXtENSIONSccocvvvevivneeennnnns 123
12.8.3. Configuring the VoltDB Servers and CHentSccoeevviveiiiiiiiiniciin e, 124
12.8.4. Accessing the Database from the Command Line and the Web 126
13. Saving & Restoring a VoItDB DatahaSecccuuiiiiiiiiiiciie e e 127
13.1. Performing a Manual Save and Restore of a VoItDB Clustercoccevveviieiiinennnnnn. 127

Using VoltDB

13.1.1. How to Save the Contents of a VoItDB Databasecccevvnieviiiinieeiiiinneens 128
13.1.2. How to Restore the Contents of a VoltDB Database Manualy 128
13.1.3. Changing the Cluster Configuration Using Save and Restoreccccevveeeee. 129

13.2. Scheduling Automated SNapPShOLSuuiiiiiieii e e 131
13.3. Managing SNapShOLSccvuiiiii e 131
13.4. Special Notes Concerning Save and RESEOIEccevuieiiiiiiiii e 132
14. Command Logging and RECOVETYciuuiiiii i e e e e e e e e e e e e et e e e eaaaees 133
14.1. How Command Logging WOTKSiiiiiiiiiiiiiii e e e e e 133
14.2. Controlling Command LOGOINGccuuiiiiieiiieiiii e e e e et e e e e e e et e s eaanes 134
14.3. Configuring Command Logging for Optimal Performancecc.ccceeeviiiiviiiieinnns 134
I B o o TS = PP 135
14.3.2. LOQ FIEOUENCY ..ounitiiiitiiie ittt ettt e e eas 135
14.3.3. Synchronous vs. ASynchronous LOGGiNG .. .c.uuevvvnerirnieiiieiiiieeeiieeeineeeaneeeannns 135
14.3.4. Hardware CONSIEratioNScccuvunieiiiiiiieieiise et e e e et e et e e 136

15. Streaming Data: Import, Export, and Migrationcoeeviiiiiiiieiiecis e 138
15.1. How Data Streaming Works in VOITDBcccuoiiiiiiiiiiiiiin e 139
15.1.1. Understanding IMpPOItoiiiiiiiieie e e e e e e e 141
15.1.2. Understanding EXPOITuiiiiiiiiiciii e e e e e e e e 141
15.1.3. Understanding Migrafioncocouuieiiiieiiiieeiii e eeee e e e e e e eaaeens 142
15.1.4. Understanding TOPICS ...ucvvrueeineeiiiieeiie e e et eeete e et e e et e e e e estn e e e esaneenes 143

15.2. The Business Case for Streaming Dafaocevuieiiiiieiiiieii e e e 144
15.2.1. Extract, Transform, Load (ETL)coovuiiiiiiiiiii e e e e 145
15.2.2. Change Data Capturecccuueiiieeiiiieei e e e e e e e aanas 145
15.2.3. Streaming Data Validationccooouiiiiiiieiiiici e 146
S A @ 4 11 ¢ o RSP PPSPPT 147
15.2.5. ArChiVING ..o 148

15.3. VOItDB EXPOrt CONMECIOISvvuueiiiiieiiieeei e et e e e e e e ats e e et e e et e e et s e e e e st e e eanaeeanaes 148
15.3.1. HOW EXPOIt WOIKSeiiieii e e e e e e et e e et e e e eaaee e 149
15.3.2. The File EXPort CONNECLONcovueiiiieiii e e e e e e e e e e e e eens 150
15.3.3. The HTTP EXPOrt CONNECLON .. .cvuniiiiieiiiieeie e e e e e e e e e e e eaaes 153
15.3.4. The JDBC EXPOrt CONNECIONivvuieiiieeiiieeeiie et ee et e e e e et e e e e e e e eaneees 157
15.3.5. The Kafka EXPOort CONNECIONccuviiiiiieiie e eeie e e e e e e e e e e e aaeees 158
15.3.6. The Elasticsearch EXport CONNECLONccuuvviiiiiiiieiiie e ee e e 161

15.4. VOItDB IMpPOrt CONNECIOISvvuuiiiiieeeiieeeieeei e et e e et e e e e e et e e et e e e s e st e e eaneaennaes 162
15.4.1. Bulk Loading Data Using VoltDB Standalone Utilitiesccc.cccevvvvvnennnnn. 162
15.4.2. Streaming Import Using Built-in Import Featuresccoooevieeiiiniieneennnn, 163
15.4.3. The Kafka IMPOItErcovniiiii e e e e e 164
15.4.4. The KiNESIS IMPOILENuiiiie e e ee e e e e e e e e aaa s 166

15.5. VOItDB IMpOrt FOMMELETScouueiiiieii e e e e e e e e e e e e e e e e e ean s 167
X SR o] = T I oo 168
15.6.1. TYPES Of VOItDB TOPICS ...vuueviueiiiieieiieeeieeeitieeaiaeestaeeetseeaneesaneeatneeennaees 169
15.6.2. Declaring VOITDB TOPICS ...cvvuiiiiieeiiieiie e e e e e e e e e anes 170
15.6.3. Configuring and Managing TOPICSccuuuevirnieiiieeeiiieeiieeeee e e e e e eaneens 171
15.6.4. Configuring the TOPIC SEIVETuiiiiiiiii e e 174
15.6.5. Calling Topics from Consumers and ProducCerscoccuveveuneeiiiieiineennnenn, 175
15.6.6. USING OPaUE TOPICS ...evuueiiieiiiieeiiee e e e et e e e e e et e e e e e e e e e e e e e eannas 176

A. Supported SQL DDL StAatEMENESvvvueiiieiie e e e e e e e e e e e e e e e et e eaneeaes 177
ALTER STREAM .ottt e e et e e et s e e et e e e et e e e enenns 178
ALTER TABLE ..ottt e et e e e et a e e e et aeeeereaeaaees 179
I I B N PSPPI 182
CREATE AGGREGATE FUNCTION ...oottiiiiiiiiiieiiiiiee e eeei e e e e e e e e e eaenenns 183
CREATE FUNCTION ...uiiiiiiiei ittt e et e e et e e e et e e e e et e e e e aen s 185
CREATE INDEX ..ottt ettt ettt e e ettt e e e et s e e e et s e e e eaaaeeaee 187
CREATE PROCEDURE AS ...ttt e et e e et e e et eeaeannns 189

Vi

Using VoltDB

CREATE PROCEDURE FROM CLASS ..ottt eee e e et e e e e e aaaann s 191
CREATE ROLE ..ottt ettt r e e e e e e et a e e e e e e enaennnas 193
L@ N I] AN 1Y P 195
L@ N I 17 = PP 198
CREATE TASK oottt ittt ettt et e e e e e et er e e e e e e aaa b e e e e e eeeanaraanas 205
CREATE VIEW oottt et e e e e e e et e s e e e e e e e ba b aeaeeeeaeerennes 208
DR TABLE .ottt ettt e e e e e e e e et aeaaaararaa 210
DROP FUNGCTION ...iiiiiiiiiiii e e ettt e s e e e e e ettt s e s e e et e e aasta s e s e e eaaeaassnsaaaaeeeeeeannes 211
[@ = 1N 212
DROP PROCEDUREccoiiiititiiii ettt s e e et et e e e e e e et a e e e e e e e ae e aaaeeeeees 213
[= (S 214
DROP STREAM .uuiiiiiiiiteetee ettt s e e e e e e e et e e e e e et e e aat e s e eeeeaesastnnaaaaeeaeeennnns 215
[I 1 I 216
[I 217
DROP VIEW .. ittt ettt ettt e e e e e ettt e e e e e e e e et et e e e e e e e e e eaatnan e aaeeees 218
PARTITION PROCEDUREcuuuiiiiieiiiiiiiiis s e eee e e e e e s et s e e e e e e aasannnan e aeee e 219
PARTITION TABLE ...ouiiiiiiiiie et e et e e e e e e e e 221
B. SUPPOrted SOL StAEEMENESivviieiieiii et e e aaeeanns 222
3] PP 223
E NN S U 225
MIGRATE ..ottt ettt e e e e e e e ettt e e e e et e e aas e e aeeeeeeaastsaanaaeeaeeeennes 227
S PR 228
TRUNGCATE TABLE ..ot e e et e a e e e e e et e e e e e e 237
LU N I SRS 238
LU 239
LTS @ I ¥ o 1T PN 241
N = 1 P 244
APPROX_COUNT _DISTINCT() ieeetitiiiiiiieieeeieeeeiiiasseeeeesaesisinsseeeeeesessnsnnsaseaaeeenes 245
N 2N) PSPPI 246
ARRAY _ELEMENT() 1evvtutuiieeeiitieiiiie s e e e ettt s s s e e e e e et e s e e e e e e aantn s s e e e aeaaannnnnnneas 247
F Y A I N I T U 248
F S I G I TSRS 249
N TP 250
2 N PSR 251
2 S 1 W T 252
2 S 1 W 1 253
2 7N N1 254
2 N[2 255
2 1O PSS 256
2 10 TSP 257
@7 2 (S SPPPPR 258
L0 I N (PP 259
L@ N I] TSP 260
L@ L) PP 261
(@l AN = I N I T PSSP 262
COALESCE() +rvvvvvtunneeeeetetiiiia s e s e e e ettt e s s e e e aeeaaataa s s e e e eaeaestatnaaaeeaeeasssnenaaaeaeaeaenes 263
L@] 1[N I P 264
L0\ 1 1 TSP 265
L 1S | TS 266
@ 1 I) TSR 267
L@ 11 |V S 268
L1 O) P 269
CURRENT _TIMESTAMP() .. eeeetiiiiiiis ettt e e e e e a e e e n e e aaaaae s 270
[AN I I T PR 271

Vii

Using VoltDB

DAY (), DAY OFMONTH() veeeeveeeeeeeeeeeeeeeeee e e eeeeesesee e e et s e eet s e et ee s e 272
DAY OFWEEK() «.vvvveteeeeeeeeeee e eee et s et e eee st e ettt es e e e et et e e ettt es e see s 273
DAY OFYEAR(. etveeeeeeeeeeeeeeeeeee et ee e te ettt et et eet et s et e et et s et r e 274
DECODE() vt eeeeeeee et e e et et e e e et e et e et et e e et et et e ettt e et s 275
DEGREES() .. vvvteteeeeeeeeseeeeeee et e e e eeeeeeee et eet et et e e e et ettt e ettt e et es e 276
DISTANCE(..ottt eeeee et ee ettt et e ettt ettt e ettt e ettt n e e, 277
DWITHIN(vttt eeee ettt ee et e et et s e et et s et e et et s eeneser s 278
EXP) .ottt eee et e ettt ettt ettt ettt ettt ettt 279
EXTRACT() «vveeteeeeeeeeeeeeeeeeeee et ee ettt e e e et e et e et et e et ee s e et et en e 280
FIELDU() v ettt ee et e ettt ee et ee et e e et s ettt s et e et eer e, 282
FLOOR() vttt e ettt ettt e ettt e et e e e et en e, 284
FORMAT_CURRENCY () «.v.veteteteeeeeeseeeeeeeetetes s eeseeees s eeer et s s eeeeeses e e eses e 285
FORMAT_TIMESTAMP() ..ttt eeeeeeeeeee e e et e ettt es s seeeeeeser s seseeed 286
FROM _UNIXTIMEQ) «.vvevveteeeeeeeee e e e et eeeeeeet e eee et s et s et esesee e eeen s s 287
HEX() o vveeevee et ee e e e et e ettt e e e et sttt e et e ettt ettt 288
HOUR() vttt ettt ettt e ettt e ettt e et e e e e, 289
INETE_ ATON() vovevveeereeeeeeeeeeseseeeeeeeetes e eeee e eeeeeeet et et e e e e ee e e et et s eeeeee e, 290
INETE_NTOA() cvovevvreeeeeeeeeee e eeeeeeee et es e e eee sttt e e e et s et e s e eee e, 201
INET _ATON() «vveveeeeeeeeeeeee ettt e et et es et e st e e eeetes s e et n e eeeeenan 292
INET _NTOA() eveveeeeeeeeeeee et ee ettt s et e et e et et et e et eeeeenon 293
ISINVALIDREASON() <.ttt teeeeeeeeeeeeeeeeeteeeseseeeee e es s eee et s et es e en e, 294
ISVALID() .ttt ettt ettt et e et ee et st e et n ettt 295
IS VALID_TIMESTAMP() «...eveveeeeeeeeeeeeeee et eee e eet et ee ettt e e 297
LATITUDE(vttt eeeeee ettt e ettt s ettt eer s, 298
LEFT() v eeeeeeeeeee et eeee et ee ettt et e e e ettt e et et et e e ettt 299
LINQ, LOG() vttt ettt ettt e ettt ettt 300
LOGILO() ettt tee ettt e e eet et e e et et et e et et et e ettt e et 301
LONGITUDE() ..t eeeeeetetes e e et eeeeeee et s e et et e ettt s et e et en e 302
LOWER() vttt ettt ettt ettt ettt ettt et e et e, 303
MAKEVALIDPOLY GON() .. eeveeveeeeeeeeeeeeeeee e eeeeet e eeee et s s et es e e et en s s 304
IMAX() ettt ettt ettt e et e et ettt ettt ettt 305
MAX_VALID_TIMESTAMP() «..eevtveeeeeeeeeeeeeeeeseeeeeee e s et eseee et eeeeees e 306
IMIGRATING() vttt ee ettt et e et e e ettt n e et e e eeee e s e 307
IMINQ) ettt ettt ettt e ettt ee et e ettt e et 308
MIN_VALID_TIMESTAMP() ©..vvteeeeeeeeeeeseeee e ettt 309
IMINUTEQ vttt et et e e et ettt ee e e et s ettt e e, 310
IMOD() vttt ettt ettt e ettt et ettt ettt ettt 311
IMONTHI) ettt e ettt ettt ettt e et e e ee et et e et et oo e e e et e er s neeees 312
NOWI() .ottt e ettt ettt ettt et et e ettt et e, 313
NUMINTERIORRINGS() ..t eeeeeeeeeeseseeeeeeeeseseseeeeeeseseseeeeeseses e eeeeeseseseseeeeesesoneeees 314
NUMPOINTS() vt eeeeeeeeee et seee et e et ee s et s e ee et et e e eee et e e e eee et s e e 315
OCTET_LENGTH() vevevevtteeeeeeeee et e eee et es et s et e et n e s 316
OVERLAY () oottt oottt ettt ettt et e et e e e ettt n et seenns 317
PL(ettt ettt ettt ettt ettt ettt et 318
POINTFROMTEXT() veveveteteeeeeeeeeeeeeeeeeeeseeeseeeeeet et s ee e eeeseses e ee et et ee e s et e e eeeenenan 319
POLY GONFROMTEXT() v.veeeeeeeeeeeseseeeeeeeeeeseeeeeeeeees s eeees s s ee et ee e e e s seeeeenan 320
POSITION() vt teeeeeeee ettt ee et et ee e ee et et s e et et et e e et ee e s et e es e en e 321
POWER() .o eeeeeeeteteeeeeeeees et eeeee et et s e e e et et ee et et e et et en e e et e s s e e e st es e eee el 322
QUARTER() -ttt ettt ettt ettt ettt e et e ettt e et e e 323
RADIANS() ..ttt ettt et ee ettt et et e e et e e et e et e et 324
REGEXP_POSITION() . veeteteeeeeeeeeeeeeeeetes e ee e eet et s e ee e et es e 325
REPEAT() vttt eeeeeeeeeee et eee et et s e et et e e et et s e e et et st e et et s e et ee s eeeenns 326
REPLACE() ..ttt et e et s e ee et eet et e et ee sttt ee e e eeeeenan 327
RIGHT() e ettt ettt ettt ettt e ettt e et et e et e e et ee et et e e es e e 328

Using VoltDB

ROUNDI() ©tueiiitte ettt ettt e e e e e e e e e e e e e e e et e e e e et e e e et eeeeraaaans 329
SE () ittt it e e e a e 330
SECOND() wetneieiiti ettt et e e e e e e e e e et aaaaaa 331
SET FIELD() oiivtneiiiiii ettt et e 332
SIN() ueeieit ettt e e e et a et a e 334
SINCE _EPOCH() oiittiiiiiii ittt et e e e e e e e 335
SPA CE() ceitn ittt a e e 336
0 = 8 I IO UPPPTPRPPIRt 337
ST R() ittt et ettt e e e e e e e e e e a e 338
SUBSTRING() ©eueiiiitieiiie ettt e e e e e e e e e e et e e e e et e e e e et eeeeaaa s 339
SUM () ettt e e e e e e e e e e et aaeataaaaan 340
BN L PP PP PP S UPPPP 341
TO TIMESTAMP) oot e s 342
TRIM () ittt et e e e et e e e e e e e e e e a e a e 343
TRUNGCATE() +tuneeeiitiee ettt ettt e e e e e e e et e e e e et e e e e et b e e e e att e eeeertnaaaees 344
UPPER() ..ieittiiiiiii ettt ettt et e e e e e e e e e e e e et e e aa e aaaan 345
VALIDPOLY GONFROMTEXT() tevvuueiiiitiieeiiiiiee e e et e e et e e et e e e et e e e e e eaaans 346
WEEK (), WEEKOFYEAR() «..iittiiiiiiii ittt e et e e e et e e e et e 347
WMWVEEK DAY () ittt ettt ettt e e e e e e e e et e e e e e e et aaaaaas 348
Y B A R) ettt e e e e e e 349
D. VOItDB CLI COMMENGS . ..uiiiuiiiiiteiiee i ee et et e et e e e e e e et e et e et et eaae et e e b eereeans 350
(oY oo [TSR 351
oo ex o= o = P 356
[1 0= o = P 360
S o | 1.1 N 364
LY7o L e=o 1271 s I PTPR 369
L0« TR 377
E. Configuration File (deployment.Xml)cooiiiiiiiii e e e 384
E.1 Understanding XIML SYNEXccvvniiiiiieiiieeiii e ee e e e e e s e e aa e e eaneeeans 384
E.2. The Structure of the Configuration Fileccooiiiiiiiiii e, 384
F. VoItDB Datatype Compatibilitycccuuiiiiiiiiiiciii e e e e e 390
F.1. Java and VoltDB Datatype Compatibilityccocoeiiiiiiiiii e 390
LTS Y (= 0 (01000] =N 393
@ATHOC ... 394
L@ ST T P 396
@EXPIAINPIOC ...ei it 397
(@Y (o = T A A= 398
@GEPAtItIONKEYSiiiieii e e e e e e 400
(@ = TS <3 402
(@2 T 0T P 403
(@] 0] 100 (< 404
(YN VS £ 405
L@V N 1= o= N 407
@RS 0 409
L@ V100 [0 o T 410
@SNAPSNOIDEIELE ... ieve e e e e e 411
@SNAPSNOIRESIONE . .eve et e e e e e e e e et e e e e e e e aaaes 413
@ SNAPSNOLSAVE ...euiieieeei et e e e e e e e e e e e e a e a e aaae 416
(IS0 g0 o o PN 420
(VS = 11 1ok 423
(@S0 o) N\ Lo (= T 448
SNz I o =P 450
Y (=141 0= = o o P 452
(S YA (=101 1o 017 1 o o RN 457

Using VoltDB

@UpdateAppliCatioNCatalogcvvunieiii e e e e e e

@UpdateClasses
@Updatelogging

List of Figures

1.1 Partitioning TaIEScoeiiieiei et 2
1.2, SEri@liZEU PrOCESSING ..oevtueiiettn ettt e et e e ettt e e ettt e e et et e e e ettt e et ettaeeeent e e eeentnaaaees 3
1.3. REPIICAING TADIES ...ttt 4
4.1. Components of a Database SCREMAuuiiiiiii e 16
4.2. Partitions Distribute Table Data and Stored Procedure ProCeSSiNgovevevvunrererineerernnnnns. 17
4.3. Diagram Representing the Flight Reservation Systemcooovviiiiiiiiiin e 19
5.1. Array of VOITEDIE SIIUCIUIESoovviieiiiii e 37
5.2. One VoltTable Structure is returned for each Queued SQL Statementccovvvevivieineiinnnnns 38
5.3. Stored Procedures Execute in the Appropriate Partition Based on the Partitioned Parameter

VAU Lttt eaaas 44
8.1. The Structure of the VOItDB JSON RESPONSEcccvutuiieiiiiiieeeiii et eeit e e eeni e 72
10.1. K-SAfELY 1N ACHON ..oeitiiieiii e ettt e et e e et e e e e e eees 83
10.2. NEWOIK Partitioneiieiiieiiiiie ettt et e et e e e e e 87
10.3. Network Fault ProteCtion in ACHONcoouuuuiiiiiii e e 88
11.1. Passive Database REPHCALIONocieiiiieiiiii et e 90
11.2. Cross Datacenter REPIICAIIONc.uuuiiiiiiie i 91
11.3. Replicating an EXisting Databaseoeieiiiieiiiiiee e 93
11.4. Promoting the REPIICAcoeutiieiiiii e 94
11.5. Read-Only AcCesS t0 the REPIICAccvuniiiiii e 100
11.6. Standard XDCR CONFIQUIELIONuuiiiiiiieeieiiie et e ettt e e e e e e eenanns 106
11.7. XDCR Configuration with Read-Only RePliCaSoviviiiiiiiiiiiiiieiiii e 106
11.8. Transaction Order and Conflict RESOIULIONcocuveiiiiiiiiieiii e 107
14.1. Command Logging iN ACHIONoeiiiriieiiiiie et 133
14.2. RECOVENY IN ACHON .ottt et e e et e e e 134
15.1. Overview Of Data SIrAMINGiiiiii et e e e et e eenes 140
15.2. OVENVIEW OF TOPICS ..eevtieieiii ettt ettt ettt ettt e et e et e e e e b e e et s 140
E.1. Configuration XIML SEUCTUIieeii ittt et e e 386

Xi

List of Tables

2.1. Operating System and Software REQUIFEMENTSoeiiuiiieiiiieeeei e 5
2.2. Components Installed Dy VOITDBcooiiiiiiieiiiiie et 7
4.1. Example Application WOrKIOadccouuiiiiiiiiiii e 19
5.1. Methods of the VOITTabIE ClaSSeSc.uuiiiiiiiieee e 39
8.1. Datatypes in the JISON INLEITACEuuniiiiiii e 71
11.1. Structure of the XDCR CONFIICE LOGS ... ceverrnieeiiiiieeeii ettt 112
12.1. Named Security PErMISSIONSuuiiieiieiiiii ettt e e e e 117
15.1. File EXPOIt PrOPEITIES ... ettt et e e e 151
15.2. EXPOIT MEIBOAEAceveieeeeei et e e 152
15.3. HTTP EXPOrt PrOPErtiES ...ttt ettt ettt e et e e e e e eees 154
15.4. IDBC EXPOIT PrOPEITIES .. eeiiieieiii ettt ettt ettt e e e e e 157
15.5. Kafka EXPOIT PrOPEITIES .. .ceviiiieiii ettt ettt e e e e e 160
15.6. Elasticsearch EXPOrt ProOPErtiESiiieiieiiii ettt e 162
15.7. Kafka IMpOrt PrOPEITIES .. .coeuiiiieiii ettt e e 165
15.8. KineSiS IMPOIt PrOPEITIES ... coeeieieiiiii e e eer e 166
15.9. CSV and TSV FOrmatter PrOPErtieSceeeuuneieiiiiee ettt e et e e e eeai e 167
15.10. Topic FOrmatting ProPertiEsouu ittt 173
A.L SUPPOrted SQL DELBLYPES .. .ceeeruieeiiti ettt et e ettt e e et e ettt e et et e e e et e e eaa e eene 198
C.1. Selectable Values for the EXTRACT FUNCLONcc.uuiiiiiiiiieeiiii e 280
E.1. Configuration File Elements and AMIHDULESiiiiiiiiiii e 387
F.1. Java and VolItDB Datatype Compatibilityccoouuiiiiiiiiiieiiiie e 390
G.1. @SNaPSNOtRESIONEOPLIONSeeetteeeeti ettt e ettt e et e et e et e e e eete e e e eeraaaeeeee 413
G.2. @SNAPSNOLSAVE OPLIONSceeeeieeeetii ettt ettt e et et e et et e et e e e e b e e enea s 417

Xii

List of Examples

4.1. DDL Example of a Reservation SChemacovuuiiiiiiiiii e
5.1. Components of a VoItDB Java Stored ProCEAUNeiieieiiiiiiii e
5.2. Cycles of Queue and Execute in @ Stored ProCeaUreuviviiiiiieiiiiie e
5.3. Displaying the Contents of VOITTabIE AITAYSooeiiiiieiiiie e

Xiii

About This Book

Thisbook is acomplete guide to VoltDB. It describes what VoltDB is, how it works, and — more impor-
tantly — how to use it to build high performance, data intensive applications. The book is divided into

five parts:

Part 1: Getting Started

Explains what VolItDB is, how it works, how to install it, and how to
start using VoltDB. The chapters in this section are:

e Chapter 1, Overview
» Chapter 2, Installing VoltDB

» Chapter 3, Starting the Database

Part 2: Developing VoltDB Data-
base Applications

Describes how to design and develop applications using VoltDB. The
chaptersin this section are:

Chapter 4, Designing the Database Schema

Chapter 5, Designing Stored Procedures to Access the Database

L]

Chapter 6, Designing VoltDB Client Applications

Chapter 7, Smplifying Application Devel opment

» Chapter 8, Using VoltDB with Other Programming Languages

Part 3: Running VoltDB inaClus-
ter

Describesadditional featuresuseful for running adatabasein acluster.
The chaptersin this section are:

e Chapter 9, Using VoItDB in a Cluster
e Chapter 10, Availability
¢ Chapter 11, Database Replication

e Chapter 12, Security

Part 4: Managing the Data

Provides techniques for ensuring data durability and integrity. The
chaptersin this section are:

e Chapter 13, Saving & Restoring a VoltDB Database
¢ Chapter 14, Command Logging and Recovery

» Chapter 15, Streaming Data: Import, Export, and Migration

Part 5: Reference Material

Provides reference information about the languages and interfaces
used by VoltDB, including:

« Appendix A, Supported SQL DDL Satements

* Appendix B, Supported SQL Satements

Appendix C, SQL Functions

» Appendix D, VoltDB CLI Commands

Xiv

About This Book

« Appendix E, Configuration File (deployment.xml)
e Appendix F, VoltDB Datatype Compatibility

* Appendix G, System Procedures

This book provides the most complete description of the VoltDB product. It includes features from both
the open source Community Edition and the commercial products VoltDB Enterprise Edition and VoltDB
Pro. In general, the features described in Parts 1 and 2 are available in all versions of the product. Severa
featuresin Parts 3 and 4 are unique to the commercial products.

If you are new to VoltDB, the VoltDB Tutorial provides an introduction to the product and its features.
Thetutorial, and other books, are available on the web from http://docs.voltdb.com/.

XV

http://docs.voltdb.com/tutorial/
http://docs.voltdb.com/

Chapter 1. Overview
1.1. What is VoltDB?

VoltDB is arevolutionary new database product. Designed from the ground up to be the best solution for
high performance business-critical applications, the VoltDB architectureisable to achieve 45 times higher
throughput than current database products. The architecture also allows VoltDB databases to scale easily
by adding processors to the cluster as the data volume and transaction requirements grow.

Current commercia database products are designed as general -purpose data management solutions. They
can be tweaked for specific application requirements. However, the one-size-fits-all architecture of tradi-
tional databases limits the extent to which they can be optimized.

Although the basic architecture of databases has not changed significantly in 30 years, computing has. As
have the demands and expectations of business applications and the corporations that depend on them.

VoltDB is designed to take full advantage of the modern computing environment:
» VoItDB uses in-memory storage to maximize throughput, avoiding costly disk access.

* Further performance gains are achieved by serializing all data access, avoiding many of the time-con-
suming functions of traditional databases such as locking, latching, and maintaining transaction logs.

 Scalability, reliability, and high availability are achieved through clustering and replication across mul-
tiple servers and server farms.

VoltDB isafully ACID-compliant transactional database, relieving the application developer from having
to develop code to perform transactions and manage rollbacks within their own application. By using
ANSI standard SQL for the schema definition and data access, VoltDB also reduces the learning curve
for experienced database designers.

1.2. Who Should Use VoltDB

VoltDB is not intended to solve all database problems. It is targeted at a specific segment of business
computing.

VoltDB focuses specifically on fast data. That is, applications that must process large streams of data
quickly. This includes financia applications, social media applications, and the burgeoning field of the
Internet of Things. The key requirementsfor these applications are scalability, reliability, high availability,
and outstanding throughput.

VoltDB is used today for traditional high performance applications such as capital markets data feeds, fi-
nancial trade, telco record streams and sensor-based distribution systems. It's also used in emerging appli-
cations like wireless, online gaming, fraud detection, digital ad exchanges and micro transaction systems.
Any application requiring high database throughput, linear scaling and uncompromising data accuracy
will benefit immediately from VoltDB.

However, VoltDB is not optimized for all types of queries. For example, VoltDB is not the optimal choice
for collecting and collating extremely large historical data sets which must be queried across multiple
tables. This sort of activity is commonly found in business intelligence and data warehousing solutions,
for which other database products are better suited.

Overview

To aid businesses that require both exceptional transaction performance and ad hoc reporting, VoltDB
includes integration functions so that historical data can be exported to an analytic database for larger
scale data mining.

1.3. How VoltDB Works

VoltDB is not like traditional database products. Each VoltDB database is optimized for a specific appli-
cation by partitioning the database tables and the stored procedures that access those tables across multiple
"sites" or partitions on one or more host machines to create the distributed database. Because both the data
and the work is partitioned, multiple queries can be run in parallel. At the same time, because each site
operates independently, each transaction can run to completion without the overhead of locking individ-
ual records that consumes much of the processing time of traditional databases. Finally, VoltDB balances
the requirements of maximum performance with the flexibility to accommodate less intense but equally
important queries that cross partitions. The following sections describe these concepts in more detail.

1.3.1. Partitioning

In VoltDB, each stored procedure is defined as a transaction. The stored procedure (i.e. transaction) suc-
ceeds or rolls back as awhole, ensuring database consistency.

By analyzing and precompiling the data access logic in the stored procedures, VVoltDB can distribute both
the data and the processing associated with it to the individual partitions on the cluster. In this way, each
partition containsaunique "dlice" of the data and the data processing. Each node in the cluster can support
multiple partitions.

Figure 1.1. Partitioning Tables

Table

B Database
Table Table Schema
A C
A B' CI A" | B" cll A g™ Cm Ru n.—-.ri rn.e
Partitioning
Partition Partition Partition
X Y Z

1.3.2. Serialized (Single-Threaded) Processing

At run-time, cals to the stored procedures are passed to the appropriate partition. When procedures are
"single-partitioned” (meaning they operate on data within a single partition) the server process executes
the procedure by itself, freeing the rest of the cluster to handle other requestsin parallel.

By using serialized processing, VoltDB ensurestransactional consistency without the overhead of locking,
latching, and transaction logs, while partitioning lets the database handle multiple requests at atime. As

Overview

1.3.3.

ageneral rule of thumb, the more processors (and therefore the more partitions) in the cluster, the more
transactions VoltDB completes per second, providing an easy, aimost linear path for scaling an applica
tion's capacity and performance.

When a procedure does require data from multiple partitions, one node acts as a coordinator and hands out
the necessary work to the other nodes, collectsthe results and completes the task. This coordination makes
multi-partitioned transactions slightly slower than single-partitioned transactions. However, transactional

integrity is maintained and the architecture of multiple parallel partitions ensures throughput is kept at a
maximum.

Figure 1.2. Serialized Processing

Stored Proc.
Stored Proc. Workload
Queue

Stored Proc.

Stored Proc.

— 7 |

Stored Proc. Stored Proc. Stored Proc.

Stored Proc. Stored Proc. Stored Proc.

Stored Proc. Stored Proc. Stored Proc.P Distributed,
Serialized
Processing

Partition
z

Partition
X

Partition
Y

It isimportant to note that the V oltDB architecture is optimized for total throughput. Each transaction runs
uninterrupted in its own thread, minimizing the individual latency per transaction (the time from when the
transaction begins until processing ends). This also eliminates the overhead needed for locking, latching,
and other administrative tasks, reducing the amount of timerequestssit in the queue waiting to be executed.
Theresult isthat for a suitably partitioned schema, the number of transactions that can be completed in a
second (i.e. throughput) is orders of magnitude higher than traditional databases.

Partitioned vs. Replicated Tables

Tablesare partitioned in VoltDB based on acolumn that you, the devel oper or designer, specify. When you
choose partitioning columns that match the way the datais accessed by the stored procedures, it optimizes
execution at runtime.

To further optimize performance, VoltDB allows certain database tablesto be replicated to all nodes of the
cluster. For small tables that are largely read-only, this allows stored procedures to create joins between
this table and another larger table while remaining a single-partitioned transaction. For example, a retail
merchandising database that uses product codes as the primary key may have one table that smply corre-
lates the product code with the product's category and full name, Since this table is relatively small and
does not change frequently (unlike inventory and orders) it can be replicated for access by all partitions.
This way stored procedures can retrieve and return user-friendly product information when searching by
product code without impacting the performance of order and inventory updates and searches.

Overview

Figure 1.3. Replicating Tables

Tagle Database Schema
Table Table
A C
Table
D

AlB | Al Run-Time
Partitioning &
D D Replication
X z

1.3.4. Ease of Scaling to Meet Application Needs

The VoltDB architecture is designed to simplify the process of scaling the database to meet the changing
needs of your application. Increasing the number of nodesin aVoltDB cluster both increases throughput
(by increasing the number of simultaneous queues in operation) and increases the data capacity (by in-
creasing the number of partitions used for each table).

Scaling up a VoltDB database is a simple process that doesn't require any changes to the database schema
or application code. Y ou can either:

» Save the database (using a snapshot), then restart the database specifying the new number of nodes for
the resized cluster and using restore to rel oad the schema and data.

» Add nodes "on the fly" while the database is running.

1.4. Working with VoltDB Effectively

It is possible to use VoltDB like any other SQL database, creating tables and performing ad hoc SQL
gueries using standard SQL statements. However, to take full advantage of VoltDB's capabilities, it is best
to design your schemaand your stored proceduresto maximizethe use of partitioned tablesand procedures.
There are also additional features of VoltDB to increase the availability and durability of your data. The
following sections explain how to work effectively with VoltDB, including:

» Chapters 2 and 3 explain how to install VoltDB and create a new database.

» Chapters 4 through 8 explain how to design your database, stored procedures, and client applications
to maximize performance.

» Chapters 9 through 12 explain how to create and use VoltDB clusters to increase scalability and avail-
ability.

 Chapters 13 through 15 explain how VoltDB ensures the durability of your data and how you can inte-
grate VoltDB with other data sources using export for complete business solutions

Chapter 2. Installing VoltDB

VolItDB is available in both open source and commercial editions. The open source, or community, edi-
tion provides all the transactional performance benefits of VoltDB, plus basic durability and availability.
The commercia editions provide additional features needed to support production environments, such as
complete durability, dynamic scaling, and WAN replication.

Depending on which version you choose, the VoltDB software comes as either pre-built distributions or
as source code. This chapter explains the system requirements for running VoltDB, how to install and
upgrade the software, and what resources are provided in the kit.

2.1. Operating System and Software Requirements

The following are the requirements for developing and running VoltDB applications.

Table 2.1. Operating System and Softwar e Requirements

Operating System

VoltDB requires a 64-bit Linux-based operating system. Kits are built and
qualified on the following platforms:

* CentOSversion 7.0 and later, or version 8.0 and later

* Red Hat (RHEL) version 7.0 and later, or version 8.0 and later
» Ubuntu versions 16.04 and 18.04

» Macintosh OS X 10.9 and later (for development only)

CPU « Dual core! x86_64 processor
e 64 hit
e 1.6 GHz
Memory 4 Gbytes’
Java® VoltDB Server: Java 8 or Java 11

Javaand JDBC Client: Java8 or Java 11

Required Software

Time synchronization service, such as NTP or c:hrony4

Python 2.6 or later (2.7 is recommended)

Recommended Software

Eclipse 3.x (or other Java IDE)

Footnotes:

optimal performance.

1. Dua core processors are a minimum requirement. Four or eight physical cores are recommended for

2. Memory requirements are very specific to the storage needs of the application and the number of nodes
in the cluster. However, 4 Gigabytes should be considered a minimum configuration.

3. VoltDB supports JDKs from OpenJDK or Oracle.

4. Time synchronization services minimize the time difference between nodes in a database cluster,
which iscritical for VoltDB. All nodes of the cluster should be configured to synchronize against the
same time server. Using asingle local server is recommended, but not required.

Installing VoltDB

2.2. Installing VoltDB

2.2.1.

VoltDB is distributed as a compressed tar archive. The file name identifies the edition (community or
enterprise) and the version number. The best way to install VoltDB is to unpack the distribution kit as a
folder in the home directory of your personal account, like so:

$ tar -zxvf voltdb-ent-10.0.tar.gz -C $HOVE

Installing into your personal directory gives you full access to the software and is most useful for devel-
opment.

If you are installing VoltDB on a production server where the database will be run, you may want to
install the software into a standard system location so that the database cluster can be started with the
same commands on all nodes. The following shell commands install the VoltDB software in the folder
/opt/vol tdb:

$ sudo tar -zxvf voltdb-ent-10.0.tar.gz -C /opt
$ cd /opt
$ sudo nmv vol tdb-ent-10.0 vol tdb

Notethat installing as root using the sudo command makes the installation folders read-only for non-priv-

ileged accounts. Which iswhy installing in SHOME is recommended for running the sample applications
and other development activities.

Upgrading From Older Versions

When upgrading an existing database from a recent version of VoltDB, the easiest way to upgrade is as
follows:

1. Perform an orderly shutdown of the database, saving afinal snapshot (voltadmin shutdown --save)
2. Upgrade the VoltDB software
3. Restart the database (voltdb start)

Using this process VoltDB automatically restores the final snapshot taken before the upgrade. To upgrade
VoltDB on clusters running database replication (DR), see the instructions specific to DR in the VoltDB
Administrator's Guide.

If you are upgrading from a version before V6.8, you need to save and restore the snapshot manually. In
which case, the recommended steps for upgrading an existing database are:

1. Place the database in admin mode (voltadmin pause --wait).

2. Perform amanual snapshot of the database (voltadmin save --blocking).
3. Shutdown the database (voltadmin shutdown).

4. Upgrade VoltDB.

5. Initialize a new database root directory (voltdb init)

6. Start the new database in admin mode (voltdb start --pause).

7. Restore the snapshot created in Step #2 (voltadmin restore).

https://docs.voltdb.com/AdminGuide/MaintainUpgradeVoltdb.php
https://docs.voltdb.com/AdminGuide/
https://docs.voltdb.com/AdminGuide/

Installing VoltDB

8. Return the database to normal operations (voltadmin resume).

2.2.2. Building a New VoltDB Distribution Kit

If you want to build the open source VoltDB software from source (for example, if you want to test recent
development changes), you must first fetch the VoltDB source files. The VoltDB sources are stored in a
GitHub repository.

The VoltDB sources are designed to build and run on 64-bit Linux-based or 64-bit Macintosh platforms.
However, the build process has not been tested on all possible configurations. Attemptsto build the sources
on other operating systems may require changes to the build files and possibly to the sources as well.

Once you obtain the sources, use Ant 1.7 or later to build a new distribution kit for the current platform:
$ ant dist

Theresulting distribution kit iscreated asobj / r el ease/ vol t - n. n. nn. t ar. gz wheren.n.nniden-
tifies the current version and build numbers. Use thisfile to install VoltDB according to the instructions
in Section 2.2, “Installing VoltDB”.

2.3. Setting Up Your Environment

VoltDB comes with shell command scripts that simplify the process of devel oping and deploying VoltDB
applications. These scripts are in the /bin folder under the installation root and define short-cut commands
for executing many VoltDB actions. To make the commands available to your session, you must include
the /bin directory as part your PATH environment variable.

Y ou can add the/ bi n directory to your PATH variable by redefining PATH. For example, the following
shell command adds / bi n to the end of the environment PATH, assuming you installed the VoltDB
Enterprise Edition as/ vol t db- ent - n. n in your $HOME directory:

$ export PATH="$PATH: $HOVE/ vol t db- ent - n. n/ bi n"

To avoid having to redefine PATH every time you create a new session, you can add the preceding com-
mand to your shell login script. For example, if you are using the bash shell, you would add the preceding
command to the $HOVE/ . bashr c file.

2.4. What is Included in the VoltDB Distribution

Table 2.2 lists the components that are provided as part of the VVoltDB distribution.

Table 2.2. Components|nstalled by VoltDB

Component Description

VoltDB Software & Runtime The VoltDB software comes as Javaarchives (.JAR
files) and a callable library that can be found in the
/ vol t db subfolder. Other software libraries that
VoltDB dependson areincludedinaseparate/ | i b
subfolder.

Example Applications VoltDB comes with several example applications
that demonstrate VoltDB capabilities and perfor-
mance. They can befound inthe/ exanpl es sub-
folder.

https://github.com/VoltDB/voltdb

Installing VoltDB

Component Description

VoltDB Management Center VoltDB Management Center is a browser-based
management tool for monitoring, examining, and
querying a running VoltDB database. The Man-
agement Center is bundled with the VoltDB serv-
er software. You can start the Management Cen-
ter by connecting to the HTTP port of a running
VoltDB database server. For example, http://
vol t svr: 8080/ . Note that the httpd server and
JSON interface must be enabled on the server to be
able to access the Management Center.

Shell Commands The/ bi n subfolder contains executable scripts to
perform common VoltDB tasks, such as starting the
VoltDB server process and issuing database queries
from the command line using sglcmd, Add the /
bi n subfolder to your PATH environment variable
to use the following shell commands:

csvloader
jdbcloader
kafkal oader
sglemd
voltadmin
voltdb

Documentation Online documentation, including the full manuals
and javadoc describing the Java programming inter-
face, isavailableinthe/ doc subfolder.

2.5. VoltDB in Action: Running the Sample Appli-
cations

Once you install VoltDB, you can use the sample applications to see VolItDB in action and get a better
understanding of how it works. The easiest way to do thisis to set directory to the / exanpl es folder
where VoltDB isinstalled. Each sample application hasits own subdirectory and arun.sh script to simplify
building and running the application. Seethe README filein the/ exanpl es subfolder for acomplete
list of the applications and further instructions.

Once you get ataste for what VVoltDB can do, we recommend following the VoltDB tutorial to understand
how to create your own applications using VVoltDB.

http://docs.voltdb.com/tutorial/

Chapter 3. Starting the Database

This chapter describes the procedures for starting and stopping a VoltDB database and includes details
about configuring the database. The chapter contains the following sections:

» Section 3.1, “Initializing and Starting a VoltDB Database”

» Section 3.2, “Initializing and Starting a VoltDB Database on a Cluster”
» Section 3.3, “Stopping a VoltDB Database’

» Section 3.5, “Restarting a VoltDB Database”

* Section 3.6, “Updating Nodes on the Cluster”

» Section 3.7, “Defining the Cluster Configuration”

3.1. Initializing and Starting a VoltDB Database

Before you start aVoltDB database, you must initialize the root directory where VoltDB storesits config-
uration data, logs, and other disk-based information. Once you initialize the root directory, you can start
the database. For example, you can accept the defaults for the voltdb init and start commandsto initialize
and start a new, single-node database suitable for developing and testing a database and application.

$ voltdb init
$ voltdb start

ThiscreatesaVoltDB root directory as asubfolder of your current working directory and starts a database
with all default options. Y ou only need to initialize the root directory once and can then start and stop the
database as often as you like.

$ vol tadm n shut down
$ voltdb start

If you are using command logging, which is enabled by default in the VoltDB Enterprise Edition, VoltDB
automatically saves and recovers your database between any stoppage and a restart. If you are not using
command logging, you will want to save a snapshot before shutting down. The easiest way to do thisis
by adding the --save argument to the shutdown command.

The snapshot is automatically restored when the database restarts:

$ vol tadm n shutdown --save
$ voltdb start

If you want to create a new database, you can reinitialize the root directory. However, you must use the --
force flag if the database has already been used; VoltDB will not clear the root directory of existing data
unless you explicitly "force" it to.

$ voltdb init --force
$ voltdb start

Also, you can specify an alternate location for the root directory using the - - di r or - Dflag. Of course,
you must specify the same location for the root directory when both initializing and starting the database.
Y ou cannot start a database in adirectory that has not been initialized.

$ voltdb init --dir=~/nmydb

Starting the Database

$ voltdb start --dir=~/nmydb

In most cases, you will want to use additional argumentsto configure the server and database options. But
the preceding commands are sufficient to get you started in a test environment. The rest of this chapter
explains how to use other arguments and how to start, stop, and recover a database when using a cluster.

Finally, when using the VoltDB Enterprise Edition, you must provide a license file when initializing the
database. VoltDB looks for the license asafilenamed | i cense. xmi in three possible locations, in the
following order:

1. The current working directory

2. The directory where the VoltDB image files are installed (usually in the / vol t db subfolder of the
installation directory)

3. The current user's home directory

If thelicensefileisnot in any of these locations, you must explicitly identify it when you issue the voltdb
init command using the- - | i cense or - | flag. For example, the command might be;

$ voltdb init -1 /usr/share/voltdb-I|icense.xnl

The examples in this manual assume that the license file isin one of the default locations and therefore
do not show the - - | i cense flag for simplicity's sake.

3.2. Initializing and Starting a VoltDB Database on
a Cluster

You initidize and start a cluster the same way you start a single node: with the voltdb init and start
commands. The only difference is that when starting the cluster, you must tell the cluster nodes how big
the cluster is and which nodes to use as potential hosts for the startup.

You initialize aroot directory on each server using the voltdb init command. Y ou can accept the default
configuration as shown in the previous section. However, when setting up acluster you often want to make
some configuration adjustments (for example, enabling K-safety). So it isagood ideato get into the habit
of specifying a configuration file.

Y ou specify the configuration file with the - - conf i g or - Cflag when you initialize the root directory.
All nodes must use the same configuration file. For example:

$ voltdb init -D ~/mydb --config=nyconfig.xm

Once the nodes are initialized, you start the cluster by issuing the voltdb start command on all nodes
specifying the following information:

* Number of nodesin the cluster: When you start the cluster, you specify how many servers will make
up the cluster using the - - count flag.

* Host names: Y ou specify the hostnames or |P addresses of one or more servers from the cluster that
are potential "hosts" for coordinating the formation of the cluster. Y ou specify the list of hosts with the
--host or - Hflag. You must specify at least one node as a host.

For each node of the cluster, log in and start the server process using the same voltdb start command. For
example, the following example starts a five-node database cluster specifying voltsvrl as the host node.
Be sure the number of nodes on which you run the command match the number of nodes specified in the
- - count argument.

10

Starting the Database

$ voltdb start --count=5 -—-host=vol tsvril
Or you can also use shortened forms for the argument flags:
$ voltdb start -¢c 5 -H voltsvrl

Although you only need to specify one potential host, it isagood ideato specify multiple hosts. Thisway,
you can use the exact same command for both starting and rejoining nodes in a highly-available cluster.
Even if the rgoining nodeisin the host list another, running node can be chosen to facilitate the rejoin.

To simplify even further, you can specify all of the serversinthe - - host argument. If you do this, you
can skip the - - count argument. If - - count ismissing, VoltDB assumes the number of serversin the
- - host list is complete and sets the server count to match. For example, the following command —
issued on al three servers — starts a three node cluster:

$ voltdb start --host=svrA svrB,svrC
When starting a VVoltDB database on a cluster, the VoltDB server process performs the following actions:

1. If you are starting the database process on the node selected as the host node, it waits for initialization
messages from the remaining nodes. The host is selected from the list of hosts on the command line
and plays aspecial role during startup by managing the cluster initiation process. It isimportant that all
nodes in the cluster can resolve the hostnames or | P addresses of the host nodes you specify.

2. If you are starting the database on a non-host node, it sends an initialization message to the host indi-
cating that it is ready. The database is not operational until the correct number of nodes (as specified
on the command line) have connected.

3. Onceadll the nodes have sent initialization messages, the host sends out amessageto the other nodes that
the cluster is complete. Once the startup procedure is complete, the host'sroleis over and it becomes a
peer like every other node in the cluster. It performs no further specia functions.

Manually logging on to each node of the cluster every time you want to start the database can be tedious.
Instead, you can use secure shell (ssh) to execute shell commands remotely. By creating an ssh script (with
the appropriate permissions) you can copy files and/or start the database on each node in the cluster from
asingle script. Or you can use distributed system management tools such as Chef and Puppet to automate
the startup procedures.

3.3. Stopping a VoltDB Database

Oncethe VoltDB databaseis up and running, you can shut it down by stopping the VVoltDB server processes
on each cluster node. However, it is easier to stop the database as a whole with a single command. Y ou
do this with the voltadmin shutdown command, which pauses database activity, completes all current
transactions, and empties any queued data (such as export or database replication) before shutting down.
For example, entering the following command without specifying a host server will perform an orderly
shut down the database cluster the current systemis part of.

$ vol tadm n shut down

If you are not using command logging, which automatically saves all progress, be sure to add the --save
argument to save afinal snapshot before shutting down:

$ vol tadmi n shutdown --save

To shutdown a database running on another system, usethe - - host argument to access the remote data-
base. For example, the following command shuts down the VVoltDB database that includes the server zeus:

11

Starting the Database

$ vol tadm n shutdown --host=zeus

You can pause the database using the voltadmin pause command to restrict clients from accessing it
whileyou perform changesin administration mode. Y ou resume the database using the voltadmin resume
command. See the VoltDB Administrator's Guide for more about modes of operation.

3.4. Saving the Data

Because VolItDB is an in-memory database, once the database server process stops, the database schema
and the dataitself are removed from memory. However, VoltDB can save thisinformation to disk through
the use of command logs and snapshots, so use of these featuresis strongly encouraged.

» Command logging provides the most complete data durability for VoltDB and is enabled by default
in the VoltDB Enterprise Edition. Command logging works automatically by saving a record of every
transaction. These logs can then be replayed if the database stops for any reason.

» Snapshots, on the other hand, provide a point-in-time copy of the database contentswritten to disk. You
can create snapshots manually with the voltadmin save command, you can enable periodic (al so known
as automatic) snapshots, or you can save a final snapshot when you shutdown the database using the
voltadmin shutdown --save command. Snapshots are restored when the database restarts, but only take
you back to the state of the database at the time the last snapshot was saved.

To learn more about using command logging see Chapter 14, Command Logging and Recovery. To learn
more about how to save and restore snapshots of the database, see Chapter 13, Saving & Restoring a
VolItDB Database.

3.5. Restarting a VoltDB Database

Once adatabase stops, you canrestart it using the samevoltdb start command used to start the database the
first time. Once the database starts, any command logs or snapshots are restored. Inthe VoltDB Enterprise
Edition, command logs automatically restore the last state of the database. If no command log exist but a
snapshot does, the databaseisrestored to its state when that snapshot wastaken. For example, thefollowing
command restarts a single-node database:

$ voltdb start

Torestart adatabase on acluster, issue the samevoltdb start command used to start that cluster, including
the server count and list of host nodes. For example:

$ voltdb start --count=5 -—-host=voltsvril

3.6. Updating Nodes on the Cluster

A cluster is a dynamic system in which nodes might be stopped either deliberately or by unforeseen cir-
cumstances, or hodes might be added to the cluster on-the-fly to scale the database for improved perfor-
mance. The voltdb start command provides the following additional functions, described later in this
book, for rejoining and adding nodes to a running VoltDB database:

» Section 10.3, “Recovering from System Failures’ — Use the same voltdb start command to start the
cluster or rejoin afailed node.

e Section 9.3.1, “Adding Nodes with Elastic Scaling” — Use voltdb start with the --add flag to add a
new node to the running database cluster.

12

http://docs.voltdb.com/AdminGuide/

Starting the Database

3.7. Defining the Cluster Configuration

Two important aspects of a VoltDB database are the physical layout of the cluster that runs the database
and the database features you choose to use. Y ou define the physical cluster layout on the voltdb start
command using the- - count and- - host arguments. Y ou enable and disabl e specific database features
in the configuration file when you initialize the database root directory with the voltdb init command.

The configuration fileisan XML file, which you specify when you initialize the root directory. The basic
syntax of the configuration fileis asfollows:

<?xm version="1.0"?7>
<depl oynent >
<cl uster kfactor="n" />

<feature option... >
</ feature>

</ depl oynent >

The attributes of the <cl ust er > tag define the layout of the database partitions. The attributes of the
<cl ust er > tag are:

* sitesperhost — specifies the number of partitions created on each server in the cluster. The si t es-
per host valuetimesthe number of servers gives you the total number of partitionsin the cluster. See
Section 3.7.1, “Determining How Many Sites per Host” for more information about partition count.

» kfactor — specifies the K-safety value to use for durability when creating the database. The K-safety
value controls the duplication of database partitions. See Chapter 10, Availability for more information
about K-safety.

In the simplest case — when running on a single node with no specia options enabled — you can skip
the configuration file on the voltdb init command and the server count and host list on the voltdb start
command. If you do not specify a configuration file, VoltDB defaults to eight execution sites per host,
and a K-safety value of zero.

The configuration file is also used to enable and configure many other runtime options related to the
database, which are described later in this book. For example, the configuration file can specify:

* Whether security is enabled and what users and passwords are needed to authenticate clients at runtime.
See Chapter 12, Security for more information.

» A schedule for saving automatic snapshots of the database. See Section 13.2, “ Scheduling Automated
Snapshots”.

 Properties for exporting and importing data to other data sources. See Chapter 15, Sreaming Data:
Import, Export, and Migration.

For the complete configuration file syntax, see Appendix E, Configuration File (deployment.xml).

3.7.1. Determining How Many Sites per Host

There is very little penalty for allocating more sites than needed for the partitions the database will use
(except for incremental memory usage). Consequently, VoltDB defaults to eight sites per node to provide

13

Starting the Database

reasonable performance on most modern system configurations. This default does not normally need to be
changed. However, for systemswith alarge number of available processors (16 or more) or older machines
with fewer than 8 processors and limited memory, you may wish to tunethe si t esper host attribute.

The number of sites needed per node is related to the number of processor cores each system has, the
optimal number being approximately 3/4 of the number of CPUs reported by the operating system. For
example, if you are using a cluster of dual quad-core processors (in other words, 8 cores per node), the
optimal number of partitionsislikely to be 6 or 7 sites per node.

<?xm version="1.0"7?>
<depl oynent >
<cl uster
si t esperhost =" 6"
/>
</ depl oynent >

For systems that support hyperthreading (where the number of physical cores support twice as many
threads), the operating system reports twice the number of physical cores. In other words, a dual quad-
core system would report 16 virtual CPUs. However, each partition is not quite as efficient as on non-
hyperthreading systems. So the optimal number of sitesis more likely to be between 10 and 12 per node
in this situation.

Because there are no hard and set rules, the optimal number of sites per nodeis best calculated by actually
benchmarking the application to see what combination of cores and sites produces the best results. How-
ever, it isimportant to remember that all nodesin the cluster will use the same number of sites. So the best
performanceisachieved by using acluster with all nodes having the same physical architecture (i.e. cores).

3.7.2. Configuring Paths for Runtime Features

An important aspect of some runtime featuresisthat they make use of disk resourcesfor persistent storage
across sessions. For example, automatic snapshots need a directory for storing snapshots of the database
contents. Similarly, export uses disk storage for writing overflow dataif the export connector cannot keep
up with the export queue.

Y ou can specify individual pathsfor each featureinthe configurationfile. If not, VoltDB creates subfol ders
for each feature in the database root directory as needed, which can be useful for testing. However, in
production, it isuseful to direct certain high volumefeatures, such ascommand logging, to separate devices
to avoid disk 1/0 affecting database performance.

Y ou can identify specific path locations, within the <pat hs> element, for the following features:
» <command| og>

e <conmmandl ogsnapshot >

» <exportoverfl ow>

» <snapshot s>

If you name a specific feature path and it does not exist, VoltDB attemptsto createit for you. For example,
the<expor t over f | ow> path containstemporary datawhich can be deleted periodically. Thefollowing
excerpt from a configuration file specifies/ opt / over f | owasthe directory for export overflow.

<pat hs>
<exportoverflow path="/opt/overflow' />
</ pat hs>

14

Starting the Database

3.7.3. Verifying your Hardware Configuration

The configuration file and start command options define the desired configuration of your database cluster.
However, there are several important aspects of the physical hardware and operating system configuration
that you should be aware of before running VoltDB:

» VoItDB can operate on heterogeneous clusters. However, best performance is achieved by running the
cluster on similar hardware with the same type of processors, number of processors, and amount of
memory on each node.

 All nodes must be able to resolve the | P addresses and host names of the other nodesin the cluster. That
means they must all have valid DNS entries or have the appropriate entriesin their local hostsfile.

* You must run atime synchronization service such as Network Time Protocol (NTP) or chrony on all of
the cluster nodes, preferably synchronizing against the samelocal time server. If the time skew between
nodes in the cluster is greater than 200 milliseconds, VoltDB cannot start the database.

* Itisstrongly recommended that you configure your time service to avoid adjusting time backwards for
al but very large increments. For example, in NTP thisis done using the - x argument. If the server
time moves backward, VoltDB must pause and wait for time to catch up.

15

Chapter 4. Designing the Database
Schema

VoltDB is arelationa database product. Relational databases consist of tables and columns, with con-
straints, indexes, and views. VoltDB uses standard SQL database definition language (DDL) statements
to specify the database schema. So designing the schemafor aVoltDB database uses the same skills and
knowledge as designing a database for Oracle, MySQL, or any other relational database product.

This guide describes the stages of application design by dividing the work into three chapters:

» Design the schema in DDL to define the database structure. Schema design is covered in this chapter.

» Design stored procedur esto access datain the database. Stored procedures provide client applications
an application programming interface (API) to the database. Stored procedures are coveredin Chapter 5,
Designing Stored Procedures to Access the Database.

» Design clients to provide business logic and also connect to the database to access data. Client appli-
cation design is covered in Chapter 6, Designing VoltDB Client Applications.

The database schema is a specification that describes the structure of the VoltDB database such as tables
and indexes, identifies the stored procedures that access data in the database, and defines the way tables
and stored procedures are partitioned for fast data access. When designing client applications to use the
database, the schema specifies the details needed about data types, tables, columns, and so on.

Figure 4.1. Components of a Database Schema

Schema
Stored
Procedures
o
Tables, :§ E
views, @ %
indexes, o=
etc.

Along with designing your database tables, an important aspect of VoltDB database design is partitioning,
which provides much more efficient access to data and processing. Partitioning distributes the rows of a
table and the processing to access the table across several, independent partitions instead of one. Y our
design requires coordinating the partitioning of both database tables and the stored procedures that access
the tables. At design time you choose a column on which to partition a table's rows. You aso partition
stored procedures on the same column if they use the column to identify which rows to operate on in the
table.

At runtime, VoltDB decides which cluster nodes and partitions to use for the table partitions and consis-
tently allocates rows to the appropriate partition. Figure 4.2, “ Partitions Distribute Table Data and Stored
Procedure Processing” shows how when data is inserted into a partitioned table, VoltDB automatically
allocates the data to the correct partition. Also, when a partitioned stored procedure is invoked, VoltDB
automatically executes the stored procedure in the single partition that has the data requested.

16

Designing the Database Schema

Figure 4.2. Partitions Distribute Table Data and Stored Procedur e Processing

Physical

Logical

Partition 1 Schema

Server 1

Pariion 2 - Procedure

-
- - . T
invocation

Partition 3

Partition 4

Server 2
information I

I Partitioning I

— — Ad hoc
Partition 5 L - SQL query

Server 3

)
@
o
o
D
n
®

Partition 6

The following sections of this chapter provide guidelines for designing VoltDB database schemas. Al-
though gathering business requirementsis a typical first step in database application design, it is outside
the scope of this guide.

4.1. How to Enter DDL Statements

Y ou use standard SQL DDL statements to design your schema. For afull list of valid VoltDB DDL, see
Appendix A, Supported SQL DDL Satements. The easiest way to enter your DDL statements is using
VoltDB's command line utility, sglcmd. Using sglcmd you can input DDL statementsin several ways.

* Redirect standard input from afile when you start sglemd:
$ sqlcmd < nyschema. sql
 Import from afile using the sglcmd file directive:

$ sqgl cnd
1> fil e nyschena. sql ;

» Enter DDL directly at the sglcmd prompt:

$ sqgl cnd

1>

2> CREATE TABLE Customer (

3> Custoner| D | NTEGER UNI QUE NOT NULL,
4> FirstName VARCHAR(15),

5> LastNane VARCHAR (15),

6> PRI MARY KEY(Cust oner | D)

7>);

» Copy DDL from another application and paste it into the sglcmd prompt:

$ sqgl cnd

1> CREATE TABLE Flight (

2> Flight1 D | NTEGER UNI QUE NOT NULL,
3> Depart Ti me Tl MESTAMP NOT NULL,

4> Origin VARCHAR(3) NOT NULL,

5> Destinati on VARCHAR(3) NOT NULL,
6> Nunber Of Seat s | NTEGER NOT NULL,

17

Designing the Database Schema

7> PRI MARY KEY(Flightl D)
8>);

The following sections show how to design and create schema objects. DDL statements and techniques
for changing a schema are described later in Section 4.6, “Modifying the Schema’.

4.2. Creating Tables and Primary Keys

The schema in this section is referred to throughout the design chapters of this guide. Let's assume you
are designing a flight reservation system. At its simplest, the application requires database tables for the
flights, the customers, and the reservations. Example 4.1, “DDL Example of aReservation Schema” shows
how the schemalooks as defined in standard SQL DDL. For the V oltDB-specific detailsfor creating tables,
see CREATE TABLE. When defining the data types for table columns, refer to Table A.1, “ Supported
SQL Datatypes’.

Example4.1. DDL Example of a Reservation Schema

CREATE TABLE Fl i ght (
Flight!I D | NTEGER UNI QUE NOT NULL,
Depart Ti ne Tl MESTAMP NOT NULL,
Oigin VARCHAR(3) NOT NULL,
Destinati on VARCHAR(3) NOT NULL,
Nunmber Of Seat s | NTEGER NOT NULL,
PRI MARY KEY(FI i ghtl D)

)

CREATE TABLE Reservation (
Reservel D | NTEGER NOT NULL,
Flight!I D | NTEGER NOT NULL,
Custoner| D | NTEGER NOT NULL,
Seat VARCHAR(5) DEFAULT NULL,
Confirmed TINYI NT DEFAULT 'O’

)

CREATE TABLE Customer (
Custoner | D | NTEGER UNI QUE NOT NULL,
Fi rst Nanme VARCHAR(15),
Last Name VARCHAR (15),
PRI MARY KEY(Cust orer | D)

)

To satisfy entity integrity you can specify atable's primary key by providing the usual PRIMARY KEY
constraint on one or more of the table’'s columns. To create a ssimple key, apply the PRIMARY KEY
constraint to one of the table's existing columns whose values are unique and not null, as shown in Exam-
ple4.1, “DDL Example of a Reservation Schema’.

To create a composite primary key from a combination of columnsin atable, apply the PRIMARY KEY
constraint to multiple columns with typical DDL such as the following:

$ sql cnd

1> CREATE TABLE Customer (

2> FirstName VARCHAR(15),

3> LastName VARCHAR (15),

4> CONSTRAI NT pkey PRI MARY KEY (FirstNanme, LastNane)
5>);

18

Designing the Database Schema

4.3. Analyzing Data Volume and Workload

A schemaisnot all you need to define the database effectively. Y ou al so need to know the expected volume
and workload on the database. For our example, let's assume that we expect the following volume of data
at any giventime:

» Flights: 2,000
» Reservations: 200,000
e Customers: 1,000,000

This additional information about the volume and workload affects the design of both the database and
the client application, because it impacts what SQL queries need to be written for accessing the data and
what attributes (columns) to share between tables. Table 4.1, “ Example Application Workload” definesa
set of procedures the application must perform. The table also shows the estimated workload as expected
frequency of each procedure. Proceduresin bold modify the database.

Table4.1. Example Application Workload

Use Case Frequency
Look up aflight (by origin and destination) 10,000/sec
Seeif aflight isavailable 5,000/sec
Make areservation 1,000/sec
Cancel areservation 200/sec
Look up areservation (by reservation 1D) 200/sec
Look up areservation (by customer ID) 100/sec
Updateflight info LVsec
Take off (close reservations and ar chive associated recor ds) l/sec

Y ou can make your procedures that access the database transactional by defining them as VoltDB stored
procedures. This means each stored procedure call completes or rolls back if necessary, thus maintaining
data integrity. Stored procedures are described in detail in Chapter 5, Designing Stored Procedures to
Access the Database.

In our analysis we a so need to consider referential integrity, where relationships are maintained between
tables with shared columns that link tables together. For example, Figure 4.3, “ Diagram Representing the
Flight Reservation System” shows that the Flight table links to the Reservation table where FlightID is
the shared column. Similarly, the Customer table links to the Reservation table where CustomerID is the
common column.

Figure 4.3. Diagram Representing the Flight Reservation System

Flight [Reservation | Customer
FlightlD .—m ReservelD CustomerlD
< FlightlD on
CustomerlD >
A flight can have many A customer can have many
reservations but a reservation reservations but a reservation
is for only one flight. is for only one customer.

19

Designing the Database Schema

Since VoltDB stored procedures are transactional, you can use stored procedures to maintain referential
integrity between tablesas dataisadded or removed. For example, if acustomer record isremoved fromthe
Customer table, all reservations for that customer need to be removed from the Reservations table as well.

With VoltDB, you use all thisadditional information about volume and workload to configure the database
and optimize performance. Specifically, you want to partition the individual tables to ensure efficiency.
Partitioning is described next.

4.4. Partitioning Database Tables

This section discusses how to partition a database to maximize throughput, using the flight reservation case
study asan example. To partition atable, you choose a column of thetablethat VoltDB can useto uniquely
identify and distribute the rows into partitions. The goal of partitioning a database table is to ensure that
the most frequent transactions on the table execute in the same partition asthe data accessed. We call thisa
single-partitioned transaction. Thus the stored procedure must uniquely identify arow by the partitioning
columnvalue. Thisis particularly important for queries that modify the data, such as INSERT, UPDATE,
and DELETE statements.

Looking at the workload for the reservation system in the previous section, the important transactions to
focus on are:

e Look up aflight

» Seeif aflight isavailable
e Look up areservation

* Makeareservation

Of these transactions, only the last modifies the database.

4.4.1. Choosing a Column on which to Partition Table Rows

We will discuss the Flight table later, but first let's look at the Reservation table. Looking at the schema
alone (Example 4.1), Reservel D might look like a good attribute to use to partition the table rows. How-
ever, looking at the workload, there are only two transactions that are keyed to the Reservel D (“Cancel
areservation” and “Look up a reservation (by reservation ID)”), each of which occur only 200 times a
second. Whereas, “See if aflight is available” , which requires looking up reservations by the FlightID,
occurs 5,000 times a second, or 25 times as frequently. Therefore, the Reservation table is best partitioned
on the FlightID column.

_ 5000/sec See if a flight is available (FlightID)
~ Reservation 1000/sec Make a reservation (FlightlD, CustomeriD)
EES:,L?E)G'D 200/sec Look up a reservation (ReservelD)
CugstomerID - 200/sec Cancel a reservation (ReservelD)
100/sec

Look up a reservation (CustomerlD)

Moving to the Customer table, CustomerID is used for most data access. Although customers might need
to look up their record by name, the first and last names are not guaranteed to be unique. Therefore,
CustomerID is the best column to use for partitioning the Customer table.

CREATE TABLE Custoner (
Customer| D | NTEGER UNI QUE NOT NULL,

20

Designing the Database Schema

Fi r st Name VARCHAR(15),
Last Name VARCHAR (15),
PRI MARY KEY(Cust oner | D)

)

4.4.2. Specifying Partitioned Tables

4.4.3.

Once you choose the column to use for partitioning a database table, you define your partitioning choices
in the database schema. Specifying the partitioning along with the schema DDL helps keep al of the
database structural information in one place.

Y ou define the partitioning scheme using VoltDB's PARTITION TABLE statement, specifying the par-
titioning column for each table. For example, to specify FlightID and CustomerID as the partitioning
columns for the Reservation and Customer tables, respectively, your database schema must include the
following statements:

$ sqglcmd

1> PARTI TI ON TABLE Reservati on ON COLUWN FlightlD;
2> PARTI TI ON TABLE Cust orer ON COLUWN Cust oner | D;

Design Rules for Partitioning Tables

The following are the rules to keep in mind when choosing a column by which to partition table rows:

» There can be only one partition column per table. If you need to partition a table on two columns
(for examplefirst and last name), add an additional column (fullname) that combines the values of the
two columns and use this new column to partition the table.

 If thetablehasa primary key, the partitioning column must beincluded in the primary key.

* Any integer, string, or byte array column can identify the partition. VoltDB can partition rows on
any column that is an integer (TINYINT, SMALLINT, INTEGER, or BIGINT), string (VARCHAR),
or bytearray (VARBINARY) datatype. (See also Table A.1, “Supported SQL Datatypes’.)

 Partition column values cannot be null. The partition columns do not need to have unique values, but
you must specify NOT NULL in the schema for the partition column. Numeric fields can be zero and
string or character fields can be empty, but the column cannot contain a null value.

The following are some additional recommendations:
 Choose acolumn with areasonable distribution of values so that rows of datawill be evenly partitioned.

» Choose a column that maximizes use of single-partitioned stored procedures. If one procedure uses
column A to lookup data and two procedures use column B to lookup data, partition on column B. The
goal of partitioning isto make the most frequent transactions single-partitioned.

* If you partition more than one table on the same column attribute, VoltDB will partition them together.

4.5. Replicating Database Tables

With VoltDB, tables are either partitioned or replicated across all nodes and sites of a VoltDB database.
Smaller, mostly read-only tables are good candidates for replication. Note also that if atable needs to be
accessed frequently by columns other than the partitioning column, the table should be replicated instead
because there is no guarantee that a particular partition includes the data that the query seeks.

21

Designing the Database Schema

The previous section describes how to partition the Reservation and Customer tabl es as exampl es, but what
about the Flight table? It is possible to partition the Flight table (for example, on the FlightID column).
However, not all tables benefit from partitioning.

4.5.1. Choosing Replicated Tables

Looking at the workload of the flight reservation example, the Flight table has the most frequent accesses
(at 10,000 asecond). However, these transactions are read-only and may involve any combination of three
columns: the departure time, the point of origin, and the destination. This makes it hard to partition the
table in away that would make the transaction single-partitioned because the lookup is not restricted to
one table column.

Flight 10000isec | ook up a flight (DepartTime, Origin, Destination)
FlightlD < lsec___ypdate flight info (FlightD, DepartTime, Origin,

Destination, NumberOfSeats)
2000 records |=—2LUSEC———Tae off (FlightID)

Fortunately, the number of flights available for booking at any given timeis limited (estimated at 2,000)
and so the size of thetableisrelatively small (approximately 36 megabytes). In addition, the vast majority
of the transactions involving the Flight table are read-only except when new flights are added and at take-
off (when the records are deleted). Therefore, Flight is agood candidate for replication.

Note that the Customer table is also largely read-only. However, because of the volume of data in the
Customer table (amillion records), it is not agood candidate for replication, which iswhy it is partitioned.

4.5.2. Specifying Replicated Tables

InVoltDB, you do not explicitly state that atableisreplicated. If you do not specify a partitioning column
in the database schema, the table will by default be replicated.

So, in our flight reservation example, there is no explicit action required to replicate the Flight table.
However, it is very important to specify partitioning information for tables that you want to partition.
If not, they will be replicated by default, significantly changing the performance characteristics of your
application.

4.6. Modifying the Schema

You can use DDL to add, modify, or remove schema objects as the database is running. For alist of all
valid DDL you can use, see Appendix A, Supported SQL DDL Satements. Y ou can do the following types
of schema changes:

* Modifying Tables— Y ou can add, modify (alter), and remove (drop) table columns. Y ou can aso add
and drop table constraints. Finally, you can drop entire tables.

» Adding and Dropping Indexes — Y ou can add and remove (drop) named indexes.
» Modifying Partitioning for Tables and Stored Procedures — Y ou can un-partition stored procedures
and re-partition stored procedures on a different column, For tables you can change a table between

partitioned and replicated, and repartition atable on a different column,

* Modify roles and users — To learn about modifying roles and users, see Chapter 12, Security.

22

Designing the Database Schema

4.6.1.

VoltDB safely handles sglcmd DDL entered by different users on different nodes of the cluster because
it manages sglcmd commands as transactions, just like stored procedures. To demonstrate the DDL state-
ments to modify the schema, the following sections use anew table, Airport, added to the fight reservation
as shown below:

CREATE TABLE Airport (
Airportl D integer NOT NULL,
Nanme varchar (15) NOT NULL,
City varchar(25),

Country varchar (15),
PRI MARY KEY (AirportlD)

)
Effects of Schema Changes on Data and Clients

You can make many schema changes on empty tables with few restrictions. However, be aware that if
a table has data, some schema changes are not allowed and other schema changes may modify or even
remove data. When working with test data in your database, you can use TRUNCATE TABLE to empty
the data from atable you are working on. Note that all DDL examples in this chapter assume the tables
are empty.

We can think of the effects of schema changes on datain three severity levels:
 Schema change compl etes without damage to data

» Schema change fails to complete to avoid damage to data

 Schema change destroys data

VoltDB error messages and the documentation can help you avoid schema change attempts that fail to
complete. For example, you cannot drop atable that has referencing procedures or views.

Obviously you need to be most aware of which schema changes cause data to be destroyed. In particular,
removing objects from the schemawill also remove the datathey contain. Note that schema objects cannot
be renamed with DDL, but objects can be replaced by performing a DROP and then ADD. However, itis
important to realize that as aresult of a DROP operation, such as DROP TABLE, the data associated with
that table will be deleted before the new definition is added.

Plan and coordinate changes with client development. Stored procedures and ad hoc queries provide an
API that clients use to access the database correctly. Changesto the schema can break the stored procedure
calls client applications have developed, so use well-planned schedules to communicate database schema
changesto others. Client applications depend on many schemadefinition featuresincluding (but not limited
to):

» Table names

+ Column names

e Column datatypes

* Primary key definitions
e Table partitions

« Stored procedure names

* Stored procedure partitioning

23

Designing the Database Schema

Plan and test carefully before making schema changesto a production database. Be aware that clients may
experience connection issues during schema changes, especially for changes that take longer to complete,
such as view or index changes.

Schema changes not only affect data, but the existence of data in the database affects the time it takes to
process schema changes. For example, when there are large amounts of data, some DDL statements can
block processing, resulting in anoticeable delay for other pending transactions. Examplesinclude adding
indexes, creating new table columns, and modifying views.

4.6.2. Viewing the Schema

4.6.3.

The VoltDB Management Center provides a web browser view of database information, including the
DDL schema source. Use aweb browser to view the VoltDB Management Center on port 8080 of one of
the cluster hosts (http://host-name:8080).

Y ou can aso use the sglcmd show directive to see alist of the current database tables and all procedures.
For additional details about the schema, execute the @SystemCatalog system procedure. Use any of the
following arguments to @SystemCatal og to obtain details about a component of the database schema:

 TABLES

COLUMNS

INDEXINFO

PRIMARYKEYS

PROCEDURES

PROCEDURECOLUMNS
For example:

$ sql cnd

1> SHOW TABLES;

2> SHOW PROCEDURES;
3> EXEC @yst enCat al og COLUMNS;

Modifying Tables

After creating a table in a database with CREATE TABLE, you can use ALTER TABLE to make the
following types of table changes:

* Altering a Table Column's Data Definition
» Adding and Dropping Table Columns
» Adding and Dropping Table Constraints

To drop an entire table, use the DROP TABLE DDL statement.

4.6.3.1. Altering a Table Column's Data Definition

Y ou can make the following types of aterations to atable column's data definition:

$ sql cnd

24

Designing the Database Schema

1> ALTER TABLE Airport ALTER COLUW Nanme VARCHAR(25); (1]
2> ALTER TABLE Airport ALTER COLUWN Country SET DEFAULT ' USA'; (2]
3> ALTER TABLE Airport ALTER COLUWN Nane SET NOT NULL; (3]

The examples are described as follows:

Change a column's data type. In our example we decided we needed more than 15 charactersfor the
Airport Name so we changed it to 25 characters.

If the table has no existing data, you can make any data type changes. However, if the table already
contains data, the new type must be larger than the old one. This restriction prevents corrupting
existing data values that might be larger than the size of the new data type (See also Table A.1,
“Supported SQL Datatypes’.)

Set or drop the column's DEFAULT value. In our example we assume the application is to be used
mostly for US domestic travel so we can set a default value for the Airport Country of 'USA'.

To remove a default, redefine the column data definition, for example:

ALTER TABLE Airport ALTER COLUWN Country VARCHAR(15);
Change whether the column isNULL or NOT NULL. In our example we set the Airportl D to be not
null because thisis arequired field.

If the table has existing data, you cannot change a column to not null.

4.6.3.2. Adding and Dropping Table Columns

$ sqlcmd

1> ALTER TABLE Airport ADD COLUWN Airport Code VARCHAR(3) (1]
2> BEFORE AirportlD;

3> ALTER TABLE Ai rport DROP COLUWN Airportl D (2]

The examples are described as follows:

(1]

Add table columns. In our example, we have decided not to use the integer AirportID for airport
identification but to instead add an AirportCode, which uses auniquethree-letter codefor any airport
as defined by the International Air Transport Association's airport codes.

Y ou cannot rename or overwrite acolumn but you can drop and add columns. When adding acolumn,
you must include the new column name and the data type. Options you may include are:

 DEFAULT value— If atable contains data, the values for the new column will be automatically
filled in with the default value.

* NOT NULL — If the table contains data, you must include a default value if you specify aNOT
NULL column.

¢ One of the following index type constraintsincluding PRIMARY KEY, UNIQUE, or ASSUME-
UNIQUE.

Note, werecommend that you not definethe UNIQUE or ASSUMEUNIQUE constraint directly on
acolumn definition when adding acolumn or creating atable. If you do, the constraint has no name
so you cannot drop the constraint without dropping the entire column. Instead, we recommend
you apply UNIQUE or ASSUMEUNIQUE by adding the constraint (see Section 4.6.3.3, “Adding
and Dropping Table Constraints’) or by adding an index with the constraint (see Section 4.6.4,
“Adding and Dropping Indexes’). Defining these constraints thisway names the constraint, which
makes it easier to drop later if necessary.

25

Designing the Database Schema

* BEFORE column-name — Table columns cannot be reordered but the BEFORE clause allows

you to place anew column in a specific position with respect to the existing columns of the table.

® Drop table columns. In our example we drop the AirportID column because we are replacing it with
the AirportCode column.

Y ou cannot remove a column that has a reference to it. You have to remove all references to the
column first. References to a column may include:

* A stored procedure
e Anindex

« Aview

4.6.3.3. Adding and Dropping Table Constraints

Y ou cannot alter atable constraint but you can add and drop table constraints. If the table contains existing
data, you cannot add UNIQUE, ASSUMEUNIQUE, or PRIMARY KEY constraints.

$ sqglcmd

1> ALTER TABLE Ai rport ADD CONSTRAI NT (1]
2> uni quecode UNI QUE (Airportcode);

3> ALTER TABLE Ai rport ADD PRI MARY KEY (Airport Code); (2]

The examples are described as follows:

©® Add named constraints UNIQUE or ASSUMEUNIQUE. In our example, we add the UNIQUE con-
straint to the AirportCode column. To drop a named constraint, include the name using the format
in the following example:

ALTER TABLE Ai rport DROP CONSTRAI NT uni quecode;
® Add unnamed constraint PRIMARY KEY. In our example, we add the PRIMARY KEY constraint
to the new AirportCode column.

When adding atable constraint, it must not conflict with the other columns of the table. For example,
only one primary key is allowed for a table so you cannot add the PRIMARY KEY constraint to
an additional column.

To drop the PRIMARY KEY, include the type of constraint using the following format:

ALTER TABLE Airport DROP PRI MARY KEY;

4.6.4. Adding and Dropping Indexes

Use CREATE INDEX to create anindex on one or more columns of atable. Use DROP INDEX to remove
an index from the schema. The following example modifies the flight reservation schema by adding an
index to the Flight table to improve performance when looking up flights.

$ sqlcnd
1> CREATE I NDEX flightTinmeldx ON Flight (departtine);

The CREATE INDEX statement explicitly creates an index. VoltDB creates an index implicitly when
you specify the table constraints UNIQUE, PRIMARY KEY, or ASSUMEUNIQUE. Use the ALTER
TABLE statement to add or drop these table constraints along with their associated indexes, as shown in
Section 4.6.3, “Modifying Tables’.

26

Designing the Database Schema

4.6.5. Modifying Partitioning for Tables and Stored Proce-
dures

Any changes to the schema must be carefully coordinated with the design and development of stored
procedures. This not only applies to column names, data types, and so on, but also to the partition plan.

How to partition tables and stored procedures using the PARTITION TABLE and CREATE PROCE-
DURE PARTITION ON statementsis explained in Section 4.4, “ Partitioning Database Tables” and Sec-
tion 5.3.3, “Partitioning Stored Procedures in the Schema’.

Y ou can change the partitioning of stored procedures, and you can change atable to a replicated table or
repartition it on a different column. However, because of the intricate dependencies of partitioned tables
and stored procedures, this can only be done by dropping and re-adding the tables and procedures. Also,
you must pay close attention to the order in which objects are dropped and added.

The following DDL examples demonstrate some partitioning modifications to a table and stored proce-
dures.

 Un-partitioning a Stored Procedure

» Changing a Partitioned Table to a Replicated Table
» Re-partitioning a Table to a Different Column

» Updating a Stored Procedure

» Removing a Stored Procedure from the Database

The following DDL is added to the Flight reservation schema to help demonstrate the DDL partition
changes described in this section.

$ sqglcmd

1> PARTI TI ON TABLE Airport ON COLUWN Nang;

2> CREATE PROCEDURE Fi ndAi r port CodeByNane

3> PARTI TI ON ON TABLE Ai rport COLUWN Nane

4> AS SELECT TOP 1 AirportCode FROM Ai rport WHERE Nanme=?;
5>

6> CREATE PROCEDURE Fi ndAi r port CodeByCity AS

7> SELECT TOP 1 AirportCode FROM Ai rport WHERE City=?;

The stored procedures are tested with the following sglcmd directives:

$ sqglcmd
1> exec Fi ndAirport CodeByNane ' Logan Airport';
2> exec FindAirportCodeByCity 'Boston';

4.6.5.1. Un-partitioning a Stored Procedure

Inthe simplest case, you can un-partition asingle-partitioned stored procedure by dropping and re-creating
that procedure without including the PARTITION ON clause. In this example we drop the single-parti-
tioned FindAirportCodeByName procedure and re-create it as multi-partitioned because it needsto search
all partitions to find an airport code by name.

$ sql cnd
1> DROP PROCEDURE Fi ndAi r port CodeByNane;
2> CREATE PROCEDURE Fi ndAi r port CodeByNane AS

27

Designing the Database Schema

3> SELECT TOP 1 AirportCode FROM Ai rport WHERE Nane=?;

4.6.5.2. Changing a Partitioned Table to a Replicated Table

I mportant

Y ou cannot change the partitioning of atablethat hasdatain it. To change a partitioned tableto a
replicated one, you drop and re-create the table, which deletes any datathat might be in the table.

Before executing the following steps, save the existing schema so you can easily re-create the table. The
VoltDB Management Center provides a view of the existing database schema DDL source, which you
can download and save.

$ sql cnd

1> DROP PRCCEDURE Fi ndAi r port CodeByNare; (1]
2> DROP PROCEDURE Fi ndAi r port CodeByGCity;

3> DROP TABLE Airport |IF EXI STS CASCADE; (2]
4> CREATE TABLE Al RPORT ((3]

5> Al RPORTCODE var char (3) NOT NULL,

6> NAME var char (25),

7> CI TY varchar (25),

8> COUNTRY var char (15) DEFAULT ' USA',

9> CONSTRAI NT UNI QUECODE UNI QUE (Al RPORTCODE) ,

10> PRI MARY KEY (Al RPORTCCDE)

11>);

12> CREATE PROCEDURE Fi ndAi r port CodeByNane AS o
13> SELECT TOP 1 AirportCode FROM Ai rport WHERE Nane=?;
14> CREATE PROCEDURE Fi ndAi r port CodeByCity AS

15> SELECT TOP 1 AirportCode FROM Ai rport WHERE City=?;

The example is described as follows:

© Drop al stored procedures that reference the table. You cannot drop a table if stored procedures
referenceit.
® Drop thetable. Options you may include are:

e |IF EXISTS — Use the IF EXISTS option to avoid command errors if the named table is already
removed.

* CASCADE — A tahle cannot be removed if it has index or view references. You can remove
the references explicitly first or use the CASCADE option to have VoltDB remove the references
along with the table.

©® Re-createthetable. By default, a newly created table is areplicated table.
O Re-create the stored procedures that access the table. If the stored procedure is implemented with

Java and changes are required, modify and reload the code before re-creating the stored procedures.

For more, see Section 5.3, “Installing Stored Procedures into the Database”.

4.6.5.3. Re-partitioning a Table to a Different Column

I mportant

Y ou cannot change the partitioning of atable that has data in it. In order to re-partition a table
you have to drop and re-create the table, which deletes any data that might bein the table.

Follow these steps to re-partition atable:

28

Designing the Database Schema

1. Un-partition the table by following the instructions in Section 4.6.5.2, “Changing a Partitioned Table
to a Replicated Table”. The sub-steps are summarized as follows:

a. Drop all stored procedures that reference the table.
b. Drop thetable.

C. Re-createthetable.

d. Re-create the stored procedures that access the table.

2. Partition the table on the new column. In our example, it makes sense to partition the Airport table on
the AirportCode column, where each row must be unique and non null.

$ sql cnd
1> PARTI TI ON TABLE Airport ON COLUWN Air port Code;

3. Re-partition stored proceduresthat should be single-partitioned. See Section 4.6.5.4, “ Updating a Stored
Procedure”.

4.6.5.4. Updating a Stored Procedure

This section describes how to update a stored procedure that has already been declared in the database with
the CREATE PROCEDURE statement. The stepsto update astored procedure are summarized asfollows:

1. If the procedure isimplemented in Java, update the procedure's code, recompile, and repackage the jar
file. For details, see Section 5.3, “Installing Stored Procedures into the Database”.

2. Ensure all tables and columns the procedure accesses are in the database schema.
3. Update the procedure in the database.

« If the procedure is implemented in Java, use the sglcmd load classes directive to update the class
in the database. For example:

$ sqgl cnd
1> | oad classes GetAirport.jar;

« |If the procedureisimplemented with SQL, use the CREATE PROCEDURE AS command to update
the SQL.

4. If required, re-partition the stored procedure. You partition procedures using the PARTITION ON
clauseinthe CREATE PROCEDURE statement. If you need to re-partition the procedure, either chang-
ing the partitioning column or switching from replicated to partitioned or vice versa, perform the fol-
lowing steps:

a. Use DROP PROCEDURE to remove the stored procedure.

b. Use CREATE PROCEDURE to re-declare the stored procedure, including the new partitioning
scheme.

In our example so far, we have three stored procedures that are adequate to access the Airport table, so
no additional procedures need to be partitioned:

» VoltDB automatically defined adefault select stored procedure, which is partitioned on the Airport-
Code column. It takes an AirportCode as input and returns a table structure containing the Airport-
Code, Name, City, and Country.

29

Designing the Database Schema

» TheFindAirportCodeByName stored procedure should remain multi-partitioned because it needsto
search in all partitions.

» The FindAirportCodeByCity stored procedure should al so remain multi-partitioned because it needs
to searchin all partitions.

4.6.5.5. Removing a Stored Procedure from the Database

If you've decided a stored procedure is no longer needed, use the following steps to remove it from the
database:

1. Drop the stored procedure from the database.

$ sqglcnmd
1> DROP PROCEDURE Get Airport;

2. Removethe code from the database. If the procedure isimplemented with Java, use the sglcmd remove
classes directive to remove the procedure's class from the database.

2> renpve cl asses myapp. procedures. Get Ai rport;

30

Chapter 5. Designing Stored Procedures
to Access the Database

Asyou can see from Chapter 4, Designing the Database Schema, defining the database schema and the
partitioning plan go hand in hand with understanding how the data is accessed. The two must be coordi-
nated to ensure optimum performance. Y our stored procedures must use the same attribute for partitioning
as the table being accessed. Proper partitioning ensures that the table rows the stored procedure requests
are in the same partition in which the procedure executes, thereby ensuring maximum efficiency.

It doesn't matter whether you design the partitioning first or the data access first, as long as in the end
they work together. However, for the sake of example, we will use the schema and partitioning outlined
in Chapter 4, Designing the Database Schema when discussing how to design the data access.

5.1. How Stored Procedures Work

The key to designing the data access for VoltDB applications is that complex or performance sensitive
access to the database should be done through stored procedures. It is possible to perform ad hoc queries
onaVoltDB database. However, ad hoc queries do not benefit asfully from the performance optimizations
VoltDB specializesin and therefore should not be used for frequent, repetitive, or complex transactions.

Within the stored procedure, you access the database using standard SQL syntax, with statements such
as SELECT, UPDATE, INSERT, and DELETE. You can also include your own code within the stored
procedure to perform cal culations on the returned values, to evaluate and execute conditional statements,
or to perform many other functions your applications may need.

5.1.1. VoltDB Stored Procedures are Transactional

In VoItDB, a stored procedure and a transaction are one and the same. Thus when you define a stored
procedure, VoltDB automatically provides ACID transaction guarantees for the stored procedure. This
means that stored procedures fully succeed or automatically roll back asawholeif an error occurs (atom-
ic). When stored procedures change the data, the database is guaranteed to remain consistent. Stored pro-
cedures execute and access the database compl etely isolated from each other, including when they execute
concurrently. Finally, stored procedure changes to the database are guaranteed to be saved and available
for subsequent database access (durable).

Because the transaction is defined in advance as a stored procedure, there is no need for your application
to manage transactions using specific transaction commands such as BEGIN, ROLLBACK, COMMIT
or END.?

5.1.2. VoltDB Stored Procedures are Deterministic

To ensuredataconsistency and durability, VoltDB procedures must bedeterministic. That is, given specific
input values, the outcome of the procedureis consistent and predictable. Determinismiscritical becauseit
allows the same stored procedure to run in multiple locations and give the same results. It is determinism
that makes it possible to run redundant copies of the database partitions without impacting performance.
(See Chapter 10, Availability for more information on redundancy and availability.)

One side effect of transactions bei ng precompiled as stored procedures is that external transaction management frameworks, such as Spring or
JEE, are not supported by VoltDB.

31

Designing Stored Proce-
duresto Access the Database

5.1.2.1. Use Sorted SQL Queries

One key to deterministic behavior is avoiding ambiguous SQL queriesin stored procedures. Specifically,
performing unsorted queries can result in a non-deterministic outcome. VoltDB does not guarantee a con-
sistent order of results unless you use a tree index to scan the records in a specific order or you specify
an ORDER BY clausein the query itself. In the worst case, alimiting query, such as SELECT TOP 10
Enp | D FROM Enpl oyees without an index or ORDER BY clause, can result in a different set of
rows being returned. However, even asimple query such as SELECT * fr om Enpl oyees canreturn
the samerowsin a different order.

The problemisthat even if anon-deterministic query is read-only, its results might be used asinput to an
INSERT, UPDATE, or DELETE statement elsewherein the stored procedure. For clusterswith aK-safety
value greater than zero, this means unsorted query results returned by two copies of the same partition,
which may not match, could be used for separate update queries. If this happens, VoltDB detects the
mismatch, reports it as a potential source of data corruption, and shuts down al but one copy of each
partition.

By switching to this reduced K-safety mode, VoltDB avoids the threat of data corruption due to non-
determinism. However, it also means that the cluster is no longer K-safe; there is only one copy of each
partition and any node failure will crash the database. So, although the database continues to operate after
amismatch, it is critically important you determine the cause of the non-deterministic behavior, correct
the affected procedures, take afinal snapshot, and restart the database to restore full K-safety.

The risk of mismatched results at run time is why VoltDB issues a warning for any non-deterministic
queries in read-write stored procedures when you load the schema or classes. Thisis also why use of an
ORDER BY clause or atree index in the WHERE constraint is strongly recommended for all SELECT
statements.

5.1.2.2. Avoid Introducing Non-deterministic Values from External Func-

tions

Another key to deterministic behavior isavoiding callswithin your stored procedures to external functions
or procedures that can introduce arbitrary data. External functions include file and network 1/0 (which
should be avoided any way because they can impact latency), as well as many common system-specific
procedures such as Date and Time.

However, this limitation does not mean you cannot use arbitrary datain VoltDB stored procedures. It just
means you must either generate the arbitrary data before the stored procedure call and pass it in as input
parameters or generate it in adeterministic way. For example, if you need to load a set of records from a
file, you can open the filein your application and pass each row of datato a stored procedure that |oadsthe
datainto the VoltDB database. Thisis the best method when retrieving arbitrary data from sources (such
asfiles or network resources) that would impact latency.

The other alternative is to use data that can be generated deterministically. For two of the most common
cases, timestamps and random values, VoltDB provides methods for this:

e Vol t Procedur e. get Transacti onTi ne() returnsatimestamp that can be used in place of the
Java Date or Time classes.

e Vol t Procedur e. get SeededRandomNunber Gener at or () returns a pseudo random number
that can be used in place of the Java Util.Random class.

These procedures use the current transaction ID to generate a deterministic value for the timestamp and
the random number. See the VoltDB Java Stored Procedure API for more.

32

http://docs.voltdb.com/javadoc/procedure-api/

Designing Stored Proce-
duresto Access the Database

5.1.2.3. Stored Procedures have no Persistence
Finally, even seemingly harmless programming techniques, such as static variables can introduce nonde-
terministic behavior. VoltDB provides no guarantees concerning the state of the stored procedure class

instance across invocations. Any information that you want to persist across invocations must either be
stored in the database itself or passed into the stored procedure as a parameter.

5.2. The Anatomy of a VoltDB Stored Procedure

Y ou can write VVoltDB stored procedures as Java classes. The following code sampleillustrates the basic
structure of aVoltDB java stored procedure.

i mport org.vol tdb. *;
public class Procedure-nane extends Vol tProcedure {
/1 Declare SQ. statenents ...
public datatype run (argunents) throws VoltAbortException {

/1 Body of the Stored Procedure ...

}

The key points to remember areto:

1. Import the VoltDB classesfromor g. vol t db. *

2. Include the class definition, which extends the abstract class Vol t Pr ocedur e

3. Definethemethod r un() , which performsthe SQL queriesand processing that make up thetransaction

Itisimportant to understand the detail s of how to design and devel op stored proceduresfor your application

as described in the following sections. However, for simple data access, the following techniques may

suffice for some of your stored procedures:

» VoItDB defines default stored procedures to perform the most common table access such as inserting,
selecting, updating, and deleting records based on a specific key value. See Section 7.1, “Using Default
Procedures’ for more.

 You can create stored procedures without writing any Java code by using the DDL statement CREATE
PROCEDURE AS, where you define asingle SQL query asastored procedure. See Section 7.2, “ Short-
cut for Defining Simple Stored Procedures”.

The following sections describe the components of a stored procedure in more detail.

5.2.1. The Structure of the Stored Procedure

The stored procedures themselves are written as Java classes, each procedure being a separate class. Ex-
ample 5.1, “Components of aVoltDB Java Stored Procedure” shows the stored procedure that looks up a
flight to see if there are any available seats. The callouts identify the key components of a VoltDB stored
procedure.

33

Designing Stored Proce-
duresto Access the Database

Example 5.1. Components of a VoltDB Java Stored Procedure

package fadvi sor. procedures;

i mport org.voltdb. *; o
public class HowManySeats extends VoltProcedure { (2]
public final SQStnt GetSeatCount = new SQLSt nt ((3]

"SELECT Nunber Of Seats, COUNT(ReservelD) " +
"FROM Flight AS F, Reservation AS R" +

"WHERE F.Flight I D=R Flight!D AND R FlightID=? " +
"GROUP BY Nunber Of Seats; ") ;

public long run(int flightid) o
t hrows Vol t Abort Exception {

| ong nunof seat s;
| ong seat si nuse;
Vol t Tabl e[] queryresults;

vol t QueueSQL(Get Seat Count, flightid); (5]
qgueryresults = vol t Execut eSQL(); (6]
Vol t Tabl e result = queryresults[0]; (7]
if (result.getRowCount() < 1) { return -1; }

nunof seats = result.fetchRow 0).get Long(0); (8]
seatsinuse = result.fetchRow(0).getlLong(1l);

nunof seats = nunofseats - seatsinuse;

return nunofseats; // Return avail able seats (9]

O Stored procedures are written as Java classes. To access the VoltDB classes and methods, be sure
toi mport org.vol tdb. *.

Although VolItDB stored procedures must be written in Java and the primary client interface is Java
(asdescribed in Chapter 6, Designing VoltDB Client Applications), it is possible to write client appli-
cations using other programming languages. See Chapter 8, Using VoltDB with Other Programming
Languages for more information on alternate client interfaces.

® Each stored procedure extends the generic class Vol t Pr ocedur e.

©® Within the stored procedure you access the database using ANSI-standard SQL statements. To do
this, you declare the statement as a special Java type called SQLSt nt , which must be declared as
final.

In the SQL statement, you insert a question mark (?) everywhere you want to replace a value by a
variable at runtime. In this example, the query GetSeatCount has one input variable, FlightID. (See
Appendix B, Supported SQL Statements for details on the supported SQL statements.)

To ensure the stored procedure code is single partitioned, queries must filter on the partitioning
columnfor asinglevaue (using equal, =). Filtering for arange of valueswill not be single-partitioned
because the code will haveto look up in all the partitions to ensure the entire range is found.

Designing Stored Proce-
duresto Access the Database

5.2.2.

O Thebulk of the stored procedureisther un() method, whoseinput specifiesthe input argumentsfor
the stored procedure. See Section 5.2.2, “ Passing Arguments to a Stored Procedure” next for details.

Note that the r un() method throws the exception Vol t Abor t Except i on if any exceptions are
not caught. Vol t Abor t Except i on causesthe stored procedure transaction to rollback. (See Sec-
tion 5.2.6, “Rolling Back a Transaction” for more information about rollback.)

O To perform database queries, you queue SQL statements, specifying both the SQL statement and
the variables it requires, using the vol t QueueSQ_() method. More details are described in Sec-
tion 5.2.3, “Creating and Executing SQL Queriesin Stored Procedures’.

O After you queue all of the SQL statements you want to perform, use vol t Execut eSQL() to
execute the statements in the queue.

@ Eachstatement returnsitsresultsinaVol t Tabl e structure. Because the queue can contain multiple
queries, vol t Execut eSQL() returns an array of Vol t Tabl e structures, one array element for
each query. More details are described in Section 5.2.4, “Interpreting the Results of SQL Queries’.

O Inaddition to queueing and executing queries, stored procedures can contain custom code. However,
you should limit the amount of custom code in stored procedures to only that processing that is
necessary to complete the transaction, so as not to delay subsequent transactions.

© Stored procedures can return a long integer, a Vol t Tabl e structure, or an array of Vol t Tabl e
structures. For more details, see Section 5.2.5, “ Returning Results from a Stored Procedure”.

Passing Arguments to a Stored Procedure

Y ou specify the number and type of the argumentsthat the stored procedure acceptsinther un() method.
For example, the following is the declaration of ther un() methodforanlnitialize() stored pro-
cedure from the voter sample application. This procedure accepts two arguments. an integer and a string.

public long run(int maxContestants, String contestants) {

VoltDB stored procedures can accept parameters of any of the following Java and VoltDB datatypes:

Integer types byte, short, int, long, Byte, Short, Integer, and Long

Floating point types float, double, Float, Double

Fixed decimal types BigDecimal

String and binary types |String and byte][]

Timestamp types org.voltdb.types. TimestampType
java.util.Date, java.sgl.Date, java.sgl.Timestamp
VolItDB type VoltTable

The arguments can be scalar objects or arrays of any of the preceding types. For example, the following
run() method defines three arguments: a scalar long and two arrays, one array of timestamps and one
array of Strings:

i mport org.voltdb. *;
public class LogMessagesByEvent extends Vol tProcedure {

public long run (
| ong event Type,
org.vol tdb. types. Ti mest anpType[] event Ti neSt anps,
String[] event Messages
) throws Vol tAbortException {

The calling client application can use any of the preceding datatypes when invoking the cal | Pr oce-
dur e() method and, where necessary, VoltDB makes the appropriate type conversions (for example,

35

Designing Stored Proce-
duresto Access the Database

from int to String or from String to Doubl€e). See Section 6.2, “Invoking Stored Procedures’ for more on
usingthecal | Procedur e() method.

5.2.3. Creating and Executing SQL Queries in Stored Proce-
dures

The main function of the stored procedure is to perform database queries. In VolItDB thisis done in two
steps:

1. Queuethe queriesusing thevol t QueueSQL() function
2. Execute the queue and return the resultsusing the vol t Execut eSQL() function

Queuing SQL Statements Thefirst argumentto vol t QueueSQL() isthe SQL statement to be executed.
The SQL statement is declared using a specia class, SQLSt nt , with question marks as placeholders for
values that will be inserted at runtime.

The SQL statements must be declared asf i nal and initialized at compile time, either when declared or
within aconstructor or staticinitializer. Thisallowsthe VoltDB planner to determinethe optimal execution
plan for each statement when the procedure isloaded and declared in the schema. To allow for code reuse,
SQL Stmt objects can be inherited from parent classes or constructed from other compile-time constants.

The remaining argumentsto vol t QueueSQL() aretheactual valuesthat VoltDB insertsinto the place-
holders. For example, if you want to perform a SELECT of a table using two columns in the WHERE
clause, your SQL statement might look something like this:

SELECT Customer| D FROM Cust omer WHERE Fi r st Name=? AND Last Nane=?;

At runtime, you want the questions marks replaced by values passed in as arguments from the calling
application. So the actual vol t QueueSQL() invocation might look like this:

public final SQStnt getcustid = new SQSt nt (
"SELECT Customerl D FROM Custoner " +
"WHERE First Nanme=? AND Last Nane=7?;");

vol t QueueSQL(getcustid, firstnm Ilastnm;

Y our stored procedure can call vol t QueueSQL() more than once to queue up multiple SQL statements
before they are executed. Queuing multiple SQL statements improves performance when the SQL queries
execute because it minimizes the amount of network traffic within the cluster. Once you have queued all
of the SQL statements you want to execute together, you then process the queue using the vol t Exe-
cut eSQ.() function.

Vol t Tabl e[] queryresults = vol t Execut eSQL();

Cycles of Queue and Execute

Y our procedure can queue and execute SQL statements in as many cycles as necessary to complete the
transaction. For example, if you want to make a flight reservation, you may need to access the database
and verify that the flight exists before creating the reservation in the database. One way to do thisis to
look up the flight, verify that avalid row was returned, then insert the reservation, like so:

36

Designing Stored Proce-
duresto Access the Database

Example 5.2. Cycles of Queue and Executein a Stored Procedure

final String getflight = "SELECT Flightl D FROM Fl i ght WHERE Fl i ghtl D=?;"; (1]
final String makeres = "I NSERT | NTO Reservation (?,?,?,?,?);";

public final
public final

SQLStnt getflightsgl = new SQ.Stnt (getflight);
SQLStmt makeressqgl = new SQLSt nt (makeres);

public VoltTable[] run(int reservenum int flightnum int customernum) (2]
t hrows Vol t Abort Exception {

/1 Verify flight ID
vol t QueueSQL(getflightsql, flightnum; (3]
Vol t Tabl e[] queryresults = volt Execut eSQL();

/1

If there is no matching record, rollback

if (queryresults[0].getRowCount() == 0) throw new Vol t Abort Exception(); (4]

5.24.

/1 Make reservation
vol t QueueSQL(nmaker essql, reservenum flightnum custonmernum O, 0); (5]
return vol t Execut eSQL();

This stored procedure code to make areservation is described as follows:

(1]

(2]

Define the SQL statements to use. The getflight string contains an SQL statement that verifies the
flight 1D, and the makeres string contains the SQL statement that makes the reservation.
Definether un() method for the stored procedure. This stored procedure takes as input arguments
the reservation number, the flight number, and the customer number.

Queue and execute an SQL statement. Inthisexamplethevol t Execut eSQ.() method processes
thesingleget f I i ght sqgl () function, which executesthe SQL statement specified in the getflight
string.

Process results. If the flight is not available, the exception Vol t Abor t Except i on aborts the
stored procedure and rolls back the transaction.

The second SQL statement to make the reservation is then queued and executed. The vol t Ex-
ecut eSQL() method processes the single maker essql () function, which executes the SQL
statement specified in the makeres string.

Interpreting the Results of SQL Queries

Withthevol t Execut eSQ.() cal, theresultsof all the queued SQL statementsarereturned in an array
of Vol t Tabl e structures. The array contains one Vol t Tabl e for each SQL statement in the queue.
TheVol t Tabl e structures are returned in the same order as the respective SQL statementsin the queue.

The Vol t Tabl e itself consists of rows, where each row contains columns, and each column has the
column name and a value of afixed datatype. The number of rows and columns per row depends on the
specific query.

Figure5.1. Array of VoltTable Structures

Column-name, value e Column-name, value

]]

37

Designing Stored Proce-
duresto Access the Database

For example, if you queue two SQL SELECT statements, one looking for the destination of a specific
flight and the second looking up the Reservel D and Customer name (first and last) of reservations for that
flight, the code for the stored procedure might look like the following:

public final SQStnt getdestsql = new SQLSt nt (
"SELECT Destinati on FROM Fl i ght WHERE Fl i ghtlD=?;");
public final SQStnt getressql = new SQLStnt (
"SELECT r.Reservel D, c.FirstNane, c.LastName " +
"FROM Reservation AS r, Customer AS c " +
"WHERE r. FlightlD=? AND r. Custoner| D=c. Custoner|D;");

vol t QueueSQL(get destsql, flightnuny;
vol t QueueSQL(getressql,flightnum;
Vol t Tabl e[] results = volt Execut eSQL();
The array returned by vol t Execut eSQL() will have two elements:

e Thefirst array elementisaVol t Tabl e with one row (FlightID is defined as unique) containing one
column, because the SELECT statement returns only one value.

e Thesecond array elementisaVol t Tabl e with as many rows as there are reservations for the specific
flight, each row containing three columns. Reservel D, FirstName, and LastName.

Assuming the stored procedure call input was a FlightID value of 134, the data returned for the second
array element might be represented as follows:

Figure5.2. One VoltTable Structureisreturned for each Queued SQL Statement

FlightID, 134 ReservelD, 4747 FirstName, Will LastName, Poger

ReservelID, 9879 FirstName, Janice | LastName, Josly
ReserveID, 3456 FirstName, Holly LastName, Eagan
ReserveID, 1098 FirstName, Ralph LastName, Finess

VoltDB provides a set of convenience methods for accessing the contents of the Vol t Tabl e array. Ta
ble5.1, “Methods of the VoltTable Classes’ lists some of the most common methods. (See a so Java Stored
Procedure API.)

38

http://docs.voltdb.com/javadoc/procedure-api/
http://docs.voltdb.com/javadoc/procedure-api/

Designing Stored Proce-
duresto Access the Database

Table5.1. Methods of the VoltTable Classes

Method

Description

int fetchRow(int index)

Returns an instance of the VoltTableRow class for
the row specified by index.

int getRowCount()

Returns the number of rows in the table.

int getColumnCount()

Returns the number of columns for each row in the
table.

Type getColumnType(int index)

Returns the datatype of the column at the specified
index. Typeis an enumerated type with the follow-
ing possible values:

BIGINT
DECIMAL
FLOAT
GEOGRAPHY
GEOGRAPHY _POINT
INTEGER
INVALID
NULL
NUMERIC
SMALLINT
STRING
TIMESTAMP
TINYINT
VARBINARY
VOLTTABLE

String getColumnName(int index)

Returns the name of the column at the specified in-
dex.

double getDouble(int index)

long getL ong(int index)

String getString(int index)

BigDecimal getDecimal AsBigDecimal(int index)
double getDecimal AsDoubl&(int index)

Date getTimestampAsTimestamp(int index)

long getTimestampAsLong(int index)

byte[] getVarbinary(int index)

Methods of VoltTable.Row

Return the value of the column at the specified index
in the appropriate datatype. Because the datatype of
the columnsvary depending onthe SQL query, there
is no generic method for returning the value. You
must specify what datatype to use when fetching the
value.

Itisalso possibleto retrieve the column values by name. Y ou can invoke any of the getDatatype() methods
and pass a string argument specifying the name of the column, rather than the numeric index. Accessing
the columns by name can make code easier to read and less susceptible to errors due to changes in the
SQL schema (such as changing the order of the columns). On the other hand, accessing column values by
numeric index is potentially more efficient under heavy load conditions.

Example 5.3, “Displaying the Contents of VoltTable Arrays’ shows a generic routine for “walking”
through the return results of a stored procedure. In this example, the contents of the Vol t Tabl e array

are written to standard outpui.

39

Designing Stored Proce-
duresto Access the Database

Example 5.3. Displaying the Contents of VoltTable Arrays

public void displayResults(VoltTable[] results) {
int table = 1;
for (VoltTable result : results) {
Systemout.printf("*** Table % ***\n",tabl et++);
di spl ayTabl e(resul t);

}

public void displayTabl e(VoltTable t) {

final int col Count = t.get Col umCount();
i nt rowCount = 1;
t.reset RowPosition();
while (t.advanceRowm)) {
Systemout.printf("--- Row % ---\n", rowCount ++);

for (int col=0; col<col Count; col ++) {
Systemout.printf("%: ",t.getColumNane(col));
switch(t. get Col umType(col)) {
case TINYINT: case SMALLI NT: case Bl G NT: case | NTEGER
Systemout.printf("%\n", t.getLong(col));
br eak;
case STRI NG
Systemout.printf("%\n", t.getString(col));
br eak;
case DECI MAL:
Systemout.printf("%\n", t.getDeciml AsBi gDeci nal (col));
br eak;
case FLOAT:
Systemout.printf("%\n", t.getDouble(col));
br eak;

For further details on interpreting the VoltTable structure, see the Java documentation that is provided
onlineinthedoc/ subfolder for your VoltDB installation.

5.2.5. Returning Results from a Stored Procedure

Stored procedures can return the following types:
» Long integer

* SingleVoltTable

» Array of VoltTable structures

Y ou canreturn all of the query results by returning the Vol t Tabl e array, or you can return ascalar value
that is the logical result of the transaction. (For example, the stored procedure in Example 5.1, “ Compo-
nents of a VoltDB Java Stored Procedure” returns a long integer representing the number of remaining
seats available in the flight.)

40

Designing Stored Proce-
duresto Access the Database

5.2.6.

Whatever value the stored procedure returns, make sure the r un() method includes the appropriate
datatype in its definition. For example, the following two definitions specify different return datatypes,
the first returns along integer and the second returns the results of a SQL query asa Vol t Tabl e array.

public long run(int flightid)

public VoltTable[] run (String lastname, String firstnanme)

Note that you can interpret the results of SQL queries either in the stored procedure or in the client appli-
cation. However, for performance reasons, it is best to limit the amount of additional processing done by
the stored procedure to ensure it executes quickly and frees the queue for the next stored procedure. So
unless the processing is necessary for subsequent SQL queries, it isusually best to return the query results
(in other words, the Vol t Tabl e array) directly to the calling application and interpret them there.

Rolling Back a Transaction

Finally, if a problem arises while a stored procedure is executing, whether the problem is anticipated or
unexpected, it isimportant that the transaction rolls back. Rollback means that any changes made during
the transaction are undone and the database is|eft in the same state it was in before the transaction started.

VoltDB is a fully transactional database, which means that if a transaction (stored procedure) fails, the
transaction isautomatically rolled back and the appropriate exception is returned to the calling application.
Exceptions that can cause arollback include the following:

» Runtime errorsin the stored procedure code, such as division by zero or datatype overflow.

* Violating database constraintsin SQL queries, such asinserting a duplicate value into acolumn defined
as unique.

The atomicity of the stored procedure depends on VoltDB being able to roll back incomplete database
changes. VoltDB relies on Java exception handling outside the stored procedure to perform the roll back.
Therefore, you should not attempt to alter any exceptions thrown by the voltExecuteSql method. If your
procedure code does catch exceptions thrown as a result of executing SQL statements, make sure that the
exception handler re-throws the exception to allow VoltDB to perform the necessary roll back activities
before the stored procedure returns to the calling program.

Onthe other hand, there may be situati ons where an exception occursin the program logic. Theissue might
not be one that is caught by Java or VoltDB, but still there is no practical way for the transaction logic to
complete. In these situations, you can force a rollback by explicitly throwing the Vol t Abor t Excep-
t i on exception. For example, if aflight ID does not exist, you do not want to create a reservation so the
stored procedure can force arollback like so:

if (!flightid) { throw new VoltAbortException(); }

See Section 7.3, “ Verifying Expected Query Results’ for another way to roll back procedureswhen queries
do not meet necessary conditions.

5.3. Installing Stored Procedures into the Database

When your stored procedure code is ready, you need to get the procedures into the database and ready to
use. You first compile the procedure code, create ajar file, and load the resulting jar file into the database.
Then you need to declare in the schema which procedures are stored procedures. Finally, depending on
which table each stored procedure accesses, you need to partition each procedure to match the table par-
titioning. These processes are covered in the following sections:

» Compiling, Packaging, and Loading Stored Procedures

41

Designing Stored Proce-
duresto Access the Database

 Declaring Stored Procedures in the Schema
* Partitioning Stored Procedures in the Schema

These sections show how to use DDL to declare and partition stored procedures in the database schema.
If you find you need to modify the schema, see Section 4.6, “Modifying the Schema”.

5.3.1. Compiling, Packaging, and Loading Stored Procedures

The VoltDB stored procedures are written as Java classes, so you compile them using the Java compiler.
Anytime you update your stored procedure code, remember to recompile, package, and reload it into the
database using the following steps:

$ javac -classpath "./:/opt/voltdb/voltdb/*" \ o
-d ./obj \
*.java
$ jar cvf nyproc.jar -C obj . (2]
$ sqglcnmd (3]

1> | oad cl asses myproc.jar;
2> show cl asses;

The steps are described as follows:
O Usethejavac command to compile the procedure Java code.

You include libraries by using the - cl asspat h argument on the command line or by defining the
environment variable CLASSPATH. Y ou must include the VoltDB librariesin the classpath so Java
can resolve references to the VoltDB classes and methods. This example assumes that the VoltDB
software has been installed in the folder / opt / vol t db. If you installed VoltDB in a different
directory, you need to include your installation path. Also, if your client application depends on other
libraries, they need to be included in the classpath as well.

Usethe - d flag to specify an output directory in which to create the resulting classfiles.
® Usethejar command to package your Java classes into a Java archive, or JAR file.

The JAR file must have the same Java package structure as the classesin the JAR file. For example,
if a class has a structure such as nyapp. pr ocedur es. Pr ocedur eFoo, then the JAR file has
to have myapp/ pr ocedur es/ Pr ocedur eFoo. cl ass asthe class structure for thisfile.

The JAR filemust include any inner classes or other dependent classes used by the stored procedures.
It can also be used to load any resource files, such as XML or other data files, that the procedures
need. Any additional resources in the JAR file are loaded into the server as long as they are in a
subfolder. (Resourcesin the root directory of the JAR file are ignored.)

® Usethesglemd load classes directive to load the stored procedure classes into the database.

You can use the show classes command to display information about the classes installed in the
cluster.

Before a stored procedure can be called by aclient application, you need to declare it in the schema, which
is described next.

5.3.2. Declaring Stored Procedures in the Schema

To make your stored procedures accessible in the database, you must declare them in the schema using
the CREATE PROCEDURE statement. Be sure to identify all of your stored procedures or they will not

42

Designing Stored Proce-
duresto Access the Database

5.3.3.

be available to the client applications at runtime. Also, before you declare a procedure, ensure the tables
and columns the procedure accesses are in the schema.

The following DDL statements declare five stored procedures, identifying them by their class name:

$ sqgl cnd

1> CREATE PROCEDURE FROM CLASS f advi sor. procedur es. LookupFl i ght;

2> CREATE PROCEDURE FROM CLASS f advi sor. procedur es. Howivany Seat s;

3> CREATE PROCEDURE FROM CLASS f advi sor. procedur es. MakeReservati on;
4> CREATE PROCEDURE FROM CLASS f advi sor. procedures. Cancel Reservati on;
5> CREATE PROCEDURE FROM CLASS f advi sor. procedur es. RemoveFl i ght;

For some situations, you can create stored procedures directly in the schema using SQL instead of loading
Javacode. Seehow to usethe CREATE PROCEDURE A Sstatement in Section 7.2, “ Shortcut for Defining
Simple Stored Procedures’.

For more about modifying a schemawith DDL, see Section 4.6, “Modifying the Schema’.

Partitioning Stored Procedures in the Schema

Wewant the most frequently used stored proceduresto be single-partitioned. Thismeansthat the procedure
executes in the one partition that also has the data it needs. Single-partitioned stored procedures do not
have the overhead of processing across multiple partitions and servers, wasting time searching through the
data of the entire table. To ensure single-partitioned efficiency, the parameter the stored procedure usesto
identify its required data must be the same as the column on which the table rows are partitioned.

Remember that in our sample application the RESERVATION table is partitioned on FLIGHTID. Let's
say you create a stored procedure, MakeReservation(), with two arguments, flight_id and customer_id.
The following figure shows how the stored procedure will automatically execute in the partition that has
the requested row.

43

Designing Stored Proce-
duresto Access the Database

Figure 5.3. Stored Procedures Execute in the Appropriate Partition Based on the
Partitioned Parameter Value

1 exec MakeReservation, 145, 35791

exec MakeReservation, 321, 23650 'C

FlightlD CustomerlD FlightlD CustomerlD FlightlD CustomerlD
145 35791 687 45678 321 23650
145 46785 135 50987 487 36016
156 67093 . .

If you do not declare a procedure as single-partitioned, it is assumed to be multi-partitioned by default.
The advantage of multi-partitioned stored procedures is that they have full access to al of the datain
the database, across all partitions. However, the real focus of VoltDB, and the way to achieve maximum
throughput for your application, is through the use of single-partitioned stored procedures.

5.3.3.1. How to Declare Single-Partition Procedures
Before declaring a single-partitioned procedure, ensure the following prerequisites:

1. Thetable that the stored procedure accesses has been partitioned in the schema. See Section 4.4, “ Par-
titioning Database Tables’.

2. If the procedureisimplemented with Javacode, it isloaded into the database. See Section 5.3.1, “Com-
piling, Packaging, and Loading Stored Procedures’.

When you declare a stored procedure as single-partitioned, you must specify both the associated table and
the column on which it is partitioned using the PARTITION ON clause in the CREATE PROCEDURE
statement. The following example uses the RESERVATION table and the FLIGHTID column as the par-
titioning column. For example:

CREATE PROCEDURE
PARTI TI ON ON
TABLE Reservation COLUW FlightlD
FROM CLASS f advi sor. procedur es. MakeReservati on;

The PARTITION ON clause assumes that the partitioning column value is also the first parameter to the
stored procedure. Suppose you wish to partition a stored procedure on the third parameter such as the

44

Designing Stored Proce-
duresto Access the Database

procedure Get Cust oner Det ai | s() , where the third parameter is a customer_id. You must specify
the partitioning parameter using the PARAMETER clause and an index for the parameter position. The
index is zero-based so the third parameter would be "2" and the CREATE PROCEDURE statement would
be asfollows:

CREATE PROCEDURE
PARTI TI ON ON
TABLE Customer COLUMN Cust orer | D PARAMETER 2
FROM CLASS f advi sor. procedures. Get CustonerDetails;

5.3.3.2. Queries in Single-Partitioned Stored Procedures

Single-partitioned stored procedures are special because they operate independently of other partitions,
which is why they are so fast. At the same time, single-partitioned stored procedures operate on only a
subset of the entire data, that is, only the data within the specified partition.

Caution

It is the application developer's responsibility to ensure that the queries in a single-partitioned
stored procedure are truly single-partitioned. VoltDB does not warn you about SELECT or
DEL ETE statements that might return incompl ete results. For example, if your single-partitioned
procedure attempts to operate on a range of values for the partitioning column, the range isin-
complete and includes only a subset of the table data that is in the current partition.

VoltDB does generate a runtime error if you attempt to INSERT arow that does not belong in
the current partition.

After you partition a procedure, your stored procedure can operate on only those recordsin the partitioned
table that are identified by the partitioning column, in this example the RESERVATION table identified
by aFLIGHTID. Y our stored procedure can access recordsin replicated tables because the entire table is
availableto every partition. However, for other partitioned tables, the stored procedure can only operate on
thoserecordsif both tablesare partitioned on the same attribute. | n thisexamplethat would be FLIGHTID.

In other words, the following rules apply:
e Any SELECT, UPDATE, or DELETE queries must use the constraint, WHERE i denti fi er =?

The question mark is replaced at runtime by the input value that identifies the row of datain the table.
In our example, queries on the RESERVATION table must use the constraint, WHERE FLI GHTI D=7

» SELECT statements can join the partitioned table to replicated tables, aslong as the preceding WHERE
constraint is aso applied.

» SELECT statements can join the partitioned table to other partitioned tables as long as the following
aretrue:

* Thetwo tables are partitioned on the same attribute or column (in our example, FLIGHTID).
¢ Thetablesare joined on the shared partitioning column.

» The following WHERE constraint is also used: WHERE partitioned-table. identifi-
er =? In thisexample, WHERE RESERVATI ON. FLI GHTI D="

For example, the RESERVATION table can be joined with the FLIGHT table (which is replicated). How-
ever, the RESERVATION table cannot be joined with the CUSTOMER tablein asingle-partitioned stored

45

Designing Stored Proce-
duresto Access the Database

procedure because the two tables use different partitioning columns. (CUSTOMER is partitioned on the
CUSTOMERID column.)

The following are examples of invalid SQL queries for a single-partitioned stored procedure partitioned
on FLIGHTID:

e INVALID: SELECT * FROM reservati on WHERE r eser vati oni d=?

The RESERVATION table is being constrained by a column (RESERVATIONID) which is not the
partitioning column.

 INVALID: SELECT c. | astname FROM reservation AS r, custoner AS ¢ WHERE
r.flightid=? AND c.customerid = r.custonerid

The correct partitioning column is being used in the WHERE clause, but the tables are being joined on
adifferent column. As aresult, not all CUSTOMER rows are available to the stored procedure since
the CUSTOMER table is partitioned on a different column than RESERVATION.

46

Chapter 6. Designing VoltDB Client
Applications

After you design and partition your database schema (Chapter 4, Designing the Database Schema), and
after you design the necessary stored procedures (Chapter 5, Designing Sored Procedures to Access the
Database), you areready to writethe client application logic. The client code containsall the business-spe-
cific logic required for the application, including business rule validation and keeping track of constraints
such as proper data ranges for arguments entered in stored procedure calls.

The three steps to using VoltDB from aclient application are:
1. Creating a connection to the database

2. Cdling stored procedures

3. Closing the client connection

The following sections explain how to perform these functions using the standard VoltDB Java client
interface. (SeeVoltDB JavaClient API.) The VoltDB JavaClient isathread-safe classlibrary that provides
runtime access to VoltDB databases and functions.

It is possible to call VoltDB stored procedures from programming languages other than Java. However,
reading thischapter is still recommended to understand the processfor invoking and interpreting the results
of aVoltDB stored procedure. See Chapter 8, Using VoltDB with Other Programming Languagesfor more
information about using VVoltDB from client applications written in other languages.

6.1. Connecting to the VoltDB Database

The first task for the calling program is to create a connection to the VoltDB database. Y ou do this with
the following steps:

org.voltdb.client.Client client = null;
CientConfig config = null;

try {
config = new dientConfig("advent", "xyzzy"); (1]
client = dientFactory.createCient(config); (2]
client.createConnection("myserver.xyz.net"); (3]

} catch (java.io.lCOException e) {
e.printStackTrace();
Systemexit(-1);

© Definethe configuration for your connections. Initssimplest form, theCl i ent Conf i g classspec-
ifies the username and password to use. It is not absolutely necessary to create a client configuration
object. For example, if security is not enabled (and therefore a username and password are not need-
ed) a configuration object is not required. But it is a good practice to define the client configuration
to ensure the same credentials are used for all connections against asingle client. It is also possible
to define additional characteristics of the client connections as part of the configuration, such asthe
timeout period for procedure invocations or a status listener. (See Section 6.5, “Handling Errors’.)

® Create aninstance of the VoltDB Cl i ent class.

47

http://docs.voltdb.com/javadoc/java-client-api/

Designing VoltDB Client Applications

® Call thecreat eConnecti on() method. After you instantiate your client object, the argument
tocr eat eConnecti on() specifiesthe database node to connect to. Y ou can specify the server
node as a hostname (as in the preceding example) or as an IP address. You can also add a second
argument if you want to connect to a port other than the default. For example, the following cr e-
at eConnecti on() call attemptsto connect to the admin port, 21211

client.createConnection("nyserver.xyz.net", 21211);

If security is enabled and the username and password intheCl i ent Conf i g() call do not matcha
user defined in the configuration file, the call tocr eat eConnect i on() will throw an exception.
See Chapter 12, Security for more information about the use of security with VoltDB databases.

When you are donewith the connection, you should make sureyour application callsthecl ose() method
to clean up any memory allocated for the connection. See Section 6.4, “ Closing the Connection”.

6.1.1. Connecting to Multiple Servers

Y ou can create the connection to any of the nodes in the database cluster and your stored procedure will
be routed appropriately. In fact, you can create connections to multiple nodes on the server and your
subsequent requests will be distributed to the various connections. For example, the following Java code
creates the client object and then connects to all three nodes of the cluster. In this case, security is not
enabled so no client configuration is needed:

try {
client = dientFactory.createdient();

client.createConnection("serverl.xyz.net");
client.createConnection("server2.xyz.net");
client.createConnection("server3.xyz.net");
} catch (java.io.lCOException e) {
e.printStackTrace();
Systemexit(-1);
}

Creating multiple connections has three major benefits:

» Multiple connections distribute the stored procedure requests around the cluster, avoiding a bottleneck
where all requests are queued through asingle host. Thisis particul arly important when using asynchro-
nous procedure calls or multiple clients.

 For Javaapplications, the VVoltDB Javaclient library uses client affinity. That is, the client knowswhich
server to send each request to based on the partitioning, thereby eliminating unnecessary network hops.

 Finally, if aserver fails for any reason, when using K-safety the client can continue to submit requests
through connections to the remaining nodes. This avoids a single point of failure between client and
database cluster. See Chapter 10, Availability for more.

6.1.2. Using the Auto-Connecting Client

An easier way to create connections to all of the database serversisto use the "smart" or topology-aware
client. By setting the Java client to be aware of the cluster topology, you only need to connect to one server
and the client automatically connectsto al of the serversin the cluster.

An additional advantage of the smart client is that it will automatically reconnect whenever the topology
changes. That is, if a server fails and then rejoins the cluster, or new nodes are added to the cluster, the
client will automatically create connectionsto the newly available servers.

48

Designing VoltDB Client Applications

Y ou enable auto-connecting when you initialize the client object by setting the configuration option before
creating the client object. For example:

org.voltdb.client.Client client = null;

CientConfig config = new dientConfig("","");
confi g. set Topol ogyChangeAwar e(t r ue) ;
try {

client = dientFactory.createdient(config);
client.createConnection("serverl.xyz.net");

When set Topol ogyChangeAwar e() issettotrue, theclient library will automatically connect to all
serversin the cluster and adjust its connections any time the cluster topology changes.

6.2. Invoking Stored Procedures

After your client createsthe connection to the database, it isready to call the stored procedures. Y ouinvoke
astored procedure using the cal | Pr ocedur e() method, passing the procedure name and variables as
arguments. For example:

Vol t Tabl e[] results;

try { results = client.callProcedure("LookupFlight", o
origin,
dest,
departtine).getResul ts(); 2]
} catch (Exception e) { (3]

e. printStackTrace();
Systemexit(-1);

©® Thecal | Procedur e() method takes the procedure name and the procedure's variables as argu-
ments. The LookupFl i ght () stored procedure requires three variables. the originating airport,
the destination, and the departure time.

® Onceasynchronous call completes, you can eval uate the results of the stored procedure. Thecal | -
Pr ocedur e() methodreturnsaCl i ent Response abject, whichincludesinformation about the
success or failure of the stored procedure. To retrieve the actual return values you use the get Re-
sul t s() method. See Section 5.2.4, “Interpreting the Results of SQL Queries’ for more informa-
tion about interpreting the results of VoltDB stored procedures.

® Notethat sincecal | Procedur e() can throw an exception (such as Vol t Abor t Except i on)
itisagood practice to perform error handling and catch known exceptions.

6.3. Invoking Stored Procedures Asynchronously

Calling stored procedures synchronously simplifiesthe program logic because your client application waits
for the procedure to complete before continuing. However, for high performance applications looking to
maximize throughput, it is better to queue stored procedure invocations asynchronously.

Asynchronous Invocation

To invoke stored procedures asynchronously, use the cal | Pr ocedur e() method with an additional
first argument, a callback that will be notified when the procedure completes (or an error occurs). For ex-
ample, toinvokeaNewCust oner () stored procedure asynchronously, thecall tocal | Pr ocedur e()
might look like the following:

49

Designing VoltDB Client Applications

client.callProcedure(new MyCal | back(),
"NewCust oner ",
firstname,
| ast name,
cust | D};

The following are other important points to note when making asynchronous invocations of stored pro-
cedures:

» Asynchronous calls to cal | Procedur e() return control to the calling application as soon as the
procedure call is queued.

* If the database server queueisfull, cal | Procedur e() will block until it is able to queue the proce-
durecall. Thisisacondition known as backpressure. This situation does not normally happen unlessthe
database cluster isnot scaled sufficiently for the workload or there are abnormal spikesin the workload.
See Section 6.5.3, “Writing a Status Listener to Interpret Other Errors’ for more information.

» Oncethe procedureis queued, any subsequent errors (such as an exception in the stored procedureitself
or loss of connection to the database) are returned as error conditions to the callback procedure.

Callback Implementation

The callback procedure (MyCal | back() inthisexample) isinvoked after the stored procedure completes
on the server. The following is an example of a callback procedure implementation:

static class MyCal |l back i npl enments ProcedureCall back {
@verride
public void clientCallback(d ientResponse clientResponse) {
if (clientResponse.getStatus() != CdientResponse. SUCCESS) (
Systemerr.println(clientResponse.getStatusString());
} else {
nmyEval uat eResul t sProc(cli ent Response. get Resul ts());
}

}
}

The callback procedureis passed thesame Cl i ent Response structure that isreturned in asynchronous
invocation. Cl i ent Response contains information about the results of execution. In particular, the
methodsget St at us() andget Resul t s() let your callback procedure determine whether the stored
procedure was successful and evaluate the results of the procedure.

The VoltDB Java client is single threaded, so callback procedures are processed one at a time. Conse-
quently, it isagood practice to keep processing in the callback to aminimum, returning control tothemain
thread as soon as possible. If more complex processing is required by the callback, creating a separate
thread pool and spawning worker methods on a separate thread from within the asynchronous callback
is recommended.

6.4. Closing the Connection

When the client application is done interacting with the VoltDB database, it isagood practiceto closethe
connection. This ensures that any pending transactions are completed in an orderly way. The following
example demonstrates how to close the client connection:

try {
client.drain();

client.close();

50

Designing VoltDB Client Applications

} catch (InterruptedException e) {
e.printStackTrace();

}

There are two steps to closing the connection:

1. Cdldrai n() tomakesureal asynchronous calls have completed. Thedr ai n() method pausesthe
current thread until all outstanding asynchronous calls (and their callback procedures) complete. This
call is not necessary if the application only makes synchronous procedure calls. However, there is no
penalty for calling dr ai n() and so it can be included for completenessin all applications.

2. Call cl ose() tocloseall of the connections and release any resources associated with the client.

6.5. Handling Errors

A special situation to consider when calling V oltDB stored proceduresiserror handling. TheVoltDB client
interface catches most exceptions, including connection errors, errors thrown by the stored procedures
themselves, and even exceptions that occur in asynchronous callbacks. These error conditions are not
returned to the client application as exceptions. However, the application can still receive notification and
interpret these conditions using the client interface.

The following sections explain how to identify and interpret errors that occur when executing stored pro-
cedures and in asynchronous callbacks. These include:

* Interpreting Execution Errors
» Handling Timeouts

» Writing a Status Listener to Interpret Other Errors

6.5.1. Interpreting Execution Errors

If an error occurs in a stored procedure (such as an SQL constraint violation), VoltDB catches the error
and returns information about it to the calling application as part of the Cl i ent Response class. The
Cl i ent Response class provides several methods to help the calling application determine whether
the stored procedure completed successfully and, if not, what caused the failure. The two most important
methods areget St at us() andget Stat usString() .

static class MyCal |l back inpl ements ProcedureCall back {
@verride
public void clientCallback(C ientResponse clientResponse) ({
final byte AppCodeVarm = 1;
final byte AppCodeFuzzy = 2;

if (clientResponse.getStatus() != CientResponse. SUCCESS) ({ o
Systemerr.println(clientResponse.getStatusString()); (2]
} else {
if (clientResponse. get AppStatus() == AppCodeFuzzy) { (3]

Systemerr.println(clientResponse. get AppStatusString());
b
nyEval uat eResul t sProc(cl i ent Response. get Resul ts());

51

Designing VoltDB Client Applications

© Theget St at us() method tells you whether the stored procedure completed successfully and, if
not, what type of error occurred. It is good practice to always check the status of the Cl i ent Re-
sponse before evaluating the results of aprocedure call, because if the status is anything but SUC-
CESS, there will not be any results returned. The possible values of get St at us() are:

¢ CONNECTION_L OST — The network connection waslost beforethe stored procedure returned
statusinformation to the calling application. The stored procedure may or may not have completed
successfully.

¢ CONNECTION_TIMEOUT — The stored procedure took too long to return to the calling ap-
plication. The stored procedure may or may not have completed successfully. See Section 6.5.2,
“Handling Timeouts’ for more information about handling this condition.

« GRACEFUL_FAILURE — An error occurred and the stored procedure was gracefully rolled
back.

« RESPONSE_UNKNOWN — This is a rare error that occurs if the coordinating node for the
transaction fails before returning a response. The node to which your application is connected
cannot determine if the transaction failed or succeeded before the coordinator was lost. The best
course of action, if you receive this error, is to use a new query to determine if the transaction
failed or succeeded and then take action based on that knowledge.

¢ SUCCESS — The stored procedure completed successfully.

e UNEXPECTED_FAILURE — An unexpected error occurred on the server and the procedure
failed.

*« USER_ABORT — The code of the stored procedure intentionally threw a UserAbort exception
and the stored procedure was rolled back.

O Ifaget Status() cal identifiesan error status other than SUCCESS, you can usethe get St a-
tusString() method to return atext message providing moreinformation about the specific error
that occurred.

® If youwant the stored procedureto provide additional information to the calling application, thereare
two more methodsto the G i ent Response that you can use. The methods get AppSt at us()
andget AppSt at usSt ri ng() actlikeget St at us() andget Stat usSt ri ng() , but rather
than returning information set by VoltDB, get AppSt at us() and get AppSt at usSt ri ng()
return information set in the stored procedure code itself.

In the stored procedure, you can use the methods set AppSt at usCode() and set AppSt a-
tusString() to set the values returned to the calling application by the stored procedure. For
example:

/* stored procedure code */
final byte AppCodeVarm = 1;
final byte AppCodeFuzzy = 2;

set AppSt at usCode(AppCodeFuzzy) ;
set AppStatusString("l'mnot sure about that...");

6.5.2. Handling Timeouts

One particular error that needs specia handling isif a connection or a stored procedure call times out. By
default, the client interface only waits a specified amount of time (two minutes) for a stored procedure to
complete. If no responseisreceived from the server before the timeout period expires, the client interface

52

Designing VoltDB Client Applications

returns control to your application, notifying it of the error. For synchronous procedure calls, the client
interface returns the error CONNECTION_TIMEOUT to the procedure call. For asynchronous calls, the
client interface invokes the callback including the error informationinthecl i ent Response object.

It is important to note that CONNECTION_TIMEOUT does not necessarily mean the synchronous pro-
cedurefailed. Infact, it is very possible that the procedure may complete and return information after the
timeout error is reported. The timeout is provided to avoid locking up the client application when proce-
dures are delayed or the connection to the cluster hangs for any reason.

Similarly, if no response of any kind is returned on a connection (even if no transactions are pending)
within the specified timeout period, the client connection will timeout. When this happens, the connec-
tionis closed, any open stored procedures on that connection are closed with areturn status of CONNEC-
TION_LOST, and then the client status listener callback method connect i onLost () isinvoked. Un-
like a procedure timeout, when the connection times out, the connection no longer exists, so your client ap-
plication will receive no further notifications concerning pending procedures, whether they succeed or fail.

CONNECTION_LOST does not necessarily mean a pending asynchronous procedure failed. It is possible
that the procedure completed but was unable to return its status due to a connection failure. The goal of
the connection timeout is to notify the client application of alost connection in atimely manner, even if
there are no outstanding procedures using the connection.

There are several things you can do to address potential timeouts in your application:

 Change the timeout period by calling either or both the methods set Pr ocedur eCal | Ti neout ()
and set Connect i onResponseTi neout () ontheC i ent Confi g object. The default timeout
period is 2 minutesfor both procedures and connections. Y ou specify thetimeout period in milliseconds,
where avalue of zero disables the timeout altogether. For example, the following client code resets the
procedure timeout to 90 seconds and the connection timeout period to 3 minutes, or 180 seconds:

config = new dientConfig("advent", "xyzzy");
config. set ProcedureCal | Ti meout (90 * 1000);

confi g. set Connecti onResponseTi neout (180 * 1000);
client = CientFactory.createdient(config);

 Catch and respond to the timeout error as part of the response to a procedure call. For example, the
following code excerpt from a client callback procedure reports the error to the console and ends the
callback:

static class MyCal |l back inpl ements ProcedureCallback {
@verride

public void clientCall back(C ientResponse response) {

if (response.getStatus() == Cient Response. CONNECTI ON_TI MEQUT) {
Systemout. println("A procedure invocation has tinmed out.");
return;

b

if (response.getStatus() == Cient Response. CONNECTI ON_LOST) ({
System out . printl n("Connection | ost before procedure response.");
return;

b

e Set a status listener to receive the results of any procedure invocations that complete after the client
interfacetimesout. Seethefollowing Section 6.5.3, “Writing a Status Listener to Interpret Other Errors’
for an example of creating a status listener for delayed procedure responses.

53

Designing VoltDB Client Applications

6.5.3. Writing a Status Listener to Interpret Other Errors

/*

*

Certain types of errors can occur that the Cl i ent Response class cannot notify you about immediately.
In these cases, an error happens and is caught by the client interface outside of the normal stored procedure
execution cycle. If you want your application to address these situations, you need to create a listener,
whichisaspecial type of asynchronous callback that the client interface will notify whenever such errors
occur. The types of errorsthat alistener addresses include:

Lost Connection

If a connection to the database cluster is lost or times out and there are outstanding asynchronous
requests on that connection, the Cl i ent Response for those procedure calls will indicate that the
connection failed before areturn status was received. This means that the procedures may or may not
have completed successfully. If no requests were outstanding, your application might not be notified
of the failure under normal conditions, since there are no callbacks to identify the failure. Since the
loss of aconnection can impact the throughput or durability of your application, it isimportant to have
amechanism for general natification of lost connections outside of the procedure callbacks.

Backpressure
If backpressure causes the client interface to wait, the stored procedure is never queued and so your
application does not receive control until after the backpressure is removed. This can happen if the
client applications are queuing stored procedures faster than the database cluster can process them.
The result is that the execution queue on the server gets filled up and the client interface will not let
your application queue any more procedure calls. Two waysto handl e this situation programmatically
areto:

* Let the client pause momentarily to let the queue subside. The asynchronous client interface does
this automatically for you.

 Create multiple connectionsto the cluster to better distribute asynchronous calls across the database
nodes.

Exceptions in a Procedure Callback
Anerror can occur in an asynchronous cal lback after the stored procedure compl etes. These exceptions
are also trapped by the VoltDB client, but occur after the Cl i ent Response is returned to the
application.

L ate Procedure Responses
Procedure invocations that time out in the client may later complete on the server and return results.
Sincethe client application can no longer react to thisresponseinline (for example, with asynchronous
procedure calls, the associated callback has already received a connection timeout error) the client
may want away to process the returned results.

For the sake of example, the following status listener does little more than display a message on standard
output. However, in real world applications the listener would take appropriate actions based on the cir-
cumstances.

Decl are the status |istener

*/
Client StatusLi stenerExt nylistener = new Cient StatusLi st ener Ext () o
{
@verride
public void connectionLost(String hostnane, int port, (2]

i nt connectionsLeft,

54

Designing VoltDB Client Applications

Di sconnect Cause cause)

{
Systemout.printf("A connection to the database has been |l ost."
+ "There are %l connections renmai ning.\n", connectionsLeft);
}
@verride
public voi d backpressure(bool ean status)
{
System out. printl n("Backpressure fromthe database "
+ "is causing a delay in processing requests.");
}
@verride

public void uncaught Excepti on(ProcedureCal | back cal | back,
Cl i ent Response r, Throwabl e e)

{
Systemout.println("An error has occurred in a callback "
+ "procedure. Check the follow ng stack trace for details.");
e.printStackTrace();
}
@verride

public void | ateProcedur eResponse(Cl i ent Response response,
String hostname, int port)
{

Systemout.printf("A procedure that tined out on host %: %"
+ " has now responded.\n", hostnane, port);
}
b
/*
* Declare the client configuration, specifying
* a usernane, a password, and the status |istener

*/

CientConfig myconfig = new CientConfig("usernane", (3]
"password”,
nmyl i stener);

/*

* Create the client using the specified configuration.

*/

Cient nyclient = CientFactory.createCient(nmyconfig); o

By performing the operationsin the order as described here, you ensure that all connectionsto the VoltDB
database cluster use the same credentials for authentication and will notify the status listener of any error
conditions outside of normal procedure execution.

O Declaread i ent St at usLi st ener Ext listener callback. Define the listener before you define
the VoltDB client or open a connection.

® Thed ient StatusLi stener Ext interface has four methods that you can implement, one for
each type of error situation:

e connectionLost ()
e backpressure()
e uncaught Excepti on()

e | at eProcedur eResponse()

55

Designing VoltDB Client Applications

® Definetheclient configuration Cl i ent Conf i g object. After you declareyour d i ent St at us-
Li st ener Ext, you definea C i ent Conf i g object to use for all connections, which includes
the username, password, and status listener. This configuration is then used to define the client next.
O Create aclient with the specified configuration.

6.6. Compiling and Running Client Applications

VoltDB client applications written in Java compile and run like other Java applications. (See Chapter 8,
Using VoltDB with Other Programming Languagesfor more on writing client applications using other lan-
guages.) To compile, you must include the VoltDB librariesin the classpath so Java can resolve references
to the VoltDB classes and methods. It is possible to do this manually by defining the environment variable
CLASSPATH or by using the - cl asspat h argument on the command line. If your client application
depends on other libraries, they need to be included in the classpath aswell. Y ou can also specify whereto
create theresulting classfilesusing the - d flag to specify an output directory, asin the following example:

$ javac -classpath "./:/opt/voltdb/voltdb/*" \
-d ./obj \
*.java

The preceding example assumes that the VoltDB software has been installed in the folder / opt / vol t -
db. If you installed VoItDB in a different directory, you need to include your installation path in the -
cl asspat h argument.

If you are using Apache Maven to manage your application development, the VoltDB Java client library
is available from the central Maven repository. So rather than installing VoltDB locally, you can simply
include it as a dependency in your Maven project object model, or pom.xml, like so:

<dependency>
<gr oupl d>or g. vol t db</ gr oupl d>
<artifactld>voltdbclient</artifactld>
<versi on>5. 1</ versi on>

</ dependency>

6.6.1. Starting the Client Application

Before you start your client application, the VoltDB database must be running. When you start your client
application, you must ensure that the VoltDB library JAR file isin the classpath. For example:

$ java -classpath "./:/opt/voltdb/voltdb/*" MO ientApp

If you develop your application using one of the sample applications as a template, the r un. sh file
manages this dependency for you.

6.6.2. Running Clients from Outside the Cluster

If you are running the database on a cluster and the client applications on separate machines, you
do not need to include all of the VoltDB software with your client application. The VoltDB distribu-
tion comes with two separate libraries: vol t db-n. n. nn. j ar andvol tdbclient-n.n.nn.jar
(where n.n.nn isthe VoltDB version number). Thefirst fileisacomplete library that isrequired for build-
ing and running a VoltDB database server.

Thesecondfile, vol t dbcl i ent-n. n. nn. j ar,isasmaler library containing only those components
needed to runaclient application. If you aredistributing your client applications, you only need to distribute

56

Designing VoltDB Client Applications

the client classes and the VoltDB client library. You do not need to install all of the VoltDB software
distribution on the client nodes.

57

Chapter 7. Simplifying Application
Development

The previous chapter (Chapter 6, Designing VoltDB Client Applications) explains how to develop your
VoltDB database application using the full power and flexibility of the Java client interface. However,
some database tasks — such as inserting records into a table or retrieving a specific column value — do
not need al of the capabilities that the Java API provides. In other cases, there are automation techniques
that can reduce the amount of application code you need to write and maintain.

Now that you know how the VoltDB programming interface works, VoltDB hasfeaturesto simplify com-
mon tasks and make your application development easier. Those features include:

» Using Default Procedures

« Shortcut for Defining Simple Stored Procedures

Verifying Expected Query Results

Scheduling Stored Procedures as Tasks
* Directed Procedures: Distributing Transactions to Every Partition

The following sections describe each of these features separately.

7.1. Using Default Procedures

Although it is possible to define quite complex SQL queries, often the simplest are also the most common.
Inserting, selecting, updating, and deleting records based on a specific key value are the most basic opera-
tionsfor a database. Another common practice is upsert, where if arow matching the primary key already
exists, the record is updated — if not, a new record is inserted. To simplify these operations, VoltDB
defines these default stored procedures for tables.

Thedefault stored procedures use astandard naming scheme, where the name of the procedureiscomposed
of the name of the table (in all uppercase), a period, and the name of the query in lowercase. For example,
the Hello World tutorial (doc/ t ut ori al s/ hel | owor | d) contains a single table, HELLOWORLD,
with three columns and the partitioning column, DIALECT, as the primary key. As a result, five default
stored procedures are included in addition to any user-defined procedures declared in the schema. The
parameters to the procedures differ based on the procedure.

VoltDB defines a default insert stored procedure when any table is defined:

HELLOWORLD.insert | The parameters are the table columns, in the same order as defined in the
schema.

VoltDB defines default update, upsert, and delete stored procedures if the table has a primary key:

HELLOWORLD.update | The parameters are the new column values, in the order defined by the schema,
followed by the primary key column values. This means the primary key col-
umn values are specified twice: once as their corresponding new column val-
ues and once as the primary key value.

HELLOWORLD.upsert | The parameters are the table columns, in the same order as defined in the
schema.

58

Simplifying Application Development

HELLOWORLD.delete |The parameters are the primary key column values, listed in the order they
appear in the primary key definition.

VoltDB defines adefault select stored procedure if the table has a primary key and the table is partitioned:

HELLOWORLD.select |The parameters are the primary key column values, listed in the order they
appear in the primary key definition.

Usethe sglemd command show proceduresto list all the stored procedures availableincluding the number
and type of parametersrequired. Use @yst entCat al og wi t h t he PROCEDURECOLUMNS selector
to show more details about the order and meaning of each procedure's parameters.

The following code example uses the default procedures for the HELLOWORLD table to insert, retrieve
(select), update, and delete a new record with the key value "American":

Vol t Tabl e[] results;

client.call Procedure("HELLOAORLD. i nsert",
"Anerican", "Howdy", "Earth");

results = client.callProcedure("HELLOAORLD. sel ect ",
"Anerican").get Resul ts();

client.call Procedure("HELLOAORLD. updat e",
"Anerican", "Yo", "Bi osphere",
"Anerican");

client.call Procedure("HELLOADRLD. del ete",
"Anerican");

7.2. Shortcut for Defining Simple Stored Proce-
dures

Sometimesall you want isto execute asingle SQL query and return theresultsto the calling application. In
these simple cases, writing the necessary Java code to create a stored procedure can be tedious, so VoltDB
provides a shortcut. For very simple stored procedures that execute a single SQL query and return the
results, you can define the entire stored procedure as part of the database schema.

Recall from Section 5.3.2, “Declaring Stored Proceduresin the Schema’, that normally you use the CRE-
ATE PROCEDURE statement to specify the class name of the Java procedure you coded, for example:

CREATE PROCEDURE FROM CLASS MakeReservati on;
CREATE PROCEDURE FROM CLASS Cancel Reservati on;

However, to create procedures without writing any Java, you can simply insert a SQL query in the AS
clause:

CREATE PROCEDURE Count Reservations AS
SELECT COUNT(*) FROM RESERVATI ON;

VolItDB creates the procedure when you include the SQL query in the CREATE PROCEDURE AS state-
ment. Note that you must specify a unique class name for the procedure, which is unique among all stored
procedures, including both those declared in the schema and those created as Java classes. (Y ou can use
the sglcmd command show proceduresto display alist of all stored procedures.)

It is also possible to pass arguments to the SQL query in simple stored procedures. If you use the ques-
tion mark placeholder in the SQL, any additional arguments you pass in client applications through the

59

Simplifying Application Development

cal | Procedur e() method are used to replace the placeholders, in their respective order. For example,
the following simple stored procedure expects to receive three additional parameters:

CREATE PROCEDURE MyReservationsByTrip AS
SELECT R RESERVEI D, F. FLIGHTI D, F.DEPARTTI ME
FROM RESERVATI ON AS R, FLIGHT AS F
VWHERE R. CUSTOMERID = ?
AND R FLI GHTI D = F. FLI GHTI D
AND F. ORI G N=? AND F. DESTI NATI ON=7;

Y ou can also specify whether the simple procedure is single-partitioned or not. By default, stored proce-
dures are assumed to be multi-partitioned. But if your procedure should be single-partitioned, specify its
partitioning in the PARTITION ON clause. In the following example, the stored procedure is partitioned
on the FLIGHTID column of the RESERVATION table using the first parameter as the partitioning key.

CREATE PROCEDURE Fet chReservati ons
PARTI TI ON ON
TABLE Reservation COLUWN flightid
AS
SELECT * FROM RESERVATI ON WHERE FLI GHTI D=7?;

Finally, if you want to execute multiple SQL statements within a simple procedure, you must enclose the
SQL inaBEGIN-END clause. For example, the following CREATE PROCEDURE AS statement fetches
separate records from the CUSTOMER and ORDER tables:

CREATE PROCEDURE OpenOrders
AS BEG N
SELECT ful | nane FROM CUSTOVER WHERE CUSTOVERI D=7?;
SELECT * FROM ORDER WHERE CUSTOMERI D=7;
END;

Some important points to note concerning multi-statement simple procedures:
» The END statement and all of the enclosed SQL statements, must be terminated with a semi-colon.
* The procedure returns an array of VoltTables, one for each statement in the procedure.

» Each placeholder represents one parameter to the stored procedure. Parameters cannot be reused. Soin
the previous example, the customer ID would need to be entered twice as separate parameters to the
stored procedure, one parameter for the first statement and one parameter for the second statement.

7.3. Verifying Expected Query Results

The automated default and simple stored procedures reduce the coding needed to perform simple queries.
However, another substantial chunk of stored procedure and client application code is often required to
verify the correctness of the results returned by the queries. Did you get the right number of records? Does
the query return the correct value?

Rather than you having to write the code to validate the query results manually, VoltDB provides a way
to perform several common validations as part of the query itself. The Java client interface includes an
Expect at i on object that you can useto definethe expected results of aquery. Then, if the query doesnot
meet those expectations, the executing stored procedure automatically throwsaVol t Abort Excepti on
and rolls back.

Y ou specify the expectation as the second parameter (after the SQL statement but before any arguments)
when queuing the query. For example, when making a reservation in the Flight application, the procedure

60

Simplifying Application Development

must make sure there are seats available. To do this, the procedure must determine how many seats the
flight has. This query can also be used to verify that the flight itself exists, because there should be one
and only one record for every flight ID.

Thefollowing code fragment usesthe EXPECT_ONE_ROW expectation to both fetch the number of seats
and verify that the flight itself exists and is unique.

i mport org.voltdb. Expectation;

public final SQStnt GetSeats = new SQ.Stnt (
" SELECT nunber of seats FROM Fl i ght WHERE flightid=?;");

vol t QueueSQL(Get Seats, EXPECT_ONE ROW flightid);
Vol t Tabl e[] recordset = voltExecuteSQ();
Long nunofseats = recordset[0].asScal arLong();

By using the expectation, the stored procedure code does not need to do additional error checking to verify
that there is one and only one row in the result set. The following table describes all of the expectations
that are available to usein stored procedures.

Expectation Description

EXPECT_EMPTY The query must return no rows.

EXPECT_ONE_ROW The query must return one and only one row.

EXPECT_ZERO OR _ONE_ROW The query must return no more than one row.

EXPECT_NON_EMPTY The query must return at least one row.

EXPECT_SCALAR The query must return asingle value (that is, one row with one
column).

EXPECT_SCALAR_LONG The query must return a single value with a datatype of Long.

EXPECT_SCALAR MATCH(long) |The query must return a single value equal to the specified
Long value.

7.4. Scheduling Stored Procedures as Tasks

There are often repetitive tasks you want to perform on the database that can be scheduled at regular
intervals. These tasks may include general cleanup, pruning, or periodic data validation. Rather than write
a separate application and scheduler to do this, VoltDB lets you automate tasks at intervals ranging from
milliseconds to days.

A task is a stored procedure that you schedule using the CREATE TASK statement. The statement spec-
ifies what procedure to run and when to run it and what arguments to use. In the simplest case, you can
schedule a multi-partition procedure at specific times of day (using cron notation), at a regular interval
(using EVERY), or with aregular pause between iterations (using DELAY). For example, The following
statements define a procedure called OrphanedRecords that deletes reservations from a specific airline
with no associated flight number and a task called RemoveOrphans that uses that procedure to delete or-
phaned records for FlyByNight airlines every two hours.

CREATE PROCEDURE Or phanedRecor ds
AS DELETE FROM reservati ons
WHERE aireline=? AND flight _id I'S NULL;

61

Simplifying Application Development

CREATE TASK RenoveOr phans
ON SCHEDULE EVERY 2 HOURS
PROCEDURE Or phanedRecords W TH (' Fl yByNi ght');

Since the task definition is part of the schema, VoltDB automates starting and stopping the tasks with the
database. Other clausesto the CREATE TASK statement let you further refinehow thetask isrunincluding
what user account runsit and what to do in case of errors. Thereare a so corresponding ALTER TASK and
DROP TASK statements for managing your task definitions. See the description of the CREATE TASK
statement for details.

7.5. Directed Procedures: Distributing Transac-
tions to Every Partition

As useful as scheduling regular stored procedures is in simplifying application development, it can be
disruptive to ongoing workflow if multi-partition procedures take too long or run too frequently. It would
be nice to be able to schedule some partitioned activities as well to do piecemeal work on each partition
without tying up al of the partitions at once. Thisis exactly what directed procedures are designed to do.

A directed procedureis aspecia type of stored procedure, declared using the DIRECTED clause instead
of PARTITION ON. You write a directed procedure the same way you write a regular stored procedure:
either as a simple procedure of one or more SQL statements or as a Java class extending voltProcedure,
using the voltQueueSQL method to queue SQL statements. Since it is transactional, the procedure must
also be deterministic.

However, if you declare the procedure as DIRECTED, when you invoke it a separate instance of the
procedure is queued on every partition in the database. Each instance is its own transaction and acts like
a partitioned procedure. So the separate transactions do not block the other partitions. However, because
they are separate, there isno coordination between the transactions and no guarantee that they are executed
at the sametime.

This makes directed procedures particularly useful for non-critical procedures that need to access data
across the database but do not need to be coordinated as a single, atomic transaction. Because of the
special nature of directed procedures, you cannot invoke them the way you would normal partitioned or
multi-partitioned procedures. Instead, the primary way to invoke them is as a scheduled task.

To schedule a directed procedure as a task, you use the same syntax for the CREATE TASK statement
as for a multi-partitioned procedure, except you add the RUN ON PARTITIONS clause. The RUN ON
PARTITIONS clause specifies that the task is scheduled separately for each and every partition. For ex-
ample, if you want to run the RemoveOrphans task defined in the previous section as a directed procedure
soit will not block the ongoing database workload, you would add the DIRECTED clause to the CREATE
PROCEDURE statement and the RUN ON PARTITIONS clausetothe CREATE TASK statement, like so:

CREATE PROCEDURE Or phanedRecords DI RECTED
AS DELETE FROM reservations
VWHERE airline=? AND flight_id IS NULL;
CREATE TASK RenpveOr phans
ON SCHEDULE EVERY 2 HOURS
PROCEDURE Or phanedRecords W TH (' Fl yByNi ght ')
RUN ON PARTI Tl ONS;

Although scheduled tasks are the easiest way to invoke directed procedures, you can aso invoke them
directly from your Java applications. Y ou cannot call them with the cal | Pr ocedur e method, but you
canusingthecal | Al l Partiti onProcedur e method where the resultsfrom all of the partitions are

62

Simplifying Application Development

returned as an array of VoltTables, one per partition. See the descriptions of the CREATE PROCEDURE
AS, CREATE PROCEDURE FROM CLASS, and CREATE TASK statementsfor moreinformation about
using directed procedures.

63

Chapter 8. Using VoltDB with Other
Programming Languages

VoltDB stored procedures are written in Java and the primary client interface also uses Java. However,
that is not the only programming language you can use with VoltDB.

It is possible to have client interfaces written in almost any language. These client interfaces allow pro-
grams written in different programming languages to interact with a VVoltDB database using native func-
tions of the language. The client interface then takes responsibility for trandating those requests into a
standard communication protocol with the database server as described in the VoltDB wire protocol.

Some client interfaces are developed and packaged as part of the standard VoltDB distribution kit while
othersare compiled and distributed as separate client kits. As of thiswriting, thefollowing client interfaces
are available for VoltDB:

. CH
o C++

» Erlang

* Go

» Java (packaged with VoltDB)
» JDBC (packaged with VoltDB)
» JSON (packaged with VVoltDB)
* Nodejs

« PHP

* Python

The JSON client interface may be of particular interest if your favorite programming languageis not listed
above. JSON is a data format, rather than a programming interface, and the JSON interface provides a
way for applications written in any programming language to interact with VoltDB via JSON messages
sent across a standard HTTP protocol.

The following sections explain how to use the C++, JSON, and JDBC client interfaces.

8.1. C++ Client Interface

VoltDB provides aclient interface for programswritten in C++. The C++ client interfaceis available pre-
compiled asaseparatekit from the VoltDB web site, or in source format from the V oltDB github repository
(http://github.com/V oltDB/voltdb-client-cpp). Thefollowing sections describe how to write VoltDB client
applicationsin C++.

8.1.1. Writing VoltDB Client Applications in C++

When using the VoltDB client library, aswith any C++ library, it isimportant to include all of the neces-
sary definitions at the beginning of your source code. For VoltDB client applications, thisincludes defin-

64

http://voltdb.com/
http://github.com/VoltDB/voltdb-client-cpp

Using VoltDB with Oth-
er Programming Languages

itions for the VoltDB methods, structures, and datatypes as well as the libraries that VoltDB depends on
(specifically, boost shared pointers). For example:

#defi ne __STDC_CONSTANT_MACROS
#define _ STDC LI M T_MACRCS

#i ncl ude <vector>

#i ncl ude <boost/shared ptr. hpp>
#include "Cient.h"

#i ncl ude "Tabl e. h"

#i nclude "Tabl elterator.h"

#i ncl ude " Row. hpp"

#i nclude "WreType. h"

#i ncl ude "Paraneter. hpp"

#i ncl ude " Par anet er Set . hpp"

#i ncl ude "ProcedureCal | back. hpp"

Once you have included all of the necessary declarations, there are three steps to using the interface to
interact with VoltDB:

1. Create and open aclient connection
2. Invoke stored procedures
3. Interpret the results

The following sections explain how to perform each of these functions.

8.1.2. Creating a Connection to the Database Cluster

8.1.3.

Beforeyou can call VoltDB stored procedures, you must create aclient instance and connect to the database
cluster. For example:

vol tdb:: dientConfig config("nyusernane", "mypassword");
voltdb::Cient client = voltdb::Client::create(config);
client.createConnection("nyserver");

As with the Java client interface, you can create connections to multiple nodes in the cluster by making
multiple cals to the createConnection method specifying a different | P address for each connection.

Invoking Stored Procedures

The C++ client library provides both a synchronous and asynchronous interface. To make a synchronous
stored procedure call, you must declare objects for the parameter types, the procedure call itself, the para-
meters, and the response. Note that the datatypes, the procedure, and the parameters need to be declared
in a specific order. For example:

/* Declare the nunber and type of parameters */

std::vector<vol tdb:: Paraneter> paraneterTypes(3);

par amet er Types|[0] vol t db: : Paranet er (vol tdb: : WRE_TYPE_BI G NT) ;
par amet er Types|[1] vol t db: : Paranet er (vol tdb: : WRE_TYPE_STRI NG ;
par amet er Types| 2] vol t db: : Paranet er (vol tdb: : WRE_TYPE_STRI NG ;

/* Declare the procedure and paraneter structures */
vol tdb: : Procedure procedure("AddCustoner", paraneterTypes);
vol t db: : Paranet er Set* parans = procedure. parans();

65

Using VoltDB with Oth-
er Programming Languages

8.1.4.

/* Declare a client response to receive the status and return val ues */
vol tdb: : I nvocat i onResponse response;

Once you instantiate these objects, you can reuse them for multiple callsto the stored procedure, inserting
different valuesinto params each time. For example:

par ans- >addl nt 64(13505) . addString("W/lliani').addString("Smth");
response = client.invoke(procedure);

par ams- >addl nt 64(13506) . addString("Mary").addString("WI1liams");
response = client.invoke(procedure);

par ans- >addl nt 64(13507) . addString("Bill").addString("Smyt he");
response = client.invoke(procedure);

Invoking Stored Procedures Asynchronously

To make asynchronous procedure calls, you must also declare a callback structure and method that will
be used when the procedure call completes.

cl ass AsyncCal | back : public voltdb:: ProcedureCal |l back
{
public:
bool call back
(vol tdb: : I nvocati onResponse response)
throw (vol tdb: : Exception)

{
/*
* The work of your call back goes here...
*/

}

}s

Then, when you go to make the actual stored procedure invocation, you declare an callback instance and
invoke the procedure, using both the procedure structure and the callback instance:

boost :: shared_ptr<AsyncCal | back> cal | back(new AsyncCal | back());
client.invoke(procedure, call back);

Note that the C++ interface is single-threaded. The interface is not thread-safe and you should not use
instances of the client, client response, or other client interface structures from within multiple concurrent
threads. Also, the application must release control occasionaly to give the client interface an opportunity
to issue network requests and retrieve responses. Y ou can do this by calling either the run() or runOnce()
methods.

The run() method waits for and processes network requests, responses, and callbacks until told not to.
(That is, until acallback returns avalue of false)

The runOnce() method processes any outstanding work and then returns control to the client application.

In most applications, you will want to create a loop that makes asynchronous requests and then calls
runOnce(). This allows the application to queue stored procedure requests as quickly as possible while
also processing any incoming responses in atimely manner.

Another important difference when making stored procedure calls asynchronously is that you must make
sureall of the procedure calls compl ete before the client connection is closed. The client objects destructor
automatically closes the connection when your application |eaves the context or scope within which the

66

Using VoltDB with Oth-
er Programming Languages

client is defined. Therefore, to make sure all asynchronous calls have completed, be sure to call thedrain
method until it returns true before leaving your client context:

while (!client.drain()) {}

8.1.5. Interpreting the Results

Both the synchronous and asynchronous invocations return a client response object that contains both the
status of the call and the return values. Y ou can use the status information to report problems encountered
while running the stored procedure. For example:

if (response.failure())

{
std::cout << "Stored procedure failed. " << response.toString();
exit(-1);

}

If the stored procedure is successful, you can use the client response to retrieve the results. The results
are returned as an array of VoltTable structures. Within each VoltTable object you can use an iterator to
walk through the rows. There are also methods for retrieving each datatype from the row. For example,
the following exampl e displays the results of asingle VoltTable containing two strings in each row:

/* Retrieve the results and an iterator for the first volttable */
std::vector<voltdb:: Table> results = response.results();
voltdb:: Tablelterator iterator = results[O].iterator();

/* lterate through the rows */
while (iterator.hasNext())

voltdb:: Row row = iterator.next();
std::cout << row.getString(0) << ", " << row.getString(l) << std::endl;

}

8.2. JSON HTTP Interface

JSON (JavaScript Object Notation) is not a programming language; it is a data format. The JSON "inter-
face" to VoltDB isactually aweb interface that the V oltDB database server makes availablefor processing
requests and returning datain JSON format.

The JSON interface lets you invoke VoltDB stored procedures and receive their results through HTTP
requests. To invoke a stored procedure, you pass V oltDB the procedure name and parameters as aquerys-
tring to the HTTP request, using either the GET or POST method.

Although many programming languages provide methods to simplify the encoding and decoding of JSON
strings, you still need to understand the data structures that are created. So if you are not familiar with
JSON encoding, you may want to read more about it at ht t p: / / www. j son. or g.

8.2.1. How the JSON Interface Works

When a VoltDB database starts, it opens port 8080 on each server as a smple web server. You have
complete control over thisfeature through the configuration file and the voltdb start command, including:

 Disabling just the JSON interface, or the HTTP port entirely using the <ht t pd> element in the con-
figuration file.

67

http://www.json.org/

Using VoltDB with Oth-
er Programming Languages

 Enabling TLS encryption on the port using the <ss| > element.
» Changing the port number using the - - ht t p flag on the voltdb start command.

See the section on the "Web Interface Port" in the VoltDB Administrator's Guide for more information
on configuring the HTTP port.

This section assumes the database is using the default httpd configuration. In which case, any HTTP re-
guests sent to the location /api/2.0/ on that port are interpreted as JSON requests to run a stored procedure.
The structure of the request is:

URL http://<server>:8080/api/2.0/

Arguments Procedure=<procedure-name>
Parameters=<procedure-parameters>

User=<username for authentication>
Password=<password for authentication>
Hashedpassword=<Hashed password for authentication>
admin=<truelfal se>

jsonp=<function-name>

The arguments can be passed either using the GET or the POST method. For example, the following URL
uses the GET method (where the arguments are appended to the URL) to execute the system procedure
@Systemlnformation on the VoltDB database running on node voltsvr.mycompany.com:

http://vol tsvr. nyconmpany. com 8080/ api /2. 0/ ?Pr ocedur e=@byst em nf or mati on

Note that only the Pr ocedur e argument is required. Y ou can authenticate using the User and Pass-
wor d (or Hashedpasswor d) argumentsif security isenabled for the database. Use Passwor d to send
the password as plain text or Hashedpasswor d to send the password as an encoded string. (The hashed
password must be either a 40-byte hex-encoding of the 20-byte SHA-1 hash or a 64-byte hex-encoding
of the 32-byte SHA-256 hash.)!

Y ou can al so include the parameters on the request. However, it isimportant to note that the parameters —
and the response returned by the stored procedure — are JSON encoded. The parametersare an array (even
if thereisonly one element to that array) and therefore must be enclosed in square brackets. Also, although
there is an upper limit of 2 megabytes for the entire length of the parameter string, large parameter sets
must be sent using POST to avoid stricter limitations on allowable URL lengths.

The adm n argument specifies whether the request is submitted on the standard client port (the default)
or the admin port (when you specify admni n=t r ue). When the database is in admin mode, the client
port is read-only; so you must submit write requests with adm n=t r ue or else the request is rejected
by the server.

The j sonp argument is provided as a convenience for browser-based applications (such as Javascript)
where cross-domain browsing is disabled. When you include thej sonp argument, the entire response is
wrapped as a function call using the function name you specify. Using this technique, the response is a
complete and valid Javascript statement and can be executed to create the appropriate language-specific
object. For example, caling the @Statistics system procedure in Javascript using the jQuery library looks
likethis:

$.get JSON(' http:// myserver: 8080/ api/ 1.0/ ?Procedure=@pt ati stics' +
" &Par anet er s=[" MANAGEMVENT", 0] & sonp=?",
{}, WCal | Back) ;

"Hashi ng the password stops the text of your password from being detectable from network traffic. However, it does not make the database access
any more secure. To secure the transmission of credentials and data between client applications and VoltDB, enable TLS encryption for the HTTP
port using the configuration file.

68

https://docs.voltdb.com/AdminGuide/HostConfigPortOpts.php#ServerConfigHttpdPort
http://docs.voltdb.com/AdminGuide/

Using VoltDB with Oth-
er Programming Languages

Perhaps the best way to understand the JSON interfaceisto seeit in action. If you build and start the Hello
World example application that is provided in the VoltDB distribution kit (including the client that loads
data into the database), you can then open a web browser and connect to the local system through port
8080, to retrieve the French trandlation of "Hello World". For example:

http://1 ocal host: 8080/ api /1. 0/ ?Pr ocedur e=Sel ect &Par anet er s=["French"]
The query returns the following results:

{"status": 1, "appstatus":-128,"statusstring":null,"appstatusstring":null,
"results":{"0":[{ "HELLO':"Bonjour","WORLD': "Mnde"}]}}

Asyou can see, the JSON-encoded results are not particularly easy to read. But they do provide asimple,
generic interface accessible from almost any programming language, most of which provide methods for
encoding and decoding JSON strings and interpreting their results.

8.2.2. Using the JSON Interface from Client Applications

The general process for using the JSON interface from within a programiis:
1. Encode the parameters for the stored procedure as a JSON-encoded string

2. Instantiate and execute an HTTP request, passing the name of the procedure and the parameters as
arguments using either GET or POST.

3. Decode the resulting JSON string into alanguage-specific data structure and interpret the results.

The following are examples of invoking the Hello World Insert stored procedure from several different
languages. In each case, the three arguments (the name of the language and the words for "Hello" and
"World") are encoded as a JSON string.

PHP

<?php
/1 Construct the procedure nane, paraneter list, and URL.

$vol t dbserver = "http:// myserver:8080/api/2.0/";
$proc = "Insert";

$a = array("Croatian", "Pozdrav", "Svijet");

$parans = json_encode($a);

$paranms = url encode($par ans);

$querystring = "Procedure=$proc&Par anet er s=$par ans";

/1 create a new cURL resource and set options
$ch = curl _init();
curl _setopt ($ch, CURLOPT_URL, $voltdbserver);
curl _setopt ($ch, CURLOPT_HEADER, 0);
curl _setopt ($ch, CURLOPT_FAI LONERROR, 1);
curl _setopt ($ch, CURLOPT_POCST, 1);
curl _setopt ($ch, CURLOPT_POSTFI ELDS, $querystring);
curl _setopt ($ch, CURLOPT_RETURNTRANSFER, true);

/1 Execute the request

$resultstring = curl _exec($ch);
?>

69

Using VoltDB with Oth-
er Programming Languages

Python

Perl

C#

import urllib
i mport urllib2
i mport json

Construct the procedure nanme, paraneter |ist, and URL.
url = "http://myserver: 8080/ api/2.0/"
vol t parans = json. dunmps(["Croatian", "Pozdrav", "Svijet"])
httpparans = urllib.url encode({
"Procedure': 'Insert',
"Paraneters' : voltparans
})
print httpparans
Execute the request
data = urllib2.urlopen(url, httpparans).read()

Decode the results
result = json.loads(data)

use LWP:: Sinpl e;
ny $server = 'http:// myserver:8080/api/2.0/";

Insert "Hello Wrld" in Croatian

ny $proc = 'lInsert’;
ny $parans = '["Croatian", "Pozdrav","Svijet"]";
ny $url = $server . "?Procedure=$proc&Par anet er s=$par ans";

ny $content = get $url;
die "Couldn't get $url" unless defined $content;

usi ng System

usi ng System Text;
usi ng System Net ;
using System1Q

nanespace hel |l ovol t

{
cl ass Program
{
static void Main(string[] args)
{
string Vol tDBServer = "http://nyserver:8080/api/2.0/";
string VoltDBProc = "Insert";
string VoltDBParanms = "[\"Croatian\",\"Pozdrav\",\"Svijet\"]";
string Ul = Vol tDBServer + "?Procedure=" + Vol tDBProc

+ " &Par anet ers=" + Vol t DBPar arrs;

string result = null;

70

Using VoltDB with Oth-
er Programming Languages

WebResponse response = nul | ;
StreanReader reader = null;

try
{
Ht t pebRequest request = (Htt pWbRequest)WbRequest. Create(Url);
request. Method = "GET";
response = request. CGet Response();
reader = new StreanReader (response. Get ResponseSt rean(), Encodi ng. UTF8) ;
result = reader. ReadToEnd();

}
catch (Exception ex)
{ /1 handle error
Consol e. WitelLi ne(ex. Message);
}
finally
{
if (reader != null)reader.C ose();
if (response != null) response.C ose();
}

}
}
}

8.2.3. How Parameters Are Interpreted

When you pass arguments to the stored procedure through the JSON interface, VoltDB does its best to
map the data to the datatype required by the stored procedure. Thisisimportant to make sure partitioning
values are interpreted correctly.

For integer values, the JSON interface maps the parameter to the smallest possible integer type capable of
holding the value. (For example, BY TE for values less than 128). Any values containing a decimal point
areinterpreted as DOUBLE.

String values (those that are quoted) are handled in several different ways. If the stored procedure is ex-
pecting a BIGDECIMAL, the JSON interface will try to interpret the quoted string as a decimal value.
If the stored procedure is expecting a TIMESTAMP, the JSON interface will try to interpret the quoted
string as a JDBC-encoded timestamp value. (You can alternately pass the argument as an integer value
representing the number of microseconds from the epoch.) Otherwise, quoted strings are interpreted as
astring datatype.

Table 8.1, “Datatypes in the JSON Interface” summarizes how to pass different datatypes in the JSON
interface.

Table8.1. Datatypesin the JSON Interface

Datatype How to Pass Example
Integers (Byte, Short, Integer,|An integer value 12345
Long)
DOUBLE A value with a decimal point 123.45

71

Using VoltDB with Oth-
er Programming Languages

Datatype How to Pass Example
BIGDECIMAL A quoted string containing avalue|"123.45"
with a decimal point
TIMESTAMP Either aninteger value or aquoted| 12345
string containing a JDBC-encod-
ed date and time "2010-07-01 12:30:21"
String A quoted string "l am astring"

8.2.4. Interpreting the JSON Results

Making the request and decoding the result string are only the first steps. Once the request is completed,
your application needs to interpret the results.

When you decode a JSON string, it is converted into alanguage-specific structure within your application,
composed of objects and arrays. If your request is successful, VoltDB returns a JSON-encoded string that
represents the same ClientResponse object returned by callsto the call Procedure method in the Javaclient
interface. Figure 8.1, “The Structure of the VoltDB JSON Response” shows the structure of the object
returned by the JSON interface.

Figure 8.1. The Structure of the VoltDB JSON Response

{ status (i nteger)
appst at us (i nteger)
statusstring (string)
appst atusstring (string)
results (list)

{ result-index (array)

[

{ colum-nane (any type) ,...

}

}

The key components of the JSON response are the following:

status Indicates the success or failure of the stored procedure. If statusisfalse, statusstring con-
tains the text of the status message..

appstatus Returns additional information, provided by the application developer, about the success
or failure of the stored procedure. The values of appstatus and appstatusstring can be
set programmatically in the stored procedure. (See Section 6.5.1, “Interpreting Execution
Errors’ for details.)

results A list of objects representing the VoltTables returned by the stored procedure. Each ele-
ment of thelist isone set of results, identified by an index value ("0, "1", "2" and so on).
Within each set is an array of rows. And within each row isalist of columns represented
by the column name and value. If the stored procedure does not return any results (i.e. is
void or null), then the results object will be null.

It is possible to create a generic procedure for testing and evaluating the result values from any VoltDB
stored procedure. However, in most cases it is far more expedient to evaluate the values that you know
theindividual procedures return.

72

Using VoltDB with Oth-
er Programming Languages

8.2.5.

For example, again using the Hello World exampl e that is provided with the Vol tDB software, it ispossible
to usethe JSON interface to call the Select stored procedure and return the valuesfor "Hello" and "World"
in a specific language. Rather than evaluate the entire results array (including the name and type fields),
we know we are only receiving one result object with two column values. So we can simplify the code,
asin the following python example:

import urllib

i mport urllib2
i mport json

i mport pprint

Construct the procedure nanme, paraneter |ist, and URL.
url = "http://1ocal host:8080/api/2.0/"'
vol t parans = json. dunmps(["French"])
httpparans = urllib.url encode({
"Procedure': 'Select',
"Paraneters' : voltparans

19)

Execute the request
data = urllib2.urlopen(url, httpparans).read()

Decode the results

results = json.loads(data)[u' results']
volttable = results[u' 0']

row = vol ttabl e[0]

Get the data by columm nanme and display them
hello = row u' HELLO]
world = rowf u' WORLD]

print hello, world

Error Handling using the JSON Interface

There are anumber of different reasonswhy a stored procedure request using the JSON interface may fail:
the VoltDB server may be unreachable, the database may not be started yet, the stored procedure name
may be misspelled, the stored procedure itself may fail... When using the standard Java client interface,
these different situations are handled at different times. (For example, server and database access issues
are addressed when instantiating the client, whereas stored procedure errors can be handled when the
procedures themselves are called.) The JSON interface simplifies the programming by rolling al of these
activitiesinto asingle call. But you must be more organized in how you handle errors as a consequence.

When using the JSON interface, you should check for errorsin the following order:
1. First check to seethat the HT TP request was submitted without errors. How thisisdone depends on what
language-specific methodsyou usefor submitting the request. In most cases, you can usethe appropriate

programming language error handlers (such as try-catch) to catch and interpret HTTP request errors.

2. Next check to seeif VoltDB successfully invoked the stored procedure. Y ou can do this by verifying
that the HTTP request returned a valid JSON-encoded string and that its statusis set to true.

3. If theVoltDB server successfully invoked the stored procedure, then check to seeif the stored procedure
itself succeeded, by checking to see if appstatusis true.

73

Using VoltDB with Oth-
er Programming Languages

4. Finaly, check to seethat the results are what you expect. (For example, that the data array is non-empty
and contains the values you need.)

8.3. JDBC Interface

JDBC (Java Database Connectivity) is aprogramming interface for Java programmers that abstracts data-
base specifics from the methods used to access the data. JDBC provides standard methods and classes
for accessing a relational database and vendors then provide JDBC drivers to implement the abstracted
methods on their specific software.

VoltDB provides aJDBC driver for those who would prefer to use JIDBC asthe data accessinterface. The
VoltDB JDBC driver supportsad hoc queries, prepared statements, calling stored procedures, and methods
for examining the metadata that describes the database schema.

8.3.1. Using JDBC to Connect to a VoltDB Database

The VoltDB driver is a standard class within the VoltDB software jar. To load the driver you use the
Class.forName method to load the class org.voltdb.jdbc.Driver.

Once the driver is loaded, you create a connection to a running VoltDB database server by constructing
a JDBC url using the "jdbc:" protocol, followed by "voltdb://", the server name, a colon, and the port
number. In other words, the complete JDBC connection url is"jdbc:voltdb://{ server} :{ port}". To connect
to multiple nodes in the cluster, use a comma separated list of server names and port numbers after the
"jdbc:voltdb://" prefix.

For example, the following code loads the VoltDB JDBC driver and connectsto the servers svrl and svr2
using the default client port:

Cl ass. forName("org.vol tdb.jdbc. Driver");
Connection ¢ = DriverManager. get Connecti on(
"jdbc:voltdb://svrl:21212, svr2:21212");

If, after the connection is made, the connection to one or more of the servers is lost due to a network
issue or server failure, the VoltDB JDBC client does not automatically reconnect the broken connection
by default. However, you can have the JIDBC driver reconnect lost connections by adding the autoconnect
argument to the connection string. For example:

Cl ass. forName("org.vol tdb.jdbc. Driver");
Connection ¢ = DriverManager. get Connecti on(
"jdbc:voltdb://svrl:21212, svr2;:21212%aut or econnect =true");

When autoreconnect is enabled and a server goes offline, the JDBC driver periodically attempts to recon-
nect to the missing server until it comes back online and the connection is reestablished.

If security is enabled for the database, you must also provide a username and password. Set these as
properties using the setProperty method before creating the connection and then pass the properties as a
second argument to getConnection. For example, the following code uses the username/password pair of
"Hemingway" and "KeyWest" to authenticate to the VoltDB database:

Cl ass.forName("org.vol tdb.jdbc. Driver");
Properties props = new Properties();

props. set Property("user", “Hem ngway");
props. set Property("password”, “KeyWst");
Connection ¢ = DriverManager. get Connecti on(

74

Using VoltDB with Oth-
er Programming Languages

"jdbc:vol tdb://svrl:21212, svr2:21212", props);

8.3.2. Using JDBC to Query a VoltDB Database

Once the connection is made, you use the standard JDBC classes and methods to access the database. (See
the JDBC documentation at ht t p: / / downl oad. or acl e. conl j avase/ 8/ docs/t echnot es/
gui des/ j dbc for details.) Note, however, when running the JDBC application, you must make sure
both the VoltDB software jar and the Guavalibrary are in the Java classpath. Guavaisathird party library
that is shipped as part of the VoltDB kit in the /lib directory. Unless you include both components in the
classpath, your application will not be able to find and load the necessary driver class.

The following is a complete example that uses JDBC to access the Hello World tutorial that comes with
the VoltDB software in the subdirectory / doc/ t ut ori al s/ hel | owor | d. The IDBC demo program
executes both an ad hoc query and a call to the VoltDB stored procedure, Select.

i mport java.sql.*;
i mport java.io.?*;

public class JdbcDenmo {
public static void main(String[] args) {

String driver = "org.voltdb.jdbc.Driver";

String url = "jdbc:voltdb://Ilocal host:21212";
String sgl = "SELECT di al ect FROM hel | owor| d";
try {

/1 Load driver. Create connection.
Cl ass. forName(driver);
Connection conn = DriverManager. get Connection(url);

/] create a statenent
Statement query = conn.createStatenent();
Resul t Set results = query. executeQuery(sql);
while (results.next()) {

System out. printl n("Language is

+ results.getString(1));
}

/1 call a stored procedure
Cal | abl eSt atement proc = conn. prepareCall ("{call Select(?)}");
proc.setString(1l, "French");
results = proc. executeQery();
while (results.next()) {
Systemout.printf("%, %!\n", results.getString(1l),
results.getString(2));

/1 Cl ose statenents, connections, etc.
query. cl ose();
proc. cl ose();
results.close();
conn. cl ose();

} catch (Exception e) {

75

http://download.oracle.com/javase/8/docs/technotes/guides/jdbc
http://download.oracle.com/javase/8/docs/technotes/guides/jdbc

Using VoltDB with Oth-
er Programming Languages

e.printStackTrace();

76

Chapter 9. Using VoltDB in a Cluster

Itispossibleto runVoltDB onasingle server and still get all the advantages of parallelism because VoltDB
creates multiple partitions on each server. However, there are practical limits to how much memory or
processing power any one server can sustain.

One of the key advantages of VoItDB is its ease of expansion. Y ou can increase both capacity and pro-
cessing (i.e. the total number of partitions) simply by adding serversto the cluster to achieve amost linear
scalability. Using VoltDB in acluster also gives you the ability to increase the availability of the database
— protecting it against possible server failures or network glitches.

This chapter explains how to create a cluster of VoltDB servers running a single database. It also explains
how to expand the cluster when additional capacity or processing power isneeded. The following chapters
explain how to increase the availability of your database through the use of K-safety and database repli-
cation, as well as how to enable security to limit access to the data.

9.1. Starting a Database Cluster

Asdescribed in Chapter 3, Sarting the Database, starting aV oltDB cluster issimilar to starting VVoltDB on
asingle server — you use the same commands. To start asingle server database, you use the voltdb start
command by itself. To customize database features, you specify a configuration file when you initialize
the root directory with voltdb init.

To start a cluster, you aso use the voltdb start command. In addition, you must:
« Specify the number of nodesin the cluster using the --count argument.

» Choose one or more nodes as the potential lead or "host" node and specify those nodes using the --host
argument on the start command

* |ssue the same voltdb start command on all nodes of the cluster

For example, if you are creating anew five node cluster and choose nodes server2 and server3 asthe hosts,
you would issue a command like the following on al five nodes:

$ voltdb start --host=server2,server3 --count=5

Torestart acluster using command logs or automatic snapshots, you repeat the same command. Alternate-
ly, you can specify all nodesin the cluster in the --host argument and skip the server count:

$ voltdb start --host=serverl, server?2, server3, server4, server5

No matter which approach you choose, you must specify the same list of potential hosts on all nodes of
the cluster. Once the database cluster is running the leader's special roleis complete and al nodes become
peers.

9.2. Updating the Cluster Configuration

Before you start the cluster, you choose what database features to use by specifying a configuration file
when you initialize the database root directory on each node using the voltdb init command. Y ou must
specify the same configuration file on every node of the cluster. For example:

$ voltdb init --config=depl oynent.xmn

77

Using VoltDB in a Cluster

If you choose to change database options, many of the features can be adjusted while the database is
running by either:

» Using the web-based VoltDB Management Center to make changes interactively in the Admin tab

* Editing the original configuration file and applying the modifications with the voltadmin update com-
mand

For example, you can change security settings, import and export configurations, and resource limits dy-
namically. With either approach, the changesyou make are saved by VoltDB in the database root directory.

However, there are some changes that cannot be made while the database is running. For example, chang-
ing the K-safety value or the number of partitions per server require shutting down, re-initializing, and
restarting the database. To change these static aspects of your cluster, you must save the database contents,
reconfigure the root directory, then restart and restore the database. The steps for changing static config-
uration options are:

1. Pause the database (voltadmin pause)
2. Save asnapshot of the contents (voltadmin save {path} {file-prefix})
3. Shutdown the database (voltadmin shutdown)

4. Re-initialize the root directory with the new configuration file and the - - f or ce argument (voltdb
init --for ce --config=file)

5. Restart the database in admin mode (voltdb start --pause)
6. Restore the snapshot (voltadmin restore {path} {file-prefix})
7. Resume normal operations (voltadmin resume)

See Chapter 13, Saving & Restoring a VoltDB Database for information on using save and r estore. When
doing benchmarking, where you need to change the number of partitions or adjust other static configuration
options, thisisthe recommended approach. However, if you are adjusting the size of the cluster to increase
or decrease capacity or performance, you can perform these operations while the database is running.
Adding and removing nodes "on the fly" is known as elastic scaling and is described in the next section.

9.3. Elastic Scaling to Resize the Cluster

Elastic scaling is the ability to resize the cluster as needed, without having to shutdown the database.
Elastic scaling supports both increasing and decreasing the size of the cluster. For example, you might
want to increase the size of the cluster ahead of an important announcement that will drive additional
traffic — and subsequently require additional capacity. Similarly, you may want to reduce the size for the
cluster during slow periods to limit the number of resources that would be under utilized.

Adding and removing nodes using elastic scaling are each handled separately because increasing the size
of the cluster requires adding new nodes to the cluster first. While when decreasing the size of the cluster,
the nodes are already part of the cluster and VoltDB decides which node are most advantageous to remove
based on the distribution of partitions within the cluster.

To add nodes to the cluster you start the additional nodes using the voltdb start --add command. To
remove nodes from the cluster, you use the voltadmin resize command and the cluster decides which
nodes to remove.

78

Using VoltDB in a Cluster

But in both cases, the correct number of nodes must be added or removed at the same time. The number
of nodes added or removed must result in the resized cluster meeting the requirements for aK-safe cluster
based on the K-safety value and number of sites per host (as described in Section 10.2.2, “Calculating
the Appropriate Number of Nodes for K-Safety”). So for a cluster with no K-safety (K=0), nodes can be
added and removed individually. For K-safe clusters, K+1 nodes must be added or removed at atime. For
example, with K=1 two nodes must be added at atime. Whilein the case of reducing the size of the cluster,
two nodes must be removed but the resulting cluster must also meet the requirement that the total number
of partitions (sites per host X number of nodes) isdivisible by K+1.

Finally, resizing the cluster "on the fly" does require both time and some amount of resources while the
data and partitions are rebalanced. The length of time required to complete the rebalancing depends on
the amount of data present and the current workload. Similarly, the performance impact of resizing on
the ongoing operation of the cluster depends on how much additional capacity the cluster has to assign
to rebalance tasks.

The following sections describe how to:
* Add nodes using elastic scaling
» Remove nodes using elastic scaling

» Control the time and performance impact of elastic scaling by configuring the rebalance workoad

9.3.1. Adding Nodes with Elastic Scaling

When you are ready to extend the cluster by adding one or more nodes, you simply initialize and start the
VoltDB database process on the new nodes using the voltdb init command to initialize and the voltdb
start command to start with the - - add argument, specifying the name of one or more of the existing
cluster nodes as the hosts. For example, if you are adding node ServerX to a cluster where ServerA is
already a member, you can execute the following commands on ServerX:

$ voltdb init --config=depl oynent. xni
$ voltdb start --add --host=ServerA

Once the elastic add action isinitiated, the cluster performs the following tasks:
1. The cluster acknowledges the presence of a new server.
2. Copies of the current schema and configuration settings are sent to the new node.

3. Once sufficient nodes are added, copies of al replicated tables and their share of the partitioned tables
are sent to the new nodes.

4. Asthe data is redistributed (or rebalanced), the added nodes begin participating as full members of
the cluster.

There are some important notes to consider when expanding the cluster using elastic scaling:

* You must add a sufficient number of nodes to create an integral K-safe unit. That is, K+1 nodes. For
example, if the K-safety value for the cluster is two, you must add three nodes at a time to expand the
cluster. If the cluster is not K-safe (in other words it has a K-safety value of zero), you can add one
node at atime.

» When you add nodes to a K-safe cluster, the nodes added first will complete steps #1 and #2 above,
but will not complete steps #3 and #4 until the correct number of nodes are added, at which point all
nodes rebalance together.

79

Using VoltDB in a Cluster

9.3.2.

» Whilethecluster isrebal ancing (Step #3), the database continues to handleincoming requests. However,
depending on the workload and amount of data in the database, rebalancing may take a significant
amount of time.

» Onceédadtic scaling iscomplete, your database configuration has changed. If you shutdown the database
and then restart, you must specify the new server count in the - - count argument to the voltdb start
command.

Removing Nodes with Elastic Scaling

When you want to reduce the size of your cluster, you use the voltadmin resize command to start the
resizing process. First, as with any significant maintenance activity, it is a good idea to take a snapshot of
the database contents before you begin, just in case you need to restore it later. The next step isto test to
make sure the cluster can be reduced. Y ou do this using the voltadmin resize --test command:

$ voltadmin resize --test

The --test qualifier verifies that there are sufficient nodes and partitions to reduce the cluster while main-
taining the K-safety and sitesperhost settings. If not, the command will report that the cluster cannot be
reduced in size. If resizing is possible, the command reports which nodes will be removed when resizing
begins.

Once you are ready to begin the resizing process, you use the voltadmin resize command:
$ voltadnmi n resize

The command repeats the test phase, reports which nodes will be removed and prompts you to confirm
that you are ready to start. When you respond with "y" or "yes", the resizing process begins.

Onceresizing begins, the process cannot be canceled. Evenif the cluster stops, resizing will continue once
the cluster restarts (and you must restart all of the original nodes so the resize operation can complete). So
be sure you want to reduce the cluster size before you respond positively to the prompt.

The length of time it takes for resizing to complete depends on the amount of data in the database and
the current workload. Y ou can adjust parameters that affect resizing (as described in Section 9.3.3, “Con-
figuring How VoltDB Rebalances Nodes During Elastic Scaling”). However, increasing the duration or
throughput for resizing will likely have a corresponding inverse impact on the performance of ongoing
database activities. Use the voltadmin status to check on the current status of the resizing operation, or
use the @Statistics system procedure with the REBALANCE selector for details.

Finally, if an unexpected event causes the resize processto fail — which will bereported in the server logs
— you can restart the resize operation using the voltadmin resize --retry command.

9.3.3. Configuring How VoltDB Rebalances Nodes During
Elastic Scaling

Asyou add or remove nodes using el astic scaling, VoltDB rebal ancesthe cluster by rearranging datawithin
the partitions. During elastic expansion, as soon as you add the necessary number of nodes (based on the
K-safety value), VoltDB rebalances the cluster, moving data from existing partitions to partitions on the
new nodes. During elastic contraction, before the nodes are removed, VoltDB rebalances the cluster by
moving data from partitions that are being removed to partitions that will remain.

During the rebalance phase, the database remains available and actively processing client requests. How
long the rebalance operation takes is dependent on two factors: how often rebalance tasks are processed
and how much data each transaction moves.

80

Using VoltDB in a Cluster

Rebalancetasks are fully transactional, meaning they operate within the database's ACID-compliant trans-
actional model. Because they involve moving data between two or more partitions, they are also mul-
ti-partition transactions. This means that each rebalance work unit can incrementally add to the latency
of pending client transactions.

Y ou can control how quickly the rebal ance operation compl etes versus how much rebalance work impacts
ongoing client transactions using two attributes of the <el ast i ¢> element in the configuration file:

» The duration attribute sets a target value for the length of time each rebalance transaction will take,
specified in milliseconds. The default is 50 milliseconds.

e The throughput attribute sets a target value for the number of megabytes per second that will be
processed by the rebalance transactions. The default is 2 megabytes.

When you change the target duration, VoltDB adjusts the amount of datathat is moved in each transaction
to reach the target execution time. If you increase the duration, the volume of data moved per transaction
increases. Similarly, if you reduce the duration, the volume per transaction decreases.

When you change the target throughput, VoltDB adjuststhe frequency of rebalance transactionsto achieve
the desired volume of data moved per second. If you increase the target throughout, the number of rebal-
ance transactions per second increases. Similarly, if you decrease the target throughout, the number of
transactions decreases.

The<elastic> element isachild of the <systemsettings> element. For exampl e, thefollowing configuration
file sets the target duration to 15 milliseconds and the target throughput to 1 megabyte per second before
starting the database:

<depl oynent >

<systensettings>
<el astic duration="15" throughput="1"/>
</ systensettings>
</ depl oynent >

81

Chapter 10. Availability

10.1.

Durability is one of the four key ACID attributes required to ensure the accurate and reliable operation of
atransactional database. Durability refers to the ability to maintain database consistency and availability
in the face of external problems, such as hardware or operating system failure. Durability is provided by
four features of VVoltDB: snapshots, command logging, K-safety, and disaster recovery through database
replication.

» Snapshots are a "snapshot” of the data within the database at a given point in time written to disk. You
can use these snapshot filesto restore the database to a previous, known state after afailure which brings
down the database. The snapshots are guaranteed to be transactionally consistent at the point at which
the snapshot was taken. Chapter 13, Saving & Restoring a VoltDB Database describes how to create
and restore database snapshots.

« Command Logging isafeature where, in addition to periodic snapshots, the system keeps alog of every
stored procedure (or "command") asit is invoked. If, for any reason, the serversfail, they can "replay"
the log on startup to reinstate the database contents completely rather than just to an arbitrary point-
in-time. Chapter 14, Command Logging and Recovery describes how to enable, configure, and replay
command logs.

» K-safety refers to the practice of duplicating database partitions so that the database can withstand the
loss of cluster nodes without interrupting the service. For example, aK value of zero means that there
isno duplication and losing any serverswill result in aloss of data and database operations. If there are
two copies of every partition (a K value of one), then the cluster can withstand the loss of at least one
node (and possibly more) without any interruption in service.

» Database Replication issimilar to K-safety, sinceit involvesreplicating data. However, rather than cre-
ating redundant partitions within a single database, database replication involves creating and maintain-
ing a complete copy of the entire database. Database replication has a number of uses, but specifically
in terms of durability, replication lets you maintain two copies of the database in separate geographic
locations. In case of catastrophic events, such as fires, earthquakes, or large scale power outages, the
replica can be used as a replacement for adisabled cluster.

Subsequent chapters describe snapshots and command logging. The next chapter describes how you can
use database replication for disaster recovery. This chapter explains how K-safety works, how to configure
your VoltDB database for different values of K, and how to recover in the case of a system failure.

How K-Safety Works

K-safety involves duplicating database partitions so that if a partition is lost (either due to hardware or
software problems) the database can continue to function with the remaining duplicates. In the case of
VoltDB, the duplicate partitions are fully functioning members of the cluster, including all read and write
operations that apply to those partitions. (In other words, the duplicates function as peers rather than in
amaster-slave relationship.)

Itisalsoimportant to notethat K-safety isdifferent than WAN replication. In replication the entire database
cluster isreplicated (usually at aremote location to provide for disaster recovery in case the entire cluster
or site goes down due to catastrophic failure of some type).

In replication, the replicated cluster operates independently and cannot assist when only part of the active
cluster fails. The replicate is intended to take over only when the primary database cluster fails entirely.
So, in caseswhere the database is mission critical, it is not uncommon to use both K-safety and replication
to achieve the highest levels of service.

82

Availability

To achieve K=1, it is necessary to duplicate all partitions. (If you don't, failure of a node that contains a
non-duplicated partition would cause the database to fail.) Similarly, K=2 requires two duplicates of every
partition, and so on.

What happens during normal operations is that any work assigned to a duplicated partition is sent to all
copies (as shown in Figure 10.1, “K-Safety in Action”). If anode fails, the database continues to function
sending the work to the unaffected copies of the partition.

Figure 10.1. K-Safety in Action

10.2. Enabling K-Safety

Y ou specify the desired K-safety value as part of the cluster configuration when you initialize the database
root directory. By default, VoltDB usesaK -saf ety value of zero (no duplicate partitions). Y ou can specify a
larger K-safety value using the kf act or attribute of the<cl ust er > tag. For example, in the following
configuration file, the K-safety valueis set to 2:

<?xm version="1.0"?>
<depl oynent >

<cl uster kfactor="2" />
</ depl oynent >

When you start the database specifying a K-safety value greater than zero, the appropriate number of
partitions out of the cluster will be assigned as duplicates. For example, if you start a cluster with 3 nodes
and the default partitions per node of 8, there are atotal of 24 partitions. With K=1, half of those partitions
(12) will be assigned as duplicates of the other half. If K isincreased to 2, the cluster would be divided
into 3 copies consisting of 8 partitions each.

The important point to note when setting the K value is that, if you do not change the hardware configu-
ration, you are dividing the avail able partitions among the duplicate copies. Therefore performance (and

83

Availability

capacity) will be proportionally decreased as K-safety is increased. So running K=1 on a 6-node cluster
will be approximately equivalent to running a 3-node cluster with K=0.

If you wish to increase reliability without impacting performance, you must increase the cluster size to
provide the appropriate capacity to accommodate for K-safety.

10.2.1. What Happens When You Enable K-Safety

Of course, to ensure a system failure does not impact the database, not only do the partitions need to be
duplicated, but VVoltDB must ensure that the duplicates are kept on separate nodes of the cluster. To achieve
this, VoltDB calculates the maximum number of unigque partitions that can be created, given the number
of nodes, partitions per node, and the desired K-safety value.

When the number of nodes is an integral multiple of the duplicates needed, thisis easy to calculate. For
example, if you have asix node cluster and choose K=1, VoltDB will create two instances of three nodes
each. If you choose K=2, VoltDB will create three instances of two nodes each. And so on.

If the number of nodesis not amultiple of the number of duplicates, VoltDB doesits best to distribute the
partitions evenly. For example, if you have a three node cluster with two partitions per node, when you
ask for K=1 (in other words, two of every partition), VoltDB will duplicate three partitions, distributing
the six total partitions across the three nodes.

10.2.2. Calculating the Appropriate Number of Nodes for K-
Safety

By now it should be clear that there is a correlation between the K value and the number of nodes and
partitionsin the cluster. Ideally, the number of nodesisamultiple of the number of copiesneeded (in other
words, the K value plus one). Thisis both the easiest configuration to understand and manage.

However, if the number of nodes is not an exact multiple, VoltDB distributes the duplicated partitions
across the cluster using the largest number of unique partitions possible. Thisisthe highest whole integer
where the number of unique partitions is equal to the total number of partitions divided by the needed
number of copies:

Uni que partitions = (nodes * partitions/node) / (K + 1)

Therefore, when you specify a cluster size that is not a multiple of K+1, but where the total number of
partitionsis, VoltDB will use all of the partitions to achieve the required K-safety value.

Note that the total number of partitions must be awhole multiple of the number of copies (that is, K+1).
If neither the number of nodes nor the total number of partitions is divisible by K+1, then VoltDB will
not let the cluster start and will display an appropriate error message. For example, if the configuration
specifies 3 sites per host and a K-safety value of 1 but the voltdb start command specifies a server count
of 3, the cluster cannot start because the total number of partitions (3X3=9) isnot a multiple of the number
of copies (K+1=2). To start the cluster, you must either change the configuration to increase the K-safety
value to 2 (so the number of copies is 3) or change the sites per host to 2 or 4 so the total number of
partitionsis divisible by 2.

Finally, if the configuration specifiesaK value higher than the available number of nodes, it isnot possible
to achieve the requested K-safety. Even if there are enough partitions to create the requested duplicates,
VoltDB cannot distribute the duplicates to distinct nodes. For example, if you start a 3 node cluster when
the configuration specifies 4 partitions per node (12 total partitions) and a K-safety value of 3, the number
of total partitions (12) isdivisible by K+1 (4) but not without some duplicates residing on the same node.

84

Availability

10.3

In this situation, VoltDB issues an error message. You must either reduce the K-safety or increase the
number of nodes.

Recovering from System Failures

When running without K-safety (in other words, a K-safety value of zero) any node failure is fatal and
will bring down the database (since there are no longer enough partitions to maintain operation). When
running with K-safety on, if a node goes down, the remaining nodes of the database cluster log an error
indicating that a node has failed.

By default, these error messages are logged to the console terminal. Since the loss of one or more nodes
reducesthereliability of the cluster, you may want to increase the urgency of these messages. For example,
you can configure a separate L og4J appender (such as the SMTP appender) to report node failure mes-
sages. To do this, you should configure the appender to handle messages of classHOST and severity level
ERROR or greater. See the chapter on Logging in the VoltDB Administrator's Guide for more information
about configuring logging.

When a node fails with K-safety enabled, the database continues to operate. But at the earliest possible
convenience, you should repair (or replace) the failed node.

To replace a failed node to arunning VoltDB cluster, you restart the VoltDB server process specifying
the address of at least one of the remaining nodes of the cluster as the host. For example, to rejoin a node
to the VoltDB cluster where server5 is one of the current member nodes, you use the following voltdb
start command:

$ voltdb start --host=server5

If you started the servers specifying multiple hosts, you can use the same voltdb start command used to
start the cluster as a whole since, even if the failed node is in the host list, one of the other nodes in the
list can service its rejoin request.

If thefailed server cannot be restarted (for example, if hardware problems caused the failure) you can start
areplacement server initsplace. Note you will need to initialize aroot directory on the replacement server
before you can start the database process. Y ou can either initialize the root with the original configuration
file. Or, if you have changed the configuration, you can download a copy of the current configuration from
the VoltDB Management Center and use that file to initialize the root directory before starting:

$ voltdb init --config=latest-config.xn
$ voltdb start --host=server5

Note that at least one node you specify in the --host argument must be an active member of the cluster. It
does not have to be one of the nodes identified as the host when the cluster was originally started.

10.3.1. What Happens When a Node Rejoins the Cluster

When you use voltdb start to bring back a server to a running cluster, the node first rejoins the cluster,
then retrieves a copy of the database schema and the appropriate data for its partitions from other nodes
in the cluster. Rgjoining the cluster only takes seconds and once this is done and the schemaiis received,
the node can accept and distribute stored procedure requests like any other member.

However, the new node will not actively participate in the work until afull working copy of its partition
dataisreceived. While the datais being copied, the cluster separates the rejoin process from the standard
transactional workflow, allowing the database to continue operating with a minimal impact to throughput
or latency. So the database remains available and responsive to client applications throughout the rejoin
procedure.

85

http://docs.voltdb.com/AdminGuide/ChapLogging.php
http://docs.voltdb.com/AdminGuide/

Availability

Itisimportant to remember that the cluster isnot fully K-safeuntil the restorationiscomplete. For example,
if the cluster was established with a K-safety value of two and one node failed, until that node rejoins and
is updated, the cluster is operating with a K-safety value of one. Once the node is up to date, the cluster
becomes fully operational and the original K-safety is restored.

10.3.2. Where and When Recovery May Fail

It is possible to rejoin any appropriately configured node to the cluster. It does not have to be the same
physical machine that failed. This way, if a node fails for hardware reasons, it is possible to replace it
in the cluster immediately with a new node, giving you time to diagnose and repair the faulty hardware
without endangering the database itself.

There are afew conditions in which the rejoin operation may fail. Those situations include the following:
* Insufficient K-safety

If the database is running without K-safety, or more nodesfail simultaneously than the cluster is capable
of sustaining, the entire cluster will fail and must be restarted from scratch. (At a minimum, aVoltDB
database running with K-safety can withstand at least as many simultaneous failures as the K-safety
value. It may be able to withstand more node failures, depending upon the specific situation. But the K-
safety value tells you the minimum number of node failures that the cluster can withstand.)

» Mismatched configuration in the root directory

If the configuration file that you specify when initializing the root directory does not match the current
configuration of the database, the cluster will refuse to let the node rejoin.

» More nodes attempt to rejoin than have failed

If one or more nodes fail, the cluster will accept rejoin reguests from as many nodes as failed. For
example, if one node fails, the first node requesting to rejoin will be accepted. Once the cluster is back
to the correct number of nodes, any further requeststo rejoin will be rejected. (Thisisthe same behavior
asif you try to start more nodes than specified in the - - count argument to the voltdb start command
when starting the database.)

10.4. Avoiding Network Partitions

VoltDB achieves scalability by creating a tightly bound network of servers that distribute both data and
processing. When you configure and manage your own server hardware, you can ensure that the cluster
resides on asingle network switch, guaranteeing the best network connection between nodes and reducing
the possibility of network faults interfering with communication.

However, there are situations where this is not the case. For example, if you run VoltDB "in the cloud”,
you may not control or even know what is the physical configuration of your cluster.

The danger is that a network fault — between switches, for example — can interrupt communication
between nodes in the cluster. The server nodes continue to run, and may even be able to communicate
with others nodes on their side of the fault, but cannot "see" the rest of the cluster. In fact, both halves of
the cluster think that the other half has failed. This condition is known as a network partition.

10.4.1. K-Safety and Network Partitions

When you run aVoltDB cluster without availability (in other words, no K-safety) the danger of anetwork
partition is simple: loss of the database. Any node failure makes the cluster incomplete and the database

86

Availability

will stop, Y ou will need to reestablish network communications, restart VoltDB, and restore the database
from the last snapshot.

However, if you are running acluster with K-safety, it is possible that when anetwork partition occurs, the
two separate segments of the cluster might have enough partitions each to continue running, each thinking
the other group of nodes has failed.

For example, if you have a 3 node cluster with 2 sites per node, and a K-safety value of 2, each nodeisa
separate, self-sustaining copy of the database, as shown in Figure 10.2, “Network Partition”. If a network
partition separates nodes A and B from node C, each segment has sufficient partitions remaining to sustain
the database. Nodes A and B think node C has failed; node C thinks that nodes A and B have failed.

Figure 10.2. Network Partition

Network Partition

Server
B

The problem isthat you never want two separate copies of the database continuing to operate and accepting
requests thinking they are the only viable copy. If the cluster is physically on a single network switch,
the threat of a network partition is reduced. But if the cluster is on multiple switches, the risk increases
significantly and must be accounted for.

10.4.2. Using Network Fault Protection

VoltDB provides a mechanism for guaranteeing that a network partition does not accidentally create two
separate copies of the database. The feature is called network fault protection.

Because the consequences of a partition are so severe, use of network partition detection is strongly rec-
ommended and VoltDB enables partition detection by default. In addition it is recommended that, wher-
ever possible, K-safe clusters be configured with an odd number of nodes.

However, it is possible to disable network fault protection in the configuration file when you initialize the
database, if you choose. Y ou enable and disable partition detection using the <partition-detection> tag.
The <partition-detection> tag is a child of <deployment> and peer of <cluster>. For example:

<depl oynent >
<cl uster hostcount="4"
si tesper host ="2"
kfactor="1" />
<partition-detection enabled="true"/>
</ depl oynment >

87

Availability

When network fault protection is enabled, and a fault is detected (either due to a network fault or one or
more serversfailing), any viable segment of the cluster will perform the following steps:

1. Determine what nodes are missing
2. Determineif the missing nodes are also a viable self-sustained cluster. If so...
3. Determine which segment is the larger segment (that is, contains more nodes).

« If the current segment is larger, continue to operate assuming the nodes in the smaller segment have
failed.

« If the other segment is larger, shutdown to avoid creating two separate copies of the database.

For example, in the case shown in Figure 10.2, “Network Partition”, if anetwork partition separates nodes
A and B from C, the larger segment (nodes A and B) will continue to run and node C will shutdown (as
shown in Figure 10.3, “Network Fault Protection in Action”).

Figure 10.3. Network Fault Protection in Action

Network Partition

If a network partition creates two viable segments of the same size (for example, if a four node cluster
is split into two two-node segments), a specia case is invoked where one segment is uniquely chosen
to continue, based on the internal numbering of the host nodes. Thereby ensuring that only one viable
segment of the partitioned database continues.

Network fault protection is a very valuable tool when running VoltDB clustersin a distributed or uncon-
trolled environment where network partitions may occur. The one downside isthat thereis no way to dif-
ferentiate between network partitions and actual node failures. In the case where network fault protection
isturned on and no network partition occurs but alarge number of nodes actually fail, the remaining nodes
may believe they are the smaller segment. In this case, the remaining nodes will shut themselves down
to avoid partitioning.

For example, in the previous case shown in Figure 10.3, “Network Fault Protection in Action”, if rather
than a network partition, nodes A and B fail, hode C is the only node still running. Although node C is
viable and could continue because the database was configured with K-safety set to 2, if fault protection
is enabled node C will shut itself down to avoid a partition.

Intheworst case, if half the nodes of acluster fail, the remaining nodes may actually shut themselves down
under the special provisions for a network partition that splits a cluster into two equal parts. For example,
consider the situation where atwo node cluster with ak-safety value of one has network partition detection

88

Availability

enabled. If one of the nodes fails (half the cluster), thereis only a 50/50 chance the remaining node is the
"blessed" node chosen to continue under these conditions. If the remaining node is not the chosen node, it
will shut itself down to avoid a conflict, taking the database out of service in the process.

Because this situation — a 50/50 split — could result in either a network partition or a viable cluster
shutting down, VoltDB recommends always using network partition detection and using clusters with an
odd number of nodes. By using network partitioning, you avoid the dangers of a partition. By using an
odd number of servers, you avoid even the possibility of a 50/50 split, whether caused by partitioning or
node failures.

89

Chapter 11. Database Replication

There are times when it is useful to create multiple copies of a database. Not just a snapshot of a moment
intime, but live, constantly updated copies.

K-safety maintains redundant copies of partitions within a single VoltDB database, which helps protect
the database cluster against individua node failure. Database replication also creates a copy. However,
database replication creates and maintains copiesin separate, often remote, databases.

VoltDB supports two forms of database replication:
* One-way (Passive)
» Two-way (Cross Datacenter)

Passive replication copies the contents from one database, known as the master database, to the other,
known as the replica. In passive replication, replication occurs in one direction: from the master to the
replica. Clients can connect to the master database and perform all normal database operations, including
INSERT, UPDATE, and DELETE statements. As shown in Figure 11.1, “Passive Database Replication”
changes are copied from the master to the replica. To ensure consistency between the two databases, the
replicais started as a read-only database, where only transactions replicated from the master can modify
the database contents.

Figure 11.1. Passive Database Replication

==t
ww

Clients
EE H B B E E E EHE BE BB BB ’ E E
Cluster 1 Cluster 2
Master Replica

Cross Datacenter Replication (XDCR), or active replication, copies changes in both directions. XDCR
can be set up on multiple clusters (not just two). Client applications can then perform read/write operations
on any of the participating clusters and changes in one database are then copied and applied to all the other
databases. Figure 11.2, “ Cross Datacenter Replication” shows how XDCR can support client applications
attached to each database instance.

90

Database Replication

11.1.

Figure 11.2. Cross Datacenter Replication

Cluster 1 Cluster 2

| | |
»
J ¥ XA
L 8 ,l'o
QU sS4 R n .
(ul TNRN ¢4 jul
Clients ~ & Cluster3 » , Clients
“ S p
mr
N
o
Clients

Database replication (DR) providestwo key business advantages. Thefirst is protecting your business data
against catastrophic events, such as power outages or natural disasters, which could take down an entire
cluster. Thisis often referred to as disaster recovery. Because the clusters can be in different geographic
locations, both passive DR and XDCR alow other clusters to continue unaffected when one becomes
inoperable. Because the replica is available for read-only transactions, passive DR aso alows you to
offload read-only workloads, such as reporting, from the main database instance.

The second businessissue that DR addressesis the need to maintain separate, active copies of the database
in separate locations. For example, XDCR allows you to maintain copies of a product inventory database
at two or more separate warehouses, close to the applications that need the data. This feature makes it
possible to support massive numbers of clients that could not be supported by a single database instance
or might result in unacceptabl e latency when the database and the users are geographically separated. The
databases can even reside on separate continents.

It isimportant to note, however, that database replication is not instantaneous. The transactions are com-
mitted locally, then copied to the other database or databases. So when using XDCR to maintain multiple
active clusters you must be careful to design your applications to avoid possible conflicts when transac-
tions change the same record in two databases at approximately the same time. See Section 11.3.8, “Un-
derstanding Conflict Resolution” for more information about conflict resolution.

The remainder of this chapter discusses the following topics:

e Section 11.1, “How Database Replication Works”

Section 11.2, “Using Passive Database Replication”

Section 11.3, “Using Cross Datacenter Replication”

Section 11.4, “Monitoring Database Replication”

How Database Replication Works

Database replication (DR) involves duplicating the contents of selected tables between two database clus-
ters. In passive DR, the contents are copied in one direction: from master to replica. In active or cross
datacenter DR, changes are copied in both directions.

91

Database Replication

Y ou identify which tables to replicate in the schema, by specifying the table namein aDR TABLE state-
ment. For example, to replicate all tables in the voter sample application, you would execute three DR
TABLE statements when defining the database schema:

DR TABLE contestants;
DR TABLE votes;
DR TABLE area_code_st at e;

11.1.1. Starting Database Replication

You enable DR by including the <dr > tag in the configuration files when initializing the database. The
<dr > element identifies three pieces of information:

» A unique cluster ID for each database. The ID is required and can be any number between 0 and 127,
aslong as each cluster has a different ID.

» Therolethe cluster plays, whether master, replica, or xdcr. The default is master.

* For the replica and xdcr roles, a connection source listing the host name or I1P address of one or more
nodes from the other databases.

For example:

<dr id="2" role="replica">
<connection source="serverAl, server A2" [>
</dr>

Each cluster must have aunique ID. For passive DR, only the replicaneedsa<connect i on> element,
since replication occursin only one direction.

For cross datacenter replication (XDCR), all clusters must includethe<connect i on> element pointing
to at each one other cluster. If you are establishing an XDCR network with multiple clusters, the <con-

nect i on> tag can specify hostsfrom one or more of the other clusters. The participating clusterswill co-
ordinate establishing the correct connections, even if the<connect i on> element does not list them all.

Note that for XDCR, you must specify the attribute r ol e="xdcr" before starting each cluster. You
cannot mix active and passive DR in the same database group.

For passive DR, you must start the replica database with ther ol e="repl i ca" attribute to ensure the
replicais in read-only mode. Once the clusters are configured properly and the schema of the DR tables
match in the databases, replication starts.

The actual replication process is performed in multiple parallel streams; each unique partition on one
cluster sends a binary log of completed transactions to the other clusters. Replicating by partition has two
key advantages:

» Theprocessisfaster — Because the replication process uses abinary log of the results of the transaction
(rather than the transaction itself), the receiving cluster (or consumer) does not need to reprocess the
transaction; it simply applies the results. Also, since each partition replicates autonomously, multiple
streams of data are processed in parallel, significantly increasing throughout.

e The process is more durable — In a K-safe environment, if a server fails on a DR cluster, individual
partition streams can be redirected to other nodes or a stream can wait for the server to rejoin — without
interfering with the replication of the other partitions.

92

Database Replication

If data already exists in one of the clusters before database replication starts for the first time, that data-
base sends a snapshot of the existing data to the other, as shown in Figure 11.3, “Replicating an Existing
Database”. Once the snapshot isreceived and applied (and the two clusters are in sync), the partitions start
sending binary logs of transaction results to keep the clusters synchronized.

Figure 11.3. Replicating an Existing Database

Q, x
&g
Existing @‘fs g‘rQ
Data Qf)
::oaoooo.% Y .-
HE HE
Cluster 1 Cluster 2

For passive DR, only the master database can have existing data before starting replication for the first
time. Thereplica's DR tables must be empty. For XDCR, the first database that is started can have datain
the DR tables. If other clusters contain data, replication cannot start. Once DR has started, the databases
can stop and recover using command logging without having to restart DR from the beginning.

11.1.2. Database Replication, Availability, and Disaster Re-
covery

Once replication begins, the DR process is designed to withstand normal failures and operational down-
time. When using K-safety, if anode fails on any cluster, you can rejoin the node (or a replacement) us-
ing the voltdb start command without breaking replication. Similarly, if a cluster shuts down, you can
use voltdb start to restart the database and restart replication where it left off. The ability to restart DR
assumes you are using command logging. Specifically, synchronous command logging is recommended
to ensure compl ete durability.

If unforeseen events occur that make a database unreachable, database replication lets you replace the
missing database with its copy. Thisprocessisknown asdisaster recovery. For cross datacenter replication
(XDCR), you simply need to redirect your client applications to the remaining cluster(s). For passive
DR, there is an extra step. To replace the master database with the replica, you must issue the voltadmin
promote command on the replicato switch it from read-only mode to a fully operational database.

93

Database Replication

Figure 11.4. Promoting the Replica

Qo
(ww

|} |

| |

| | |
Cluster1 Cluster 2
Master Replica

$ voltadmin promote

See Section 11.2.6.3, “Promoting the Replica When the Master Becomes Unavailable” for moreinforma-
tion on promoting the replica database.

11.1.3. Database Replication and Completeness

It isimportant to note that, unlike K-safety where multiple copies of each partition are updated simultane-
ously, database replication involves shipping the results of completed transactions from one database to
another. Because replication happens after the fact, there is no guarantee that the contents of the clusters
areidentical at any given point in time. Instead, the receiving database (or consumer) "catches up" with
the sending database (or producer) after the binary logs are received and applied by each partition.

Also, because DR occurs on aper partition basis, changes to partitions may not occur in the same order on
the consumer, since one partition may replicate faster than another. Normally thisis not a problem because
the results of all transactions are atomic in the binary log. However, if the producer cluster crashes, there
is no guarantee that the consumer has managed to retrieve al the logs that were queued. Therefore, it is
possible that some transactions that completed on the producer are not reflected on the consumer.

Fortunately, using command logging, when you restart the failed cluster, any unacknowledged transactions
will bereplayed from thefailed cluster's disk-based DR cache, allowing the clustersto recover and resume
DR where they left off. However, if the failed cluster does not recover, you will need to decide how to
proceed. Y ou can choose to restart DR from scratch or, if you are using passive DR, you can promote the
replicato replace the master.

To ensure effective recovery, the use of synchronous command logging isrecommended for DR. Synchro-
nous command logging guarantees that all transactions are recorded in the command log and no transac-
tionsarelost. If you use asynchronous command logging, there is apossibility that abinary log is applied
but not captured by the command log before the cluster crashes. Then when the database recovers, the
clusters will not agree on the last acknowledged DR transaction, and DR will not be able to resume.

The decision whether to promote the replica or wait for the master to return (and hopefully recover all
transactions from the command log) is not an easy one. Promoting the replica and using it to replace the
original master may involve losing one or more transactions per partition. However, if the master cannot
be recovered or cannot not be recovered quickly, waiting for the master to return can result in significant
business loss or interruption.

Your own business requirements and the specific situation that caused the outage will determine which
choice to make — whether to wait for the failed cluster to recover or to continue operations on the re-

94

Database Replication

maining cluster only. The important point is that database replication makes the choice possible and sig-
nificantly eases the dangers of unforeseen events.

11.2. Using Passive Database Replication

The following sections provide step-by-step instructions for setting up and running passive replication
between two VoltDB clusters. The steps include:

1. Specifying what tables to replicate in the schema

2. Configuring the master and replicaroot directories for DR

3. Starting the databases

4. Loading the schema

The remaining sections discuss other aspects of managing passive DR, including:
 Updating the schema

* Stopping database replication

» Promoating the replica database

e Using thereplicafor read-only transactions

11.2.1. Specifying the DR Tables in the Schema

First, you must identify which tables you wish to copy from the master to the replica. Only the selected
tables are copied. You identify the tables in both the master and the replica database schema with the
DR TABLE statement, For example, the following statements identify two tables to be replicated, the
Customers and Orderstables:

CREATE TABLE custoners (
custoner| D | NTEGER NOT NULL,
firstname VARCHAR(128),
| ast nane VARCHAR(128)

)

CREATE TABLE orders (

order | D | NTEGER NOT NULL,
custoner| D | NTEGER NOT NULL,
pl aced TI MESTAMP

)

DR TABLE cust oners;

DR TABLE orders;

Y ou can identify any regular table, whether partitioned or not, asa DR table, aslong asthetableis empty.
That is, the table must have no datain it when you issue the DR TABLE statement.

The important point to remember isthat the schema for both databases must contain matching table defi-
nitionsfor any tablesidentified as DR tables, including the associated DR TABLE declarations. Although
it iseasiest to have the master and replica databases use the exact same schema, that is not necessary. The
replica can have a subset or superset of the tablesin the master, aslong asit contains matching definitions
for al of the DR tables. The replica schema can even contain additional objects not in the master schema,
such asadditional views. Which can be useful when using thereplicafor read-only or reporting workloads,
just aslong as the DR tables match.

95

Database Replication

11.2.2. Configuring the Clusters

The next step isto properly configure the master and replica clusters. The two database clusters can have
different physical configurations (that is, different numbers of nodes, different sites per host, or adifferent
K factor). Identical cluster configurations guarantee the most efficient replication, because the replica
does not need to repartition the incoming binary logs. Differing configurations, on the other hand, may
incrementally increase the time needed to apply the binary logs.

Before you start the databases, you must initialize the root directoriesfor both clusters with the appropriate
DR attributes. Y ou enable DR in the configuration file using the <dr > element, including a unique cluster
ID for each database cluster and that cluster'srole. The ID is a number between 0 and 127 which VoltDB
usesto uniquely identify each cluster as part of the DR process. Theroleis either master or replica.

For example, you could assign ID=1 for the master cluster and ID=2 for the replica. On the replica, you
must also include a<connect i on> sub-element that points to the master database. For example:

Master Cluster <dr id="1" role="master"/>
Replica Cluster <dr id="2" role="replica">
<connecti on source="NMaster Svr A, Mast er SvrB" />
</ dr>

11.2.3. Starting the Clusters

The next step is to start the databases. You start the master database as normal with the voltdb start
command. If you are creating a new database, you can then load the schema, including the necessary DR
TABLE statements. Or you can restore a previous database instance if desired. Once the master database
starts, it is ready and can interact with client applications.

For the replica database, you use the voltdb start command to start a new, empty database. Once the
database is running, you can execute DDL statementsto load the database schema, but you cannot perform
any data manipulation queries such as INSERT, UPDATE, or DELETE because the replicais in read-
only mode.

Thesour ce attribute of the<connect i on> taginthereplicaconfiguration fileidentifiesthe hostname
or P address (and optionally port number) of one or more servers in the master cluster. Y ou can specify
multiple servers so that DR can start evenif one of thelisted serverson the master cluster iscurrently down.

It isusually convenient to specify the connection information when initializing the database root directory.
But this property can be changed after the database is running, in case you do not know the address of
the master cluster nodes before starting. (Note, however, that the cluster ID cannot be changed once the
database starts.)

11.2.4. Loading the Schema and Starting Replication

As soon as the replica database starts with DR enabled, it will attempt to contact the master database to
start replication. The replica will issue warnings that the schema does not match, since the replica does
not have any schemadefined yet. Thisis normal. Thereplicawill periodically contact the master until the
schemafor DR objects on the two databases match. This gives you time to load a matching schema.

Assoon asthe replicadatabase has started, you can load the appropriate schema. L oading the same schema
as the master database is the easiest and recommended approach. The key point is that once a matching
schema is loaded, replication will begin automatically.

When replication starts, the following actions occur:

96

Database Replication

1. Thereplica and master databases verify that the DR tables match on the two clusters.

2. If dataaready existsin the DR tables on the master, the master sends a snapshot of the current contents
to the replicawhere it is restored into the appropriate tables.

3. Oncethe snapshot, if any, isrestored, the master starts sending binary logs of changesto the DR tables
to thereplica

If any errors occur during the snapshot transmission, replication stops and must be restarted from the
beginning. However, once the third step is reached, replication proceeds independently for each unique
partition and, in aK safe environment, the DR process becomes durable across node failures and rejoins
and other non-fatal events.

If either the master or the replica database crashes and needs to restart, it is possible to restart DR where it
left off, assuming the databases are using command logging for recovery. If the master fails, you ssimply
usethevoltdb start command to restart the master database. Thereplicawill wait for the master to recover.
The master will then replay any DR logs on disk and resume DR where it | eft off.

If the replicafails, the master will queue the DR logs to disk waiting for the replica to return. If you use
the voltdb start command on the replica cluster, the replicawill perform the following actions:

1. Restart the replica database, restoring both the schema and the data, and placing the database in read-
only mode.

2. Contact the master cluster and attempt to re-establish DR.

3. If both clusters agree on where (that is, what transaction), DR was interrupted, DR will resume from
that point, starting with the DR logs that the master database has queued in the interim.

If the clusters do not agree on where DR stopped during step #3, the replica database will generate an error
and stop replication. For example, if you recover from an asynchronous command log where the last few
DR logs were ACKed to the master but not written to the command log, the master and the replica will
bein different states when the replicarecovers.

If this occurs, you must restart DR from the beginning, by re-initializing the replica root directory (with
the --force flag), restarting the database, and then rel oading a compatible schema. Similarly, if you are not
using command logging, you cannot recover the replica database and must start DR from scratch.

11.2.5. Updating the Schema During Replication

Because database replication is asynchronous, updating the schemarequires a deliberate, planned process.
Y ou need to ensure that no transactions that write to the affected tables are executed while the schemais
being updated. If the DR consumer (that is, the replica) detects a transaction to a table where the schema
does not match, the replica stops requesting and processing binary logs from the master cluster. The master
cluster then queues all changes until the schemalis updated on the replica. Once the schema on the replica
is updated to match the incoming transaction, replication resumes.

The safest way to update the schemais the following:

1. Pause the master cluster with the voltadmin pause --wait command

2. Update the schema on the master and replica.

3. Resume operation on the master with the voltadmin resume command

These steps ensure that no transactions are processed until the schemafor both clusters are updated. How-
ever, this process al so means the master database does not accept any client transactions during the update
process.

97

Database Replication

Because schema validation occurs on a per table, per transaction basis, it is possible to update the schema
without pausing the database. However, this only works if you ensure that no client transactions attempt
to modify affected tables while the schema differ.

For example, it is possible to add tables to the database schemawithout pausing the database by adding the
tablesto the master database and replicain one step, then updating the stored procedures to access the new
tables in a second step. This way no client applications access the new tables until they exist and match
on both databases, and ongoing transactions are not impacted.

You can even modify existing DR tables without pausing the database. But in this case you must be
much more careful about avoiding operations that access the affected tables during the transition. If any
transactions attempt to write to an affected table while the schema differ, the replica will stall until the
schemamatch. One way to do thisisto create anew table, matching the existing table but with the desired
changes. Update the schema on both clusters, then update the client applications and stored proceduresto
use the new table. Finally, once all client applications are updated, the original table can be deleted.

11.2.6. Stopping Replication

If, for any reason, you wish to stop replication of a database, there are two ways to do this: you can stop
sending data from the master or you can "promote" the replica to stop it from receiving data. Since the
individua partitions are replicating data independently, if possible you want to make sure all pending
transfers are completed before turning off replication.

So, under the best circumstances, you should perform the following steps to stop replication:

1. Stop write transactions on the master database by putting it in admin mode using the voltadmin pause
command.

2. Wait for al pending DR log transfers to be completed.
3. Reset DR on the master cluster using the voltadmin dr reset command.

4. Depending on your goals, either shut down the replica or promote it to a fully-functional database as
described in Section 11.2.6.3, “Promoting the Replica When the Master Becomes Unavailable”.

11.2.6.1. Stopping Replication on the Master if the Replica Becomes Un-
available

If the replica becomes unavailable and is not going to be recovered or restarted, you should consider
stopping DR on the master database, to avoid consuming unnecessary disk space.

The DR processisresilient against network glitchesand node or cluster failures. Thisdurability isachieved
by the master database continually queueing DR logs in memory and — if too much memory is required
— to disk whileit waitsfor the replicato ACK the last message. Thisway, when the network interruption
or other delay is cleared, the DR process can pick up where it left off. However, the master database has
no way to distinguish a temporary network failure from an actual stoppage of DR on the replica.

Therefore, if the replica stops unexpectedly, it is a good idea to restart the replica and re-initiate DR as
soon as convenient. Or, if you are not going to restart DR, you should reset DR on the master to cancel
the queuing of DR logs and to delete any pending logs. To reset the DR process on the master database,
use the voltadmin dr reset command. For example:

$ voltadnm n dr reset --host=serverA

98

Database Replication

Of course, if you do intend to recover and restart DR on the replica, you do not want to reset DR on the
master. Resetting DR on the master will delete any queued DR logs and make restarting replication where
it left off impossible and force you to start DR over from the beginning.

11.2.6.2. Database Replication and Disaster Recovery

If unforeseen events occur that make the master database unreachabl e, database replication |etsyou replace
the master with the replicaand restore normal business operationswith aslittle downtime as possible. You
switch the replica from read-only to a fully functional database by promoting it. To do this, perform the
following steps:

1. Make sure the master is actually unreachable, because you do not want two live copies of the same
database. If it is reachable but not functioning properly, be sure to pause or shut down the master
database.

2. Promote the replicato a read/write mode using the voltadmin promote command.
3. Redirect the client applications to the newly promoted database.

Figure 11.4, “Promoting the Replica’ illustrates how database replication reduces the risk of major disas-
ters by alowing the replicato replace the master if the master becomes unavailable.

Once the master is offline and the replica is promoted, the data is no longer being replicated. As soon as
normal business operations have been re-established, it isagood ideato aso re-establish replication. This
can be done using any of the following options:

« If the original master database hardware can be restarted, take a snapshot of the current database (that
is, the original replica), restore the snapshot on the original master and redirect client traffic back to the
original. Replication can then be restarted using the original configuration.

» An dlternative, if the original database hardware can be restarted but you do not want to (or need to)
redirect the clients away from the current database, is to use the original master hardware to create
areplica of the newly promoted cluster — essentially switching the roles of the master and replica
databases — as described in Section 11.2.6.4, “Reversing the Master/Replica Roles”.

* If the original master hardware cannot be recovered effectively, create a new database cluster in athird
location to use as areplica of the current database.

11.2.6.3. Promoting the Replica When the Master Becomes Unavailable

If the master database becomes unreachable for whatever reason (such as catastrophic system or network
failure) it may not be possible to turn off DR in an orderly fashion. In this case, you may choose to “turn
on” the replica as afully active (writable) database to replace the master. To do this, you use the voltad-
min promote command. When you promote the replica database, it exits read-only mode and becomes
afully operational VoltDB database. For example, the following Linux shell command uses voltadmin
to promote the replica node serverB:

$ voltadnmin promote --host=serverB

11.2.6.4. Reversing the Master/Replica Roles

If you do promote the replicaand start using it as the primary database, you will likely want to establish a
new replica as soon as possible to return to the original production configuration and level of durability.
Y ou can do this by creating a new replica cluster and connecting to the promoted database as described in
Section 11.2.3, “ Starting the Clusters” . Or, if the master database can berestarted, you can reusethat cluster
as the new replica, by modifying the configuration file to change the DR role from master to replica, and

99

Database Replication

add the necessary <connect i on> element, re-initializing the database root directory, and then starting
the new database cluster with the voltdb start command.

11.2.7. Database Replication and Read-only Clients

While database replication is occurring, the only changes to the replica database come from the binary
logs. Client applications can connect to the replica and use it for read-only transactions, including read-
only ad hoc queries and system procedures. However, any attempt to perform a write transaction from a
client application returns an error.

There will aways be some delay between a transaction completing on the master and its results being
applied on the replica. However, for read operationsthat do not require real-time accuracy (such as report-
ing), the replica can provide a useful source for offloading certain less-frequent, read-only transactions
from the master.

Figure 11.5. Read-Only Accessto the Replica

|
o at

(read-only)
== HE E EEEEEENEENEENEENEDBHESHSR ’ = =
1 | [} |
Cluster1 Cluster 2
Master Replica

11.3. Using Cross Datacenter Replication

The following sections provide step-by-step instructions for setting up and running cross datacenter repli-
cation (XDCR) between two or more VoltDB clusters. The sections describe how to:

1. Design your schemaand identify the DR tables
2. Configure the database clusters, including:
» Choosing unique cluster IDs
¢ ldentifying the DR connections
3. Start the databases
4. Load the schema and start replication
Later sections discuss other aspects of managing XDCR, including:
* Updating the schema during replication
* Stopping database replication

* Resolving conflicts

100

Database Replication

I mportant

XDCR isaseparately licensed feature. If your current VoltDB license does not include akey for
XDCR you will not be ableto complete the tasks described in this section. See your VoltDB sales
representative for more information on licensing XDCR.

11.3.1. Designing Your Schema for Active Replication

To manage XDCR, VoltDB storesasmall amount (8 bytes) of extrametadatawith every row of datathat is
shared. Thisadditional spaceisallocated automatically for any table declared asaDR TABLE on acluster
configured with the <dr > role attribute set to xdcr. Be sure to take this additional space requirement into
consideration when planning the memory usage of servers participating in an XDCR network.

Next, you must identify which tables you wish to share between the databases. Only the selected tables are
copied. You identify the tables in the schemawith the DR TABLE statement. For example, the following
statements identify two tablesto be replicated, the Customers and Orders tables:

CREATE TABLE custoners (
custoner | D | NTEGER NOT NULL,
firstname VARCHAR(128),
LASTNAME var char (128)

)

CREATE TABLE orders (

order | D | NTEGER NOT NULL,
custoner | D | NTEGER NOT NULL,
pl aced TI MESTAMP

)

DR TABLE cust oners;

DR TABLE orders;

Y ou can identify any regular table, whether partitioned or not, asa DR table, aslong asthetableis empty.
That is, the table must have no datain it when you issue the DR TABLE statement. The important point
to remember is that the schema definitions for all DR tables, including the DR TABLE statements, must
beidentical on all the participating clusters.

11.3.2. Configuring the Database Clusters

The next step is to configure and initialize the database root directories. The database clusters can have
different physical configurations (that is, different numbers of nodes, different sites per host, or adifferent
K factor). Identical cluster configurations guarantee the most efficient replication, because the databases
do not need to repartition the incoming binary logs. Differing configurations, on the other hand, may
incrementally increase the time needed to apply the binary logs.

When initializing the database root directories, you must also enable and configure DR in the configuration
file, including:

» Choosing a unique ID for each cluster

» Specifying the DR connections

11.3.2.1. Choosing Unique IDs

Y ou enable DR in the configuration file using the <dr > element and including a unique cluster ID for
each database cluster.

101

Database Replication

To manage the DR process VoltDB needs to uniquely identify the clusters. Y ou provide this unique iden-
tifier asanumber between 0 and 127 when you configure the clusters. For example, if weassign ID=1toa
cluster in New Y ork and ID=2 to another in Chicago, their respective configuration files must contain the
following <dr > elements. Y ou must also specify that the cluster is participating in XDCR by specifying
therole. For example:

New York Cluster
<dr id="1" role="xdcr" />
Chicago Cluster

<dr id="2" role="xdcr" />

11.3.2.2. Identifying the DR Connections

For each database cluster, you must also specify the source of replication in the <connect i on> sub-
element. Y ou do this by pointing each cluster to at least one of the other clusters, specifying one or more
servers on the remote cluster(s) in the source attribute.

You only need to point each connection source at servers from one of the other clusters, even if more
clusters are participating in the XDRC relationship. However, it is a good idea to include them all in the
source string so the current cluster is not dependent on the order in which the clusters start.

For example, say there are two clusters. The New York cluster has nodes NY serverA, NY serverB, and
NY serverC. While the Chicago cluster has CHIserverX, CHIserverY, and CHIserverZ. The configuration
filesfor the two clusters might look like this:

New York Cluster

<dr id="1" role="xdcr" >
<connecti on source="CHl server X, CH serverY" />
</ dr>

Chicago Cluster

<dr id="2" role="xdcr" >
<connecti on sour ce="NYserver A NYser ver B, NYserverC' />
</ dr>

Note that both clusters must have a connection defined for active replication to start. An alternative ap-
proach isto initialize the databases |eaving the source attribute of the <connection> element empty. You
can then update the configuration to add source servers once the database is up and running and the ap-
propriate schema has been applied. For example:

<dr id="1" rol e="xdcr">
<connection source="" />
</ dr>

Once the configuration files have the necessary declarations, you can initialize the root directories on all
cluster nodes using the appropriate configuration files:

New York Cluster
$ voltdb init -D ~/nydb --config=nyconfig.xm

Chicago Cluster

102

Database Replication

$ voltdb init -D ~/chidb --config=chiconfig.xnl

If you then want to add a third cluster to the XDRC relationship (say San Francisco), you can define a
configuration file that points at either or both of the other clusters:

San Francisco Cluster

<dr id="3" role="xdcr" >
<connecti on source="CHl server X, CH serverY, NYserver A, NYserverB" />
</ dr>

When configuring three or more XDCR clusters, you also have the option of specifying which cluster a
new instance uses as the source for downloading theinitial snapshot. For example, if two of the clustersare
located in the same physical location, you can specify the cluster ID of apreferred sourceto reducethetime
needed to synchronize the clusters. Note that the preferred source attribute only applies when the database
first joins the XDCR environment or if DR is restarted from scratch. When the cluster recovers existing
data under normal operation the preferred sourceisignored. For example, a second Chicago cluster could
specify the cluster ID of the original Chicago database as the preferred source, like so:

2nd Chicago Cluster

<dr id="4" role="xdcr" >
<connection source="CHI server X, CH serverY, NYserver A NYser ver B"
preferred-source="2" />
</dr>

11.3.3. Starting the Database Clusters

Oncethe serversareinitialized with the necessary configuration, you can start the database clusters. How-
ever, it isimportant to note three important points:

* Only one of the clusters can have data in the DR tables when setting up XDCR and that database must
bethe first in the XDCR network. In other words, start the database containing the datafirst. Then start
and connect a second, empty databaseto it.

» Assoon asthe databases start, they automatically attempt to contact each other, verify that the DR table
schema match, and start the DR process

e Only one database can join the XDCR network at a time. You must wait for each joining cluster to
complete theinitial synchronization before starting the next.

Often the easiest method for starting the databasesis to:

1. Start one cluster

2. Load the schema (including the DR table declarations) and any pre-existing data on that cluster

3. Oncethefirst cluster isfully configured, start the second cluster and load the schema

4. Oncethe second cluster finishes synchronizing with thefirst, start each additional cluster, one at atime.

Using this approach, DR does not start until step #3 is complete and the first two clusters are fully config-
ured. Then any additional clusters are added separately.

You can then start and load the schema on the databases and perform any other preparatory work you
require. Then edit the configuration files— one at atime using the voltadmin update command — filling

103

Database Replication

in the source attribute for each cluster to point at another. As soon as the source attribute is defined and
the schema match, the DR process will begin for the first pair of clusters. Once the first two clusters
synchronize, you can repeat this process, one at atime, with any other participating clusters.

Note

Although the source attribute can be modified on arunning database, the unique cluster 1D cannot
be changed after the database starts. So it isimportant to include the <dr> element with the unique
ID and xdcr role when initializing the database root directories.

11.3.4. Loading a Matching Schema and Starting Replication

As soon as the databases start with DR enabled, they attempt to contact a cooperating database to start
replication. Each cluster will issue warnings until the schemafor the databases match. Thisis normal and
gives you time to load a matching schema. The key point is that once matching schema are loaded on the
databases, replication will begin automatically.

When replication starts, the following actions occur:
1. Theclusters verify that the DR tables match on both clusters.

2. If dataalready exists in the DR tables of the first database, that cluster sends a snapshot of the current
contents to the other cluster where it is restored into the appropriate tables.

3. Oncethe snapshot, if any, isrestored, both databases (and any other participating clusters) start sending
binary logs of changes from DR tablesto the other cluster.

If any errors occur during the snapshot transmission, replication stops and must be restarted from the
beginning. However, once the third step is reached, replication proceeds independently for each unique
partition and, in aK safe environment, the DR process becomes durable across node failures and rejoins
aswell as cluster shutdowns and restarts.

11.3.5. Updating the Schema During Active Replication

SQL statements such as DELETE, INSERT, and UPDATE are transmitted through the DR binary logs,
but schema changes are not. Therefore, you must make schema changes to each database separately. More
importantly, while doing this you must be careful to ensure that no transactions attempt to modify datain
tables where the schema does not match on the cooperating clusters.

If a consumer cluster (cluster A) receives a replication record in the binary log that does not match the
schema for that table in the database, the consumer will stop processing binary logs from the producer
(cluster B). Replicationwill remain stalled until the schemais updated to match what wasreceived fromthe
producer. At the sametime, the producer will buffer any subsequent transactions waiting for the consumer
to resume replication.

In the best case, there are mismatched transactions in only one direction (that is, from cluster B to cluster
A). If so, once you update the schema on the stalled consumer cluster A, replication resumes and cluster
B can send the subsequent transactions it had buffered.

However, while binary logs from the producer are stalled, the consumer continues to process client trans-
actionsitself and will send those transactions as binary logsto the other cluster. That is, cluster A also acts
asaproducer sending binary logsto cluster B asaconsumer. If there are simultaneous write transactionsto
the same table on the two clusters while the schema do not match, a deadlock can result. Both clusters will
stall dueto mismatched schemaand their content will have diverged. Inthissituation, your only optionisto
choose one of the clusters asthe "winner" and reinitialize the other cluster and restart XDCR from scratch.

104

Database Replication

To avoid conflicts, the safest process for changing the schemafor DR tablesin XDCR is the following:

1. Pause and drain the outstanding DR binary logs on all clusters using the voltadmin pause --wait com-
mand

2. Update the schemafor the DR tables on al clusters
3. Resume all clusters using the voltadmin resume command

This process ensures that no transactions are processed until the schema on all clusters in the XDCR
relationship are updated and in sync. However, this process also meansthat there are no client transactions
processed during the update.

It is possible to update the schema without pausing the database. However, to do this, you must be ex-
tremely careful to ensure that no transactions attempt to modify tables while the schema differ between
the clusters. For example, it is possible to add tables to the database schema without pausing the database.
You can add the new tables to the databases in one step, then update the stored procedures and client
applicationsin asecond step. Thisway no client applications access the new tables until their schemaexist
and match on all of the XDCR databases. At the same time, ongoing transactions associated with older
tables are not impacted.

11.3.6. Stopping Replication

If, for any reason, you need to break replication between the XDCR databases, you can issuethevoltadmin
dr reset command to any cluster. For example, if one of two clusters goes down and will not be brought
back online for an extended period, you can issue avoltadmin dr reset command on the remaining cluster
to tell it to stop queuing binary logs. If not, the logs will be saved on disk, waiting for the other cluster
to return, until you run out of disk space.

When using multiple clusters in an XDCR environment, you must choose whether to break replication
with al other clusters (voltadmin dr reset --all) or with one specific cluster. Breaking replication with
all clusters means that all of the other clusters will need to restart DR from scratch to rejoin the XDCR
environment. Breaking replication with a single cluster means the remaining clusters retain their XDCR
relationship.

If you wish to remove just one, active cluster from the XDCR relationship, you can issue the voltadmin
dr drop command to the cluster you wish to remove. This command finalizes any remaining DR logs on
the cluster and tells all other clustersto break their DR connection with that cluster. If the cluster you want
to removeis not currently running, you can issue the voltadmin dr reset --cluster=n to all the remaining
clusters where n isthe cluster 1D of the cluster being removed.

However, there is a danger that if you remove a failed cluster from a multi-cluster XDCR environment,
the failed cluster may not have sent the same binary logs to all of the other clusters. In which case, when
you drop that cluster from the environment, the data on the remaining clusters will diverge. So, using dr
reset --cluster isrecommended only if you are sure that there were no outstanding logsto be sent from the
failed cluster. For example, stopping an XDCR cluster with an orderly shutdown (voltadmin shutdown)
ensures that all its binary logs are transmitted and therefore the other clusters arein sync.

When using the dr reset --cluster command, you must also include the --for ce option to verify that you
understand the risks associated with this action. So, the process for removing a single, failed cluster from
amulti-cluster XDCR environment is:

1. Identify the cluster ID of the cluster that has failed.

2. Issuethevoltadmin dr reset --cluster ={failed-cluster-1D} --for ce command on all the remaining clus-
tersto clear the binary log queues.

105

Database Replication

Thisway, the remaining clusters can maintain their XDCR relationship but not retain queued data for the
failed cluster. If, later, you want to rejoin the failed cluster to the XDCR environment, you will need to
reinitialize the failed cluster's root directories and restart its XDCR relationship from scratch.

11.3.7. Example XDCR Configurations

It is not possible to mix XDCR clusters and passive DR in the same database relationship. However, it is
possible to create "virtua" replicasin a XDCR environment, if your business requiresit.

Normally, in an XDCR environment, all cluster participate equally. They can all initiate transactions and
replicate those transactions among themselves, as shown in Figure 11.6, “ Standard XDCR Configuration”.

Figure 11.6. Standard XDCR Configuration

id=3
AT
- - L]] - -

- gl - - L - L
|d=1f ‘id=2
Hl = oo - - b mm
- s -

If you also want to have one (or more) clusters on "standby", for example, purely for disaster recovery
or to off-load read-only workloads, you can dedicate clusters from within your XDCR environment for
that purpose. The easiest way to do that is to configure the extra clusters as normal XDCR clusters. That
is setting their role as "XDCR" and assigning them a unique DR ID. However, rather than starting the
clustersin normal operational mode, you can usethe - - pause flag on the voltdb start command to start
them in admin mode. Thisway no transactions can be initiated on the cluster's client ports. However, the
cluster will receive and process DR binary logs from the other clustersin the DR relationship. Figure 11.7,
“XDCR Configuration with Read-Only Replicas” demonstrates one such configuration.

Figure11.7. XDCR Configuration with Read-Only Replicas

.
‘

r
*

r
F
>
HHEE EEPEE
L3
*

voltdb start --pause

11.3.8. Understanding Conflict Resolution

One aspect of database replication that is unique to cross datacenter replication (XDCR) is the need to
prepare for and manage conflicts between the databases. Conflict resolution is not an issue for passive
replication since changes travel in only one direction. However, with XDCR it is possible for changes to

106

Database Replication

be made to the same data at approximately the same time on two databases. Those changes are then sent
to the other database, resulting in possible inconsistencies or invalid transactions.

For example, say clusters A and B are processing transactions as shown in Figure 11.8, “Transaction
Order and Conflict Resolution”. Cluster A executes a transaction that modifies a specific record and this
transaction is included in the binary log A;. By the time cluster B receives the binary log and processes
A4, cluster B has aready processed its own transactions B, and B». Those transactions may have modified
the same record as the transaction in A, or another record that would conflict with the changein A1, such
as a matching unique index entry.

Figure 11.8. Transaction Order and Conflict Resolution

R e

Cluster A Cluster B
Al/!0— - _Bi—
R
Bi—— <4 T AT/
A3 j— 837
A4 j— 84:

Under these conditions, cluster B cannot simply apply the changes in A4 because doing so could violate
the unigqueness constraints of the schema and, more importantly, is likely to result in the content of the
two database clusters diverging. Instead, cluster B must decide which change takes priority. That is, what
resolution to the conflict is most likely to produce meaningful results or match the intent of the business
application. This decision making processis called conflict resolution.

No matter what the resolution, it isimportant that the database administrators are notified of the conflict,
why it occurred, and what action was taken. The following sections explain:

» How to avoid conflicts
» How VolItDB resolves conflicts when they do occur
» What types of conflicts can occur

» How those conflicts are reported

11.3.8.1. Designing Your Application to Avoid Conflicts

VoltDB useswell-defined rules for resolving conflicts. However, the best protection against conflicts and
the problems they can cause is to design your application to avoid conflictsin the first place. There are at
least two things you can do in your client applications to avoid conflicts:

* UsePrimary Keys

It is best, wherever possible, to define a primary key for al DR tables. The primary key index greatly
improves performance for finding the matching row to apply the change on aconsumer cluster. It isalso
required if you want conflicts to be resolved using the standard rules described in the following section.
Any conflicting action without a primary key is rejected.

» Apply related transactionsto the same cluster

107

Database Replication

Another tactic for avoiding conflictsis to make sure any autonomous set of transactions affecting a set
of rows are al applied on the same cluster. For example, ensuring that all transactions for a single user
session, or associated with a particular purchase order, are directed to the same cluster.

* Donot ussTRUNCATE TABLE

TRUNCATE TABLE is a convenient statement for deleting all records in a table. The statement is
optimized to avoid deleting row by row. However, this optimization means that the binary log does
not report which rows were deleted. As a consequence, a TRUNCATE TABLE statement can easily
produce a conflict between two XDCR clusters that is not detected or reported in the conflict log.

Therefore, do not use TRUNCATE TABLE with XDCR. Instead, explicitly delete all rows with a
DELETE statement and afilter. For example, DELETE * FROMt abl e WHERE col unm=col um
ensures all deleted rows are identified in the binary log and any conflicts are accurately reported.

Note that DELETE FROM t abl e isnot sufficient, since its execution plan is optimized to equate to
TRUNCATE TABLE. Also, when deleting all rowsin atable, it is best to perform the deletein smaller
batches to avoid overflowing the maximum size allowed for the binary log packets.

11.3.8.2. How Conflicts are Resolved

Even with the best application design possible, errorsin program logic or operation may occur that result
in conflicting records being written to two or more databases. When a conflict does occur, VoltDB follows
specific rules for resolving the issue. The conflict resolution rules are:

» Conflicts are resolved on a per action basis. That is, resolution rules apply to the individual INSERT,
UPDATE, or DELETE operation on a specific tuple. Resolutions are not applied to the transaction as
awhole.

» The resolution is that the incoming action is accepted (that is, applied to the receiving database) or
rejected.

» Only actions involving a table with a primary key can be accepted, all other conflicting actions are
rejected.

» Accepted actions are applied as a whole — the entire record is changed to match the result on the
producer cluster. That meansfor UPDATE actions, all columnsarewritten not just the columns specified
in the SQL statement.

* For tables with primary keys, the rules for which transaction wins are, in order:
1. DELETE transactions always win
2. If neither action isa DELETE, the last transaction (based on the timestamp) wins

Let'slook at a simple example to see how these rules work. Assume that the database stores user records,
using a numeric user 1D as the primary key and containing columns for the user's name and password. A
user logs on simultaneously in two locations and performstwo separate updates: one on cluster A changing
their name and one on cluster B changing the password. These updates are almost simultaneous. However,
cluster A timestamps its transaction as occurring at 10:15.00.003 and cluster B timestamps its transaction
at 10:15.00.001.

The binary logs from the two transactions include the type of action, the contents of the record before
and after the change, and the timestamps — both of the last previous transaction and the timestamp of the
new transaction. (Note that the timestamp includes both the time and the cluster ID where the transaction
occurred.) So the two binary logs might look like the following.

108

Database Replication

Binary Log A1:

Action: UPDATE
Current Tinestanp: 1, 10:15.00. 003
Previ ous Tinmestanp: 1, 06:30.00.000

Before After
User | D 12345 User | D 12345
Nane: Joe Smith Nane: Joseph Smith
Passwor d: abal one Passwor d: abal one
Binary Log By:

Action: UPDATE
Current Tinestanp: 2, 10:15.00.001
Previ ous Tinmestanp: 1, 06:30.00.000

Before After
User | D 12345 User | D 12345
Name: Joe Snmith Name: Joe Snmith
Passwor d: abal one Password: fl ounder

When the binary log A, arrives at cluster B, the DR process performs the following steps:
1. Usesthe primary key (12345) to look up the current record in the database.
2. Compares the current timestamp in the database with the previous timestamp in the binary log.

3. Because the transaction in B4 has aready been applied on cluster B, the time stamps do not match. A
conflict is recognized.

4. A primary key exists, so cluster B attempts to resolve the conflict by comparing the new timestamp,
10:15.00.003, to the current timestamp, 10:15.00.001.

5. Because the new timestamp isthe later of the two, the new transaction "wins' and the change is applied
to the database.

6. Findly, the conflict and resolution is logged. (See Section 11.3.8.4, “Reporting Conflicts’ for more
information about how conflicts are reported.)

Note that when the UPDATE from A is applied, the change to the password in B is overwritten and
the password is reset to "abalone". Which at first looks like a problem. However, when the binary log B,
arrives at cluster A, the same steps are followed. But when cluster A reaches steps #4 and 5, it finds that
the new timestamp from B, isolder than the current timestamp, and so the action isrejected and the record
is left unchanged. As a result both databases end up with the same value for the record. Essentially, the
password change is dropped.

If the transaction on cluster B had been to delete the user record rather than change the password, then
the outcome would be different, but still consistent. In that case, when binary log A, reaches cluster B, it
would not be able to find the matching record in step #1. Thisis recognized as a DELETE action having
occurred. Since DELETE awayswins, theincoming UPDATE isrejected. Similarly, when binary log B,
reaches cluster A, the previous timestamps do not match but, even though the incoming action in B, has
an older timestamp than the UPDATE action in A1, B; "wins' because it is a delete action and the record
isdeleted from cluster A. Again, the result is consistent across the two databases.

109

Database Replication

The real problem with conflicts is when there is no primary key on the database table. Primary keys
uniquely identify arecord. Without aprimary key, thereisno way for VoltDB to tell, eveniif there are one
or more unique indexes on the table, whether two records are the same record modified or two different
records with the same unique key values.

Asaresult, if there is a conflict between two transactions without a primary key, VoltDB has no way to
resolve the conflict and simply rejects the incoming action. Going back to our example, if the user table
had a unique index on the user ID rather than a primary key, and both cluster A and cluster B update the
user record at approximately the same time, when binary log A1 arrives at cluster B, it would look for the
record based on all columnsin the record and fail to find a match.

However, when it attemptsto insert the record, it will encounter a constraint violation on the unique index.
Again, since thereisno primary key, VoltDB cannot resolve the conflict and rejects the incoming action,
leaving the record with the changed password. On cluster A, the same process occurs and the password
changein By getsrejected, leaving cluster A with a changed name column and database B with a changed
password column — the databases diverge.

11.3.8.3. What Types of Conflict Can Occur

The preceding section uses a simple case of conflicting UPDATE transactions to illustrate the steps in-
volved in conflict resolution. However, there are several different types of conflict that can occur. First,
there are three possible actions that the binary log can contain: INSERT, UPDATE, or DELETE. There
are also three types of conflicts that can be generated:

» Missing row — The affected row is missing from the consumer database.

» Timestamp mismatch — The affected row exists in the consumer database, but has a different time-
stamp than expected (in other words, it has been modified).

» Constraint violation — Applying theincoming action would result in one or more constraint violations
on unigue indexes.

A missing row means that the binary log contains an UPDATE or DELETE action, but the affected row
cannot be found in the consumer database. (A missing row conflict cannot occur for INSERT actions, since
INSERT assumes no such row exists.) In the case of amissing row conflict, VoltDB assumesa DELETE
action has removed the affected row. Since the rule is that DELETE wins, this means the incoming action
isrejected.

Note that if the table does not have a primary key, the assumption that a DEL ETE action removed the row
is not guaranteed to be true, since it is possible an UPDATE changed the row. Without a primary key,
thereisno way for the DR process to find the matching row when some columns may have changed, so it
assumes it was deleted. As aresult, an UPDATE could occur on one cluster and a DELETE on the other.
Thisiswhy assigning primary keysis recommended for DR tables when using XDCR.

If the matching primary key isfound, it is still possible that the contents of the row have been changed.
In which case, the timestamps will hot match and a timestamp mismatch conflict occurs. Again, this can
happen for UPDATE and DEL ETE actionswhere an existing row isbeing modified. If theincoming action
is a DELETE, it takes precedence and the row is deleted. If not, if the incoming action has the later of
the two timestamps, it is accepted. If the existing record has the later timestamp, the incoming action is
rejected.

Finally, whether the timestamps match or not, with an INSERT or UPDATE action, it is possible that
applying the action would violate one of more unique index constraints. This can happen because another
row has been updated with matching values for the unique index or another record has been inserted
with similar values. Whatever the cause, VoltDB cannot apply the incoming action so it is rejected. Note

110

Database Replication

that for a single action there can be more than one unique index that applies to the table, so there can
be multiple constraint violations as well as a possible incorrect timestamp. When a conflict occurs, all
conflicts associated with the action are included in the conflict log.

To summarize, the following chart shows the conflicts that can occur with each type of action and the

result for tables with a primary key.

Action Possible Conflict

Result for Tableswith Primary Key

INSERT Constraint violation

Rejected

UPDATE Missing row Rejected
Timestamp mismatch Last transaction wins
Constraint violation Rejected

DELETE Missing row Accepted (no op)
Timestamp mismatch Accepted

11.3.8.4. Reporting Conflicts

VoltDB makes arecord of every conflict that occurs when processing the DR binary logs. These conflict
logsinclude:

* Theintended action

» Thetype of conflict

» Thetimestamp and contents of the row before and after the action from the binary log

» Thetimestamp and contents of the row(s) in the consumer database that caused the conflict
e Thetimestamp and cluster ID of the conflict itself

By default, these logs are written as comma-separated value (CSV) files on the cluster where the con-
flictsoccur. Thesefiles are usually written to a subfolder of the voltdbroot directory (vol t dbr oot / xd-
cr_confl i ct s)usingthefileprefix LOG. However, you can configurethelogsto bewritten to different
destinations or locations using the VVoltDB export configuration settings.

The DR process writes the conflicts as export data to the export stream VOLTDB_XDCR_CONFLICTS.
You do not need to explicitly configure export — the DR process automatically declares the necessary
export streams, establishes a default export configuration for the file connector, and enables the export
stream. However, if you want the datato be sent to adifferent location or using adifferent export connector,
you can do this by configuring the export stream yourself.

For example, if you want to export the XDCR conflicts to a Kafka stream where they can be used for
automatic notifications, you can change the export propertiesin the configuration file. The following con-
figuration file code writesthe conflict logsto the Kafkatopic sysops on the broker kafkabroker.mycompa:
ny.com:

<export >
<configuration enabl ed="true" type="kafka"
streane" VOLTDB_XDCR_CONFLI CTS" >
<property nanme="br oker">kaf kabr oker . myconpany. conx/ property>
<property nanme="topi c">sysops</ property>
</ configuration>
</ export >

111

Database Replication

Each action in the binary log can generate one or more conflicts. When this occurs, VoltDB logs the
conflict(s) as multiple rows in the conflict report. Each row is identified by the type of action (INSERT,
UPDATE, DELETE) aswell asthe type of information the row contains:

* EXISTING (EXT) — The timestamp and contents of an existing row in the consumer database that
caused a conflict. There can be multiple existing row logs, if there are multiple conflicts.

» EXPECTED (EXP) — The timestamp and contents of the row that is expected before the action is
applied (from the binary log).

* NEW (NEW) — The new timestamp and contents for the row once the action is applied (from the
binary log).

» DELETE (DEL) — For a DELETE conflict, the timestamp and cluster ID indicating when and where
the conflict occurred.

For an INSERT action, there is no EXPECTED row. For either an INSERT or an UPDATE action there
isno DELETE row. And for a DELETE action there isno NEW row. The order of the rows in the report
isasfollows:

1. The EXISTING row, if thereis atimestamp mismatch

2. The EXPECTED row, if there is atimestamp mismatch

3. One or more EXISTING rows, if there are any constraint violations
4. The NEW row, for all actions but DELETE

5. The DELETE row, for the DELETE action only

Table 11.1, “ Structure of the XDCR Conflict Logs’ describes the structure and content of the conflict log
records in the export stream.

Table 11.1. Structure of the XDCR Conflict L ogs

Column Name Datatype Description
ROW_TYPE 3 Byte string The type of row, specified as:

EXT — existing
EXP — expected
NEW— new
DEL — delete

ACTION_TYPE 1 Bytestring The type of action, specified as:

| —insert
U— update
D— delete

CONFLICT_TYPE 4 Byte string The type of conflict, specified as:

M SS — missing row

MBMT — timestamp mismatch
CNST — constraint violation
NONE — no violation?

CONFLICTS ON TINYINT Whether aconstraint violation is associated with the
_PRIMARY_KEY primary key. 1 for true and O for false.

112

Database Replication

114

Column Name Datatype Description

DECISION 1 Bytestring How the conflict was resolved, specified as:

A — the incoming action is accepted
R — the incoming action is rejected

CLUSTER_ID TINYINT The DR cluster ID of the cluster that last modified
the row

TIMESTAMP BIGINT The timestamp of the row.

DIVERGENCE 1 Bytestring Whether the resulting action could cause the two

cluster to diverge, specified as:

C— the clusters are consistent
D — the cluster may have diverged

TABLE_NAME String The name of the table.

CURRENT TINYINT The DR cluster 1D of the cluster reporting the con-
_CLUSTER_ID flict.

CURRENT BIGINT The timestamp of the conflict.

_TIMESTAMP

TUPLE JSON-encoded string The schema and contents of the row, as a JSON-en-

coded string. The column islimited to IMB in size.
If the schema and contents exceeds the IMB limit,
it istruncated.

8Update operations are executed as two separate statements: a delete and an insert, where only one of the two statements might result
inaviolation. For example, the delete may trigger amissing row violation but the insert not generate a violation. In which case the
EXT row of the conflict log reports the MISS conflict and the NEW row reports NONE.

Monitoring Database Replication

Database replication runs silently in the background. To ensure replication is proceeding effectively, Volt-
DB provides statistics on the producer and consumer clusters that help you understand the current state of
the DR process. Specifically, the statistics can tell you:

» The amount of DR data waiting to be sent from the producer
» Thetimestamp and unique ID of the last transaction received by the consumer
* Whether any partitions are "falling behind" in processing DR data

This information is available from the @Statistics system procedure using the DRROLE, DR-
CONSUMER, and DRPRODUCER sdlectors. All clusters provide summary information in response to
the DRROLE selector. For one-way (passive) DR, the master database isa " producer” and provides addi-
tional information through the DRPRODUCER selector and the replica is the "consumer" and provides
additional information through the DRCONSUMER selector. For two-way (cross datacenter) replication,
all clusters act as both producer and consumer and can provide statistics on both roles:

* On all databases, the @Statistics DRROLE procedure provides summary information about the data-
base's DR role (master, replica, xdcr, or none), the cluster 1D, and the current state of the DR process.

» On the producer database, the @Statistics DRPRODUCER procedure includes columns for the cluster
IDs of the current cluster and the consumer, as well as the transaction ID and timestamp of the last
queued transaction and for the last transaction ACKed by the consumer. The difference between these
two events can tell you the approximate latency between the two databases.

113

Database Replication

* On the consumer database, the @Statistics DRCONSUMER procedure includes statistics, on aper par-
tition basis, showing whether it has an identified "host" server from each producer cluster "covering" it,
or in other words, providing it DR logs. The system procedure results also include columns listing the
ID and timestamp of the last received transaction for each producer cluster. If a consumer partition is
not covered, it means it has lost contact with the server on the producer database that was providing it
logs (possibly due to a node failure). It is possible for the partition to recover, once the covering serv-
er rejoins. However, the difference between the last received timestamp of that partition and the other
partitions may give you an indication of how long the interruption has persisted and how far behind
that partition may be.

114

Chapter 12. Security

12.1.

12.2.

Security is an important feature of any application. By default, VoltDB does not perform any security
checks when a client application opens a connection to the database or invokes a stored procedure. This
is convenient when devel oping and distributing an application on a private network.

However, on public or semi-private networks, it isimportant to make sure only known client applications
are interacting with the database. VoltDB lets you control access to the database through settings in the
schema and configuration files. The following sections explain how to enable and configure security for
your VoltDB application.

How Security Works in VoltDB

When an application creates aconnection to aV oltDB database (using ClientFactory.clientCreate), it pass-
es ausername and password as part of the client configuration. These parameters identify the client to the
database and are used for authenticating access.

At runtime, if security is enabled, the username and password passed in by the client application are val-
idated by the server against the users defined in the configuration file. If the client application passesin
a valid username and password pair, the connection is established. When the application calls a stored
procedure, permissions are checked again. If the schema identifies the user as being assigned a role hav-
ing access to that stored procedure, the procedure is executed. If not, an error is returned to the calling
application.

Note

VoltDB uses hashing rather than encryption when passing the username and password between
the client and the server. The Java and C++ clients use SHA-2 hashing while the older clients
currently use SHA-1. The passwords are also hashed within the database. To secure the actual
communication between the server and client, you can implement either Transport Layer Security
(TLS) or Kerberos security. Use of TLSisdescribed in Section 12.7, “Encrypting VoltDB Com-
munication Using TLS/SSL” whilethe use of Kerberoswith VoltDB isdescribed in Section 12.8,
“Integrating Kerberos Security with VoltDB”.

There are three steps to enabling security for aVVoltDB application:

1. Addthe<security enabl ed="true"/ > tag to the configuration file to turn on authentication
and authorization.

2. Define the users and roles you need to authenticate.
3. Define which roles have access to each stored procedure.

The following sections describe each step of this process, plus how to enable access to system procedures
and ad hoc queries.

Enabling Authentication and Authorization

By default VoltDB does not perform authentication and client applications have full accessto the database.
To enable authentication, add the <security> tag to the configuration file. Y ou can enable security when
you initialize the database root directory, or you can use voltadmin update to change the security setting
on the running database. (Or you can change the setting interactively through the VoltDB Management
Center.)

115

Security

12.3.

<depl oynent >
<security enabl ed="true"/>

</ depl oyment >

Defining Users and Roles

Thekey to security for VoltDB applicationsisthe users and roles defined in the schemaand configuration.
Y ou define users in the configuration file and roles in the schema.

Thissplit isdeliberate becauseit allows you to define the overall security structure globally in the schema,
assigning permissionsto generic roles (such as operator, dbuser, apps, and so on). Y ou then define specific
users and assign them to the generic roles as part of the database configuration. This way you can create
one configuration (including cluster information and users) for development and testing, then move the
database to a different configuration and a different set of usersfor production by changing only onefile:
the configuration file.

Y ou define users within the <users> ... </users> tag set in the configuration file. The syntax for defining
usersisasfollows.

<depl oynent >
<user s>
<user nanme="user - nanme"
passwor d="passwor d-stri ng"
rol es="rol e-nanme[,...]" />

[...]

</ user s>
</ depl oynent >
Note

If you do not want to distribute the account passwordsin plain text, you can use the voltdb mask
command to hash the passwords in the configuration file.

Include a<user> tag for every username/password pair you want to define. Y ou specify which roles auser
belongsto as part of the user definition in the configuration file using the roles attribute to the <user> tag.
Y ou can assign users built-in roles, user-defined roles, or both. For user-defined roles, you define theroles
in the database schema using the CREATE ROLE statement.

CREATE ROLE rol e- nane;

Note that at least one user must be assigned the built-in ADMINISTRATOR role. For example, the fol-
lowing code defines three users, assigning operator the built-in ADMINISTRATOR role and the user-
defined OPS role, assigning developer the user-defined roles OPS and DBUSER, and assigning the user
clientapp DBUSER. When a user is assigned more than one role, you specify the role names as a com-
ma-delimited list.

<depl oynent >
<users>
<user name="operator" password="mech" rol es="adm ni strator, ops
<user name="devel oper"” password="tech" rol es="ops, dbuser” />
<user name="clientapp" password="xyzzy" rol es="dbuser" />
</ users>

</ depl oyment >

116

/>

Security

Three important notes concerning the assignment of users and roles:

» Users must be assigned at least one role, or else they have no permissions. (Permissions are assigned
by role.)

At least one user must be assigned the built-in ADMINISTRATOR role.

» There must be a corresponding role defined in the schema for any user-defined roles listed in the con-
figuration file.

12.4. Assigning Access to Stored Procedures

Onceyou definethe users and rolesyou need, you assign them accessto individual stored proceduresusing
the ALLOW clause of the CREATE PROCEDURE statement in the schema. In the following example,
usersassigned therolesdbuser and ops are permitted accessto both the MyProc1 and MyProc2 procedures.
Only users assigned the ops role have access to the MyProc3 procedure.

CREATE PROCEDURE ALLOW dbuser, ops FROM CLASS MyProcl,
CREATE PROCEDURE ALLOW dbuser, ops FROM CLASS MyProc2;
CREATE PROCEDURE ALLOW ops FROM CLASS MyProc3;

Usually, when security isenabled, you must specify accessrightsfor each stored procedure. If aprocedure
declaration does not include an ALLOW clause, no accessis allowed. In other words, calling applications
will not be able to invoke that procedure.

12.5. Assigning Access by Function (System Proce-
dures, SQL Queries, and Default Procedures)

It isnot always convenient to assign permissions one at atime. Y ou might want aspecial role for accessto
all user-defined stored procedures. Also, there are special capabilities available within VoltDB that are not
called out individually in the schema so cannot be assigned using the CREATE PROCEDURE statement.

For these special cases VoltDB provides named permissions that you can use to assign functions as a
group. For example, the ALLPROC permission grants arole access to all user-defined stored procedures
so the role does not need to be granted access to each procedure individualy.

Severa of the special function permissions have two versions: a full access permission and a read-only
permission. So, for example, DEFAULTPROC assigns accessto all default procedures while DEFAULT-
PROCREAD allows accessto only the read-only default procedures; that is, the TABLE.select procedures.
Similarly, the SQL permission alows the user to execute both read and write SQL queries interactively
while SQLREAD only allows read-only (SELECT) queries to be executed.

One additional functional permission isaccessto the read-only system procedures, such as @Statistics and
@Systeminformation. This permission is specia in that it does not have a name and does not need to be
assigned; al authenticated users are automatically assigned read-only access to these system procedures.

Table 12.1, “Named Security Permissions’ describes the named functional permissions.

Table 12.1. Named Security Permissions

Permission Description Inherits
DEFAULTPROCREAD |Access to read-only default procedures (TABLE.se-
lect)

117

Security

Permission Description Inherits
DEFAULTPROC Accessto al default procedures (TABLE.select, TA-| DEFAULTPROCREAD
BLE.insert, TABLE.delete, TABLE.update, and TA-

BLE.upsert)
SQLREAD Accessto read-only ad hoc SQL queries (SELECT) | DEFAULTPROCREAD
SQL Accessto al ad hoc SQL queries and default proce-| SQLREAD, DEFAULT-
dures PROC
ALLPROC Access to al user-defined stored procedures
ADMIN Full accessto all system procedures, al user-defined| ALLPROC, DEFAULT-
procedures, as well as default procedures, ad hoc| PROC, SQL
SQL, and DDL statements.
Note: For backwards compatibility, the special permissions ADHOC and SY SPROC are still recognized.
They areinterpreted as synonyms for SQL and ADMIN, respectively.

In the CREATE ROLE statement you enable access to these functions by including the permission name
in the WITH clause. (The default, if security is enabled and the keyword is not specified, is that the role
is not allowed access to the corresponding function.)

Note that the permissions are additive. So if a user is assigned one role that allows access to SQLREAD
but not DEFAULTPROC, but that user is also assigned another role that allows DEFAULTPROC, the
user has both permissions.

The following example assigns full access to members of the ops role, access to interactive SQL queries
(and default procedures by inheritance) and all user-defined procedures to members of the developer role,
and no specia access beyond read-only system procedures to members of the appsrole.

CREATE RCOLE ops W TH admi n;
CREATE RCOLE devel oper WTH sql, allproc;
CREATE ROLE apps;

12.6. Using Built-in Roles

To simplify the development process, VoltDB predefines two roles for you when you enable security:
administrator and user. Administrator has ADMIN permissions; accessto all functions including interac-
tive SQL queries, DDL, system procedures, and user-defined procedures. User has SQL and ALLPROC
pemissions: accessto ad hoc SQL and all default and user-defined stored procedures.

These predefined roles areimportant, because when you start the database thereis no schemaand therefore
no user-defined roles available to assign to users. So you must always include at least one user who is
assigned the Administrator role when starting a database with security enabled. Y ou can use this account
to then load the schema — including additional security roles and permissions — and then update the
configuration to add more users as necessary.

12.7. Encrypting VoltDB Communication Using
TLS/SSL

VoltDB hashes usernames and passwords both within the database server and while passing them across
the network. However, the network communication itself is not encrypted by default. You can enable
Transport Layer Security (TLS) — the recommended upgrade from Secure Socket Layer (SSL) commu-
nication — for the HTTP port, which affects the VoltDB Management Center and the JSON interface.

118

Security

You can also extend TLS encryption to all external interfaces (HTTP, client, and admin), the internal in-
terface, and the port used for database replication (DR) for more thorough security. Thefollowing sections
summarize how to enable TLS for the serversin a cluster, including:

» Configuring TLS encryption on the server

» Choosing which portsto encrypt

» Using the VoltDB command line utilitieswith TLS

* Implementing TLS communication in Java client applications

» Configuring Database Replication (DR) using TLS

12.7.1. Configuring TLS/SSL on the VoltDB Server

TLS, like its predecessor SSL, uses certificates to validate the authenticity of the communication. Y ou
can either use a certificate created by a commercial certificate provider (such as Digitcert, GeoTrust, or
Symantec) or you can create your own certificate. If you use a commercial provider, that provider also
handles the authentication of the certificate. If you create a loca or self-signed certificate, you need to
provide the certificate and authentication to the server and clients yourself.

If you purchase acommercial certificate, the server configuration must include a pointer to the certificate
in the <keyst or e> element. So, for example, if the path to the certificateis/ et ¢/ ssl /certifi -
cat e, you can enable TLS for all external interfaces by including the following XML in the database
configuration file:

<ssl enabl ed="true" external ="true">
<keystore path="/etc/ssl/certificate" password="nyssl password"/>
</ssl >

If you choose to use alocally created certificate, you must first generate the certificate key store and trust
store. Y ou can create alocal certificate using the Javakeytool utility. Creating the key store and trust store
requires several stepsincluding:

1. Creating akey store and password

2. Creating akey signing request

3. Creating and signing the certificate

4. Importing the certificate into the key store
5. Creating the associated trust store

There are a number of different options when performing this task. It is important to understand how
these options affect the resulting certificate. Be sure to familiarize yourself with the documentation of the
keytool utility before creating your own certificate. The following exampl e uses some common options to
generate a self-signed certificate key store and trust store.

$ keytool -genkey -keystore nydb. keystore \
-storepass nypasswd -alias nydb \
-keyalg rsa -validity 365 -keysize 2048

$ keytool -certreq -keystore nydb. keystore \
-storepass nypasswd -alias nydb \
-keyalg rsa -file mydb. csr

$ keytool -gencert -keystore nydb. keystore \
-storepass nypasswd -alias nydb \

119

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

Security

-infile mydb.csr -outfile mydb.cert -validity 365
$ keytool -inport -keystore nydb. keystore \

-storepass nypasswd -alias nydb \

-file nydb. cert
$ keytool -inport -keystore nydb.truststore \

-storepass nypasswd -alias nydb \

-file nydb. cert

Once you create the key store and the trust store, you can reference them in the database configuration file
to enable TLS when initializing the database root directory. For example:

<ssl enabl ed="true" external ="true">
<keystore pat h="/etc/ssl/|ocal/mnmydb. keystore" password="nypasswd"/ >
<truststore path="/etc/ssl/l|ocal/nydb.truststore" password="mypasswd"/>
</ssl >

12.7.2. Choosing What Ports to Encrypt with TLS/SSL

If TLS encryption is enabled, the HTTP is always encrypted. Y ou can selectively choose to encrypt other
ports as well. Y ou specify which ports to encrypt using attributes of the <ssl> element:

» External ports (external), including the client and admin ports
* Internal ports (internal), used for intra-cluster communication between the nodes of the cluster
 Extranet ports (dr), including the replication port used for DR

For each type of port, you specify that the portsare either enabled ("true") or disabled ("false"). The default
is false. For example, the following configuration enables TL S encryption on the external, internal, and
DR ports:

<ssl enabl ed="true" external ="true" internal="true" dr="true">
<keyst ore pat h="/etc/ssl/|ocal/nmydb. keystore" password="nypasswd"/ >
<truststore path="/etc/ssl/l|ocal/nydb.truststore” password="mypasswd"/>
</ssl >

Note that if you enable TLS encryption for the DR port, other clusters replicating from this cluster must
include the appropriate client configuration when they enable DR. See Section 12.7.5, “ Configuring Data-
base Replication (DR) With TLS/SSL” for information on setting up TLS when configuring DR.

Also, enabling TLS encryption on the internal port means that all intra-cluster communication must be
encrypted and decrypted asit passes between nodes. Consequently, any operationsthat requireinteractions
between cluster nodes (such as K-safety or multi-partition transactions) may take longer and therefore
impact overall latency. Be sure to benchmark your application with and without TLS encryption before
enabling internal port encryption on production systems.

Finally, it isimportant to note that all portswhere TLSisenabled and all the serverswithin asingle cluster
use the same certificate.

12.7.3. Using the VoltDB Command Line Utilities with TLS/
SSL

Onceyou enable TL Sfor the external interfaces on your database servers, you must also enable TLSon the
command line utilities so they use the appropriate protocols to connect to the servers. (The voltdb utility
is the one exception. Since it only operates on the local server it does not require a network connection.)

120

Security

When invoking the command line utilities, such as voltadmin and sglcmd, you use the - - ss| option to
activate encryption with TLS-enabled VoltDB servers. If the servers are using a commercially-provided
certificate, you can specify the - - ssl option without an argument. For example:

$ sqglcnmd --ssl

If the servers are using alocal or self-signed certificate you must also specify a Java properties file as an
argument to the - - ssl option. For example:

$ sqlcnd --ssl=localcert.txt

The properties file must declare two properties that specify the path to the trust store and the trust store
password, respectively. So, using the trust store generated by the examplein Section 12.7.1, “ Configuring
TLS/SSL onthe VoItDB Server”, thel ocal cert .t xt filecould be:

trust Store=/etc/ssl/local/nmydb.truststore
t rust St or ePasswor d=nypasswd

12.7.4. Implementing TLS/SSL in the Java Client Applications

Just as the command line tools must specify how to connect to an TLS-enabled server, client applications
must al so establish an appropriate connection. Using the VoltDB Java API, you can enable TL S by setting
the appropriate attributes of the client configuration. Specificaly, if you are using a self-signed certificate,
you must provide the path to the trust store and its password. Y ou can do this using either the .setTrustS-
tore() or .setTrustStoreConfigFromPropertyFile(). For example, the following two commands are equiva
lent, assuming thel ocal cert . t xt file matchesthe propertiesfile described in Section 12.7.3, “Using
the VoltDB Command Line Utilitieswith TLS/SSL":

clientConfig.setTrustStore("/etc/ssl/local/nydb.truststore", "nypasswd");
cl i ent Confi g. set Trust St oreConfi gFronPropertyFile("l ocalcert.txt");

After setting the trust store properties you can enable TL S communication using the .enableSSL () method
and create the client connection. For example:

CientConfig clientConfig = new dientConfig("JDoe", "JDsPasswd");
client Config.set Trust St oreConfi gFronPropertyFile("l ocalcert.txt");
cl i ent Confi g. enabl eSSL() ;

client = dientFactory.createdient(clientConfig);

When using a commercially generated certificate, you do not need to specify the trust store and can use
just the .enableSSL () method.

12.7.5. Configuring Database Replication (DR) With TLS/SSL

When using TLS encryption on the DR port, the DR snapshots and binary logs are encrypted as they
pass from the producer cluster to the consumer cluster. This means that the producer must not only have
TLS enabled for the DR port, but the consumer cluster must use the appropriate TLS credentials when
it contacts the producer.

So, for example, in passive DR, the master cluster must have TL S enabled for the DR port and the replica
must be configured to use TL'S when connecting to the master. In XDCR, you enable TLSfor all clusters
in the XDCR relationship. So each cluster must both enable TLSfor its DR port aswell as configure TLS
for its connections to the other clusters.

Section 12.7.1, “Configuring TLS/SSL on the VoltDB Server” describes how to enable TLS encryption
for the DR port, which must be done before the cluster starts. To configure TLS connectivity at the other
end, you add the ssl attribute to the <connect i on> element within the DR configuration. The value

121

Security

12.8

of thessl attribute is either blank — for commercial certificates — or the path to a Java properties file
specifying the trust store and password for the remote cluster(s) when using alocally-generated certificate.
These attribute values are the same as the - - ssl argument you use when running the command line
utilities described in Section 12.7.3, “Using the VoltDB Command Line Utilitieswith TLS/SSL”.

For example, when configuring TLS encryption for passive DR, the master cluster must enable TLS on
the DR port and the replica must specify use of TLS in the <connect i on> element. The respective
configuration files might look like this:

Master Cluster <ssl enabl ed="true" dr="true">
<keystore path="/etc/ssl/|ocal/nydb. keystore" password="nypass\
<truststore path="/etc/ssl/local/nydb.truststore” password="rny|

</ ssl >
Replica Cluster <dr id="2" role="replica">
<connecti on source="Mast er Svr A, Mast er Svr B" ssl ="/usr/| ocal / mast
</dr>

Note that the replica does not need to enable TLS for its DR port, since it is a consumer and its own port
is not used.

For XDCR, each cluster must both enable DR for its own port and specify the TLS credentias for the
remote clusters. The configuration file might look like this:

XDCR Cluster <ssl enabl ed="true" dr="true">
<keystore path="/etc/ssl/|ocal/nydb. keystore" password="nypasswd"/
<truststore path="/etc/ssl/|ocal/nydb.truststore" password="nypas:
</ssl >
<dr id="1" rol e="xdcr">
<connecti on source="NYCSvr A, NYCSvr B" ssl ="/usr/local /nyccert.txt":
</ dr>

Note that when using locally-generated certificates, there is only one properties file specified in the ss|
attribute. So all of the clustersin the XDCR relationship must use the same certificate. When using com-
mercially purchased certificates, the ssl attributes is |eft blank; so each cluster can, if you choose, use
a separate certificate.

Integrating Kerberos Security with VoltDB

For environments where more secure communication is required than hashed usernames and passwords, it
ispossiblefor aVoltDB database to use Kerberos to authenticate clients and servers. Kerberosisapopular
network security protocol that you can use to authenticate the Java client processes when they connect to
VoltDB database servers. Use of Kerberosis supported for the Javaclient library and JSON interface only.

To use Kerberos authentication for VoltDB security, you must perform the following steps.
1. Set up and configure Kerberos on your network, servers, and clients.

2. Ingtall and configure the Java security extensions on your VoltDB servers and clients.

3. Configure the VoltDB cluster and client applications to use Kerberos.

The following sections describe these steps in detail.

12.8.1. Installing and Configuring Kerberos

Kerberos is a complete software solution for establishing a secure network environment. It includes net-
work protocols and software for handling authentication and authorization in a secure, encrypted fashion.

122

Security

Kerberos requires one or more servers known as key distribution centers (KDC) to authenticate and au-
thorize services and the users who access them.

To use Kerberos for VoltDB authentication you must first set up Kerberos within your network environ-
ment. If you do not already have aKerberos KDC, you will need to create one. Y ou will also need to install
the Kerberos client libraries on al of the VoltDB servers and clients and set up the appropriate principals
and services. Because Kerberos is a complete network environment rather than a single platform applica-
tion, it is beyond the scope of this document to explain how to install and configure Kerberosiitself. This
section only provides notes specific to configuring Kerberos for use by VoltDB. For compl ete information
about setting up and using Kerberos, please see the Kerberos documentation.

Part of the Kerberos setup is the creation of a configuration file on both the VoltDB server and client ma-
chines. By default, the configuration fileis located in/ et ¢/ kr b5. conf on Linux systems. (On Mac-
intosh systems, the configuration fileisedu. ni t . Ker ber os located either in ~/ Li br ary/ Pr ef -
erences/ or/Library/ Preferences/.) Besure this file exists and points to the correct realm
and KDC.

Once a KDC exists and the nodes are configured correctly, you must create the necessary Kerberos ac-
counts — known as "user principals' for the accounts that run the VoltDB client applications and a " ser-
vice principal" for the VoltDB cluster. If you intend to use the web-based VoltDB Management Center
or the JSON interface, you will also want to create a host and HTTP service principle for each server as
well. For example, to create the service keytab file for the VoltDB database, you can issue the following
commands on the Kerberos KDC:

$ sudo kadmin. | ocal
kadmi n. | ocal : addprinc -randkey service/voltdb
kadm n.l ocal : ktadd -k voltdb. keytab service/voltdb

Then copy the keytab file to the database servers, making sure it is only accessible by the user account
that starts the database process:

$ scp vol tdb. keytab vol tadm n@ol tsvr:vol tdb. keyt ab
$ ssh vol tadm n@ol tsvr chnod 0600 vol t db. keyt ab

Y ou can then create host and HTTP service principles for each server in the cluster and write them to a
server-specific keytab. For example, to create a keytab file for the database node server1, the command
would be the following:

$ sudo kadmi n. | ocal

kadm n. | ocal : addprinc -randkey host/server1. myconpany. | an
kadm n. | ocal : addprinc -randkey HTTP/ server1. myconpany. | an

kadm n. | ocal : ktadd -k serverl. nyconpany. | an. keytab HITP/ server 1. nyconpany. | an
kadm n. | ocal : ktadd -k serverl. nyconpany. | an. keytab host/server1l. nyconpany. | an

12.8.2. Installing and Configuring the Java Security Exten-
sions

Thenext stepistoinstall and configure the Java security extension known as Java Cryptography Extension
(JCE). JCE enables the more robust encryption required by Kerberos within the Java Authentication and
Authorization Service (JAAS). Thisis necessary because VoltDB uses JAAS to interact with Kerberos.

The JCE that needs to be installed is specific to the version of Java you are running. See the the Javaweb
site for details. Again, you must install JCE on both the VoltDB servers and client nodes

123

http://web.mit.edu/kerberos/
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Security

Once JCE isinstalled, you create a JAAS login configuration file so Java knows how to authenticate the
current process. By default, the JAAS login configuration fileis $HOVE/ . j ava. | ogi n. confi g. On
the database servers, the configuration file must define the VoltDBService module and associate it with
the keytab created in the previous section.

To enableK erberos access from the web-based V oltDB Management Center and JSON interface, you must
also include entries for the Java Generic Security Service (JGSS) declaring the VoltDB service principle
and the server's HTTP service principle. For example:

Server JAAS Login Configuration File

Vol t DBSer vi ce {
com sun. security. aut h. nodul e. Kr b5Logi nModul e required
useKeyTab=t rue keyTab="/hone/vol tadm n/voltdb. keyt ab"
doNot Pr onpt =t r ue
princi pal ="servi ce/ vol t do@WCOVPANY. LAN"' st or eKey=t r ue;

}s

comsun.security.jgss.initiate {
com sun. security. aut h. nodul e. Kr b5Logi nModul e required
princi pal ="servi ce/ vol t db@WCOVPANY. LAN"
keyTab="/hone/ vol t adm n/ vol t db. keyt ab"
useKeyTab=t rue
st oreKey=true
debug=f al se;

}s

com sun. security.jgss.accept {
com sun. securi ty. aut h. nodul e. Kr b5Logi nModul e required
princi pal ="HTTP/ server 1. myconpany. | an@WCOVPANY. LAN'
useKeyTab=t rue
keyTab="/ et c/ kr b5. keyt ab"
st oreKey=true
debug=f al se
i slnitiator=fal se;

b
On the client nodes, the JAAS login configuration defines the VoltDBClient module.
Client JAAS Login Configuration File

Vol t DBCl i ent {
com sun. security. aut h. nodul e. Kr b5Logi nModul e required
useTi cket Cache=true renewlGI=t rue doNot Pronpt =true;

i
12.8.3. Configuring the VoltDB Servers and Clients

Finally, once Kerberos and the Java security extensions are installed and configured, you must configure
the VoltDB database cluster and client applications to use Kerberos.

On the database servers, you enable Kerberos security using the <security> element when you initialize
the database root directory, specifying "kerberos' as the provider. For example:

<?xm version="1.0"?>

124

Security

<depl oynent >
<security enabl ed="true" provider="kerberos"/>

</ depl oyment >

Y ou then assign rolesto individual users as described in Section 12.3, “ Defining Users and Roles”, except
in place of generic usernames, you specify the Kerberos user — or "principal” — names, including their
realm. Since Kerberos uses encrypted certificates, the password attribute is ignored and can be filled in
with arbitrary text. For example:

<?xm version="1.0"?>
<depl oynent >
<security enabl ed="true" provider="kerberos"/>

<user s>
<user name="nt wai n@ANCOVPANY. LAN' password="n/a" rol es="adm ni strator"/>
<user name="cdi ckens @WCOVPANY. LAN' password="n/a" rol es="dev"/>
<user name="hbal zac @WCOVPANY. LAN' password="n/a" rol es="adhoc"/>
</ users>
</ depl oyment >

Having configured Kerberos in the configuration file, you are ready to initialize and start the VoltDB
cluster. When starting the VoltDB process, Java must know how to access the Kerberos and JAAS login
configuration files created in the preceding sections. If the files are not in their default locations, you
can override the default location using the VOLTDB_OPTS environment variable and setting the flags
j ava. security. krb5. conf andj ava. security. auth. | ogin.config, r&spectively.1

In Java client applications, you specify Kerberos as the security protocol when you create the client con-
nection, using the enabl ek erberosA uthentication method as part of the configuration. For example:

i mport org.voltdb.client.d ientConfig;
i mport org.voltdb.client.dientFactory;

ClientConfig config = new CientConfig();
/1 specify the JAAS | ogi n nodul e
confi g. enabl eKer ber osAut hentication("VoltDBd ient");

VoltClient client = CientFactory.createCient(config);
client.createConnection("voltsvr");

Note that the VoltDB client automatically picks up the Kerberos cached credentials of the current process,
the user'sKerberos"principal". So you do not need to — and should not — specify ausername or password
as part of the VoltDB client configuration.

When using the VoltDB JDBC client interface, you can enable Kerberos by setting the ker ber os prop-
erty on the connection to match the settings in the Java API. For example, you can enable Kerberos by
setting the property on the connection string as a query parameter:

Cl ass.forName("org.vol tdb.jdbc. Driver");
Connection ¢ = DriverManager. get Connecti on(
"jdbc:vol tdb://svr1:21212, svr2:21212?ker beros=Vol t DBC i ent ") ;

Alternately, you can supply alist of properties, including the ker ber os property, when you initialize
the connection:

on Macintosh systems, you must always specify thej ava. security. kr b5. conf property.

125

Security

Cl ass.forName("org.vol tdb.jdbc. Driver");

Properties props = new Properties();

props. set Property("kerberos”, “VoltDBCient");

Connection ¢ = DriverManager. get Connecti on(
"jdbc:voltdb://svrl:21212, svr2:21212", props);

12.8.4. Accessing the Database from the Command Line and
the Web

It is also important to note that once the cluster starts using Kerberos authentication, only Java, JDBC,
JSON, and Python clients can connect to the cluster and they must use Kerberos authenticationto doiit. The
sameistrue for the CLI commands, such has sglcmd and voltadmin. To authenticateto a VoltDB server
with Kerberos security enabled using the Java-based utilities sglcmd and cvsloader, you must include the
- - ker ber os flag identifying the name of the Kerberos client service module. For example:

$ sglcnd --kerberos=Vol t DBC i ent

If the configuration files are not in the default location, you must specify their location on the command
line:

$ sqlcnmd --kerberos=Vol t DBC i ent \
-J-Dj ava. security. aut h.l ogi n. confi g=nyclient.kerber os. conf

To use the Python API or Python-based voltadmin utility, you must first make sure you have the python-
gssapi package installed. Then, login to your Kerberos account using kinit before invoking the Python
client. When using the voltadmin utility, you must also include - - ker ber os flag, but you do not need
to specify any argument since it picks up the credentialsin the Kerberos user's cache. For example:

$ vol tadm n shutdown --kerberos

To use the VoltDB Management Center or the JISON interface to access the database, your web browser
must be configured to use the Simple and Protected GSS-API Negotiation Mechanism (also known as
SPNEGO). See your web browser's help for instructions on configuring SPNEGO.

126

Chapter 13. Saving & Restoring a VoltDB
Database

There are timeswhen it is necessary to save the contents of aVoltDB database to disk and then restore it.
For example, if the cluster needs to be shut down for maintenance, you may want to save the current state
of the database before shutting down the cluster and then restore the database once the cluster comes back
online. Performing periodic backups of the data can also provide afallback in case of unexpected failures
— either physical failures, such as power outages, or logic errors where a client application mistakenly
corrupts the database contents.

VoltDB provides shell commands, system procedures, and an automated snapshot feature that help you

perform these operations. Thefollowing sectionsexplain how to save and restorearunning VoltDB cluster,
either manually or automatically.

13.1. Performing a Manual Save and Restore of a
VoltDB Cluster

Manually saving and restoring a V oltDB database is useful when you need to modify the database's phys-
ical structure or make schema changes that cannot be made to a running database. For example, changing
the K-safety value, the number of sites per site, or changing the partitioning column of a partitioned table.
The normal way to perform such a maintenance operation using save and restore is as follows:

1. Stop database activities (using pause).

2. Use save to write a snapshot of the current data to disk.

3. Shutdown the cluster.

4. Make changesto the VVoltDB schema, cluster configuration, and/or configuration file as desired.

5. Reinitialize the database with the modified configuration file, using voltdb init --for ce.

6. Restart the cluster in admin mode, using voltdb start --pause.

7. Optionally, reload the schema and stored procedures (if you are changing the schema).

8. Restore the previous snapshot.

9. Restart client activity (using resume).

Thekey isto make sure that all database activity is stopped before the save and shutdown are performed.
This ensuresthat no further changes to the database are made (and therefore lost) after the save and before
the shutdown. Similarly, it isimportant that no client activity starts until the database has started and the
restore operation completes.

Also note that Step #7, reloading the schema, is optional. If you are going to reuse the same schemain a
new database instance, the restore operation will automatically load the schema from the snapshot itself.
If you want to modify the schemain any way, such as changing indexes or tables and columns, you should

load the modified schema before restoring the data from the snapshot. If the database schemais not empty
(that is there are tables aready defined), only the data is loaded from the snapshot. See Section 13.1.3.2,

127

Saving & Restoring
aVoltDB Database

“Modifying the Database Schema and Stored Procedures’ for more information on modifying the schema
when restoring snapshots.

Save and restore operations are performed either by calling VoltDB system procedures or using the cor-
responding voltadmin shell commands. In most cases, the shell commands are simpler since they do not
require program code to use. Therefore, this chapter uses voltadmin commands in the examples. If you
are interested in programming the save and restore procedures, see Appendix G, System Procedures for
more information about the corresponding system procedures.

When you issue a save command, you specify a path where the data will be saved and a unique identifier
for tagging thefiles. VoltDB then saves the current data on each node of the cluster to a set of files at the
specified location (using the unique identifier as a prefix to the file names). This set of files is referred
to as a snapshot, since it contains a complete record of the database for a given point in time (when the
save operation was performed).

The - - bl ocki ng option lets you specify whether the save operation should block other transactions
until it completes. In the case of manual saves, it is a good idea to use this option since you do not want
additional changes made to the database during the save operation.

Note that every node in the cluster uses the same absolute path, so the path specified must be valid, must
exist on every node, and must not already contain data from any previous saves using the same unique
identifier, or the save will fail.

When you issue a restore command, you specify the same absolute path and unique identifier used when
creating the snapshot. VoltDB checks to make sure the appropriate save set exists on each node, then
restores the data into memory.

13.1.1. How to Save the Contents of a VoltDB Database

To save the contents of a VoltDB database, use the voltadmin save command. The following example
creates a snapshot at the path /tmp/voltdb/backup using the unique identifier TestShapshot.

$ vol tadm n save --bl ocking /tnp/voltdb/backup "Test Snapshot"

In this exampl e, the command tellsthe save operation to block all other transactions until it completes. Itis
possible to save the contents without blocking other transactions (which is what automated snapshots do).
However, when performing a manual save prior to shutting down, it is normal to block other transactions
to ensure you save a known state of the database.

Notethat it is possible for the save operation to succeed on some nodes of the cluster and not others. When
you issue the voltadmin save command, VoltDB displays messages from each partition indicating the
status of the save operation. If there are any issues that would stop the process from starting, such as a
bad file path, they are displayed on the console. It is a good practice to examine these messages to make
sure al partitions are saved as expected.

Note that it is also possible to issue the voltadmin save command without arguments. In that case the
snapshot is saved to the default snapshots folder in the database root directory. This can be useful because
the voltdb start command can automatically restore the latest snapshot in that directory as described in
the next section.

13.1.2. How to Restore the Contents of a VoltDB Database
Manually

The easiest way to restore a snapshot is to let VoltDB do it for you as part of the recover operation. If
you are not changing the cluster configuration you can use an automated snapshot or other snapshot saved

128

Saving & Restoring
aVoltDB Database

into the vol t dbr oot / snapshot s directory by smply restarting the cluster nodes using the voltdb
start command. With the start action VoltDB automatically starts and restores the most recent snapshot.
If command logging is enabled, it also replays any logs after the snapshot. This approach has the added
benefit that VoltDB automatically |oads the previous schema as well as part of the snapshot.

However, you cannot use voltdb start to restore a snapshot if the physical configuration of the cluster has
changed or if you want to restore an earlier snapshot or a snapshot stored in an alternate location. In these
cases you must do amanual restore.

To manually restore a VoltDB database from a snapshot previously created by a save operation, you can
create a new database instance and use the voltadmin restor e command. So, for example, if you modify
the configuration, you must re-initialize the root directory with the new configuration file, using the --
force flag to overwrite the previous configuration and database content:

$ voltdb init --config=newconfig.xm --force

Then you can start the reconfigured database, which creates a new empty database. It is also a good idea
to start the database in admin mode by including the --pause flag:

$ voltdb start --pause

Finally, you restore the previously saved snapshot using the same pathname and unique identifier used
during the save. The following example restores the snapshot created by the example in Section 13.1.1
and resumes normal operation (that is, exits admin mode).

$ voltadm n restore /tnp/voltdb/backup "Test Snapshot"
$ voltadnin resune

Aswith save operations, it isawaysagood ideato check the statusinformation displayed by the command
to ensure the operation completed as expected.

13.1.3. Changing the Cluster Configuration Using Save and
Restore

Most changes to a VoltDB database can be made "on the fly" while the database is running. Adding
and removing tables, enabling and disabling database features such as import and export, and adding or
updating stored procedures can al be done while the database is active. However, between a save and a
restore, it is possible to make changes to the database and cluster configuration that cannot be made on
arunning cluster. For example, you can:

* Add or remove nodes from the cluster

» Modify the schema and/or stored procedures that:
» Change partitioned tables to replicated and vice versa
 Change the partitioning column on partitioned tables
« Add unique indexes to tables with existing data

* Change the number of sites per host

» Change the K-safety value

The following sections discuss these procedures in more detail.

129

Saving & Restoring
aVoltDB Database

13.1.3.1. Adding and Removing Nodes from the Database

To add nodes to the cluster, use the following procedure:
1. Save the database with the voltadmin save command.

2. Shutdown and re-initialize the database root directories on each node (including initializing new root
directories for the nodes you are adding).

3. Startthecluster (including the new nodes) specifying the new server count withthe- - count argument
to the voltdb start command.

4. Restore the database with the voltadmin restore command..

When the snapshot is restored, the database (and partitions) are redistributed over the new cluster config-
uration.

It is also possible to remove nodes from the cluster using this procedure. However, to make sure that no
dataislost in the process, you must copy the snapshot files from the nodes that are being removed to one
of the nodes that is remaining in the cluster. This way, the restore operation can find and restore the data
from partitions on the missing nodes.

13.1.3.2. Modifying the Database Schema and Stored Procedures

The easiest and recommended way to change the database schema is by sending the appropriate SQL
database definition language (DDL) statements to the sglcmd utility. Similarly you can update the stored
procedures on arunning database using the LOAD CLASSES and REMOVE CLASSES directives.

However, there are afew changes that cannot be made to a running database,. For example, changing the
partitioning column of atableif the table contains data. For these changes, you must use save and restore
to change the schema.

To modify the database schema or stored procedures between a save and restore, make the appropriate
changes to the source files (that is, the database DDL and the stored procedure Java source files). If you
modify the stored procedures, be sure to repackage any Java stored procedures into a JAR file. Then you
can:

1. Save the database with the voltadmin save command.

2. Shutdown and re-initialize the database root directories on each node.

3. Start the cluster with the voltdb start command.

4. Load the modified schema and stored procedures using sglcmd.

5. Restore the database contents with the voltadmin restor e command.

Two points to note when modifying the database structure before restoring a snapshot are:

* When existing rows are restored to tables where new columns have been added, the new columns are
filled with either the default value (if defined by the schema) or nulls.

» When changing the datatypes of columns, it is possible to decrease the datatype size (for example, going
froman INT toan TINYINT). However, if any existing values exceed the capacity of the new datatype
(such as an integer value of 5,000 where the datatype has been changed to TINYINT), the entire restore
will fail.

130

Saving & Restoring
aVoltDB Database

13.2

13.3

If you remove or modify stored procedures (particularly if you change the number and/or datatype of the
parameters), you must make sure the corresponding changes are made to client applications as well.

Scheduling Automated Snapshots

Save and restore are useful when planning for scheduled down times. However, these functions are also
important for reducing the risk from unexpected outages. VoltDB assists in contingency planning and
recovery from such worst case scenarios as power failures, fatal system errors, or data corruption due to
application logic errors.

In these cases, the database stops unexpectedly or becomes unreliable. By automatically generating snap-
shots at set intervals, VoltDB gives you the ability to restore the database to a previous valid state.

Y ou schedule automated snapshots of the database as part of the configuration file. The <snapshot> tag
lets you specify:

» Thefreguency of the snapshots. Y ou can specify any whole number of seconds, minutes, or hours (using
the suffix "s", "m", or "h", respectively, to denote the unit of measure). For example "3600s", "60m",
and "1h" are all equivalent. The default frequency is 24 hours.

» Theuniqueidentifier to use as a prefix for the snapshot files. The default prefix is"AUTOSNAP".

» Thenumber of snapshotsto retain. Snapshots are marked with atimestamp (as part of the file names), so
multiple snapshots can be saved. Ther et ai n attribute lets you specify how many snapshots to keep.
Older snapshots are purged once this limit is reached. The default number of snapshots retained istwo.

Thefollowing example enables automated snapshots every thirty minutes using the prefix "flightsave" and
keeping only the three most recent snapshots.

<snapshot prefix="flightsave"
frequency="30nt
retain="3"

/>

By default, automated snapshots are stored in a snapshots subfolder of the VoltDB root directory (as
described in Section 3.7.2, “Configuring Paths for Runtime Features”). Y ou can save the snapshots to a
specific path by adding the <snapshots> tag within to the <paths>...</paths> tag set. For example, the
following example defines the path for automated snapshotsas/ et ¢/ vol t db/ aut obackup/ .

<pat hs>
<snapshots pat h="/etc/vol tdb/ aut obackup/" />
</ pat hs>

Managing Snapshots

VoltDB does not delete snapshots after they are restored; the snapshot files remain on each node of the
cluster. For automated snapshots, the oldest snapshot files are purged according to the settings in the
configuration file. But if you create snapshots manually or if you change the directory path or the prefix
for automated snapshots, the old snapshots will also be left on the cluster.

To simplify maintenance, it is agood idea to observe certain guidelines when using save and restore:
 Create dedicated directories for use as the paths for VoltDB snapshots.

» Do not store any other filesin the directories used for VoltDB snapshots.

131

Saving & Restoring
aVoltDB Database

* Periodically cleanup the directories by deleting obsolete, unused snapshots.

You can delete snapshots manually. To delete a snapshot, use the unique identifier, which is applied as
a filename prefix, to find al of the files in the snapshot. For example, the following commands remove
the snapshot with the ID TestSave from the directory /etc/voltdb/backup/. Note that VoltDB separates the
prefix from the remainder of the file name with a dash for manual snapshots:

$ rm/etc/vol tdb/ backup/ Test Save-*

However, it is easier if you use the system procedures VoltDB provides for managing snapshots. If you
delete snapshots manually, you must make sure you execute the commands on all nodes of the cluster.
When you use the system procedures, VoltDB distributes the operations across the cluster automatically.

VoltDB provides severa system procedures to assist with the management of snapshots:

o @Statistics"SNAPSHOTSTATUS' providesinformation about the most recently performed snapshots
for the current database. The response from @Statistics for this selector includes information about
up to ten recent snapshots, including their location, when they were cresated, how long the save took,
whether they completed successfully, and the size of theindividual files that make up the snapshot. See
the reference section on @Statistics for details.

» @SnapshotScan listsal of the snapshots availablein aspecified directory path. Y ou can usethis system
procedure to determine what snapshots exist and, as a consequence, which ought to be deleted. See the
reference section on @SnapshotScan for details.

* @SnapshotDelete deletes one or more snapshots based on the paths and prefixes you provide. The
parameters to the system procedure are two string arrays. Thefirst array specifies one or more directory
paths. The second array specifiesoneor moreprefixes. Thearray el ementsaretakenin pairsto determine
which snapshots to delete. For example, if the first array contains paths A, B, and C and the second
array contains the unique identifiers X, Y, and Z, the following three snapshots will be deleted: A/X,
B/Y, and C/Z. See the reference section on @SnapshotDelete for details.

13.4. Special Notes Concerning Save and Restore

The following are special considerations concerning save and restore that are important to keep in mind:

» Save and restore do not check the cluster health (whether all nodes exist and are running) before exe-
cuting. The user can find out what nodes were saved by looking at the messages displayed by the save
operation.

 Both the save and restore calls do a pre-check to see if the action is likely to succeed before the actual
savelrestore is attempted. For save, VoltDB checks to see if the path exists, if there is any data that
might be overwritten, and if it has write access to the directory. For restore, VoltDB verifies that the
saved data can be restored completely.

It is possible to provide additional protection against failure by copying the automated snapshots to
remote locations. Automated snapshots are saved locally on the cluster. However, you can set up a
network process to periodically copy the snapshot files to a remote system. (Be sure to copy the files
from all of the cluster nodes.) Another approach would be to save the snapshots to a SAN disk that is
aready set up to replicate to another location. (For example, using iSCSI.)

132

Chapter 14. Command Logging and
Recovery

By executing transactions in memory, VoltDB, freesitself from much of the management overhead and 1/
O costs of traditional database products. However, accidents do happen and it isimportant that the contents
of the database be safeguarded against loss or corruption.

Snapshots provide one mechanism for safeguarding your data, by creating a point-in-time copy of the
database contents. But what happens to the transactions that occur between snapshots?

Command logging provides a more complete solution to the durability and availability of your VoltDB
database. Command logging keeps arecord of every transaction (that is, stored procedure) asit is execut-
ed. Then, if the servers fail for any reason, the database can restore the last snapshot and "replay” the
subsequent logs to re-establish the database contents in their entirety.

The key to command logging is that it logs the invocations, not the consegquences, of the transactions. A
single stored procedure can include many individual SQL statements and each SQL statement can modify
hundreds or thousands of table rows. By recording only the invocation, the command logs are kept to a
bare minimum, limiting the impact the disk 1/O will have on performance.

However, any additional processing canimpact overall performance, especially whenitinvolvesdisk 1/0.
So it is important to understand the tradeoffs concerning different aspects of command logging and how
it interacts with the hardware and any other options you are utilizing. The following sections explain how
command logging works and how to configure it to meet your specific needs.

14.1. How Command Logging Works

When command logging is enabled, VoltDB keeps a log of every transaction (that is, stored procedure)
invocation. At first, the log of the invocations are held in memory. Then, at a set interval the logs are
physically written to disk. Of course, at a high transaction rate, even limiting the logs to just invocations,
the logs begin to fill up. So at a broader interval, the server initiates a snapshot. Once the snapshot is
complete, the command logging processis ableto free up — or "truncate” — thelog keeping only arecord
of procedure invocations since the last snapshot.

This process can continue indefinitely, using snapshots as a baseline and loading and truncating the com-
mand logs for all transactions since the last snapshot.

Figure 14.1. Command Logging in Action

; AN
aatae MMM sesceces MMM

S 7
]

Frequency

Snapshots @ @

The frequency with which the transactions are written to the command log is configurable (as described in
Section 14.3, “ Configuring Command Logging for Optimal Performance”). By adjusting thefrequency and

133

Command Logging and Recovery

type of logging (synchronous or asynchronous) you can balance the performance needs of your application
against the level of durability desired.

In reverse, when it is time to "replay" the logs, you start the database and the server nodes establish a
quorum, the first thing the database servers do is restore the most recent snapshot. Then they replay all of
the transactions in the log since that snapshot.

Figure 14.2. Recovery in Action

X
hy I
AN) N

VolDB | \ Start \
database / Recover /
L / L Ny
’ Replay 4
Command IO
Logs))

Snapshots @

14.2. Controlling Command Logging

Command logging is enabled by default in the VoltDB Enterprise Edition. Using command logging is
recommended to ensure durability of your data. However, you can choose whether to have command
logging enabled or not using the <commandl og> element in the configuration file. For example:
<depl oynent >

<cluster kfactor="1" />

<comuand| og enabl ed="true"/>
</ depl oynent >
Initssimplest form, the <command| og/ > tag enables or disables command logging by setting the en-

abl ed attributeto "true" or "false". Y ou can al so use other attributes and child el ementsto control specific
characteristics of command logging. The following section describes those options in detail.

14.3. Configuring Command Logging for Optimal
Performance

Command logging can provide complete durability, preserving arecord of every transaction that is com-
pleted before the database stops. However, the amount of durability must be balanced against the perfor-
mance impact and hardware requirements to achieve effective /0.

VoltDB provides three settings you can use to optimize command logging:

» The amount of disk space alocated to the command logs

» The frequency between writes to the command logs

» Whether logging is synchronous or asynchronous

The following sections describe these options. A fourth section discusses the impact of storage hardware
on the different logging options.

134

Command Logging and Recovery

14.3.1. Log Size

The command log size specifies how much disk space is preallocated for storing the logs on disk. The
logs are divided into three "segments’ Once a segment is full, it is written to a snapshot (as shown in
Figure 14.1, “Command Logging in Action”).

For most workloads, the default log size of one gigabyte is sufficient. However, if your workload writes
large volumes of data or uses large strings for queries (so the procedure invocationsinclude large parame-
ter values), the log segments fill up very quickly. When this happens, VoltDB can end up snapshotting
continuously, because by the time one snapshot finishes, the next log segment is full.

Toavoid thissituation, you can increase thetotal 1og size, to reduce the frequency of snapshots. Y ou define
the log size in the configuration file using the | ogsi ze attribute of the <comrand| og> tag. Specify
the desired log size as an integer number of megabytes. For example:

<conmandl og enabl ed="true" | ogsize="3072" />

Whenincreasing thelog size, be awarethat the larger thelog, thelonger it may take to recover the database
since any transactions in the log since the last snapshot must be replayed before the recovery is complete.
So, while reducing the frequency of snapshots, you also may be increasing the time needed to restart.

The minimum log size is three megabytes. Note that the log size specifies the initial size. If the existing
segments are filled before a snapshot can truncate the logs, the server will allocate additional segments.

14.3.2. Log Frequency

The log frequency specifies how often transactions are written to the command log. In other words, the
interval between writes, as shown in Figure 14.1, “Command Logging in Action”. You can specify the
frequency in either or both time and number of transactions.

For example, you might specify that the command log is written every 200 milliseconds or every 10,000
transactions, whichever comes first. You do this by adding the <f r equency> element as a child of
<comand| og> and specifying the individual frequencies as attributes. For example:

<comuand| og enabl ed="true">
<frequency tine="200" transactions="10000"/>
</ command| og>

Time frequency is specified in milliseconds and transaction frequency is specified as the number of trans-
actions. Y ou can specify either or both types of frequency. If you specify both, whichever limit is reached
first initiates awrite.

14.3.3. Synchronous vs. Asynchronous Logging

If the command logs are being written asynchronously (which is the default), results are returned to the
client applications as soon as the transactions are completed. This allows the transactions to execute un-
interrupted.

However, with asynchronous logging there is always the possibility that a catastrophic event (such as a
power failure) could cause the cluster to fail. In that case, any transactions completed since the last write
and before the failurewould be lost. The smaller the frequency, the less datathat could belost. Thisishow
you "dial up" the amount of durability you want using the configuration options for command logging.

In some cases, no loss of datais acceptable. For those situations, it isbest to use synchronouslogging. When
you select synchronous logging, no results are returned to the client applications until those transactions

135

Command Logging and Recovery

are written to the log. In other words, the results for all of the transactions since the last write are held on
the server until the next write occurs.

The advantage of synchronouslogging isthat no transaction is"complete”" and reported back to the calling
application until it is guaranteed to be logged — no transactions are lost. The obvious disadvantage of
synchronous logging isthat theinterval between writes (i.e. the frequency) while theresults are held, adds
to the latency of the transactions. To reduce the penalty of synchronous logging, you need to reduce the
frequency.

When using synchronouslogging, it isrecommended that the frequency be limited to between 1 and 4 mil-
liseconds to avoid adding undue latency to the transaction rate. A frequency of 1 or 2 milliseconds should
have little or no measurable affect on overall latency. However, low frequencies can only be achieved
effectively when using appropriate hardware (as discussed in the next section, Section 14.3.4, “Hardware
Considerations”).

To select synchronous logging, usethe synchr onous attribute of the <command| og> tag. For exam-
ple:

<commandl og enabl ed="true" synchronous="true" >
<frequency tinme="2"/>
</ command| og>

14.3.4. Hardware Considerations

Clearly, synchronous logging is preferable since it provides complete durability. However, to avoid neg-
atively impacting database performance you must not only use very low frequencies, but you must have
storage hardware that is capable of handling frequent, small writes. Attempting to use aggressively low
log frequencies with storage devices that cannot keep up will also hurt transaction throughput and latency.

Standard, uncached storage devices can quickly become overwhel med with frequent writes. So you should
not use low frequencies (and therefore synchronous logging) with slower storage devices. Similarly, if the
command logs are competing for the device with other disk 1/0, performance will suffer. So do not write
the command logsto the same devicethat isbeing used for other 1/0, such as snapshots or export overflow.

On the other hand, fast, cached devices such as disks with a battery-backed cache, are capable of handling
frequent writes. So it isstrongly recommended that you use such devices when using synchronous logging.

To specify where the command logs and their associated snapshots are written, you use tags within the
<pat hs>...</ pat hs> tag set. For example, the following example specifies that the logs are written to
/ fast di sk/ vol t dbl og and the snapshots are writtento/ opt / vol t db/ cndsnaps:

<pat hs>
<commandl og pat h="/faskdi sk/voltdblog/" />
<command| ogsnapshot pat h="/opt/vol tdb/cndsnaps/" />
</ pat hs>

Note that the default paths for the command logs and the command log snapshots are both subfolders of
the voltdbroot directory. To avoid overloading a single device on production servers, it is recommended
that you specify an explicit path for the command logs, at a minimum, and preferably for both logs and
snapshots.

To summarize, the rules for balancing command logging with performance and throughput on production
databases are;

 Use asynchronous logging with slower storage devices.

136

Command Logging and Recovery

» Write command logs to a dedicated device. Do not write logs and snapshots to the same device.
» Uselow (1-2 milisecond) frequencies when performing synchronous logging.

» Use moderate (100 millisecond or greater) frequencies when performing asynchronous logging.

137

Chapter 15. Streaming Data: Import,
Export, and Migration

Earlier chapters discuss features of VoltDB as a standal one component of your business application. But
like most technologies, VoltDB is often used within a diverse and heterogeneous computing ecosystem
whereit needsto "play well" with other services This chapter describes features of VoltDB that help inte-
grate it with other databases, systems, and applications to simplify, automate, and speed up your business
processes.

Just as VoltDB as adatabase aims to provide the optimal transaction throughput, VoltDB as adata service
aimsto efficiently and reliably transfer data to and from other services. Of course, you can always write
custom code to integrate VoltDB into your application environment, calling stored procedures to move
datain and out of the database. However, the VoltDB feature set simplifies and automates the process of
streaming datainto, out of, and through V oltDB allowing your application to focus on the important work
of analyzing, processing, and modifying the data in flight through secure, reliable transactions. To make
this possible, VoltDB introduces five key concepts:

» Streams
e |mport

* Export

* Migration
» Topics

Streams operate much like regular database tables. Y ou define them with a CREATE statement like tabl es,
they consist of columns and you insert data into streams the same way you insert data into tables using
the INSERT statement. You can define views that aggregate the data as it passes through the stream.
Interactions with streams within a stored procedure are transactional just liketables. The only differenceis
a stream does not store any data in the database. This allows you to use all the consistency and reliability
of atransactional database and the familiar syntax of SQL to manage data"in flight" without necessarily
having to saveit to persistent storage. Of course, sincethereis no storage associated with streams, they are
for INSERT only. Any attempt to SELECT, UPDATE, or DELETE datafrom a stream resultsin an error.

Import automates the process of pulling datafrom external sources and inserting it into the database work-
flow through the same stored procedures your applications use. The import connectors are declared as part
of the database configuration and stop and start with the database. The key point being that the database
manages the entire import process and ensures the durability of the datawhileit iswithin VoltDB. Alter-
nately, you can use one of the VoltDB data loading utilities to push data into the VoltDB database from
avariety of sources.

Export automates the reverse process from import: it manages copying any data written to an export table
or stream and sending it to the associated external target, whether it be afile, a service such as Kafka, or
another database. The export targets are defined in the database configuration file, while the connection
of atable or stream to it specific export target is done in the data definition language (DDL) CREATE
statement using the EXPORT TO TARGET clause.

Topics are similar to import and export in that topics let you stream data into and out of the VoltDB
database. The differences are that a single topic can perform both import and output, there can be multiple
consumers and producersfor asingletopic, and it isthe external producers and consumersthat control how

138

Streaming Data: Import,
Export, and Migration

15.1.

and when data is transferred rather than VoltDB pulling from and pushing to individual external targets.
Y ou identify the stream to use for output to the topic by specifying EXPORT TO TOPIC inthe CREATE
STREAM statement. Y ou then configure the topic, including the stored procedure to use for input, in the
configuration file. Another difference between export and topicsisthat, because topics do not haveasingle
output consumer, there is no single event that determines when the data transfer is complete. Instead, you
must define a retention/expiration policy (based on time or size) for when data is no longer needed and
can be deleted from the queue.

Migration is a specia case of export where export is more fully integrated into the business workflow.
When you defineatablewiththe MIGRATE TO TARGET clauseinstead of EXPORT TO TARGET, data
is not deleted from the VoltDB table until it is successfully written to the associated target. Y ou trigger a
migration of data using an explicit MIGRATE statement or you can declare the table with USING TTL
to schedule the migration based on a timestamp within the data records and an expiration time defined
asthe TTL value.

How you configure these features depends on your specific business goals. The bulk of this chapter de-
scribes how to declare and configure import, export and migration in detail. The next two sections provide
an overview of how data streaming works and how to use these features to perform common business
activities.

How Data Streaming Works in VoltDB

Import associates incoming data with a stored procedure that determines what is done with the data. Ex-
port associates a database object (atable or stream) with an external target, where the external target de-
termines how the exported data is handled. But in both cases the handling of streamed data follows three
key principles:

* Interaction with the VoltDB database is transactional, providing the same ACID guarantees as all other
transactions.

* Interaction with the external system occurs as a separate asynchronous process, avoiding any negative
impact on the latency of ongoing transactionsin the VoltDB database.

» The VoItDB server takes care of starting and stopping the import and export subsystems when the
database starts and stops. The server also takes responsibility for managing streaming data "in flight"
— ensuring that no datais lost once it enters the subsystem and before it reaches its final destination.

VoltDB database achieves these goalsis by having separate export and import connectors handle the data
asit passes from one system to the next as shown in Figure 15.1, “Overview of Data Streaming”.

139

Streaming Data: Import,
Export, and Migration

Figure 15.1. Overview of Data Streaming

Source
Import
| | mum .: Stored
| I m Procedure
Connector

Export
SQL =l [I>
Insert I
Connector
VoltDB Target

In the case of topics, there is no specific source or target; multiple producers and consumers can write to
and read from the topic. And the stored procedure that receives the incoming data can do whatever you
choose with that content: it can write it to the stream as output for the same topic, it can write into other
topics, it can writeinto other database tables, or any combination, providing the ultimate flexibility to meet
your business logic needs, as shown in Figure 15.2, “Overview of Topics’.

Figure 15.2. Overview of Topics

Producers

Topic
S
-_b | me ': Stored

m Procedure

SQL |

Insert
. Topic
s T L - =
'E II _ 1
VoltDB

Consumers

Which streaming features you use depend on your business requirements. The key point isthat orchestrat-
ing multiple disparate systems is complex and error prone and the VoltDB streaming services free you
from these complexities by ensuring that all operations start and stop automatically as part of the server
process, the datain flight is made durable across database sessions, and that all data is delivered at least
once or retained until delivery ispossible.

Thefollowing sections provide an overview of each service. Later sections describe the services and built-
in connectors in more detail. You can also define your own custom import and export connectors, as
described in the VoltDB Guide to Performance and Customization.

140

https://docs.voltdb.com/PerfGuide/

Streaming Data: Import,
Export, and Migration

15.1.1. Understanding Import

Toimport datainto VoltDB from an external system you have two options: you can use one of the standard
VoltDB data loading utilities (such as csvloader) or you can define an import connector in the database
configuration file that associates the external source with a stored procedure. The data loading utilities
are standalone external applications that push data into the VoltDB database. VoltDB import connectors
use a pull model. In other words, the connector periodically checks the data source to determine if new
content is available. If so, the connector retrieves the data and passes it to the stored procedure where it
can analyze the data, validate it, manipulate it, insert it into the database, or even passit along to an export
stream; whatever your application needs.

The creation of the import connector is done using the <configuration> tag within the <import> ... </
import> element of the configuration file. The attributes of the <configuration> tag specify the type of
import connector to use (Kafka, Kinesis, or custom) and, optionally, the input format (CSV by default).
The <property> tags within the configuration specify the actual data source, the stored procedure to use
as adestination, and any other connector-specific attributes you wish to set.

For example, to process data from a Kafka topic, the connector definition must specify the type (kafka),
the addresses of one or more Kafka brokers as the source, the name of the topic (or topics), and the stored
procedure to process the data. If the data does not need additional processing, you can use the default
stored procedure that VVoltDB generates for each table to insert the data directly into the database. The
following configuration reads the Kafka topics nyse and nasdaq in CSV format and inserts records into
the stocks table using the default insert procedure:

<i nport >
<configuration type="kafka" fornmat="csv">
<property name="Dbr okers">kaf kasvr1: 9092, kaf kasvr 2: 9092</ pr operty>
<property nane="topi cs">nyse, nasdaqg</ property>
<property nane="procedure">STOCKS. i nsert </ property>
</ configuration>
</inport>

Having the import connectors defined in the configuration file lets VoltDB manage the entire import
process, from starting and stopping the connectors to making sure the specified stored procedure exists,
fetching the datain batches and ensuring nothing islost in transit. Y ou can even add, delete, or modify the
connector definitions on the fly by updating the database configuration file while the database is running.

VoltDB provides built-in import connectors for Kafka and Kinesis. Section 15.4, “VoltDB Import Con-
nectors’ describesthese built-in connectors and the required and optional propertiesfor each. Section 15.5,
“VoltDB Import Formatters’ provides additional information about the input formatters that prepare the
incoming data for the stored procedure.

15.1.2. Understanding Export

To export data from VoltDB to an externa system you define a database table or stream as the export
source by including the EXPORT TO TARGET clause in the DDL definition and associating that data
sourcewith alogical target name. For example, to associate the stream alertswith atarget called systeml og,
you would declare a stream like so:

CREATE STREAM al erts
EXPORT TO TARGET systemn og
({colum-definition} [,...]);

For tables, you can also specify when datais queued for export. By default, datainserted into export tables
with the INSERT statement (or UPSERT that results in a new record being inserted) is queued to the

141

Streaming Data: Import,
Export, and Migration

target, similar to streams. However, you can customize the export to write on any combination of data
mani pulation language (DML) statements, using the ON clause. For example, to include updates into the
export steam, the CREATE TABLE statement might look like this:

CREATE TABLE orders
EXPORT TO TARGET order processi ng ON | NSERT, UPDATE
({colum-definition} [,...]);

As soon as you declare a stream or table as exporting to atarget, any data written to that source (or in the
case of tables, the export actions you specified in the CREATE TABLE statement) is queued for the export
stream. Y ou associate the named target with a specific connector and external system in the <export> ...
</export> section of the database configuration file. Note that you can define the target either before or
after declaring the source, and you can add, remove, or modify the export configuration at any time before
or after the database is started.

Inthe configuration file you define the export connector using the <configuration> element, identifying the
target name and type of connector to use. Within the <configuration> element you then identify the specific
external target to use and any necessary connector-specific attributes in <property> tags. For example, to
write export datato fileslocally on the database servers, you use the file connector and specify attributes
such asthe file prefix, location, and roll-over frequency as properties:

<export>
<configuration target="systenl og" type="file">
<property nane="type">csv</property>
<property name="nonce">sysl og</ property>
<property nane="period">60</property>

<l-- roll every hour (60 mnutes) -->
</ configuration>
</ export >

VoltDB supports built-in connectors for five types of externa targets: file, HTTP (including Hadoop),
JDBC, Kafka, and Elasticsearch. Each export connector supports different properties specific to that type
of target. Section 15.3, “VoltDB Export Connectors’ describes the built-in export connectors and the
required and optional properties for each.

15.1.3. Understanding Migration

Migration is aspecial case of export that synchronizes export with the deletion of datain database tables.
When you migrate a record, VoltDB ensures the data is successfully transmitted to (and acknowledged
by) the target before the data is deleted from the database. This way you can ensure the data is always
available from one of the two systems — it cannot temporarily "disappear” during the move.

Y ou define aVoltDB table as a source of migration using the MIGRATE TO TARGET clause, the same
way you define an export source with the EXPORT TO TARGET clause. For example, the following
CREATE TABLE statement defines the orders table as a source for migration to the oldorders target:

CREATE TABLE orders
M GRATE TO TARGET ol dorders
({colum-definition} [,...]);

Migration uses the export subsystem to perform the interaction with the external data store. So you can use
any of the supported connectorsto configure the target of the migration; and you do so the exact same way
you do for any other export target. The difference isthat rather than exporting the data when it is inserted
into the table, the datais exported when you initiate migration.

142

Streaming Data: Import,
Export, and Migration

You trigger migration at run time using the MIGRATE SQL statement and a WHERE clause to identify
the specific rowsto move. For example, to migrate all of the orders for a specific customer, you could use
the following MIGRATE statement:

M GRATE FROM or ders
VWHERE custmer _id = ? AND NOT M GRATI NG

Note the use of NOT MIGRATING. MIGRATING is a specia function that identifies all rows that are
currently being migrated; that is, where migration (and deletion) has not yet completed. Although not re-
quired — VoltDb will skip rowsthat are already migrating — adding AND NOT MIGRATING to aMI-
GRATE statement can improve performance by reducing the number of rows evaluated by the expression.

Once the rows are migrated and the external target acknowledges receipt, the rows are deleted from the
database.

To further automate the migration of data to external targets, you can use the MIGRATE TO TARGET
clause with USING TTL. USING TTL automates the deletion of records based on a TTL vaue and a
TIMESTAMP columninthetable. For example, adding theclause USI NG TTL 12 HOURS ON COLUWN
cr eat ed to atable where the cr eat ed column defaults to NOW, means that records will be deleted
fromthetable 12 hours after they areinserted. By adding the MIGRATE TO TARGET clause, you cantell
VoltDB to migrate the data to the specified target before removing it when its TTL expiration is reached.

CREATE TABLE sessi ons
M GRATE TO TARCET sessi onl og
(session_id BIG NT NOT NULL,
created TI MESTAWP DEFAULT NOW[,...]
)

USI NG TTL 12 HOURS ON COLUMWN cr eat ed;

15.1.4. Understanding Topics

Topicsallow you to integrate both import and export into asingle stream. They al so allow multiple external
producers and consumers to access the topic at the same time, keeping track of where each consumer or
group of consumersisin the stream of output.

There are actually two distinct and independent components to a topic that you control separately: input
and output. You declare a topic having either or both, depending on the schema and configuration file.
The schema associates individual streams with topics and the configuration file defines the properties of
the topic, including what stored procedure to use for input. For example, you can declare an output-only
topic by specifying the topic in the CREATE STREAM.... EXPORT TO TOPIC statement but specifying
no stored procedure in the configuration file. In this case, any records written to the associated stream are
gueued for output and available to any consumers of the topic:

CREATE STREAM sessi on EXPORT TO TOPI C sessions ...

If, on the other hand, you specify a stored procedure in the configuration file, records written to the topic
by producers invoke the specified procedure passing the message contents (and, optionally, the key) as
arguments:

<t opi cs>
<t opi ¢ name="sessi ons" procedure="ProcessSessi ons"/>
</t opics>

If you include both the EXPORT TO TOPIC clause in the CREATE STEAM statement and the pr oce-

dur e attribute in the <t opi ¢> element of the configuration file, the topic is available for both input and
output. What happens to the data as it passes through VoltDB is up to you. You can simply pass it from
producers to consumers by taking the data received by the input procedure and inserting it into the associ-

143

Streaming Data: Import,
Export, and Migration

15.2.

ated stream. Or the stored procedure can filter, modify, or redirect the content as needed. For example, the
following data definitions create a topic where the input procedure uses an existing table in the database
(users) to fill out additional fields based on the matching username in the incoming records while writing
the data to the stream for outpuit:

Schema CREATE TABLE tenpuser (usernane VARCHAR(128) NOT NULL);
CREATE TABLE users (usernanme VARCHAR(128) NOT NULL,
country VARCHAR(32), userrank | NTECER);
PARTI TI ON TABLE t enpuser on col umm user nane;
PARTI TI ON TABLE users on col um user nane;

CREATE STREAM sessi on
EXPORT TO TOPI C "sessi ons”
PARTI TI ON ON COLUWN user nane (
user namre VARCHAR(128) NOT NULL,

| ogin TI MESTAMP, country VARCHAR(32), userrank |NTEGER);

CREATE PROCEDURE ProcessSessi ons
PARTI TI ON ON TABLE users COLUWN user name
AS BEG N
I NSERT | NTO t enmpuser VALUES(CAST(? AS VARCHAR));
I NSERT | NTO sessi on SELECT u. user nane,
CAST(? AS Tl MESTAMP), u.country, u.userrank
FROM users AS u, tenpuser AS't
VWHERE u. user name=t . user nane;
TRUNCATE TABLE t enpuser;
END;

Configuration <t opi cs>
<t opi ¢ nanme="sessi ons" procedure="ProcessSessi ons"/>
</t opi cs>

Finally, if youwant to create atopic that isnot processed but simply flowsthrough VoltDB from producers
to consumers, you declare the topic as "opague” in the configuration file, without either specifying a stored
procedure for input or associating a stream with the topic for output.

<t opi ¢ nane="sysnsgs" opaque="true"/>

Opague topics are useful if you want to have a single set of brokers for all your topics but only need to
analyze and process some of the datafeeds. Opaguetopicslet VoltDB handle the additional topicswithout
requiring the stored procedure or stream definitions needed for processed topics.

The Business Case for Streaming Data

The streaming features of VoltDB provide arobust and flexible set of capabilitiesfor connecting aVoltDB
database to external systems. They can be configured in many different ways. At the most basic, they
let you automate the import and export data from a VoltDB database. The following section demonstrate
other ways these capabilities can simplify and automate common business processes, including:

e Section 15.2.1, “Extract, Transform, Load (ETL)”

Section 15.2.2, “ Change Data Capture”

Section 15.2.3, “ Streaming Data Validation”

Section 15.2.4, “ Caching”

144

Streaming Data: Import,
Export, and Migration

e Section 15.2.5, “Archiving”

15.2.1. Extract, Transform, Load (ETL)

Extract, transform, load (ETL) is a common business pattern where you extract data from a database,
restructure and repurpose it, then load into another system. For example, an order processing database
might have separate tables for customer data, orders, and product information. When it comestimeto ship
the order, information from all three tables is needed: the customer ID and product SKU from the order,
the name and address from the customer record, and the product name and description from the product
table. Thisinformation is merged and passed to the shipping management system.

Rather than writing a separate application to perform these tasks, VoltDB lets you integrate them in a
single stored procedure. By creating a stream with the appropriate columns for the transformed data and
assigning it as an export source and defining a target that matches the shipping management system, you
can declare single stored procedure to compl ete the process:

CREATE STREAM shi ppi ng
EXPORT TO TARGET shi pngt system
(order_nunber BI G NT,
prod_sku Bl G NT,
prod_nane VARCHAR(64),
cust onmer _nanme VARCHAR(64),
cust omer _address VARCHAR(128));
CREATE PROCEDURE shi porder AS
| NSERT | NTO shi ppi ng SELECT
0.id, p.sku, p.name, c.nanme, c.address
FROM orders AS o, products AS p, customers AS ¢
WHERE o0.id = ? AND
0.sku = p.sku AND o.custoner_id = c.id;

15.2.2. Change Data Capture

Change Data Capture is the process of recording al changes to the content of a database. Those changes
can then be reused by inserting into another repository for redundancy, logging to a file, merging into
another database or whatever the business workflow call for.

VoltDB simplifies change data capture by allowing you to export all or any subset of datachangesto atable
to any of the available export targets. When you declare atable as an export source with the EXPORT TO
TARGET clause you can specify which actions trigger export using ON. Possible triggers are INSERT,
UPDATE, UPDATE_NEW, UPDATE_OLD, and DELETE.

INSERT and DELETE are self-explanatory. UPDATE, on the other hand, generates two export records:
one for the row before the update and one for the row after the update. To select only one or these records,
you can use the actions UPDATE_OLD or UPDATE_NEW.

For change data capture, you can export all changes by specifying ON INSERT, UPDATE, DELETE. For
example, the following schema definitions ensure that all data changes for the tables products and orders
are exported to the targets offsiteprod and offsiteorder, respectively:

CREATE TABLE products EXPORT TO TARGET of fsiteprod
ON | NSERT, UPDATE, DELETE
[... 1;

CREATE TABLE orders EXPORT TO TARGET of fsiteorder
ON | NSERT, UPDATE, DELETE

[... 1;

145

Streaming Data: Import,
Export, and Migration

Note that the built-in connectors include six columns of metadata at the beginning of the export data by
default. For change data capture, the most important piece of metadataisthe sixth column, withisasingle
byte value that indicates which action triggered the export. The external target can use this information
to determine what to do with the record. The possible values for the operation indicator are shown in
Table 15.2, “Export Metadata’.

15.2.3. Streaming Data Validation

VoltDB provides the necessary speed and features to implement an intelligent data pipeline — where
information passing through a high performance stream is analyzed, validated and then accepted, rejected,
or modified as necessary and passed on to the next stage of the pipeline. Inthisuse case, thedatain VoltDB
is used as reference for comparison with the influx of data in the pipeline. VoltDB import connectors
accept the incoming data, where it is submitted to a stored procedure. The stored procedure analyses the
data against the reference tables, then inserts the validated content into a stream which isin turn declared
as asource for an export connector that sends it along to its next target.

For example, VoltDB can be inserted into a Kafka pipeline by using:

» A Kafkaimport connector as the input

» A VolItDB stream and a Kafka export connector as the output

» A stored procedure analyzing the input and inserting it into the stream

The following schema and configuration illustrate a smple example that checks if the data in a Kafka
stream matches an existing user account with appropriate funds. The schema uses a reference table (ac-
count), a temporary table (incoming), and an export stream (outgoing). Any data matching the require-
ments is written to the export target; al other incoming data is dropped.

CREATE TABLE i ncomi ng

(trans_id BIG NT, anpbunt BIG NT, user_id BIGNT);
CREATE STREAM out goi ng EXPORT TO TARGET kaf ka_out put

(trans_id BIG NT, anpbunt BIG NT, user_id BIGNT);

CREATE PRCCEDURE val i date AS
BEG N
I NSERT I NTO i ncoming (?,7?,7);
| NSERT | NTO out goi ng
SELECT i.trans_id, i.anount, i.userid
FROM i ncoming AS i, account AS a
VWHERE i .user_id = a.user_id AND a. bal ance + i.anmount > 0;
TRUNCATE i ncomi ng;
END;

146

Streaming Data: Import,
Export, and Migration

<i nport >
<configuration type="kaf ka">
<property name="procedure">val i date</configuration>
<property nane="brokers" >kf kasrcl, kf ksrc2</configuration>
<property nane="topi cs">transacti ons</configuration>
</ configuration>
</inport >

<export>
<configuration type="kafka" target="kaf ka_out put">
<property name="boot strap. servers">kf kdest 1, kf kdest 2</ confi gurati on>
<property nane="topi c. key" >out goi ng. t ransacti ons</ confi gurati on>
<property nane="ski pi nternal s">true</configuration>
</ configuration>
</ export >

15.2.4. Caching

Because of its architecture, VoltDB is excellent at handling high volume transactions. It is not as well
suited for ad hoc analytical processing of extremely large volumes of historical data. But sometimes you
need both. Caching allows current, high touch content to be accessible from a fast front-end repository
while historical, less frequently accessed content is stored in slower, large back-end repositories (such as
Hadoop) sometimes called data lakes.

Export, Time To Live (TTL), and automated tasks help automate the use of VoltDB as a hot cache. By
declaring tables in VoltDB as export sources to a large back-end repository, any data added to VoltDB
automatically gets added to the historical data lake. Once datain VoltDB is no longer "hot", it can be
deleted but remains available from larger back-end servers.

In the simplest case, caching can be done by declaring the VoltDB tables with EXPORT TO TARGET
and using ON INSERT, UPDATE_NEW so al data changes except deletes are exported to the data lake.
Y ou can then manually delete data from VoltDB when it becomes unnecessary in the cache.

CREATE TABLE sessi ons
EXPORT TO TARGET hi storical ON I NSERT, UPDATE_NEW
(id BIG NT NOT NULL,
| ogi n TI MESTAMP, | ast_access TINMESTAMP [,...]);

To makeit easier, VoltDB can automate the process of aging out old data. If the content istime sensitive,
you can add USING TTL to the table declaration to automatically delete records once a column exceeds
acertain time limit. Y ou specify the reference column and the time limit in the USING TTL clause. For
example, if you want to automatically delete any sessions that have not been accessed for more than two
hours, you can change the sessions table declaration like so:

CREATE TABLE sessi ons
EXPORT TO TARGET historical ON | NSERT, UPDATE NEW
(id BIGA NT NOT NULL, user_id BIG NT,
| ogin TI MESTAMP, | ast_access TINMESTAMP [,...])
USI NG TTL 2 hours ON COLUWN | ast _access;

If your expiration criteriais more complex than a single column value, you can use a stored procedure to
identify rows that need deleting. To automate this process, you then define a task that executes the stored
procedure on aregular basis. For example, if you want to remove sessions more frequently if thereis no
access after theinitial login, you can define a stored procedure GhostSessions to removeinactive sessions,

147

Streaming Data: Import,
Export, and Migration

then execute that procedure periodically with the task RemoveGhosts. Note that the actual time limit can
be made adjustable by a parameter passed to the task.

CREATE PROCEDURE Ghost Sessi ons AS
DELETE FROM sessi ons
VWHERE | ogin = | ast_access AND DATEADD(M NUTE, ?, | ogi n) < NOW
CREATE TASK ON SCHEDULE EVERY 2 M NUTES
PROCEDURE Ghost Sessions WTH (20); -- 20 minute limt

15.2.5. Archiving

15.3.

Archivingislike caching in that older datais maintained in slower, large-scale repositories. The difference
isthat for archiving, rather than having copies of the current data in both locations, data is not moved to
the archive until after it's usefulnessin VoltDB expires.

Y ou could simply export the data when you delete it from the VoltDB database. But since export is asyn-
chronous, there will be a short period of time when the data is neither in VoltDB or in the archive. To
avoid this situation, you can use migration rather than export, which ensures the data is not deleted from
VolItDB until the export target acknowledges receipt of the migrated content.

For example, if we are archiving orders, we can include the MIGRATE TO TARGET clause in the table
definition and then use the MIGRATE statement instead of DELETE to clear the records from VoltDB:

CREATE TABLE orders M GRATE TO TARGET archi ve
[. . . 1;

If you are archiving records based on age, you can use MIGRATE TO TARGET with USING TTL to
automatically migrate the table rows once a specific column in the table expires. Used alone, USING TTL
simply deletesrecords; used with MIGRATE TO TARGET it initiatesamigration for the expired records:

CREATE TABLE orders M GRATE TO TARGET archi ve

[.. . 1]
USI NG TTL 30 DAYS ON COLUWN order _conpl et ed;

VoltDB Export Connectors

Y ou usethe EXPORT TO TARGET or MIGRATE TO TARGET clausesto identify the sources of export
and start queuing export data. To enable the actual transmission of data to an export target at runtime,
you include the <expor t > and <conf i gur at i on> tagsin the configuration file. Y ou can configure
the export targets when you initialize the database root directory. Or you can add or modify the export
configuration while the database is running using the voltadmin update command.

Inthe configuration file, the export and configuration tags specify the target you are configuring and which
export connector to use (with thet y pe attribute). To export to multiple destinations, you include multiple
<confi gur at i on> tags, each specifying the target it is configuring. For example:

<export>
<configuration enabl ed="true" type="file" target="10g">

</ configuration>
<configuration enabl ed="true" type="jdbc" target="archive">

</ configuration>
</ export >

148

Streaming Data: Import,
Export, and Migration

Y ou configure each export connector by specifying properties as one or more <pr oper t y> tags within
the<confi gur at i on> tag. For example, the following XML code enables export to comma-separated
(CSV) text filesusing the file prefix "MyExport".

<export>
<configuration enabl ed="true" target="1og" type="file">
<property nane="type">csv</property>
<property nane="nonce">MyExport </ property>
</ configuration>
</ export >

The propertiesthat are allowed and/or required depend on the export connector you select. VoltDB comes
with five export connectors:

» Export tofile (type="file")

» Export to HTTP, including Hadoop (type="http")
» Export to JDBC (type="jdbc")

« Export to Kafka (type="kafka")

» Export to Elasticsearch (type="elasticsearch")

In addition to the connectors shipped as part of the VoltDB software kit, an export connector for Amazon
Kinesis is available from the VVoltDB public Github repository (https://github.com/V oltDB/export-kine-
sis).

15.3.1. How Export Works

Two important points about export to keep in mind are:

» Dataisqueued for export as soon you declare a stream or table with the EXPORT TO TARGET clause
and write to it. Even if the export target has not been configured yet. Be careful not to declare export
sources and forget to configure their targets, or el se the export queues could grow and cause disk space
issues. Similarly, when you drop the stream or table, its export queue is deleted, even if there is data
waiting to be delivered to the configured export target.

» VoltDB will send at least one copy of every export record to the target. It is possible, when recovering
command logs or rejoining nodes, that certain export records are resent. It isup to the downstream target
to handle these duplicate records. For example, using unique indexes or including a unique record ID
in the export stream.

All nodes in a cluster queue export data, but only one actually writes to the external target. If one or more
nodes fail, responsibility for writing to the export targets is transferred to another currently active server.
It ispossible for gapsto appear in the export queues while serversare offline. Normally if agap isfound, it
is not a problem because another node can take over responsibility for writing (and queuing) export data.

However, in unusual cases where export falls behind and nodesfail and rejoin consecutively, it is possible
for gapsto occur in all the available queues. When this happens, VoltDB issues awarning to the console
(and via SNMP) and waits for the missing data to be resolved. Y ou can also use the @Statistics system
procedure with the EXPORT selector to determine exactly what records are and are not present in the
gueues. If the gap cannot be resolved (usually by rejoining a failed server), you must use the voltadmin
export release command (specifying the stream or table and the export target with the --source and --
target qualifiers, respectively) to free the queue and resume export at the next available record.

149

https://github.com/VoltDB/export-kinesis
https://github.com/VoltDB/export-kinesis

Streaming Data: Import,
Export, and Migration

15.3.1.1. Export Overflow

VoltDB uses persistent files on disk to queue export data waiting to be written to its specified target. If
for any reason the export target can not keep up with the connector, VVoltDB writes the excess datain the
export buffer from memory to disk. This protects your database in severa ways.

« If the destination target is not configured, is unreachable, or cannot keep up with the data flow, writing
to disk helps VoltDB avoid consuming too much memory while waiting for the destination to accept
the data.

« If the database stops, the export data is retained across sessions. When the database restarts, the con-
nector will retrieve the overflow data and reinsert it in the export queue.

Even when the target does keep up with the flow, some amount of dataiswritten to the overflow directory
to ensure durability across database sessions. Y ou can specify where VoltDB writes the overflow export
data using the <exportoverflow> element in the configuration file. For example:

<pat hs>
<exportoverfl ow path="/tnmp/ export/"/>
</ pat hs>

If you do not specify apath for export overflow, VoltDB creates a subfolder in the database root directory.
See Section 3.7.2, “ Configuring Paths for Runtime Features” for moreinformation about configuring paths
in the configuration file.

15.3.1.2. Persistence Across Database Sessions

It isimportant to note that VoltDB only uses the disk storage for overflow data. However, you can force
VoltDB to write all queued export data to disk using any of the following methods:

 Caling the @Quiesce system procedure
* Requesting a blocking snapshot (using voltadmin save --blocking)
 Performing an orderly shutdown (using voltadmin shutdown)

This means that if you perform an orderly shutdown with the voltadmin shutdown command, you can
recover the database — and any pending export queue data — by simply restarting the database cluster
in the same root directories.

Note that when you initialize or re-initialize a root directory, any subdirectories of the root are purged.1
So if your configuration did not specify a different location for the export overflow, and you re-initiaize
the root directories and then restore the database from a snapshot, the database is restored but the export
overflow will belost. If both your original and new configuration use the same, explicit directory outside
the root directory for export overflow, you can start a new database and restore a snapshot without losing
the overflow data

15.3.2. The File Export Connector

The file connector receives the serialized data from the export source and writesit out astext files (either
commaor tab separated) to disk. The file connector writes the data out onefile per source table or stream,
"rolling" over to new files periodically. The filenames of the exported data are constructed from:

Ynitializi ng aroot directory deletes any files in the command log and overflow directories. The snapshots directory is archived to a named subdi-
rectory.

150

Streaming Data: Import,
Export, and Migration

A unique prefix (specified with the nonce property)

» A unique value identifying the current version of the database schema
* The stream or table name

A timestamp identifying when the file was started

» Optionaly, the ID of the host server writing the file

While the file is being written, the file name also contains the prefix "active-". Once the file is complete
and a new file started, the "active-" prefix is removed. Therefore, any export files without the prefix are
complete and can be copied, moved, deleted, or post-processed as desired.

There are two properties that must be set when using the file connector:
e Thet ype property lets you choose between comma-separated files (csv) or tab-delimited files (tsv).

» Thenonce property specifies aunique prefix to identify all files that the connector writes out for this
database instance.

Table 15.1, “File Export Properties’ describes the supported properties for the file connector.

Table 15.1. File Export Properties

Property Allowable Values Description

type* csv, tsv Specifies whether to create comma-separated (CSV) or tab-delimit-
ed (TSV) files,

nonce’ string A unique prefix for the output files.

outdir directory path The directory where the files are created. Relative paths are relative

to the database root directory on each server. If you do not specify
an output path, VoltDB writes the output files into a subfolder of the
root directory itself.

period Integer The frequency, in minutes, for "rolling" the output file. The default
frequency is 60 minutes.

binaryencoding hex, base64 Specifies whether VARBINARY datais encoded in hexadecimal or
BASEG4 format. The default is hexadecimal.

dateformat format string The format of the date used when constructing the output file names.

Y ou specify the date format as a Java SimpleDateFormat string. The
default format is"yyyyMMddHHmMmSss".

timezone string The time zone to use when formatting the timestamp. Specify the
time zone as a Java timezone identifier. The default isGMT.
delimiters string Specifies the delimiter characters for CSV output. The text string

specifies four characters in the following order: the separator, the
guote character, the escape character, and the end-of-line character.

Non-printing characters must be encoded as Java literals. For ex-
ample, the new line character (ASCII code 13) should be entered
as"\n". Alternately, you can use Java Unicode literals, such as
"\u000d". Y ou must also encode any XML special characters, such
as the ampersand and left angle bracket as HTML entities for inclu-
sioninthe XML configuration file. For example encoding "<" as
">".

151

Streaming Data: Import,
Export, and Migration

Property Allowable Values Description

The following property definition matches the default delimiters.
That is, the comma, the double quotation character twice (as both
the quote and escape delimiters) and the new line character:

<property name="delimter"> ""\n</property>

batched true, false Specifies whether to store the output filesin subfolders that are
"rolled" according to the frequency specified by the period property.
The subfolders are named according to the nonce and the timestamp,
with "active-" prefixed to the subfolder currently being written.

skipinternals true, false Specifies whether to include six columns of VoltDB metadata (such
astransaction 1D and timestamp) in the output. If you specify skipin-
ternals as "true", the output files contain only the exported data.

uniguenames true, false Specifies whether to include the host ID in the file name to ensure
that all files written are unique across a cluster. The export files are
always unique per server. But if you plan to write al cluster filesto
anetwork drive or copy them to asingle location, set this property
to true to avoid any possible conflict in the file names. The default is
false.

with-schema true, false Specifies whether to write a JSON representation of the source's
schema as part of the export. The JSON schema files can be used to
ensure the appropriate datatype and precision is maintained if and
when the output files are imported into another system.

"Required

Whatever properties you choose, the order and representation of the content within the output filesis the
same. The export connector writes a separate line of data for every INSERT it receives, including the
following information:

 Six columns of metadata generated by the export connector.

» The remaining columns are the columns of the database source, in the same order asthey arelisted in
the database definition (DDL) file.

Table 15.2, “Export Metadata” describes the six columns of metadata generated by the export connector
and the meaning of each column.

Table 15.2. Export Metadata

Column Datatype Description

Transaction ID BIGINT Identifier uniquely identifying the transaction that generated the ex-
port record.

Timestamp TIMESTAMP The time when the export record was generated.

Sequence Number BIGINT For internal use.

Partition ID BIGINT I dentifies the partition that sent the record to the export target.

Site ID BIGINT Identifies the site that sent the record to the export target.

Export Operation TINYINT A single byte value identifying the type of transaction that initiated
the export. Possible valuesinclude:
e 1—insert
 2—delete

152

Streaming Data: Import,
Export, and Migration

Column

Datatype Description

» 3 — update (record before update)
e 4 — update (record after update)
e 5— migration

15.3.3. The HTTP Export Connector

The HTTP connector receives the serialized data from the export streams and writes it out via HTTP
requests. The connector is designed to be flexible enough to accommodate most potential targets. For
example, the connector can be configured to send out individual records using a GET request or batch
multiple records using POST and PUT requests. The connector also contains optimizations to support
export to Hadoop via WebHDFS.

15.3.3.1. Understanding HTTP Properties

The HTTP connector is a general purpose export utility that can export to any number of destinations
from simple messaging services to more complex REST APIs. The properties work together to create a
consistent export process. However, it isimportant to understand how the propertiesinteract to configure
your export correctly. The four key properties you need to consider are:

» batch.mode — whether datais exported in batches or one record at atime
* method — the HTTP request method used to transmit the data

» type— the format of the output

» endpoint — thetarget HTTP URL to which export iswritten

The properties are described in detail in Table 15.3, “HTTP Export Properties’. This section explains the
relationship between the properties.

There are essentially two types of HTTP export: batch mode and one record at a time. Batch mode is
appropriate for exporting large volumes of data to targets such as Hadoop. Exporting one record at atime
islessefficient for large volumes but can be very useful for writing intermittent messagesto other services.

In batch mode, the datais exported using aPOST or PUT method, where multiple records are combined in
either comma-separated value (CSV) or Avro format in the body of the request. When writing one record
at atime, you can choose whether to submit the HTTP request as a POST, PUT or GET (that is, as a
querystring attached to the URL). When exporting in batch mode, the method must be either POST or PUT
and the type must be either csv or avr 0. When exporting one record at a time, you can use the GET,
PCOST, or PUT method, but the output type must bef or m

Finally, the endpoint property specifies the target URL where data is being sent, using either the http: or
https: protocol. Again, the endpoint must be compatible with the possible settings for the other properties.
In particular, if the endpoint isa WebHDFS URL, batch mode must enabled.

The URL can aso contain placeholders that are filled in at runtime with metadata associated with the
export data. Each placeholder consists of a percent sign (%) and asingle ASCII character. The following
arethe valid placeholders for the HTTP endpoint property:

Placeholder Description

%ot The name of the VoltDB export source table or stream. The source name is inserted
into the endpoint in all uppercase.

%p TheVoltDB partition ID for the partition where the INSERT query to the export source
is executing. The partition ID is an integer value assigned by VoltDB internally and

153

Streaming Data: Import,
Export, and Migration

Placeholder

Description

can be used to randomly partition data. For example, when exporting to webHDFS, the
partition ID can be used to direct datato different HDFSfiles or directories.

%g

The export generation. The generation is an identifier assigned by VoltDB. The gener-
ation increments each time the database starts or the database schema is modified in

any way.

%d

The date and hour of the current export period. Applicable to WebHDFS export only.
This placeholder identifies the start of each period and the replacement value remains
the same until the period ends, at which point the date and hour is reset for the new
period.

You can use this placeholder to "roll over" WebHDFS export destination files on a
regular basis, as defined by the per i od property. The peri od property defaults to
one hour.

When exporting in batch mode, the endpoint must contain at least one instance each of the %t, %p, and
%q placeholders. However, beyond that requirement, it can contain as many placeholders as desired and
in any order. When not in batch mode, use of the placeholders are optional .

Table 15.3, “HTTP Export Properties’ describes the supported properties for the HTTP connector.

Table15.3. HTTP Export Properties

Property

Allowable Values Description

endpoint’

string

Specifies the target URL. The endpoint can contain placeholders for
inserting the source name (%t), the partition ID (%p), the date and
hour (%d), and the export generation (%g).

avro.compress

true, false Specifies whether Avro output is compressed or not. The default is

false and this property isignored if the typeis not Avro.

avro.schema.location

string

Specifies the location where the Avro schemawill be written. The
schema location can be either an absolute path name on the local
database server or awebHDFS URL and must include at least one
instance of the placeholder for the source name (%t). Optional-

ly it can contain other instances of both %t and %g. The default
location for the Avro schemaisthefile path expor t / avr o/

% avro_schena. j son on the database server under the voltd-
broot directory. This property isignored if the typeis not Avro.

batch.mode

true, false Specifies whether to send multiple rows as a single request or send

each export row separately. The default is true. Batch mode must be
enabled for WebHDFS export.

httpfs.enable

true, false Specifies that the target of WebHDFS export is an Apache HttpFS

(Hadoop HDFS over HTTP) server. This property must be set to true
when exporting webHDFS to HttpFS targets.

kerberos.enable

true, false Specifies whether Kerberos authentication is used when connecting

to aWebHDFS endpoint. This property is only valid when connect-
ing to WebHDFS servers and is false by default.

method

get, post, put Specifies the HTTP method for transmitting the export data. The de-

fault method is POST. For WebHDFS export, this property isig-
nored.

154

Streaming Data: Import,
Export, and Migration

Property

Allowable Values Description

period

Integer Specifies the frequency, in hours, for "rolling" the WebHDFS output
date and time. The default frequency is every hour (1). For WebHD-
FS export only.

timezone

string The time zone to use when formatting the timestamp. Specify the
time zone as a Java timezone identifier. The default is the local time
zone.

type

csv, avro, form Specifies the output format. If batch.mode is true, the default type is
CSV. If batch.mode is fal se, the default and only allowable value for
typeisform. Avro format is supported for WebHDFS export only
(see Section 15.3.3.2, “Exporting to Hadoop viaWebHDFS' for de-
tails.)

"Required

15.3.3.2. Exporting to Hadoop via WebHDFS

As mentioned earlier, the HTTP connector contains special optimizations to support exporting data to
Hadoop via the WebHDFS protocol. If the endpoint property contains a WebHDFS URL (identified by
the URL path component starting with the string "/webhdfs/v1/"), special rules apply.

First, for WebHDFS URLSs, the batch.mode property must be enabled. Also, the endpoint must have at
least one instance each of the source name (%t), the partition 1D (%p), and the export generation (%g)
placeholders and those placeholders must be part of the URL path, not the domain or querystring.

Next, the method property isignored. For WebHDFS, the HTTP connector uses a combination of POST,
PUT, and GET requests to perform the necessary operations using the WebHDFS REST API.

For example, The following configuration file excerpt exports stream data to WebHDFS using the HTTP
connector and writing each stream to a separate directory, with separate files based on the partition 1D,
generation, and period timestamp, rolling over every 2 hours:

<export >
<configuration target="hadoop" enabl ed="true" type="http">
<property nane="endpoi nt">
htt p: // nyhadoopsvr/ webhdf s/ v1/ % / dat a%- %g. %d. csv
</ property>
<property nane="bat ch. node" >t r ue</ property>
<property nane="period">2</property>
</ configuration>
</ export >

Note that the HTTP connector will create any directories or files in the WebHDFS endpoint path that do
not currently exist and then append the data to those files, using the POST or PUT method as appropriate
for the WebHDFS REST API.

Y ou & so have a choice between two formats for the export datawhen using WebHDFS: comma-separated
values (CSV) and Apache Avro™ format. By default, data is written as CSV data with each record on
a separate line and batches of records attached as the contents of the HTTP request. However, you can
choose to set the output format to Avro by setting thet ype property, as in the following example:

155

Streaming Data: Import,
Export, and Migration

<export>
<configuration target="hadoop"” enabl ed="true" type="http">
<property nane="endpoi nt">
htt p: // nyhadoopsvr/ webhdf s/ v1/ % / dat a%- %g. %d. avro
</ property>
<property nane="type">avro</property>
<property nanme="avro.conpress">true</property>
<property nane="avro.schena. |l ocation">
htt p: // nyhadoopsvr/ webhdf s/v1/ %/ schema. j son
</ property>
</ configuration>
</ export >

Avro is adata serialization system that includes a binary format that is used natively by Hadoop utilities
such as Pig and Hive. Because it is abinary format, Avro data takes up less network bandwidth than text-
based formats such as CSV. In addition, you can choose to compress the data even further by setting the
avr 0. conpr ess property to true, asin the previous example.

When you select Avro as the output format, VoltDB writes out an accompanying schema definition as a
JSON document. For compatibility purposes, the source name and columns names are converted, removing
underscores and changing the resulting words to lowercase with initial capital |etters (sometimes called
"camelcase"). The source nameisgiven aninitial capital letter, while columns names start with alowercase
letter. For example, the stream EMPLOY EE_DATA and its column named EMPLOYEE iD would be
converted to EmployeeData and employeeld in the Avro schema.

By default, the Avro schemais written to alocal file on the VoltDB database server. However, you can
specify an aternate location, including a webHDFS URL. So, for example, you can store the schemain
the same HDFS repository as the data by setting theavr o. schema. | ocat i on property, as shownin
the preceding example.

See the Apache Avro web site for more details on the Avro format.

15.3.3.3. Exporting to Hadoop Using Kerberos Security

If the WebHDFS service to which you are exporting data is configured to use Kerberos security, the
VoltDB servers must be able to authenticate using Kerberos as well. To do this, you must perform the
following two extra steps:

 Configure Kerberos security for the VoltDB cluster itself
 Enable Kerberos authentication in the export configuration

Thefirst step isto configure the VoltDB serversto use Kerberos as described in Section 12.8, “ Integrating
Kerberos Security with VoltDB”. Because use of Kerberos authentication for VoltDB security changes
how the clients connect to the database cluster, It is best to set up, enable, and test Kerberos authentication
first to ensure your client applicationswork properly in this environment before trying to enable Kerberos
export aswell.

Once you have K erberos authentication working for the VoltDB cluster, you can enable K erberos authen-
tication in the configuration of the WebHDFS export target as well. Enabling Kerberos authentication in
the HTTP connector only requires one additional property, ker ber os. enabl e, to be set. To use Ker-
beros authentication, set the property to "true". For example:

156

http://avro.apache.org/

Streaming Data: Import,
Export, and Migration

<export>
<configuration target="hadoop"” enabl ed="true" type="http">
<property nane="endpoi nt">
htt p: // nyhadoopsvr/ webhdf s/ v1/ % / dat a%- %g. %d. csv
</ property>
<property nane="type">csv</property>
<property name="ker ber os. enabl e">true</ property>
</ configuration>
</ export >

Note that Kerberos authentication is only supported for WebHDFS endpoints.

15.3.4. The JDBC Export Connector

The JDBC connector receivesthe serialized datafrom the export source and writesit, in batches, to another
database through the standard JDBC (Java Database Connectivity) protocol.

By default, when the JDBC connector opens the connection to the remote database, it first attempts to
create tables in the remote database to match the VoltDB export source by executing CREATE TABLE
statements through JDBC. Thisisimportant to note because, it ensures there are suitable tablesto receive
the exported data. The tables are created using either the names from the VoltDB schemaor (if you do not
enable the ignoregenerations property) the name prefixed by the database generation ID.

If the target database has existing tables that match the VoltDB export sourcesin both name and structure
(that is, the number, order, and datatype of the columns), be sure to enable the ignoregenerations property
in the export configuration to ensure that VVoltDB uses those tables as the export target.

It isalso important to note that the JDBC connector exports datathrough JDBC in batches. That is, multiple
INSERT instructions are passed to the target database at atime, in approximately two megabyte batches.
There are two conseguences of the batching of export data:

 For many databases, such as Netezza, where thereis a cost for individual invocations, batching reduces
the performance impact on the receiving database and avoids unnecessary latency in the export pro-
cessing.

» Ontheother hand, no matter what the target database, if aquery failsfor any reason the entire batch fails.

To avoid errors causing batch inserts to fail, it is strongly recommended that the target database not use
unique indexes on the receiving tables that might cause constraint violations.

If any errorsdo occur when the JDBC connector attemptsto submit datato the remote database, the VoltDB
disconnects and then retries the connection. This process is repeated until the connection succeeds. If
the connection does not succeed, VoltDB eventually reduces the retry rate to approximately every eight
seconds.

Table 15.4, “JDBC Export Properties’ describes the supported properties for the JDBC connector.

Table 15.4. JDBC Export Properties

Property Allowable Values Description
jdbcurl* connection string The JDBC connection string, also known as the URL.
jobcuser” string The username for accessing the target database.

157

Streaming Data: Import,
Export, and Migration

Property Allowable Values Description
jdbcpassword string The password for accessing the target database.
jdbcdriver string The class name of the IDBC driver. The JDBC driver class must be

accessible to the VoltDB process for the JDBC export process to
work. Place the driver JAR filesinthel i b/ ext ensi on/ direc-
tory where VoltDB isinstalled to ensure they are accessible at run-
time.

Y ou do not need to specify the driver as a property value for several
popular databases, including MySQL, Netezza, Oracle, PostgreSQL,
and Vertica. However, you still must provide the driver JAR file.

schema string The schema name for the target database. The use of the schema
name is database specific. In some cases you must specify the data-
base name as the schema. In other cases, the schemaname is not
needed and the connection string contains al the information neces-
sary. See the documentation for the JDBC driver you are using for
more information.

minpoolsize integer The minimum number of connectionsin the pool of connections to
the target database. The default valueis 10.

maxpoolsize integer The maximum number of connectionsin the pool. The default value
is 100.

maxidletime integer The number of milliseconds a connection can be idle beforeit isre-
moved from the pool. The default value is 60000 (one minute).

maxstatementcached |integer The maximum number of statements cached by the connection pool.
The default valueis 50.

createtable true, false Specifies whether VoltDB should create the corresponding tablein

the remote database. By default , VoltDB creates the table(s) to re-
ceive the exported data. (That is, the default istrue) If you set this
property to false, you must create table(s) with matching names to
the VoltDB export sources before starting the export connector.

lowercase true, false Specifies whether VoltDB uses lowercase table and column names
or not. By default, VoltDB issues SQL statements using uppercase
names. However, some databases (such as PostgreSQL) are case
sensitive. When this property is set to true, VoltDB uses all lower-
case names rather than uppercase. The default isfalse.

ignoregenerations true, false Specifies whether a unique 1D for the generation of the database
isincluded as part of the output table name(s). The generation ID
changes each time a database restarts or the database schemais up-
dated. The default isfalse.

skipinternals true, false Specifies whether to include six columns of VoltDB metadata (such
astransaction ID and timestamp) in the output. If you specify skip-
internals as true, the output contains only the exported stream data.
The default isfalse.

"Required

15.3.5. The Kafka Export Connector

TheKafkaconnector receives serialized datafrom the export sources and writesit to amessage queue using
the Apache Kafka version 0.10.2 protocols. Apache Kafkais a distributed messaging service that lets you

158

http://kafka.apache.org/

Streaming Data: Import,
Export, and Migration

set up message queues which are written to and read from by "producers’ and "consumers', respectively.
In the Apache Kafka model, VoltDB export acts as a "producer” capable of writing to any Kafka service
using version 0.10.2 or later.

Before using the Kafka connector, we strongly recommend reading the Kafka documentation and becom-
ing familiar with the software, since you will need to set up a Kafka service and appropriate "consumer"
clientsto make use of VoltDB'sKafkaexport functionality. Theinstructionsin this section assume awork-
ing knowledge of Kafka and the Kafka operational model.

When the K afka connector receives datafrom the VVoltDB export sources, it establishes a connection to the
Kafka messaging service as a Kafka producer. It then writes records to Kafka topics based on the VoltDB
stream or table name and certain export connector properties.

The magjority of the Kafka export properties are identical in both in name and content to the Kafka pro-
ducer properties listed in the Kafka documentation. All but one of these properties are optional for the
Kafka connector and will use the standard Kafka default value. For example, if you do not specify the
gueue. buf f eri ng. max. ns property it defaults to 5000 milliseconds.

The only required property is boot strap. server s, which lists the Kafka servers that the VoltDB
export connector should connect to. Y ou must include this property so VoltDB knows where to send the
export data. Specify each server by its IP address (or hostname) and port; for example, myserver:7777. If
there are multiple serversin the list, separate them with commas.

In addition to the standard K afka producer properties, there are several custom properties specific to Volt-
DB. The properties bi nar yencodi ng, ski pi nt ernal s, and ti mezone affect the format of the
data. Thet opi c. prefi x andt opi c. key properties affect how the datais written to Kafka.

Thet opi c. pr ef i x property specifiesthetext that precedesthe stream or table name when constructing
the Kafka topic. If you do not specify a prefix, it defaults to "voltdbexport”. Alternately, you can map
individual sourcesto topicsusingthet opi c. key property. Inthet opi c. key property you associate
a VoltDB export source name with the corresponding Kafka topic as a named pair separated by a period
(). Multiple named pairs are separated by commas (,). For example:

Enpl oyee. EnpTopi ¢, Conpany. CoTopi ¢, Ent er pri se. Ent Topi ¢

Any mappings in the t opi c. key property override the automated topic name specified by t op-
i c.prefix.

Note that unless you configure the Kafka brokers with the aut 0. cr eat e. t opi ¢s. enabl e property
set to true, you must create the topics for every export source manually before starting the export process.
Enabling auto-creation of topics when setting up the Kafka brokers is recommended.

When configuring the Kafka export connector, it isimportant to understand the rel ationship between syn-
chronous versus asynchronous processing and its effect on database latency. If the export data is sent
asynchronously, the impact of export on the database is reduced, since the export connector does not wait
for the Kafka infrastructure to respond. However, with asynchronous processing, VoltDB is not able to
resend the data if the message fails after it is sent.

If export to Kafkaisdone synchronously, the export connector waitsfor acknowledgement of each message
sent to Kafka before processing the next packet. This allows the connector to resend any packets that fail.
The drawback to synchronous processing is that on a heavily loaded database, the latency it introduces
means export may not be able to keep up with the influx of export data and and have to write to overflow.

Y ou specify the level of synchronicity and durability of the connection using the Kafka acks property.
Set acks to "0" for asynchronous processing, "1" for synchronous delivery to the Kafka broker, or "all"
to ensure durability on the Kafka broker. See the Kafka documentation for more information.

159

http://kafka.apache.org/documentation.html
http://kafka.apache.org/documentation.html#producerconfigs

Streaming Data: Import,
Export, and Migration

VoltDB guarantees that at least one copy of all export data is sent by the export connector. But when
operating in asynchronous mode, the Kafka connector cannot guarantee that the packet is actually received
and accepted by the Kafka broker. By operating in synchronous mode, VoltDB can catch errors returned
by the Kafka broker and resend any failed packets. However, you pay the penalty of additional latency
and possible export overflow.

Finally, the actual export datais sent to Kafka as a comma-separated values (CSV) formatted string. The
message includes six columns of metadata (such as the transaction ID and timestamp) followed by the
column values of the export stream.

Table 15.5, “Kafka Export Properties’ lists the supported properties for the Kafka connector, including
the standard Kafka producer properties and the VoltDB unique properties.

Table 15.5. Kafka Export Properties

Property AllowableVal- |Description
ues
bootstrap.servers* string A comma-separated list of Kafka brokers (specified

as | P-address:port-number). Y ou can use net a-
dat a. broker. i st asasynonym for boot -
strap. servers.

acks 0,1, al Specifies whether export is synchronous (1 or all) or
asynchronous (0) and to what extent it ensures delivery.
The default is all, which is recommended to avoid pos-
sibly losing messages when a Kafka server becomes un-
available during export. See the Kafka documentation of
the producer properties for details.

acks.retry.timeout integer Specifies how long, in milliseconds, the connector will
wait for acknowledgment from Kafka for each packet.
The retry timeout only appliesif acknowledgements are
enabled. That is, if theacks property is set greater than
zero. The default timeout is 5,000 milliseconds. When
the timeout is reached, the connector will resend the
packet of messages.

partition.key {'source} .{col- Specifies which source column value to use as the Kafka
umn}[,...] partitioning key for each stream. Kafka uses the partition
key to distribute messages across multiple servers.

By default, the value of the source's partitioning column
is used as the Kafka partition key. Using this property
you can specify alist of column names, where the source
name and column name are separated by a period and
thelist of stream referencesis separated by commas. If a
stream or table is not partitioned and you do not specify
akey, the server partition ID is used as a default.

binaryencoding hex, base64 Specifies whether VARBINARY dataisencoded in
hexadecimal or BASE64 format. The default is hexadec-
imal.

skipinternals true, false Specifies whether to include six columns of VoltDB

metadata (such as transaction 1D and timestamp) in the
output. If you specify skipinternals as true, the output

160

http://kafka.apache.org/documentation.html#producerconfigs

Streaming Data: Import,
Export, and Migration

AllowableVal- |Description
ues

contains only the exported stream data. The default is
fase.

string The time zone to use when formatting the timestamp.
Specify the time zone as a Javatimezone identifier. The
defaultisGMT.

string A set of named pairs each identifying a VoltDB source
name and the corresponding Kafka topic name to which
the data is written. Separate the names with a period (.)
and the name pairs with acomma.(,).

The specific source/topic mappings declared by top-
ic.key override the automated topic names specified by
topic.prefix.

topic.prefix string The prefix to use when constructing the topic name.

Each row is sent to atopic identified by { prefix} { source-
name} . The default prefix is"voltdbexport”.

Kafka producer properties various Y ou can specify standard Kafka producer properties

as export connector properties and their values will be
passed to the Kafka interface. However, you cannot
modify the property bl ock. on. buffer.full.

15.3.6. The Elasticsearch Export Connector

The Elasticsearch connector receives serialized data from the export source and inserts it into an Elastic-
search server or cluster. Elasticsearch is an open-source full-text search engine built on top of Apache
Lucene™. By exporting selected tables and streams from your VoltDB database to Elasticsearch you can
perform extensive full-text searches on the data not possible with VoltDB alone.

Before using the Elasticsearch connector, we recommend reading the Elasticsearch documentation and
becoming familiar with the software. The instructions in this section assume a working knowledge of
Elasticsearch, its configuration and its capabilities.

Theonly required property when configuring El asticsearch isthe endpoint, which identifies the location of
the Elasticsearch server and what index to use when inserting recordsinto the target system. The structure
of the Elasticsearch endpoint is the following:

<protocol >://<server>: <port>//<i ndex- name>// <t ype- nanme>

For example, if the target Elasticsearch service is on the server esear ch. | an using the default port
(9200) and the exported records are being inserted into the enpl oyees index as documents of type
per son, the endpoint declaration would look like this:

<property nane="endpoi nt">
http://esearch. | an: 9200/ enpl oyees/ per son
</ property>

Y ou can use placeholders in the endpoint that are replaced at runtime with information from the export
data, such asthe source name (%t), the partition I D (%p), the export generation (%g), and the date and hour
(%d). For example, to use the source name as the index name, the endpoint might look like the following:

161

https://www.elastic.co/guide/index.html

Streaming Data: Import,
Export, and Migration

<property nane="endpoi nt">

http://esearch. | an: 9200/ % / per son

</ property>

When you export to Elasticsearch, the export connector creates the necessary index names and types in
Elasticsearch (if they do not already exist) and inserts each record as a separate document with the appro-
priate metadata. Table 15.6, “Elasticsearch Export Properties’ lists the supported properties for the Elas-

ticsearch connector.

Table 15.6. Elasticsear ch Export Properties

Description

Specifiesthe root URL of the RESTful interface for the
Elasticsearch cluster to which you want to export the da-
ta. The endpoint should include the protocol, host name
or IP address, port, and path. The path is assumed to in-
clude an index name and a type identifier.

The export connector will use the Elasticsearch RESTful
API to communicate with the server and insert records
into the specified locations. Y ou can use placeholders
to replace portions of the endpoint with data from the
exported records at runtime, including the source name
(%t), the partition ID (%p), the date and hour (%d), and
the export generation (%g).

Specifies whether to send multiple rows asasingle re-
quest or send each export row separately. The default is
true.

The time zone to use when formatting timestamps. Spec-
ify the time zone as a Java timezone identifier. The de-
fault isthelocal time zone.

Property Allowable Val-
ues

endpoint’ string

batch.mode true, false

timezone string

"Required

15.4. VoltDB Import Connectors

Just as VolItDB can export data from selected streams and tables to external targets, it supports importing
datainto selected tables from external sources. Import works in two ways:

* Bulk loading data using one of several standalone utilities VVoltDB provides. These dataloaders support
multiple standard input protocolsand can be run from any server, even remotely from the databaseitself.

 Streaming import as part of the database server process. For data that is imported on an ongoing basis,
use of the built-in import functionality ensures that import starts and stops with the database.

The following sections discuss these two approaches to dataimport.

15.4.1. Bulk Loading Data Using VoltDB Standalone Utilities

Often, when migrating data from one database to another or when pre-loading a set of datainto VoltDB
asastarting point, you just want to perform the import once and then use the data natively within VoltDB.

162

Streaming Data: Import,
Export, and Migration

For these one-time uses, or when you prefer to manage the import process externally, VoltDB provides
separate data loader utilities.

Each data |oader supports a different source format. You can load data from text files — such as com-
ma-separated value (CSV) files— using the csvloader utility. Y ou can load datafrom another JDBC-com-
pliant database using the jdbcloader utility. Or you can load data from a streaming message service with
the Kafka loader utility, kafkal oader.

All of the data loaders operate in much the same way. For each utility you specify the source for the
import and either a table that the data will be loaded into or a stored procedure that will be used to load
the data. So, for example, to load records from a CSV file named staff.csv into the table EMPLOY EES,
the command might be the following:

$ csvl oader enpl oyees --file=staff.csv
If instead you are copying the data from a JDBC-compliant database, the command might look like this:

$ j dbcl oader enpl oyees \
--jdbcurl =j dbc: post gresql : //renot esvr/ corphr \
- -j dbct abl e=enpl oyees \
--jdbcdriver=org. postgresql.Driver

Each utility has arguments unique to the data source (such as - - j dbcur |) that alow you to properly
configure and connect to the source. See the description of each utility in Appendix D, VoltDB CLI Com-
mands for details.

15.4.2. Streaming Import Using Built-in Import Features

If importing data is an ongoing business process, rather than a one-time event, then it is desirable to make
it an integral part of the database system. This can be done by building a custom application to push data
into VoltDB using one of its standard APIs, such as the JDBC interface. Or you can take advantage of
VoltDB's built-in import infrastructure.

The built-in importers work in much the same way as the data loading utilities, where incoming data is
written into one or more database tables using an existing stored procedure. The differenceisthat the built-
in importers start automatically whenever the database starts and stop when the database stops, making
import an integral part of the database process.

Y ou configure the built-in importersin the configuration file the same way you configure export connec-
tions. Within the <import> element, you declare each import stream using separate <configuration> el-
ements. Within the <configuration> tag you use attributes to specify the type and format of data being
imported and whether the import configuration is enabled or not. Then enclosed within the <configura-
tion> tags you use <property> elements to provide information required by the specific importer and/or
formatter. For example:

<i nport >
<configuration type="kafka" format="csv" enabl ed="true">
<property name="br okers">kaf kasvr: 9092</ pr operty>
<property name="t opi cs">enpl oyees</ property>
<property name="procedure">EMPLOYEE. i nsert </ property>
</ configuration>
</inport>

When the database starts, the import infrastructure starts any enabled configurations. If you are importing
multiple streamsto separate tables through separate procedures, you must include multiple configurations,

163

Streaming Data: Import,
Export, and Migration

even if they come from the same source. For example, the following configuration imports data from two
Kafka topics from the same Kafka serversinto separate VoltDB tables.

<i nport>
<configuration type="kafka" enabl ed="true">
<property nane="brokers" >kaf kasvr: 9092</ pr operty>
<property nane="topi cs">enpl oyees</ property>
<property nane="procedure">EMPLOYEE. i nsert </ property>
</ configuration>
<configuration type="kafka" enabl ed="true">
<property nane="brokers" >kaf kasvr: 9092</ pr operty>
<property nane="topi cs">manager s</ property>
<property nane="procedure">MANAGER. i nsert </ property>
</ configuration>
</inmport >

VoltDB currently provides support for two types of import:
 Import from Apache Kafka (type="kafka")
* Import from Amazon Kinesis (type="kinesis")

VoltDB aso provides support for two import formats: comma-separated values (csv) and tab-separated
values (tsv). Comma-separated values are the default format. So if you are using CSV-formatted input,
you can leave out the format attribute, as in the preceding example.

The following sections describe each of the importers and the CSV/TSV formatter in more detail.

15.4.3. The Kafka Importer

The Kafka importer connects to the specified Kafka messaging service and imports one or more Kafka
topics and writes the records into the VoltDB database. The data is decoded according to the specified
format — comma-separated values (CSV) by default — and is inserted into the VoltDB database using
the specified stored procedure.

TheKafkaimporter supports Kafkaversion 0.10 or later. Y ou must specify at least thefollowing properties
for each configuration:

* brokers— Identifies one or more Kafka brokers. That is, servers hosting the Kafka service and desired
topics. Specify asingle server or acomma-separated list of brokers.

* topics — Identifies the Kafka topics that will be imported. The property value can be a single topic
name or a commarseparated list of topics.

» procedure— ldentifiesthe stored procedure that isinvoked to insert the records into the VoltDB data-
base.

When import starts, the importer first checks to make sure the specified stored procedure exists in the
database schema. If not (for example, when you first create a database and before a schemais loaded), the
importer issues periodic warnings to the console.

Once the specified stored procedure is declared, the importer looks for the specified Kafka brokers and
topics. If the specified brokers cannot be found or the specified topics do not exist on the brokers, the
importer reports an error and stops. Y ou will need to restart import once this error condition is corrected.
Y ou can restart import using any of the following methods:

164

Streaming Data: Import,
Export, and Migration

 Stop and restart the database

* Pause and resume the database using the voltadmin pause and voltadmin resume commands

 Updatethe configuration using the voltadmin update command or the web-based V oltDB Management

Center

If the brokers are found and the topics exist, the importer starts fetching data from the Kafka topics and
submitting it to the stored procedureto insert into the database. In the simplest case, you can use the default
insert procedure for atable to insert recordsinto a single table. For more complex data you can write your
own import stored procedure to interpret the data and insert it into the appropriate table(s).

Table 15.7, “Kafka Import Properties’ lists the allowable properties for the Kafkaimporter. Y ou can also
specify properties associated with the formatter, as described in Table 15.9, “CSV and TSV Formatter

Properties”.

Table 15.7. Kafka Import Properties

Property

Allowable Val-
ues

Description

brokers’

string

A comma-separated list of Kafka brokers.

procedure

string

The stored procedure to invoke to insert the incoming
data into the database.

topics

string

A comma-separated list of Kafkatopics.

commit.policy

integer

Because the importer performs two distinct tasks — re-
trieving records from Kafka and then inserting them in-
to VoltDB — Kafka's automated tracking of the current
offset may not match what records are successfully in-
serted into the database. Therefore, by default, the im-
porter uses a manual commit policy to ensure the Kafka
offset matches the completed inserts.

Use of the default commit policy is recommended. How-
ever, you can, if you choose, use Kafka's automated
commit policy by specifying acommit interval, in mil-
liseconds, using this property.

groupid

string

A user-defined name for the group that the client belongs
to. Kafka maintains a single pointer for the current posi-
tion within the stream for all clientsin the same group.

The default group ID is"voltdb". In the rare case where
you have two or more databases importing data from the
same Kafka brokers and topics, be sure to set this prop-
erty to give each database a unique group ID and avoid
the databases interfering with each other.

fetch.max.bytes
heartbeat.interval.ms
max.partition.fetch.bytes
max.poll.interval.ms
max.poll.records
reguest.timeout.ms
on.timeout.ms

string

These Kafka consumer properties are supported asim-
port properties. See the Kafka 0.11 documentation for
details.

"Required

165

https://kafka.apache.org/documentation/#consumerconfigs

Streaming Data: Import,
Export, and Migration

15.4.4. The Kinesis Importer

The Kinesis importer connects to the specified Amazon Kinesis stream and writes the records into the
VoltDB database. Kinesis streams et you aggregate data from multiple sources, such as click streams and
media feeds, which isthen pushed as streaming data to the application. The VoltDB Kinesisimporter acts
as atarget application for the Kinesis Stream. The data is decoded according to the specified format —
comma-separated values (CSV) by default — and isinserted into the V oltDB database using the specified
stored procedure.

When import starts, the importer first checks to make sure the specified stored procedure exists in the
database schema. If not (for example, when you first create a database and before a schemais loaded), the
importer issues periodic warnings to the console.

Once the specified stored procedure is declared, the importer looks for the specified Kinesis stream. If the
stream cannot be found or accessed (for example, if the keys don't match), the importer reports an error
and stops. You will need to restart import once this error condition is corrected. Y ou can restart import
using any of the following methods:

 Stop and restart the database
* Pause and resume the database using the voltadmin pause and voltadmin resume commands

 Updatethe configuration using the voltadmin update command or the web-based V oltDB Management
Center

If the stream isfound and can be accessed, the importer starts fetching data and submitting it to the stored
procedure to insert into the database. In the simplest case, you can use the default insert procedure for a
table to insert records into a single table. For more complex data you can write your own import stored
procedure to interpret the data and insert it into the appropriate table(s).

Table 15.8, “Kinesis Import Properties’ lists the allowable properties for the Kinesis importer. You can
also specify properties associated with the formatter, as described in Table 15.9, “CSV and TSV Formatter
Properties”.

Table 15.8. KinesisImport Properties

Property AllowableVal- |Description
ues

app.name* string A user-defined name that is used by Kinesisto track the
application's current position in the stream.

procedure’ string The stored procedure to invoke to insert the incoming
data into the database.

regi on string The Amazon region where the Kinesis stream serviceis
running.

stream.name’ string The name of the Kinesis stream.

access.kef string The Amazon access key for permitting access to the
stream.

secret.key* string The Amazon secret key for permitting accessto the
stream.

max.read.batch.size integer The maximum number of recordsto read in asingle
batch. The default batch sizeis size 10,000 records.

"Required

166

Streaming

Data: Import,

Export, and Migration

15.5. VoltDB Import Formatters

The import infrastructure uses formatters to interpret the incoming data and convert it for insertion into
the database. If you use the CSV or TSV formatter, you can control how the datais interpreted by setting
additional properties associated with those formatters. For example, the following configuration for the
Kafka importer includes the formatter property bl ank specifying that blank entries should generate an
error, rather than being interpreted as null or empty values:

<i nport>

<configuration type="kafka" format="csv" enabl ed="true">
<property nane="brokers" >kaf kasvr: 9092</ pr operty>
<property nane="topi cs">enpl oyees</ property>
<property nane="procedure">EMPLOYEE. i nsert </ property>
<property nane="bl ank" >error</property>

</ configuration>
</i mport >

Y ou include the formatter propertiesin the <configuration> element along with the import type properties.
Table 15.9, “CSV and TSV Formatter Properties’ lists the allowable properties for the CSV and TSV

import formatters.

Table 15.9. CSV and TSV Formatter Properties

Property

Allowable Val-
ues

Description

blank

empty, error, null

Specifies what to do with missing valuesin the input.

If you specify enpt y, missing entries result in the cor-
responding "empty" value (that is, zero for INTEGER,
azero-length string for VARCHAR, and so on); if you
specify er r or , missing entries generate an error, if you
specify nul |, missing entries result in anull value. The
default interpretation of missing valuesisnul | .

nowhitespace

true, false

Specifies whether the input can contain whitespace be-
tween data values and separators. If you specify t r ue,
any input lines containing whitespace will generate an
error and not be inserted into the database. The default is
fal se.

nullstring

string

Specifies a custom string to be interpreted as a null val-
ue. By default, the following entries are interpreted as
null:

¢ Anempty entry
e NULL (unguoted, uppercase)
« \ N(quoted or unquoted, either upper or lowercase)

If you specify a custom null string, it overrides all de-
fault null strings.

trimrawtext

true, false

Specifies whether any white space around unguoted
string valuesisincluded in the string input or not. If you
specify t r ue, surrounding white space is dropped; if
you specify f al se, surrounding white space between

167

Streaming Data: Import,
Export, and Migration

Property

AllowableVal- |Description
ues

the string value and the separatorsisincluded in the in-
put value. The default ist r ue.

15.6.

VoltDB Topics

Topics use the Apache Kafka protocols for producing datafor (input) and consuming data from (output) a
VoltDB database. The configuration file declares the topic and specifies the stored procedure that receives
the inbound data. The CREATE STREAM... EXPORT TO TOPIC statement identifies the stream that is
used to queue outbound data to the specified topic. VoltDB topics operate just like Kafka topics, with the
database nodes acting as Kafka brokers. However, unlike Kafka, VoltDB topics also have the ability to
analyze, act on, or even modify the data as it passes through.

Stored Proc gqL Stream
Insert

Kafka Kafka
Producer [:> — [:> Consumer

VoltDB

Asthe preceding diagram shows, data submitted to the topic from aK afkaproducer (either using the Kafka
API or using atool such as Kafka Connect) is passed to the stored procedure, which then interprets and
operates on the data before passing it along to the stream through standard SQL INSERT semantics. Note
that the named procedure must exist beforeinput is accepted. Similarly, the stream must be declared using
the EXPORT TO TOPIC clause and the topic be defined in the configuration file before any output is
gueued. So, it isacombination of the database schemaand configuration file that establishes the complete
topic workflow.

For example, the following SQL statements declare the necessary stored procedure and stream and the
configuration file defines a topic eventLogs that integrates them:

Schema DDL CREATE STREAM event| og
PARTI TI ON ON COLUWN e_type
EXPORT TO TOPI C event| ogs
(e_type INTEGER NOT NULL,
e _time TIMESTAMP NOT NULL,
e_msg VARCHAR(256)
);

CREATE PROCEDURE
PARTI TI ON ON TABLE eventl og COLUW e_type
FROM CLASS myconpany. nypr ocs. checkEvent ;
Configuration File <t opi cs>
<t opi ¢ name="event Logs" procedure="checkEvent"/>
</t opi cs>

Concerning Case Sensitivity

The names of Kafka topics are case sensitive. That means that the name of the topic matches
exactly how it is specified in the configuration file. So in the previous example, the topic name

168

Streaming Data: Import,
Export, and Migration

eventLogs is al lowercase except for the letter "L". This is how the producers and consumers
must specify the topic name. But SQL names — such as table and column names — are case
insensitive. Asaresult, the topic name specified in the EXPORT TO TOPIC clause does not have
to match exactly. In other words, the topic "eventLogs' matches any stream that specifies the
topic name with the same spelling, regardless of case.

The structure of atopic message — that is, the fields included in the message and the message key — is
defined in the schema using the EXPORT TO TOPIC... WITH clause. Other characteristics of how the
messageishandled, such asthe dataformat, security, and retention policy, are controlled by <pr oper t y>
tags in the configuration file. The following sections discuss:

» Understanding the different types of topics

» Declaring VoltDB topics
» Configuring and managing topics

 Configuring the topic server

 Calling topics from externa consumers and producers

 Using opague topics

15.6.1. Types of VoltDB Topics

VoltDB supports four different types of topics, depending on how the topic is declared:

» A fully processed topic is a pipeline that supports both input and output and passes through a stored
procedure. This is defined using both the pr ocedur e attribute in the configuration file and the EX-
PORT TO TOPIC clause in the CREATE STREAM statement.

Producer |:>

checkEvent

Insert

::> Consumer
events

<topic name="eventLogs"
procedure="checkEvent"” />

CREATE STREAM events
EXPORT TO TOPIC eventlLogs...

* An input-only topic only provides for input from Kafka producers. You define an input-only topic
by specifying the pr ocedur e attribute, without any streams including a corresponding EXPORT TO

TOPIC clause.

Producer |:>

checkEvent

<topic name="eventLogs”
procedure="checkEvent” />

* An output-only topic only provides for output to Kafka consumers but can be written to by VoltDB
INSERT statements. Y ou define an output-only topic by including the EXPORT TO TOPIC clause, but
not specifying a procedure in the topic declaration.

169

Streaming Data: Import,
Export, and Migration

:> Consumer
events

CREATE STREAM events
EXPORT TO TOPIC eventLogs...

<topic name="eventLogs”/>

* An opaque topic supports input and output but provides for no processing or interpretation. Y ou de-
fine an opaque topic using the opaque="tr ue" attribute in the configuration file, as described in
Section 15.6.6, “Using Opague Topics’.

Producer Consumer
1

<topic name="eventLogs”
opaque="true" />

15.6.2. Declaring VoltDB Topics

Y ou declare and configure topics by combining SQL stored procedures and streamswith topic declarations
in the database configuration file. Thetopic itself isdefined in the configurationfile, using the<t opi cs>
and <t opi c> elements. The configuration also lets you identify the stored procedure used for input from
producers:

<t opi cs>
<t opi ¢ nane="event Logs"
pr ocedur e="event \at ch"/ >
</t opics>

15.6.2.1. Processing Topic Output

For output, you include the EXPORT TO TOPIC clause when you declare a stream. Once the stream
includes the EXPORT TO TOPIC clause and the topic is defined in the configuration file, any records
written into the stream are made available to consumers through the topic port.

You can control what parts of the stream records are sent to the topic, using the WITH KEY/VALUE
clauses. The WITH VALUE clause specifies which columns of the stream are included in the body of the
topic message and their order. The WITH KEY clause lets you specify one or more columns as akey for
the message. Columns can appear in either the message body or the key, in both, or in neither, as needed.
In all cases, thelists of columns are enclosed in parentheses and separated by commas.

So, for example, the following stream declaration associates the stream events with the topic eventLogs
and selects two columns for the body of the topic message and one column as the key:

170

Streaming Data: Import,
Export, and Migration

CREATE STREAM events
PARTI TI ON ON COLUWN event _type
EXPORT TO TOPI C event Logs
W TH KEY (event _type) VALUE (when, what)
(event _type | NTEGER NOT NULL,
when TI MESTAMP NOT NULL,
what VARCHAR(256)

)
15.6.2.2. Processing Topic Input

Since VoltDB does not control what content producers send to the topic, it cannot dictate what columns or
datatypes the stored procedure will receive. Instead, VoltDB interprets the content from its format. By de-
fault, text dataisinterpreted as comma-separated values. All other dataisinterpreted asasinglevalue based
on the data itself. On the other hand, if the topic is configured as using either JSON or AV RO formatted
datain the configuration file, the incoming data from producers will be interpreted in the specified format.

Any errors during the decoding of the input fields is recorded in the log file. If the input can be decoded,
the message fields are used, in order, as arguments to the store procedure call.

Only onekey field isalowed for input. By default, the key is not passed to the specified stored procedure;
only the messagefiel ds of the topic are passed as parametersto the stored procedure. If you want to include
the key in the list of parameters to the stored procedure, you can set the property pr oducer . par amne-
ters. i ncl udeKey totrueand the key will beincluded asthe partitioning parameter for the procedure.
For example:

<t opi cs>
<t opi ¢ nane="event Logs" procedure="event Watch">
<property nane="producer. paraneters.incl udeKey">true</property>
</t opi c>
</topics>

15.6.3. Configuring and Managing Topics

Declaring the topic and its stream and/or procedure are the only required elements for creating a topic.
However, there are several other attributes you can specify either as part of the declaration or as clauses
to the stored procedure and stream declarations. Those attributes include:

» Permissions — Controlling access to the topic by consumers and producers
* Retention — Managing how long data is retained in the topic queue before being deleted

» Data Format — Choosing aformat for the data passed to the external clients

15.6.3.1. Permissions

When security is enabled for the database, the external clients must authenticate using a username and
password when they initiate contact with the server. Accessto thetopicishandled separately for consumers
and producers.

For producers, access to the topic is controlled by the security permissions of the associated stored proce-
dure, as defined by the CREATE PROCEDURE... ALLOW clause or the generic permissions of the user
account'srole. (For example, arole with the ALLPROC or ADMIN permissions can write to any topic.)

For consumers, access to the topic is restricted by the al | ow attribute of the topic declaration in the
configuration file. If al | owis not specified, any authenticated user can read from the topic. If al | ow

171

Streaming Data: Import,
Export, and Migration

isincluded in the declaration, only users with the specified role(s) have access. Y ou specify permissions
by providing a comma-separated list of roles that can read from the topic. For example, the following
declaration allows users with the kreader and operator roles to read from the topic eventLogs:

<t opi cs>
<t opi ¢ nanme="event Logs" al | ow="kr eader, operator"/>
</t opics>

Question: What about ADMIN? SQLREAD? Needs testing.

15.6.3.2. Retention

Unlike export or import, where there is a single destination or source, topics can have multiple consumers
and producers. So there is no specific event when the data transfer is complete and can be discarded.
Instead, you must set aretention policy that defines when datais aged out of the topic queues. Y ou specify
the retention policy in terms of either the length of time the datais in queue or the volume of datain the
queue.

For example, if you specify a retention policy of five days, after a record has been in the queue for five
days, it will be deleted. If, instead, you set aretention policy of five gigabytes, as soon as the volume of
datain the queue exceeds 5GB, data will deleted until the queue size is under the specified limit. In both
cases, dataaging isafirst in, first out process.

Y ou specify theretention policy inther et ent i on attribute of the <t opi c> declaration. The retention
value is a positive integer and a unit, such as "gh" for gigabytes or "dy" for days. The following is the
list of valid retention units:

Time mn— Minutes

hr — Hours
dy — Days
wk — Weeks
mo — Months
yr—Years

Size mb— Megabytes
gb — Gigabytes

If you do not specify aretention value, the default policy is seven days (7 dy).

15.6.3.3. Data Format

VoltDB topics are composed of three elements: a timestamp, a record with one or more fields, and an
optional set of keys values. The timestamp is generated automatically when the record isinserted into the
stream. The format of the record and the key depends on the data itself. Or you can specify aformat for
the record, for the key, or for both using properties of the topic declaration in the configuration file.

For single value records and keys, the data is sent in the native Kafka binary format for that datatype. For
multi-value records or keys, VoltDB defaults to sending the content as comma-separated values (CSV) in
atext string. Similarly, on input from producers, the topic record is interpreted as a single binary format
value or aCSV string, depending on the datatype of the content.

Y ou can control what format is used to send and receive the topic data using either the f or mat attribute
of the <t opi ¢c> element, or separate <pr oper t y> child elements to select the format of individual
components. For example, to specify the format for the message and the keys for both input and output,
you can use the attribute f or mat =" avr 0" :

<t opi cs>

172

Streaming Data: Import,
Export, and Migration

<t opi ¢ nane="event Logs" formt="avro"/>
</t opics>

To specify individual formatsfor input versus output, or message versuskeys, you can use <pr opert y>
elements as children of the <t opi c> tag, where the property name is either consumner or pr oducer
followed by f or mat and, optionally, the component type — all separated by periods. For example, the
following declaration specifies Avro for both consumers and producers, and is equivalent to the preceding
exampleusing thef or mat attribute:

<t opi cs>
<t opi ¢ nane="event Logs" >
<property nane="consumer. format" >avro</property>
<property nane="producer. fornmat" >avro</property>
</t opi c>
</t opi cs>

The following are the valid formatting properties:

e consuner. f or mat

e consuner. format. key

e consuner. format. val ue
e producer.format. val ue

For input, note that you cannot specify the format of the key. This is because only a single key value is
supported for producers and it is always assumed to be in native binary or string format.

Depending on what format you choose, you can aso control specific aspects of how data is represented
in that format. For example, you can specify special characters such as the separator, quote, and escape
character in CSV format. Table 15.10, “Topic Formatting Properties’ lists all of the supported formatting
properties you can use when declaring topics in the configuration file.

Table 15.10. Topic Formatting Properties

Property Values Description

consumer.format | avro, csv, json Format of keys and values sent to consumers. Supersedes the
format definition in the <topic> deployment element. The de-
faultisCSV.

consumer.for- avro, csv, json Format of values sent to consumers. Supersedes the format

mat.value definition in the <topic> deployment element and the "con-
sumer.format" property. The default isCSV.

consumer.for- avro, csv, json Format of keys sent to consumers. Supersedes the format

mat.key definition in the <topic> deployment element and the "con-
sumer.format" property. The default isCSV.

producer.for- avro, csv, json Format of valuesreceived from producers. Supersedesthefor-

mat.value mat definition in the <topic> deployment element. The default
isCSV.

config.avro.time- | microseconds, mil-|Unit of measurefor timestampsin AVRO formatted fields. The

stamp liseconds default is microseconds.

config.avro.geogra- |binary, fixed bina-| Datatype for GEOGRAPHY POINT columns in AVRO for-

phyPoint ry, string matted fields. The default isfixed binary.

config.avro.geogra- | binary,string Datatype for GEOGRAPHY columns in AVRO formatted

phy fields. The default is binary.

173

Streaming Data: Import,
Export, and Migration

Property Values Description

config.csv.escape |character Character used to escape the next character in a quoted string
in CSV format. The default is the backslash "\".

config.csv.null character(s) Character(s) representing anull valuein CSV format. The de-
fault is"\N".

config.csv.quote | character Character used to enclose quoted strings in CSV format. The
default is the double quotation character ().

config.csv.separa- | character Character separating valuesin CSV format. The default is the

tor comma",".

config.csv.al- true, false Whether all string valuesare quoted or only stringswith special

waysQuote characters (such as commas, line breaks, and quotation marks)
in CSV format. The default isfalse.

config.csv.ignore- |true, false Whether leading spaces are included in string values in CSV

L eadingWhitespace format. The default is true.

config.json.schema |embedded, none | Whether the JSON representation contains a property named
"schema’" embedded within it or not. If embedded, the schema
property describesthe layout of the object. The default isnone.

config.json.produc- | string Specifies the name and order of the JSON elements that are

er.attributes inserted as parameters to the topic input procedure.

producer.parame- |true, false Whether the topic key isincluded asthe partitioning parameter

ter.includeK ey to the stored procedure call. The default isfalse.

opague.partitioned |true, false Whether the opague topic is partitioned. Ignored if not an
opague topic. The default isfalse

topic.store.encoded |true, false Whether the topic is stored in the same format asissued by the

producer: optimizes transcoding to consumers when producer
and consumer formats areidentical. The default isfalse.

When using AVRO format, you must also have access to an AVRO schema registry, which is where
VoltDB storesthe schemafor AVRO-formatted topics. The URL for theregistry isspecified inthe database
configuration file, as described in the next section.

15.6.4. Configuring the Topic Server

Communication between the VoltDB database and topic clients is handled by a separate server process.
the topic server. The topic server process is started whenever VoltDB starts with the <t opi cs> element
declared and enabled in the configuration file.

By default, the topic server, when running, listens on port 9092. Y ou can specify a different port with the
port attribute of the <t opi cs> element. Other aspects of the topic server operation are configured as
properties of the <br oker > element, which if present must be the first child of the <t opi cs> element.
The following are the supported properties of the <broker> element:

e cluster.id

* network.thread. count
e group. max. session.tinmeout.ns

e groups. mn.session.tineout.ns
e group. max. si ze
« offsets.retention.interval.ns

« offsets.retenti on. m nutes

174

Streaming Data: Import,
Export, and Migration

e retention. policy.threads

e quota.throttle. max_ns

e quot a.request. bytes per_second

e quot a. response. byt es_per _second
e guot a. request . processi ng_percent
e | 0g. cl eaner. t hreads
 log.cleaner.delete.retention. ns
e | 0g. cl eaner. dedupe. buffer. si ze

For example, this declaration configures the broker using port 9999, a cluster ID of 3, and five network
threads:

<t opi cs port="9999" >
<br oker >
<property nane="cl uster.id">3</property>
<property nane="network.thread. count">5</property>
</ br oker >
</topics>

Finally, you can additionally tune the performance of the topic server by adjusting the threads that man-
age the inbound and outbound connections. Y ou can specify a threadpool for the topic server to use for
processing client requestsusing thet hr eadpool attribute of the <t opi cs>, then specify asizefor the
pool in the <t hr eadpool s> element:

<t opi cs threadpool ="t opi cs" >
[.. .]
</topics>
<t hr eadpool s>
<pool nane="topics" size="10"/>
</t hreadpool s>

15.6.5. Calling Topics from Consumers and Producers

Once the topic has been declared in the database configuration and the appropriate streams and stored
procedures created in the schema, the topic is ready for use by external clients. Since VoltDB topics use
the Kafka API protocol, any Kafka consumer or producer with the appropriate permissions can access the
topics. For example, you can use the consol e consumer that comeswith Kakfato read topics from VoltDB:

$ bi n/ kaf ka- consol e- consuner. sh --from begi nning \
--topic eventlLogs --bootstrap-server mnyvoltdb: 9092

You can even use the console producer. However, to optimize write operations, Kafka needs to know
the VoltDB partitioning scheme. So it is strongly recommended that you define the Kafka ProducerCon-
fig.PARTITIONER_CLASS CONFIG property to point to the VoltDB partitioner for Kafka. By defining
the PARTITIONER_CLASS CONFIG, VoltDB can ensure that the producer sends records to the appro-
priate cluster node for each partitioning key. For example, a Java-based client application should contain
aproducer definition similar to the following:

Properties props = new Properties();

props. put ("boot strap. servers”, "myvoltdb: 9092");

props. put (Producer Confi g. PARTI TI ONER_CLASS CONFI G Vol t DBKaf kaPartitioner. cl ass. get Nanme()
props. put("client.id","nyConsumer");

props. put ("key.serializer", "org.apache. kaf ka. cormon. seri alization.StringSerializer");

175

Streaming Data: Import,
Export, and Migration

props. put ("val ue. serializer", "org.apache. kaf ka. common. seri alization. StringSerializer");

Producer<String, String> producer = new Kaf kaPr oducer <>(props);

To accessthe VoltDB partitioner for Kafka, be sure to include the VolItDB client library JAR file in your
classpath when compiling and running your producer client.

15.6.6. Using Opaque Topics

Opaquetopics are a special type of topic that do not receive any interpretation or modification by the data-
base. If you want to create atopic that is not processed but simply flows through VoltDB from producers
to consumers, you declare the topic as"opague” in the configuration file, without either specifying astored
procedure for input or associating a stream with the topic for output.

<t opi ¢ nane="sysnsgs" opaque="true"/>

Opaque topics alow you to use asingle set of brokersfor all your topics even if you only need to analyze
and process certain data feeds. Because there is ho interpretation, you cannot specify a stored procedure,
astream, or aformat for the topic. However, there are afew properties specific to opague topics you can
use to control how the data are handled.

One important control is whether the opaque topics are partitioned or not. Partitioning the opaque topics
improves throughput by distributing processing acrossthe cluster. However, you can only partition opague
topicsthat have akey. To partition an opaguetopic you set theopaque. parti ti oned property totrue:

<t opi ¢ nane="sysnmsgs" opaque="true">
<property nane="opaque.partitioned">true</property>
</t opi c>

Y ou can specify aretention policy for opague topics, just like regular topics. In fact, opagque topics have
one additional retention option. Since the content is not analyzed in any way, it can be compressed to save
space whileit is stored. By specifying the retention policy as "compact" with atime limit, the records are
stored compressed until the time limit expires. For example, the following configuration compresses the
opague topic data then deletesit after two months:

<topi ¢ nane="sysnsgs" opaque="true" retention="conpact 2 np">
<property nane="opaque.partitioned">true</property>
</t opi c>

176

Appendix A. Supported SQL DDL
Statements

This appendix describes the subset of the SQL Data Definition Language (DDL) that VoltDB supports
when defining the schemafor aVoltDB database. VoltDB a so supports extensions to the standard syntax
to allow for the declaration of stored procedures and partitioning information related to tables and proce-
dures.

Thefollowing sections are not intended as a compl ete description of the standard SQL DDL. Instead, they
summarize the subset of standard SQL DDL statements that are allowed when defining aVoltDB schema
and any exceptions, extensions, or limitations that application devel opers should be aware of .

The supported standard SQL DDL statements are:

* ALTERTABLE
» CREATEINDEX
» CREATETABLE
*» CREATEVIEW
* DROPINDEX

» DROPTABLE

* DROPVIEW

The supported VoltDB-specific extensions for declaring functions, stored procedures, streams, and parti-
tioning are:

* ALTER STREAM

* ALTERTASK

* CREATE AGGREGATE FUNCTION
* CREATE FUNCTION

* CREATE PROCEDURE AS

* CREATE PROCEDURE FROM CLASS
* CREATEROLE

* CREATE STREAM

* CREATETASK

* DRTABLE

* DROP FUNCTION

* DROP PROCEDURE

* DROPROLE

* DROP STREAM

* DROPTASK

* PARTITION PROCEDURE

* PARTITION TABLE

177

Supported SQL DDL Statements

ALTER STREAM

ALTER STREAM — Modifies an existing stream definition.

Syntax

ALTER STREAM stream-name DROP [COLUMN] column-name
ALTER STREAM stream-name ADD column-definition [BEFORE column-name]
ALTER STREAM stream-name ALTER column-definition

ALTER STREAM stream-name ALTER [COLUMN] column-name SET {DEFAULT value | [NOT]
NULL}

column-definition: column-name datatype [DEFAULT value] [NOT NULL]

Description

The ALTER STREAM statement modifies an existing stream by adding, dropping, or modifying acolumn
associated with the stream. Y ou cannot drop or modify the columniif there are dependencies on that column.
For example, if stored procedure queries reference a dropped or modified column, you cannot make the
change. Inthiscase, you must drop the stored procedures before making the change to the stream'’s schema,
then recreate the stored procedures afterwards.

If you drop the stream as a whole (using the DROP STREAM statement) and then redefine it using
CREATE STREAM, any pending data not already sent to the stream's export target is deleted. ALTER
STREAM, on the other hand, does not interrupt pending data. By using ALTER STREAM to modify the
schema of the stream, al previously committed data stays in the queue for the target and any inserts after
the schema change are added the queue.

Example

The following example modifies an existing stream, invoice, to modify the definition of the customer
column.

ALTER STREAM ALTER CCLUMWN customer SET NOT NULL;

178

Supported SQL DDL Statements

ALTER TABLE

ALTER TABLE — Modifies an existing table definition.

Syntax

ALTER TABLE table-name DROP CONSTRAINT constraint-name

ALTER TABLE table-name DROP [COLUMN] column-name [CASCADE]
ALTER TABLE table-name DROP {PRIMARY KEY | TTL}

ALTER TABLE table-name ADD constraint-definition

ALTER TABLE table-name ADD column-definition [BEFORE column-name]
ALTER TABLE table-name ADD ttl-definition

ALTER TABLE table-name ALTER column-definition [CASCADE]

ALTER TABLE table-name ALTER [COLUMN] column-name SET {DEFAULT value | [NOT]
NULL}

ALTER TABLE table-name ALTER ttl-definition

column-definition: [COLUMN] column-name datatype [DEFAULT value] [NOT NULL] [in-
dex-type]

constraint-definition: [CONSTRAINT constraint-name] { index-definition }

index-definition: {index-type} (column-name [,...])

ttl-definition: USING TTL value [time-unit] ON COLUMN column-name
[BATCH_SIZE number-of-rows] [MAX_FREQUENCY value]

index-type: PRIMARY KEY | UNIQUE | ASSUMEUNIQUE

Description

The ALTER TABLE modifies an existing table definition by adding, removing or modifying a column,
constraint, or clause. There are several different forms of the ALTER TABLE statement, depending on
what attribute you are altering and how you are changing it. The key point to remember is that you only
alter one item at atime. For example, to change two columns or a column and a constraint, you need to
issuetwo ALTER TABLE statements.

There arethree ALTER TABLE operations:

*+ ALTERTABLE ADD

 ALTER TABLE DROP

* ALTERTABLEALTER

179

Supported SQL DDL Statements

The syntax of each statement depends on whether you are modifying a column, a constraint, or the TTL
clause. You can ADD or DROP columns, indexes, and the TTL clause and you can ALTER columns
and the TTL clause. However, you cannot ALTER indexes. To alter an existing constraint you must first
DROP the constraint and then ADD the new definition.

There are two forms of the ALTER TABLE DROP statement. Y ou can drop a column or constraint by
name or you can drop a PRIMARY KEY or a USING TTL clause by identifying the item to drop, since
there is only one such item for any given table.

The syntax for the ALTER TABLE ADD statement uses the same syntax to define a new column, con-
straint, or clause as that used in the CREATE TABLE command. When adding a column you can also
specify the BEFORE clause to specify where the new column fallsin the order of table columns. If you to
not specify BEFORE, the column is added at the end of the list of columns.

When modifying the USING TTL clause, the ALTER TABLE ALTER command specifies the complete
replacement definition for the clause, including either or boththe BATCH_SIZE or MAX_FREQUENCY
clauses.

Y ou cannot alter the MIGRATE TO TARGET attribute of the table. Y ou also cannot alter any attributes
of the table that affect migration. For example, you cannot add, drop, or alter the USING TTL clause if
the table is declared with MIGRATE TO TARGET. And if the table has both MIGRATE TO TARGET
and USING TTL, you cannot add, drop, or ater the TTL column. However, you can alter the TTL value,
batch size, and frequency.

Toadd, drop, or alter the MIGRATE action you must drop thetablefirst and redefineit using the CREATE
TABLE statement.

When modifying columns, the ALTER TABLE ALTER COLUMN statement can have one of two forms.
Y ou can ater the column by providing a compl ete replacement definition, similar to the ALTER TABLE
ADD COLUMN statement, or you can ater a specific attribute using the ALTER TABLE ALTER COL-
UMN... SET syntax. Use SET DEFAULT to add or modify an existing default. Use SET DEFAULT
NULL to remove an existing default. Y ou can also use the SET clause to specify whether the column can
be null (SET NULL) or must not contain anull value (SET NOT NULL).

Handling Dependencies

Y ou can only alter tablesif there are no dependencies on the table, column, or index that would be violated
by the change. For example, you cannot drop the partitioning column from a partitioned table if there
are stored procedures partitioned on that table and column as well. You must first drop the partitioned
store procedures before dropping the column. Note that by dropping the partitioning column, you are also
automatically changing the table into areplicated table.

The most common dependency is if the table already has data in it. You can add, delete, and (within
reasonable bounds) modify the columns of a table with existing data as long as those columns are not
named in an index, view, or PARTITION statement. If acolumn isreferenced in aview or index, you can
specify CASCADE when you drop the column to automatically drop the referring indexes and views.

When atable hasrecordsin it, data associated with dropped columnsis deleted. Added columns are inter-
preted as null or filled in with the specified default value. (Y ou cannot add a column that is defined as
NOT NULL, but without a default, if the table has existing datain it.) Y ou can even change the datatype
of the column within reason. In other words, you can increase the size of the datatype (for example, from
INTEGER to BIGINT) but you cannot decrease the size (say, from INTEGER to TINYINT) since some
of the existing data may already violate the size constraint.

Y ou can also add non-unique indexes to tables with existing data. However, you cannot add unique con-
straints (such as PRIMARY KEY) if dataexists.

180

Supported SQL DDL Statements

If atable has no recordsin it, you can make almost any changes you like to it assuming, again, there are
no dependencies. Y ou can add and remove unique constraints, add, remove, and modify columns, even
change column datatypes at will.

However, if there are dependencies, such as stored procedure queries that reference adropped or modified
column, you may not be allowed to make the change. If there are such dependencies, it is often easier to
do drop the stored procedures before making the changes then recreate the stored procedures afterwards.

Examples

The following example uses ALTER TABLE to drop a unique constraint, add a new column, and then
recreate the constraint adding the new column.

ALTER TABLE Enpl oyee DROP CONSTRAI NT Uni queNanes;
ALTER TABLE Enpl oyee ADD COLUWN M ddl el nitial VARCHAR(1);
ALTER TABLE Enpl oyee ADD CONSTRAI NT Uni queNanes

UNI QUE (FirstNane, Mddlelnitial, LastName);

181

Supported SQL DDL Statements

ALTER TASK

ALTER TASK — Modifies an existing task schedule.

Syntax

ALTER TASK task-name [ENABLE | DISABLE]

ALTER TASK task-name ALTER ON ERROR {LOG | IGNORE | STOP}

Description

The ALTER TASK statement lets you modify an existing scheduled task. You can enable, disable, or
change the error handling for the task.

Examples

The following example changes the error handling for the task cleanup to log errors and continue, then
enables the task, in case it was previously disabled.

ALTER TASK cl eanup ALTER ON ERRCOR LOG
ALTER TASK cl eanup ENABLE;

182

Supported SQL DDL Statements

CREATE AGGREGATE FUNCTION

CREATE AGGREGATE FUNCTION — Defines an aggregate SQL function and associatesit with aJava
class.

Syntax

CREATE AGGREGATE FUNCTION function-name FROM CLASS class-path

Description

The CREATE AGGREGATE FUNCTION statement declares a user-defined aggregate function and as-
sociatesit with a Java class. Aggregate functions process multiple values based on a query expression and
produce a single result. For example, the built-in AVG aggregate function calculates the average of the
values of a specific column or expression based on the query constraints.

The return value of a user-defined aggregate function matches the datatype of the Java method itself.
Similarly, the number and datatype of the function's arguments are defined by the arguments of the method.

User-defined aggregate functions allow you to extend the functionality of the SQL language by declaring
your own functions that can be used in SQL queries and data manipulation statements. The steps for
creating a user-defined aggregate function are:

1. Write, compile, and debug the program code for a class that performs the function's action. The class
must include the following methods:

e start() — Initializesthe function. Called once for each invocation of the function.

- assenbl e(arg, ...) — Processesthe argumentsto the function. called once for each record
matching the constraints of the query in which the function appears.

» conbi ne(cl ass-i nstance) — For partitioned queries, combinesthe results of one partition
into the results of another.

e end() — Finalizesthe function and returns the function result. Called once at the completion of
the function invocation.

2. Packagethe classin aJAR file, just as you would a stored procedure. (Classes for functions and stored
procedures can be packaged in the same JAR file.)

3. Load the JAR fileinto the database using the LOAD CLASSES statement.
4. Declare and namethe user-defined function using the CREATE AGGREGATE FUNCTION statement.

The Java methods that implement the user-defined function must follow the same rules for determinism
as user-defined stored procedures, as outlined in Section 5.1.2.2, “Avoid Introducing Non-deterministic
Vaues from External Functions’. See the chapter on "Creating Custom SQL Functions" in the VoltDB
Guide to Performance and Customization for details on designing the Java class and methods necessary
for a user-defined aggregate function.

To declare a scalar rather than an aggregate function, see the description of the CREATE FUNCTION
Statement.

183

https://docs.voltdb.com/PerfGuide/ChapUDF.php
https://docs.voltdb.com/PerfGuide/
https://docs.voltdb.com/PerfGuide/

Supported SQL DDL Statements

Examples

The following example defines an aggregate function called longest_word from the start(), assemble(),
combine(), and end() methods in the class L ongestWord:

CREATE AGGREGATE FUNCTI ON | ongest _word FROM CLASS nyapp. functi ons. Longest Wr d;

184

Supported SQL DDL Statements

CREATE FUNCTION

CREATE FUNCTION — Defines a SQL scalar function and associates it with a Java method.

Syntax

CREATE FUNCTION function-name FROM METHOD class-path.method-name

Description

The CREATE FUNCTION statement declaresauser-defined function and associatesit with aJavamethod.
Thereturn value of the function matches the datatype of the Java method itself. Similarly, the number and
datatype of the function's arguments are defined by the arguments of the method.

User-defined functions allow you to extend the functionality of the SQL language by declaring your own
functionsthat can be used in SQL queries and data manipul ation statements. The steps for creating a user-
defined function are:

1. Write, compile, and debug the program code for the method that will perform the function's action.

2. Packagethe class and method in aJAR file, just as you would a stored procedure. (Classesfor functions
and stored procedures can be packaged in the same JAR file.)

3. Load the JAR fileinto the database using the LOAD CLASSES statement.
4. Declare and name the user-defined function using the CREATE FUNCTION statement.

For example, let's say you want to create function that decodes an HTML-encoded string. The beginning
of the Java method might look like this, declaring a method of type String and accepting two arguments:
the string to encode and an integer value for the maximum length.

package nyapp. dat at ypes;
public class HmM {

public String decode(String html, int maxlength)
t hrows Vol t Abort Exception {

After compiling and packaging this class into a JAR file, you can load the class and declare it as a SQL
function:

sql cnd
1> LOAD CLASSES nyfunctions.jar;
2> CREATE FUNCTI ON html _decode FROM METHOD nyapp. dat at ypes. Ht m . decode;

Note that the function name and method name do not have to be identical. Also, the function name is not
case sensitive. However, the Java class and method names are case sensitive. Finally, the Java methods
for user-defined functions must follow the same rules for determinism as user-defined stored procedures,
asoutlined in Section 5.1.2.2, “Avoid Introducing Non-deterministic Va ues from External Functions”.

Examples

The following example defines a function called emoticon from a Java method findEmoji Code:

185

Supported SQL DDL Statements

CREATE FUNCTI ON enoti con FROM METHOD uti |l s. Char code. fi ndEnpj i Code;

186

Supported SQL DDL Statements

CREATE INDEX

CREATE INDEX — Creates an index for faster access to atable.

Syntax

CREATE [UNIQUEJASSUMEUNIQUE] INDEX index-name
ON {table-name | view-name} (index-column [,...])
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description

Creating an index on atable or view makes read access to the data faster when using the columns of the
index as a key. Note that VoltDB creates an index automatically when you specify a constraint, such as
aprimary key, in the CREATE TABLE statement.

When you specify that the index is UNIQUE, VoltDB constrains the table to at most one row for each set
of index column values. If an INSERT or UPDATE statement attemptsto create arow where all the index
column values match an existing indexed row, the statement fails.

Because the uniqueness constraint is enforced separately within each partition, only indexes on replicated
tables or containing the partitioning column of partitioned tables can ensure global uniqueness for parti-
tioned tables and therefore support the UNIQUE keyword.

If you wish to create an index on a partitioned table that acts like a unique index but does not include the
partitioning column, use the keyword ASSUMEUNIQUE instead of UNIQUE. Assumed unique indexes
are treated like unique indexes (VoltDB verifies they are unique within the current partition). However,
it is your responsibility to ensure these indexes are actually globally unique. Otherwise, it is possible an
index will generate aconstraint violation during an operation that modifies the partitioning of the database
(such as adding nodes on the fly or restoring a snapshot to a different cluster configuration).

Theindexed items (index-column) are either columns of the specified table or expressions, including func-
tions, based on the table. For example, the following statements index a table based on the calculated area
and its distance from a set location:

CREATE | NDEX areaofplot ON plot (wi dth * height);
CREATE | NDEX di stancefromd9 ON plot (ABS(latitude - 49));

Y ou can create apartial index by including a WHERE clause in the index definition. The WHERE clause
limits the number of rows that get indexed. Thisis useful if certain columns in the index are not evenly
distributed. For example, if you are not interested in recordswhere acolumnisnull, you can useaWHERE
clause to exclude those records and optimize the size and performance of the index.

The partial index is utilized by the database when a query's WHERE clause contains the same condition
asthe partial index definition. A special caseisif theindex conditionis{col unm} 1S NOT NULL.In
this situation, the index may be applied even in the query does not contain that exact condition, aslong as
the query contains a WHERE condition that implies the column is not null, such as{ col um} > 0.

VoltDB uses tree indexes. They provide the best general performance for a wide range of operations,
including exact value matches and queries involving arange of values, such as SELECT ... WHERE
Score > 1 AND Score < 10.

187

Supported SQL DDL Statements

Examples

The following example creates two indexes on asingle table. The first is, by default, a non-unique index
based on the departure time The second is a unique index based on the columns for the airline and flight
number.

CREATE | NDEX flightTimeldx ON FLIGHT (departtine);
CREATE UNI QUE | NDEX Flight Keyldx ON FLIGHT (airline, flightlD);

You can aso use functions in the index definition. For example, the following is an index based on the
element movie within a JSON-encoded VARCHAR column named favorites and the member'sID.

CREATE | NDEX FavoriteMvie ON MEMBER (
FI ELD(favorites, 'nmovie'), menberlD
)

The following exampl e demonstrates the use of a partial index, by including a WHERE clause, to exclude
records with anull column.

CREATE | NDEX conpl et ed_t asks
ON tasks (task_id, startdate, enddate)
WHERE enddate 1S NOT NULL;

188

Supported SQL DDL Statements

CREATE PROCEDURE AS

CREATE PROCEDURE AS — Defines a stored procedure composed of one or more SQL statements.

Syntax

CREATE PROCEDURE procedure-name
[PARTITION ON TABLE table-name COLUMN column-name [PARAMETER position]]
[ALLOW role-name [,...]]
AS {sqgl-statement; | multi-statement-procedure}

CREATE PROCEDURE procedure-name DIRECTED
[ALLOW role-name [,...]]
AS {sql-statement; | multi-statement-procedure}

multi-statement-procedure:
BEGIN
sql-statement; [,...]
END;

Description

Y ou must declare stored procedures as part of the schema to make them accessible at runtime. The CRE-
ATE PROCEDURE AS statement lets you create a procedure from one or more SQL statements directly
within the DDL statement. The SQL statements can contain question marks (?) as placeholders that are
filled in at runtime with the arguments to the procedure call.

There are two ways to define a procedure as part of the CREATE PROCEDURE AS statement:

» A single statement procedure where the CREATE PROCEDURE AS statement isfollowed by one SQL
statement terminated by a semi-colon.

» A multi-statement procedure where the CREATE PROCEDURE AS statement is followed by multiple
SQL statements enclosed in aBEGIN-END clause.

For asingle statement, the stored procedure returnsthe results of the query asaVoltTable. For multi-state-
ment procedures, the results are returned as an array of VoltTable structures, one for each statement.

For all CREATE PROCEDURE AS statements, the procedure name must follow the naming conventions
for Java class names. For example, the name is case-sensitive and cannot contain any white space.

Y ou can create three types of stored procedures:

* Multi-Partition Procedures— By default, the CREATE PROCEDURE statement declares a multi-par-
tition procedure. A multi-partition procedure runs as a single transaction and has access to data from
the entire database. However, it also means that the procedure will access all of the partitions at once,
blocking the transaction queues until the procedure is done.

» Sngle-Partition Procedures— If you include the PARTITION ON clause, the procedure is partitioned
and runs on only one partition of the database. The partition it runs on is determined by the value of one
of the parameters you pass to the procedure at runtime, as described below.

 Directed Procedures — if you include the DIRECTED clause, the procedure is a directed procedure
and will run separate transactions on each of the partitions. However, the individual transactions are not

189

Supported SQL DDL Statements

coordinated. Directed procedures must be invoked as a scheduled task or using thecal | Al | Parti -
t i onPr ocedur e method. See Section 7.5, “ Directed Procedures: Distributing Transactionsto Every
Partition” and the description of the CREATE TASK statement for more information on directed pro-
cedures.

When creating single-partitioned procedures, you specify the partitioning in the PARTITION ON clause.
Partitioning astored procedure meansthat the procedure executes within aunique partition of the database.
The partition in which the procedure executesis chosen at runtime based on the table and column specified
by table-name and column-name. By default, V oltDB usesthefirst parameter to the stored procedure asthe
partitioning value. However, you can use the PARAMETER clause to specify a different parameter. The
position value specifies the parameter position, counting from zero. (In other words, position 0 isthe first
parameter, position 1 isthe second, and so on.) The specified table must be a partitioned table or stream.

If security isenabled at runtime, only those roles named in the ALLOW clause (or with the ALLPROC or
ADMIN permissions) have permission to invoke the procedure. If security is not enabled at runtime, the
ALLOW clauseisignored and all users have access to the stored procedure.

Examples

The following example defines a stored procedure, CountUsersByCountry, as a single SQL query with a
placeholder for matching the country column:

CREATE PROCEDURE Count User sByCountry AS
SELECT COUNT(*) FROM Users WHERE country=?;

The next example restricts access to the stored procedure to only users with the operator role. It also
partitions the stored procedure on the userID column of the Accounts table. Note that the PARAMETER
clauseis used since the userI D isthe second parameter to the procedure:

CREATE PROCEDURE ChangeUser Password
PARTI TI ON ON TABLE Accounts COLUWN user| D PARAMETER 1
ALLOW oper at or
AS UPDATE Accounts SET HashedPasswor d=? WHERE user | D=7?;

Thelast example usesaBEGIN-END clauseto include four SQL statementsin the procedure. In this case,
the procedure performs two INSERT INTO SELECT statements, a DELETE statement and then selects
the total count of records after the operation. The stored procedure returns four VoltTables, one for each
statement, with the last one containing the final record count since SELECT is the last statement in the
procedure.

CREATE PRCCEDURE MoveOrders
AS BEG N
| NSERT | NTO enroute SELECT * FROM Orders
VWHERE ship_date < NOAN) AND delivery_date > NON);
| NSERT | NTO hi story SELECT * FROM enroute
VWHERE del i very_date < NOW);
DELETE FROM enroute
VWHERE del i very_date < NOW);
SELECT COUNT(*) FROM enroute;
END;

190

Supported SQL DDL Statements

CREATE PROCEDURE FROM CLASS

CREATE PROCEDURE FROM CLASS — Defines a stored procedure associated with a Java class.

Syntax

CREATE PROCEDURE
[PARTITION ON TABLE table-name COLUMN column-name [PARAMETER position]]
[ALLOW role-name [,...]]
FROM CLASS class-name

CREATE PROCEDURE DIRECTED
[ALLOW role-name [,...]]
FROM CLASS class-name

Description

Y ou must declare stored procedures to make them accessible to client applications and the sglcmd utility.
CREATE PROCEDURE FROM CLASS lets you declare stored procedures that are written as Java class-
es.The class-name is the name of the Java class.

Before you declare the stored procedure, you must create, compile, and load the associated Java class. It
isusually easiest to do this by compiling all of your Java stored procedures and packaging the resulting
classfilesinto asingle JAR file that can be loaded once. For example:

$ javac -d ./obj src/procedures/*.java

$ jar cvf nyprocs.jar —C obj

$ sqlcmd

1> | oad cl asses myprocs.jar;

2> CREATE PROCEDURE FROM CLASS procedur es. AddCust orrer ;

Y ou can create three types of stored procedures:

» Multi-Partition Procedures — By default, the CREATE PROCEDURE statement declares a multi-par-
tition procedure. A multi-partition procedure runs as a single transaction and has access to data from
the entire database. However, it also means that the procedure will access all of the partitions at once,
blocking the transaction queues until the procedure is done.

» Sngle-Partition Procedures— If you include the PARTITION ON clause, the procedure s partitioned
and runs on only one partition of the database. The partition it runs on is determined by the value of one
of the parameters you pass to the procedure at runtime, as described below.

 Directed Procedures — if you include the DIRECTED clause, the procedure is a directed procedure
and will run separate transactions on each of the partitions. However, theindividual transactions are not
coordinated. Directed procedures must be invoked as a scheduled task or usingthecal | Al | Parti -
ti onPr ocedur e method. See Section 7.5, “ Directed Procedures: Distributing Transactionsto Every
Partition” and the description of the CREATE TASK statement for more information on directed pro-
cedures.

When creating single-partitioned procedures, you specify the partitioning in the PARTITION ON clause.
Partitioning astored procedure meansthat the procedure executes within aunique partition of the database.
The partition in which the procedure executesis chosen at runtime based on the table and column specified
by table-name and column-name. By default, VoltDB uses the first parameter to the stored procedure as

191

Supported SQL DDL Statements

the partitioning value. However, you can use the PARAMETER clause to specify a different parameter.
The position value specifies the parameter position, counting from zero. (In other words, position O isthe
first parameter, position 1 is the second, and so on.)

The specified table must be a partitioned table and cannot be an export stream or replicated table.

If security isenabled at runtime, only those roles named in the ALLOW clause (or with the ALLPROC or
ADMIN permissions) have permission to invoke the procedure. If security is not enabled at runtime, the
ALLOW clauseisignored and all users have access to the stored procedure.

Example

The following example declares a stored procedure matching the Java class MakeReservation. Note that
the class name includes its location within the current class path (in this case, as a child of flight and
procedures). However, the name itself, MakeReservation, must be unique within the schema because at
runtime stored procedures are invoked by name only.

CREATE PROCEDURE FROM CLASS flight. procedures. MakeReservati on;

192

Supported SQL DDL Statements

CREATE ROLE

CREATE ROLE — Defines arole and the permissions associated with that role.

Syntax

CREATE ROLE role-name [WITH permission [,...]]

Description

The CREATE ROLE statement defines a named role that can be used to assign access rights to specific
procedures and functions. When security isenabled in the database configuration, the permissions assigned
in the CREATE ROLE and CREATE PROCEDURE statements specify which users can access which
functions.

Use the CREATE PROCEDURE statement to assign permissions to named roles for accessing specific
stored procedures. The CREATE ROLE statement lets you assign certain generic permissions. The fol-
lowing table describes the permissions that can be assigned the WITH clause.

Permission Description Inherits
DEFAULTPROCREAD |Access to read-only default procedures (TABLE.se-
lect)
DEFAULTPROC Accessto all default procedures (TABLE.select, TA-| DEFAULTPROCREAD
BLE.insert, TABLE.delete, TABLE.update, and TA-
BLE.upsert)
SQLREAD Access to read-only ad hoc SQL queries (SELECT) | DEFAULTPROCREAD
SQL Accessto al ad hoc SQL queries and default proce-| SQLREAD, DEFAULT-
dures PROC
ALLPROC Access to al user-defined stored procedures
ADMIN Full accesstoall system procedures, all user-defined| ALLPROC, DEFAULT-
procedures, as well as default procedures, ad hoc| PROC, SQL
SQL, and DDL statements.
Note: For backwards compatibility, the special permissions ADHOC and SY SPROC are still recognized.
They areinterpreted as synonyms for SQL and ADMIN, respectively.

The generic permissions are denied by default. So you must explicitly enable them for those roles that
need them. For example, if users assigned to the "interactive" role need to run ad hoc queries, you must
explicitly assign that permission in the CREATE ROLE statement:

CREATE ROLE interactive WTH sql;

Also note that the permissions are additive. So if a user is assigned to one role that allows access to
defaultproc but not allproc, but that user also is assigned to ancther role that allows allproc, the user has
both permissions.

Example

The following example defines three roles — admin, developer, and batch — each with a different set
of permissions;

193

Supported SQL DDL Statements

CREATE ROLE admin W TH adm n;
CREATE RCLE devel oper WTH sql, allproc;
CREATE RCLE batch W TH def aul t pr oc;

194

Supported SQL DDL Statements

CREATE STREAM

CREATE STREAM — Creates an output stream in the database.

Syntax

CREATE STREAM stream-name
[PARTITION ON COLUMN column-name]
[EXPORT TO TARGET export-target-name] (
column-definition [,...]

);
column-definition: column-name datatype [DEFAULT value] [NOT NULL]

Description

The CREATE STREAM statement defines a stream and its associated columns in the database. A stream
can be thought of as a virtua table. It has the same structure as a table, consisting of a list of columns
and supporting all the same datatypes (Table A.1, “Supported SQL Datatypes’) as tables. The columns
have the same rules in terms of naming and size. Y ou can also use the INSERT statement to insert data
into the stream once it is defined.

The three differences between streams and tables are:

* Nodatais stored in the database for a stream, it is only used as a passthrough.

» Because no datais stored, you cannot SELECT, UPDATE, or DELETE the stream contents.
» Noindexes or constraints (such as primary keys) are allowed on a stream.

Datainserted into the stream is not stored in the database. The stream is an ephemeral container used only
for analysis and/or passing data through VoltDB to other systems via the export function.

Combining streams with views lets you perform summary analysis on data passing through VoltDB with-
out having to store all of the underlying data. For example, you might want to know how many times
users access a website and their most recent visit. But you do not need to store a record for each visit.
In this case, you can create a stream, visits, to capture the event and a view, visit_by user, to capture the
cumulative data:

CREATE STREAM vi sits PARTI TI ON ON COLUMN user_id (
user _id BIG NT NOT NULL,
| ogi n TI MESTAMP
)
CREATE VIEW Vi sit_by user
(user_id, total visits, last _visit)
AS SELECT user _id, COUNT(*), MAX(Iogin)
FROM vi sits GROUP BY user _id;

When creating aview on a stream, the stream must be partitioned and the partition column must appear in
the view. Another special feature of views on streams is that, because there is no underlying data stored
for the view, VoltDB lets you modify the views content manually by issuing UPDATE and DELETE
statements on the view. (This ability to manipulate the view is only available for views on streams. Y ou
cannot UPDATE or DELETE aview on atable; you must modify the datain the underlying tableinstead.)

195

Supported SQL DDL Statements

For example, if you only care about a daily rollup of visits, you can use DELETE with the stream name
to clear the data at midnight every night:

DELETE FROM vi sit_by_user;

Or if you need to adjust the cumulative analysis to, say, "reset" the entry for a specific user, you can use
UPDATE:

UPDATE vi sit _by_user
SET total visits = 0, last_visit = NULL
WHERE user _id = ?;

Streams can a so be used to export data out of VoltDB into other systems, such as Kafka, CSV files, and
so on. To export data into another system, you start by declaring one or more streams defining the data
that will be sent to the external system. In the CREATE STREAM statement you also specify the named
target for the export:

CREATE STREAM visits
EXPORT TO TARGET archive (
user _id BI G NT NOT NULL,

| ogi n TI MESTAMP

)

As soon as you declare the EXPORT TO TARGET clause for a stream, any data inserted into the stream
is queued for export. If the export target is not defined in the database configuration, then the data waits
in the queue. Once the export target is configured, the export connector begins sending the queued data
to the configured destination. See Chapter 15, Streaming Data: Import, Export, and Migration for more
information on configuring export targets.

Finally, you can combine analysis with export by creating a stream with an export target and al so creating
aview on that stream. So in our earlier example, if we want to warehouse data about each visit but use
VoltDB to perform the real-time summary analysis, we would add an export definition, along with the
partitioning clause, to the CREATE STREAM statement for the visits stream:

CREATE STREAM visits
PARTI TI ON ON COLUWN user _id
EXPORT TO TARGET war ehouse (
user_id BI G NT NOT NULL,
[ogi n TI MESTAMP

)
Example

The following example defines a stream and a view on that stream. Note the use of the PARTITION ON
clause to ensure the stream is partitioned, since it isbeing used in aview.

CREATE STREAM fl i ghtdata
PARTI TI ON ON CCOLUWN ai rport (
flight_id BIG NT NOT NULL,
ai rport VARCHAR(3) NOT NULL,
passengers | NTEGER,
eta Tl MESTAWP
)
CREATE VIEW al | _flights
(airport, flight_count, passenger_count)

196

Supported SQL DDL Statements

AS SELECT airport, count(*), sum passengers)
FROM fli ghtdata GROUP BY airport;

197

Supported SQL DDL Statements

CREATE TABLE

CREATE TABLE — Creates atable in the database.

Syntax

CREATE TABLE table-name
[export-definition | migration-definition]

column-definition [,...]
[, constraint-definition [,...]]

) [ttlI-definition] ;

export-definition: EXPORT TO TARGET target-name [ON action [,...]]
migration-definition: MIGRATE TO TARGET target-name

column-definition: column-name datatype [DEFAULT value] [NOT NULL] [index-type]
constraint-definition: [CONSTRAINT constraint-name] { index-definition }
index-definition: {index-type} (column-name [,...])

index-type: PRIMARY KEY | UNIQUE | ASSUMEUNIQUE

ttl-definition: USING TTL value [time-unit] ON COLUMN column-name
[BATCH_SIZE number-of-rows] [MAX_FREQUENCY value]

time-unit: SECONDS | MINUTES | HOURS | DAYS

Description

The CREATE TABLE statement creates atable and its associated columnsin the database. The supported
datatypes are described in Table A.1, “ Supported SQL Datatypes’.

TableA.1. Supported SQL Datatypes

SQL Datatype Equivalent Ja- Description
va Datatype

TINYINT byte 1-byte signed integer, -127 to 1272

SMALLINT short 2-byte signed integer, -32,767 to 32,767

INTEGER int 4-byte signed integer, -2,147,483,647 to
2,147,483,647

BIGINT long 8-byte signed integer, -9,223,372,036,854,775,807
t0 9,223,372,036,854,775,807

FLOAT double 8-byte numeric, -(2-2"°2).2192 to (2-2°5?).21023
(Note that values less than or equal to -1.7E+308
are interpreted as null.)

DECIMAL BigDecimal 16-byte fixed scale of 12 and precision of 38,
-99999999999999999999999999.999999999999
to 99999999999999999999999999.999999999999

198

Supported SQL DDL Statements

SQL Datatype Equivalent Ja- Description
va Datatype
GEOGRAPHY or GE- A geospatial region. The storage requirement for
OGRAPHY () geospatial data varies depending on the geometry.

The default maximum size in memory is 32768.
However, you can specify a different value by
specifying the maximum size (in bytes) in the dec-
laration. For example: GEOGRAPHY (80000). See
the section on entering geospatial datain the Volt-
DB Guide to Performance and Customization for

details.
GEOGRAPHY _POINT A geospatia location identified by its latitude and
longitude. Requires 16 bytes of storage.
VARCHAR() String Variable length text string, with a maximum length

specified in either characters (the default) or bytes.
To specify the length in bytes, usethe BY TES
keyword after the length value. For example:

VARCHAR(28 BYTES).

VARBINARY () byte array Variable length binary string (sometimes referred
to as a"blob") with a maximum length specified in
bytes

TIMESTAMP long, VoltDB Time- Time in microseconds

stampType

8 or integer and floating-point datatypes, VVoltDB reserves the largest possible negative value to denote a null value. For example
-128 isinterpreted as null for TINYINT, -32768 for SMALLINT, and so on.

The following limitations are important to note when using the CREATE TABLE statement in VoltDB:

* CHECK and FOREIGN KEY constraints are not supported.

VoltDB does not support AUTO_INCREMENT, the automatic incrementing of column values.

A table can have up to 1024 columns. Each column has a maximum size of 1 megabyte and the total
declared size of al of the columns in a table cannot exceed 2 megabytes. For VARCHAR columns
where the length is specified in characters, the declared size is calculated as 4 bytes per character to
alow for the longest potential UTF-8 string.

If you intend to use a column to partition a table, that column cannot contain null values. Y ou must
specify NOT NULL in the definition of the column or VoltDB issues an error when compiling the
schema

* To specify anindex — either for an individual column or as atable constraint — that is globally unique
across the database, use the standard SQL keywords UNIQUE and PRIMARY KEY. However, for
partitioned tables, VoltDB can only ensure uniqueness if the index includes the partitioning column.
Otherwise, these keywords are not allowed.

It can be a performance advantage to define indexes or constraints on non-partitioning columnsthat you,
asthe developer, know are going to contain unique values. Although VoltDB cannot ensure uniqueness
across the entire database, it does allow you to define indexes that are assumed to be unique by using
the ASSUMEUNIQUE keyword.

When you define an index on a partitioned table as ASSUMEUNIQUE, VolItDB verifies uniqueness
within the current partition when creating an index entry. However, it isyour responsibility as devel oper

199

https://docs.voltdb.com/PerfGuide/GeoWKT.php
https://docs.voltdb.com/PerfGuide/
https://docs.voltdb.com/PerfGuide/

Supported SQL DDL Statements

or administrator to ensurethat the values are actually globally unique. If the database s repartitioned due
to adding new nodes or restoring a snapshot to a different cluster configuration, non-unique ASSUME-
UNIQUE index entries may collide. When this occurs it results in a constraint violation error and the
database will not be able to complete its current action.

Therefore, ASSUMEUNIQUE should be used with caution. Also, it is not necessary and should not
be used with replicated tables or indexes that contain the partitioning column, which can be defined
as UNIQUE.

EXPORT TO TARGET alowsyou to connect atable to an export target, so that by default datawritten
into the table is also sent to the export connector for delivery to the specified target. By default, only
insert operations (INSERT and UPSERT when it inserts a new row) initiate export records. However,
you can use the ON clause to specify which actions you want to trigger export. For example, the fol-
lowing table declaration generates export records whenever rows are created or modified.

CREATE TABLE RESERVATI ON
EXPORT TO TARGET airlines ON | NSERT, UPDATE_NEW
(reserv_id I NT NOT NULL,
flight_id INT NOT NULL,
D

The following table defines the actions that you can specify in the ON clause.

Keyword Description
INSERT Contents of new record from INSERT, or UPSERT that creates new record
DELETE Contents of arecord that is deleted
UP- Contents of arecord before it is updated
DATE_OLD
UP- Contents of arecord after it is updated
DATE_NEW
UPDATE Two records are exported, the contents before and after arecord isupdated (shorthand
equivalent for specifying both UPDATE_OLD and UPDATE_NEW)

Thelength of VARCHAR columnscan be specifiedin either characters (the default) or bytes. To specify
the length in bytes, include the BY TES keyword after the length value; for example VARCHAR(16
BYTES).

Specifying the VARCHAR length in charactersis recommended because UTF-8 characters can require
avariable number of bytesto store. By specifying the length in characters you can be sure the column
has sufficient space to store any string of the specified length. Specifying the length in bytes is only
recommended when all values contain only single byte (ASCII) characters or when conserving spaceis
required and the strings are less than 64 bytesin length.

The VARBINARY datatype provides variable storage for arbitrary strings of binary data and operates
similarly to VARCHAR(n BYTES) strings. Y ou assign byte arrays to a VARBINARY column when
passinginvariables, or you can useahexidecimal string for assigning literal valuesinthe SQL statement.

The VoltDB TIMESTAMP datatype is a long integer representing the number of microseconds since
the epoch. Two important points to note about this timestamp:

e TheVoltDB TIMESTAMP s not the same as the Java Timestamp datatype or traditional Linux time
measurements, which are measured in millisecondsrather than microseconds. Appropriate conversion
is needed when casting values between aVoltDB TIMESTAMP and other timestamp datatypes.

200

Supported SQL DDL Statements

e The VoltDB TIMESTAMP is interpreted as a Greenwich Meantime (GMT) value. Depending on
how time values are created, their value may or may not account for the local machine's default time
zone. Mixing timestamps from different time zones (for example, in WHERE clause comparisons)
can result in unexpected behavior.

» For TIMESTAMP columns, you can define a default value using the NOW or CURRENT_TIMES-
TAMP keywords in place of a specific value. For example:

CREATE TABLE Event (
Event _I d I NTEGER UNI QUE NOT NULL,
Event _Ti nestanp Tl MESTAMP DEFAULT NOW
Event Descri pti on VARCHAR(128)

)

The default value is evaluated at runtime as an approximation, in milliseconds, of when the transaction
begins execution.

Automatic Aging and Data Migration

When you define a database table you can also define a "time to live" (TTL) when records in the table
expireand are automatically deleted. The USING TTL clause specifiesalifetimefor each record, based on
the difference between the specified TTL value, the value of the specified column, and the current time (in
GMT microseconds). In the simplest case, you can define atimeto live based on aTIMESTAMP column
defined as DEFAULT NOW, so the record expires the specified amount of time after it is inserted. For
example, the records in the following table will be deleted five minutes after they are inserted into the
database (assuming the default valueis used for the cr eat ed column):

CREATE TABLE current _alerts (

id Bl GNT NOT NULL,

message VARCHAR(128),

created TI MESTAVP DEFAULT NOW NOT NULL,
) USING TTL 5 M NUTES ON COLUMN cr eat ed;

Y ou specify the time to live value as an integer number of seconds, minutes, hours, or days. (The default,
if you do not specify atime unit, is seconds.) The TTL column must be declared as a TIMESTAMP and
NOT NULL.

TTL records are evaluated and deleted by a parallel process within the database. As a result, records
are deleted shortly after the specified time to live arrives, rather than at the exact time specified. But
the deletion of records is handled as a proper database transaction, guaranteeing consistency with any
user-invoked transactions. One consequence of automating the expiration of database records, is that the
evaluation and del etion of records produces additional transactionsthat may impact database performance.

When you define an expiration time for database records, you can also specify an export target using
MIGRATE TO TARGET. If you specify both USING TTL and MIGRATE TO TARGET, before the data
is deleted by the TTL process, the data is migrated — through the specified export connector — to the
target location. The combination of TTL and datamigration creates an automated archiving process, where
aged datais moved to another repository while VoltDB continuesto operate on current data. Since VoltDB
does not delete the records until after the target system acknowledges their receipt, you are assured that
the datais always present in at least one of the participating systems.

For example, thefollowing tabl e definition establishes an automatic archiving policy that removes sessions
with no activity for an hour, migrating old records to a historical repository:

CREATE TABLE sessi ons

201

Supported SQL DDL Statements

M GRATE TO TARGET ol dsessi ons

[ogi n TI MESTAMP DEFAULT NOW
| ast _update TI MESTAMP NOT NULL,
user_id BI G NT NOT NULL
) USING TTL 1 HOURS ON COLUMN | ast _updat e;

It is also possible to migrate data manualy. If you add the MIGRATE TO TARGET clause by itself,
without USING TTL, no data is automatically migrated. However, you can explicitly initiate migration
by invoking the MIGRATE SQL statement with the WHERE clause to specify which rows are migrated.
Use of MIGRATE TO TARGET without USING TTL is useful when the application logic to select what
data to migrate requires multiple or non-numeric variables. For example, if the schedule for archiving a
record varies based on which user created it:

CREATE TABLE nessages
M GRATE TO TARCGET ol dnessages
(
posted TI MESTAMP DEFAULT NOW
nessage_t ext VARCHAR(128),
user _id BIGQ NT NOT NULL,
user _type VARCHAR(5) NOT NULL

);
In this case, no datais migrated until you explicitly initiate migration with the MIGRATE statement:

M GRATE FROM nessages
VWHERE
((posted < DATEADD(DAY, -3, NOA{)) AND user_type='"USER)
OR (posted < DATEADD(DAY, - 14, NON)) AND user_type=' ADM N)
) AND NOT M GRATI NG

Y ou can also migrate data manually, even if the table declaration includesthe USING TTL clause. In this
case you can use MIGRATE to preemptively migrate data before the TTL column expires. For example,
using the onstable defined above, you might want to migrate all sessionsfor auser when their account
is deleted:

M GRATE FROM sessi ons WHERE user i d=? AND NOT M GRATI NG

Note that use of the MIGRATING function is not required to filter on rows that are not already migrating,
becausethe MIGRATE statement will not initiate export if rowsare aready migrating. However, explicitly
include AND NOT MIGRATING in your MIGRATE statement can improve performance.

The MIGRATING function isalso useful so you can avoid accidentally modifying records that are already
marked for deletion, especially since any changes to migrating records will cancel the delete operation but
not the export. For example, if you want to update the last_update column of a user's records but only if
they are not already being migrated, your UPDATE statement should include NOT MIGRATING:

UPDATE sessi ons SET | ast_updat e=NOWN) WHERE user _i d=? AND NOT M GRATI NG

Time to live and data migration are powerful concepts. However, there are some important details to
consider when using these features:

e There must be ausable index on the TTL column for the table. VoltDB uses that index to optimize the
evauation of the TTL values. If not, the USING TTL clauseis accepted, but no automated del etion will
occur at runtime until ausable index is defined.

202

Supported SQL DDL Statements

e TheCREATETABLE... USING TTL statement isnot rejected if theindex ismissing. Thisway you can
define the index in a subsequent DDL statement. However, awarning message isissued if the USING
TTL clause has no supporting index available. A similar warning isissued if you delete the last usable
index.

» When the table definition includes both USING TTL and MIGRATE TO TARGET, there must be an
index including the TTL column for the USING TTL clause and a separate index including only the
TTL column and aWHERE NOT MIGRATING clause. Thisindex is required to effectively find and
schedule the migration of expired records. For example, the sessions table in the previous example
would requirethefollowing index. If theindex isnot present, recordsfor the table will neither be deleted
nor migrated and awarning will be logged on the server:

CREATE | NDEX sessions_m grate_i ndex ON sessions
(last_update) VWHERE NOT M GRATI NG,

e TTL clauses are most effective when used on partitioned tables. Defining TTL for a replicated table,
especially alarge replicated table, can have a significant impact on database performance because the
TTL delete actions must be processed as multi-partition transactions.

* You can specify the frequency and maximum size of the TTL processing cycle.

e The BATCH_SIZE argument specifies the maximum number of records that will be deleted during
each processing cycle. Specify the batch size as a positive integer. The default is 1000 rows.

e The MAX_FREQUENCY argument specifies how often the TTL clause is evaluated. Y ou specify
the frequency in terms of the maximum number of times it is processed per second. For example
a MAX_FREQUENCY of 10 means that the table's TTL value is processed at most 10 times per
second. Specify the frequency as a positive integer. The default frequency is once per second (1).

Under extreme loads or sudden bursts of inserts, it is possible for TTL processing to fall behind. Or if
the records are extremely large, attempting to delete too many records at one time can cause the TTL
process to exceed the temporary table limit. The BATCH_SIZE and MAX_FREQUENCY clauses let
you customize the TTL processing per table to meet the specific requirements of your application. The
TTL selector forthe @t at i sti cs system procedure can help you evaluate TTL performance against
your application workload to determine what settings you need.

» Evaluation of thetimeto liveismade against the current value of the TTL column, notitsinitial value. So
if asubsequent transaction alters the column value (either increasing or decreasing it) that modification
will impact the subsequent lifetime of the record.

* When using database replication (DR), it is possible for the TTL transaction to exceed the 50MB limit
on the DR binary log. If this happens, awarning isissued and TTL processing is suspended.

* Whenusing MIGRATION TO TARGET, thereisaninterval after the TTL valueistriggered and before
the record is successfully exported and deleted from the VoltDB database. During this interval, the
record is available for read access from SELECT queries. Y ou can also update or delete the record; but
modifying the record will cancel the pending delete. So if, for example, you update the record to extend
the TTL column, the record will remain in the database until the new TTL column value is reached.
However the update does not cancel the export of the original datato the specified target that had already
been triggered. So two records will eventually be migrated.

» In most cases, you can ignore whether arecord is currently being migrated and scheduled for delete or
not. For example, if you delete arecord that is currently being migrated, you cancel the pending delete
but you del ete the record anyway, so the results end up the same. However, if you do want to distinguish
between currently active and currently migrating records, you can use the MIGRATING function, that

203

Supported SQL DDL Statements

identifies records that are currently "in flight". For example, to select records for a specific user ID and
only those records that are not being migrated, you can use the following query:

SELECT user _id, |ogin FROM sessions WHERE user _id = ? AND NOT M GRATI NG,

Example

The following example defines a table with five columns. The first column, Company, is not allowed
to be null, which is important since it is used as the partitioning column in the following PARTITION
TABLE statement. That columnisalso contained inthe PRIMARY KEY constraint. Again, it isimportant
to include the partitioning column in any fully unique indexes for partitioned tables.

CREATE TABLE I nventory (
Conpany VARCHAR(32) NOT NULL,
Product | D Bl G NT NOT NULL,
Price DECI VAL,
Cat egory VARCHAR(32),
Descri pti on VARCHAR(256),
PRI MARY KEY (Conpany, Productl D)
);
PARTI TI ON TABLE | nventory ON COLUMN Conpany;

204

Supported SQL DDL Statements

CREATE TASK

CREATE TASK — Schedules a procedure to run periodically.

Syntax

CREATE TASK task-name
ON SCHEDULE {CRON cron-definition | DELAY time-interval | EVERY time-interval |
FROM CLASS class-path}
PROCEDURE { procedure-name | FROM CLASS class-path } [WITH (argument [,...])]
[ON ERROR {LOG | IGNORE | STOP}]
[RUN ON {DATABASE | HOSTS | PARTITIONS}]
[AS USER user-name]
[ENABLE | DISABLE]

CREATE TASK task-name
FROM CLASS class-path [WITH (argument[,...])]
[ON ERROR {LOG | IGNORE | STOP}]
[RUN ON {DATABASE | HOSTS | PARTITIONS }]
[AS USER user-name]
[ENABLE | DISABLE]

time-interval: integer {MILLISECONDS | SECONDS | MINUTES | HOURS | DAYS}

Description

The CREATE TASK statement schedules a stored procedure to run iteratively on a set schedule. In its
simplest form, the CREATE TASK statement schedul es a specified stored procedureto berun at aregular
interval. The PROCEDURE clause specifies the stored procedure and any argumentsit requires. The ON
SCHEDULE clause specifies when the procedure will be run. You can schedule a procedure to run on
three types of schedule:

» CRON — Specifies a cron-style schedul e to run the procedure as set times per day or week.

 DELAY — Specifiesatimeinterval between each run of the stored procedure, where the time interval
starts at the end of each run.

» EVERY — Specifiesatime interval between the start of each run of the stored procedure.

The difference between DELAY and EVERY ishow theinterval is measured. For example, if you specify
EVERY 5 SECONDS, the stored procedure runs every 5 seconds, no matter how long it takes to execute
(assuming it does not take more than 5 seconds). If, on the other hand, you specify DELAY 5 SECONDS,
each run starts 5 seconds after the previous run completes. In other words, EVERY results in invocations
at a regular interval no matter how long they take, while DELAY results in a regular interval between
when one run ends and the next begins.

For DELAY and EVERY you specify theinterval asapositiveinteger and atime unit, where the supported
time units are milliseconds, seconds, minutes, hours, and days. For EVERY, if the previous run takes
longer than the interval to run, the schedule isreset at the end of the previous run. So, for example, if the
schedule specifies EVERY 2 SECONDS but the procedure takes 2.5 seconds to run, the next scheduled
interval will already be past when the previous run ends. In this case, the next invocation of the task is
reset to 2 seconds after the previous run ends.

205

Supported SQL DDL Statements

The CRON option requires a standard cron schedule, which consists of six values separated by spaces.
Cron schedules set specific times of day, week, or month, rather than an interval. The six values of the
cron string represent seconds, minutes, hours, day of the month, month, and day of the week. Asterisks
indicate all possible values. For example, the cron specification ON SCHEDULE CRON 0 0 * * *
* schedules the task on the hour, every hour of every day. More information about scheduling tasks with
cron can be found on the web.

Y ou can also specify details about how the procedureis run:
* ON ERROR specifies how errors are handled. The default is ON ERROR STOP.
¢ ON ERROR LOG — The error islogged but the procedure continues to be scheduled and run.

* ON ERROR IGNORE — The procedure continues to be scheduled and run and the error isignored
and not logged.

* ON ERROR STOP — The error is logged and the scheduling process stops. No further invocations
of the procedure will occur until the task is explicitly re-enabled (by using ALTER TASK to disable
and then enable the task) or the database restarts.

* RUN ON specifies where the procedure executes. The default is RUN ON DATABASE.

* RUN ON DATABASE — For multi-partitioned procedures, each invocation of the procedure isrun
as asingle transaction coordinated across al partitions.

* RUN ON PARTITIONS — For directed procedures, the procedure is scheduled and run indepen-
dently on all partitions in the database. Directed procedures are useful for performing distributed
tasks that are transactional on each partition but do not need to be coordinated and therefore are less
disruptive to the ongoing database workload.

» AS USER specifies the user account under which the procedure is run. When security is enabled, you
must specify avalid username and that user must have sufficient privileges to run the procedure.

When using passive database replication (DR), the replica cluster will automatically pause any scheduled
tasks that might modify the database (that is, proceduresthat are not read-only). If the cluster is promoted,
the tasks are resumed.

Finally, you can use the ENABLE and DISABLE keywords to specify whether the task is enabled or not.
(Thetask isenabled by default.) If thetask isdisabled, the procedureis not invoked. If the task is enabled,
the procedure isinvoked according to the schedule until the database shuts down or the task is disabled by
an ALTER TASK statement or an error while ON ERROR STOP is active.

Creating Custom Tasks

If the standard schedules do not meet your needs — you want to change the interval between runs, modify
the arguments to the procedure, or the procedure itself — you can define a custom task using Java classes
that implement one of three special interfaces:

» When you only want to dynamically control the schedule of the procedure but keep the procedure and
its parameters the same, you can use the ON SCHEDUL E FROM CLASS clause specifying aJavaclass
that implementsthe | nt er val Gener at or interface.

» When you want to use aregular schedule but dynamically change the procedure and/or its parameters,
you can use the PROCEDURE FROM CLASS clause specifying a Java class that implements the Ac-
ti onCener at or interface.

206

Supported SQL DDL Statements

* When you want to dynamically control both the schedule and the procedure being invoked, you can
use the second form of the CREATE TASK syntax which replaces both the ON SCHEDULE and PRO-
CEDURE clauses with asingle FROM CLASS clause specifying a Java class that implements the Ac-
ti onSchedul er interface.

Before declaring acustom task, you must |oad the specified Java class, the same way you load Java classes
before declaring a user-defined stored procedure, by packaging it in a JAR file and using the LOAD
CLASSES directive in sglemd. It is also important to note that the classes used for custom tasks are not
stored procedures and do not run in the normal transactional path for VoltDB transactions. The custom
task classes run in a separate thread to identify the characteristics of the next task invocation before the
specified stored procedureisrun. For al threetask interfaces, the task management infrastructure provides
the results from the previous run as input to the callback method, which can then use that information to
determine how to modify the next instantiation of the task's procedure, parameters, or run interval.

Many of the CREATE TASK statement's clauses— ON ERROR, ASUSER, and ENABLE|DISABLE —
operate exactly the samefor both custom tasks and the simple case of scheduling asingle stored procedure.
The two exceptions are the WITH and RUN ON clauses.

For custom tasks that alter the procedure and procedure parameters, the arguments in the WITH clause
are passed to the custom task'si ni ti al i ze() method rather than to the stored procedure that it runs.
The custom task can then decide what to do with those arguments. For example, it may use them asinitial,
maximum, and minimum values for adjusting arguments to the stored procedure.

The RUN ON clause for a custom task has one additional option beyond just DATABASE and
PARTITIONS. Custom tasks can also be RUN ON HOSTS, which means one instance of the task is run
on each server in the cluster.

Examples

The following example declares a procedure to reset the DailyStats view, and a task scheduled as a cron
event at midnight every night to run the procedure.

CREATE PROCEDURE ResetDai l yStats AS
DELETE FROM Dai | ySt at s;

CREATE TASK ni ghtly
ON SCHEDULE CRON O 0 O * * *
PROCEDURE Reset Dai | ySt at's
RUN ON DATABASE;

The next example creates a custom task that dynamically changes the interval between invocations of the
stored procedure. The examplefirst loads the JAR file containing a custom task class that implements the
Interval Generator interface and then declares the task using PROCEDURE FROM CLASS clause.

sql cnd

1> LOAD CLASSES nyt asks. j ar;

2> CREATE TASK Dai | yNoHol i days
ON SCHEDULE FROM CLASS nyt asks. NoHol i days
PROCEDURE Reset Dai | ySt ats
RUN ON DATABASE;

207

Supported SQL DDL Statements

CREATE VIEW

CREATE VIEW — Cresates a view into one or more tables, optimizing access to a summary of their
contents.

Syntax

CREATE VIEW view-name (view-column-name [,...])
AS SELECT { column-name | selection-expression } [AS alias] [,...]
FROM table-reference [join-clause...]
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
[GROUP BY { column-name | selection-expression } [,...]]

table-reference:
{ table-name [AS alias] }

join-clause:
, table-reference
[INNER] JOIN [{table-reference}] [join-condition]

join-condition:
ON conditional-expression
USING (column-reference [,...])

Description

The CREATE VIEW statement creates aview of atable, a stream, or joined tables with selected columns
and aggregates. VoltDB implements views as materialized views. In other words, the view is stored as a
special table in the database and is updated each time the corresponding database contents are modified.
This means there is a small, incremental performance impact for any inserts or updates to the tables, but
selects on the view will execute efficiently.

The following limitations are important to note when using the CREATE VIEW statement with VoltDB:

* If the SELECT statement containsa GROUPBY clause, all of the columns and expressionslisted in the
GROUPBY must belisted in the same order at the start of the SELECT statement. Aggregate functions,
including COUNT (*), are allowed following the GROUP BY columns.

» Views are alowed on individual tables or streams, or joins of multiple tables. Joining streams is not
supported.

» Joins must be inner joins and cannot be self-joins. All other limitations for joins as described in the
SELECT statement also apply to joinsin views.

» Viewsthat join multiple tables must include a COUNT (*) field listed after all GROUP BY columns.

» To avoid performance problems when inserting datainto aview that joins multiple tables, it is strongly
recommended you define indexes on the table columns involved in the join.

Examples

Thefollowing exampledefinesaview that countsthe number of recordsfor aspecific product item grouped
by itslocation (that is, the warehouse the item isin).

208

Supported SQL DDL Statements

CREATE VI EWi nventory_count _by war ehouse (
product | D,
war ehouse,
total _i nventory
) AS SELECT
product | D,
war ehouse,
COUNT(*)
FROM i nventory GROUP BY product| D, warehouse;

The next example uses a WHERE clause but no GROUP BY to provide a count and minimum and maxi-
mum aggregates of all records that meet a certain criteria

CREATE VI EW snal | _towns (nunber, mininum naxi num)
AS SELECT count (*), mn(popul ation), nmax(popul ation)
FROM TOMNS WHERE popul ati on < 10000;

The final example demonstrates joining two tables in a view. This definition provides a similar view to
the first example, except it uses the product| D column to join two tables, Product and Inventory:

CREATE VI EWi nventory_count by war ehouse (
pr oduct Nane,
war ehouse,
total _inventory
) AS SELECT
product . product Nane,
i nvent ory. war ehouse,
COUNT(*)
FROM product JO N inventory
ON product. product! D = inventory. product| D
GROUP BY product. product Nane, inventory.warehouse;

209

Supported SQL DDL Statements

DR TABLE

DR TABLE — Identifies atable as a participant in database replication (DR)

Syntax

DR TABLE table-name [DISABLE]

Description

The DR TABLE statement identifies a table as a participant in database replication (DR). If DR is not
enabled, the DR TABLE statement has no effect on the operation of the table or the database as a whole.
However, once DR is enabled and if the current cluster is the master database for the DR operation, any
updates to the contents of tables identified in the DR TABLE statement are copied and applied to the
replica database as well.

The DR TABLE ... DISABLE statement reversesthe effect of aprevious DR TABLE statement, removing
the specified table from participation in DR. Because the replica database schema must have DR TABLE
statements for any tables being replicated by the master, if DR is actively occurring you must add the
DR TABLE statements to the replica before adding them to the master. In reverse, you must issue DR
TABLE... DISABLE statements on the master before you issue the matching statements on the replica.

See Chapter 11, Database Replication for more information about how database replication works.

Examples

The following example identifies the tables Employee and Department as participants in database repli-
cation.

DR TABLE Enpl oyee;
DR TABLE Departnent;

210

Supported SQL DDL Statements

DROP FUNCTION

DROP FUNCTION — Removes the definition of a SQL function.

Syntax

DROP FUNCTION function-name [IF EXISTS]

Description

The DROP FUNCTION statement deletes the definition of the specified user-defined function. Note that,
for functions declared using CREATE FUNCTION and a classfile, the statement does not del ete the class
that implements the function, it only deletes the definition. To remove the Java class that contains the
associated function method, you must first drop the function definition then use the sglcmd remove classes
directive to remove the class.

ThelF EXISTSclause allowsthe statement to succeed even if the specified function name doesnot exist. If
the function does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Examples

Thefollowing exampleremovesthe definitions of theHTML_ENCODE and HTML_DECODE functions,
then uses remove classes to remove the class containing their corresponding methods.

$ sqglcnd

1> DROP FUNCTI ON htm _encode;

1> DROP FUNCTI ON ht m _decode;

2> renove classes "*. Ht m Functions";

211

Supported SQL DDL Statements

DROP INDEX

DROP INDEX — Removes an index.

Syntax

DROP INDEX index-name [IF EXISTS]

Description

The DROP INDEX statement deletes the specified index, and any data associated with it, from the data-
base. The IF EXISTS clause allows the statement to succeed even if the specified index does not exist. If
the index does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Y ou must use the name of theindex as specified in the original DDL when dropping theindex. Y ou cannot
drop an index if it was not explicitly named in the CREATE INDEX command. This is why you should
always name indexes and other constraints wherever possible.

Examples

The following example removes the index named employee idx_by lastname:

DROP | NDEX Empl oyee_i dx_by_| ast nane;

212

Supported SQL DDL Statements

DROP PROCEDURE

DROP PROCEDURE — Removes the definition of a stored procedure.

Syntax

DROP PROCEDURE procedure-name [IF EXISTS]

Description

The DROP PROCEDURE statement del etes the definition of the named stored procedure. Note that, for
procedures declared using CREATE PROCEDURE FROM and a classfile, the statement does not delete
the class that implements the procedure, it only deletes the definition and any partitioning information
associated with the procedure. To remove the associated stored procedure class, you must first drop the
procedure definition then use the sglcmd remove classes directive to remove the class.

The IF EXISTS clause allows the statement to succeed even if the specified procedure name does not
exist. If the stored procedure does not exist and you do not include the IF EXISTS clause, the statement
will return an error.

Examples

The following example removes the definition of the FindCanceledReservations stored procedure, then
uses remove classes to remove the corresponding class.

$ sqglcnd
1> DROP PROCEDURE Fi ndCancel edReser vati ons;
2> renove cl asses "*. Fi ndCancel edReservati ons";

213

Supported SQL DDL Statements

DROP ROLE

DROP ROLE — Removesarole.

Syntax

DROP ROLE role-name [IF EXISTS]

Description
The DROP ROLE statement deletes the specified role. The IF EXISTS clause allows the statement to

succeed even if the specified role does not exist. If the role does not exist and you do not include the IF
EXISTS clause, the statement will return an error.

Examples
The following example removes the role named debug;:

DROP ROLE debug;

214

Supported SQL DDL Statements

DROP STREAM

DROP STREAM — Removes a stream and, optionally, any views associated with it.

Syntax

DROP STREAM stream-name [IF EXISTS] [CASCADE]

Description

The DROP STREAM statement deletes the specified stream from the database. The IF EXISTS clause
allowsthe statement to succeed even if the specified stream does not exist. If the stream does not exist and
you do not include the IF EXISTS clause, the statement will return an error.

If you use the CASCADE clause, VoltDB automatically drops any referencing views aswell asthe stream
itself.

If the stream is associated with an export target (that is, the stream was created with the EXPORT TO
TARGET clause), dropping the stream also del etes any pending records that were inserted into the stream
but have not been committed to the export target yet. If you want to change the stream definition without
losing any pending export data, use the ALTER STREAM statement. If you want to remove the stream
but ensure all export datais flushed before it is dropped, you can either use the voltadmin pause --wait
command (to flush all queues) or the @Statistics system procedure with the EXPORT selector to check
that the specified target has no pending records.

Example

The following example uses DROP STREAM with the IF EXISTS clause to remove the MeterReadings
stream definition.

DROP STREAM Met er Readi ngs | F EXI STS;

215

Supported SQL DDL Statements

DROP TABLE

DROP TABLE — Removes atable and any data associated with it.

Syntax

DROP TABLE table-name [IF EXISTS] [CASCADE]

Description

The DROP TABLE statement del etesthe specified table, and any dataassociated with it, from the database.
The IF EXISTS clause allows the statement to succeed even if the specified tables does not exist. If the
table does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Before dropping atable, you must first remove any stored procedures that reference the table. For exam-
ple, if the table EMPLOY EE is partitioned and the stored procedure AddEmployee is partitioned on the
EMPLOY EE table, you must drop the procedure first before dropping the table:

PARTI TI ON TABLE Enpl oyee ON COLUWN Enpl D;
CREATE PROCEDURE
PARTI TI ON ON TABLE Enpl oyee COLUWN Enpl D
FROM CLASS myapp. procedur es. AddEnpl oyee;

[. . .]

DROP PROCEDURE AddEnpl oyee;
DROP TABLE Enpl oyee;

Attempting to drop the table before dropping the procedure will result in an error. The same will normally
happen if there are any views or indexes that reference the table. However, if you use the CASCADE
clause VoltDB will automatically drop any referencing indexes and views as well as the table itself.

Examples

The following example uses DROP TABLE with the IF EXISTS clause to remove any existing MailAd-
dress table definition and data before adding a new definition.

DROP TABLE User Signin | F EXI STS;
CREATE TABLE User Signin (

user | D BIG NT NOT NULL,

| astl ogin TI MESTAMP DEFAULT NOW

)

216

Supported SQL DDL Statements

DROP TASK

DROP TASK — Removes atask and cancels any future execution.

Syntax

DROP TASK task-name [IF EXISTS]

Description
The DROP TASK statement deletes the specified task and cancels any future execution. The IF EXISTS

clause allows the statement to succeed even if the specified task does not exist. If the task does not exist
and you do not include the IF EXISTS clause, the statement will return an error.

Examples
The following example removes the task hamed cleanup:

DROP TASK cl eanup;

217

Supported SQL DDL Statements

DROP VIEW

DROP VIEW — Removes aview and any data associated with it.

Syntax

DROP VIEW view-name [IF EXISTS]

Description

The DROP VIEW statement del etes the specified view, and any data associated with it, from the database.
The IF EXISTS clause allows the statement to succeed even if the specified view does not exist. If the
view does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Dropping a view has the same constraints as dropping a table, in that you cannot drop a view that is

referenced by existing stored procedure queries. Before dropping the view, you must drop any stored
procedures th