YOLT

ACTIVE DATA

Using VoltDB

Abstract

This book explains how to use VoltDB to design, build, and run high performance applica-
tions.

V14

Using VoltDB

V14
Copyright © 2008-2024 Volt Active Data, Inc.

This document is published under copyright by Volt Active Data, Inc. All Rights Reserved.

The software described in this document is furnished under alicense by Volt Active Data, Inc. Your rights to access and use VoltDB features are
defined by the license you received when you acquired the software.

The VoltDB client libraries, for accessing VoltDB databases programmatically, are licensed separately under the MIT license.
Volt Active Data, VoltDB, and Active(N) are registered trademarks of Volt Active Data, Inc.

VoltDB software is protected by U.S. Patent Nos. 9,600,514, 9,639,571, 10,067,999, 10,176,240, and 10,268,707. Other patents pending.

This document was generated on September 29, 2025.

Table of Contents

ADOUL THIS BOOK ...t e et et e e e e et e e Xiv
Lo OVEIVIBIW .ttt ettt ettt 1
1.1 WHEE IS VOIIDB? ...ttt ettt et e e e e eeees 1

1.2. Who Should USE VOITDBcoouiiiiiiiiecei et 1

1.3. HOW VOIIDB WOIKScieiiiieieeii ettt ettt ettt e e e e e 2
1.3.0. PartitiONING «.v.ueeeeeeeteeti ettt ettt ettt 2

1.3.2. Serialized (Single-Threaded) ProCESSINGocvvvvuieiiiiieeeiii e 2

1.3.3. Partitioned vs. Replicated TableSoviiiiiiiiiii e 3

1.3.4. Ease of Scaling to Meet Application Needsc..ovveiiiiiiiiiiiiiiic e 4

1.4. Working with VOItDB EffeCtiVElyccoiiiiiii e 4

2. INSEAING VOITDBottt et r e e 5
2.1. Operating System and Software REQUIFEMENESoveeveiiiiiiiiii e 5

2.2. INSAING VOIIDB ...ttt ettt e e e 5
2.2.1. Upgrading From Older VEIrSIONScieuuuueiiiiiieieii et e e e et e e 6

2.3. Setting Up YOUr ENVIFONMENTcooutiiiiiiii ettt ettt ettt e et e e e en e eeees 6

2.4. What is Included in the VOItDB Distributionooiiiiiiiiiiiiii e 7

3. SHArting the DalADESEuu ittt et 9
3.1. Initializing and Starting a VOItDB Dal@haSecccuvunieiiiiiiieiiiiieeeee e 9

3.2. Initializing and Starting a VoltDB Database on a CIUSLErcccoviieiiiiiiieiiiiieeceiie, 10

3.3. Stopping & VOItDB Datahasecccuuiiieiiiiieiieeeei et 11

34, SAVING the DAA ... eeeeie et 12

3.5. Restarting a VOItDB Datahbaseccuuuiiiiiiiiiiiiiie ettt 12

3.6. Updating NOdes 0N the CIUSIESuiiiiiieiei e 12

3.7. Defining the Cluster ConfigUIationcoouuuieiiiiiieeiii e 13
3.7.1. Determining How Many Sites per HOStccovuiiiiiiiieiiii e 14

3.7.2. Configuring Paths for RUNtIME FEAtUrESooiiiviiiiiiiieec e 14

3.7.3. Verifying your Hardware Configurationccooveieiiiiieiiiiinieeeiin e 15

4. Designing the Database SChEMAocoiiiiiiiii e 16
4.1. How to Enter DDL SEAEMENESuuiiriieiiiiii e 17

4.2. Creating Tables and Primary KEYSo.uuiiiiiiiiiiiii et 18

4.3. Analyzing Data Volume and Workloadcoooviiiiiiiiiii e 19

4.4. Partitioning Database TabIESuiiiiiiieiee e 20
4.4.1. Choosing a Column on which to Partition Table ROWSccccvviiiiiiiiniennnn. 20

4.4.2. Specifying Partitioned Tablesoooiiiiiiii e 21

4.4.3. Design Rules for Partitioning Tables ..o 21

4.5. Replicating Database TahlEScc.uuiiiiiiii e 21
4.5.1. Choosing Replicated TableSuiiiiiiiieii e 22

4.5.2. Specifying Replicated TableSuviiiiiiiiiiii e 22

4.6. Modifying the SCREMAL i e 22
4.6.1. Effects of Schema Changes on Data and Clientsocoevviiieiiiinieiiiiinneeennnn, 23

4.6.2. VIiewing the SCREMAcouuuiiiiii e 24

4.6.3. MOiIfying TabIES ... oo 24

4.6.4. Adding and Dropping INDEXESccovuuiiieiiiiieee e 26

4.6.5. Modifying Partitioning for Tables and Stored Procedurescccovevevnveennnnene. 27

5. Designing Stored Procedures to Access the Databasecc.vuveviiiiiieiiiiiieecc e 31
5.1. How Stored Procedures WOTKo.uuiiiiiiiieiii et 31
5.1.1. VoItDB Stored Procedures are Transactionalocovvviieeiiiiineeiiiiineeeeiinnne, 31

5.1.2. VoItDB Stored Procedures are DeterministiCcuuveeiiviiieeiiiiiieeciieeeeiinen 31

5.2. The Anatomy of a VoItDB Stored ProCeaurevveiiiiiieiiiiiie e 33
5.2.1. The Structure of the Stored Procedurecooeuviieiiiiinieiiii e 33

5.2.2. Passing Arguments to a Stored ProCedurevvvveiiieiiiiinieeeii e 35

Using VoltDB

5.2.3. Creating and Executing SQL Queriesin Stored Proceduresccoeevvvvevnnnnnn, 36
5.2.4. Interpreting the Results of SQL QUENEScccvviiiiiiiiiiiiciii e, 37
5.2.5. Returning Results from a Stored Procedurecooevviieiiiiiiiii e 40
5.2.6. Rolling Back @ TranSaCtioNcccuuieiuiieiiieeiiieeei e e e e e e e e e e eane e 41

5.3. Installing Stored Procedures into the Databasecocvuviviiiieiiiiiecie e 41
5.3.1. Compiling, Packaging, and Loading Stored Procedurescoccvvevviieeinneennnn. 42
5.3.2. Declaring Stored Procedures inthe Schema..........ooocviieiiiiiie e, 42
5.3.3. Partitioning Stored Proceduresinthe Schema............ccooooiiviiiiiiin i, 43

6. Designing VOItDB Client APPliCAHIONSiiiiiieiiiiciie e e e e e e e 47
6.1. Connecting to the VOItDB Databasecccuuiviiieiiii e e e 47
6.1.1. How Connections To The Cluster WOrkccccoiieiiiiiniiiiiinieiiin e 48
6.1.2. Specifying MUIIPIE SEIVEIScvvniiii i e e e 48

6.2. INVOKING StOred ProCEAUIESiiii i e e e e anas 49
6.3. Invoking Stored Procedures ASynchronouslyccocovviiiiiiiiiiiiciin e 49
6.4. Defining Options on a Per-Call BasiSccuuviiiiiiiiiieiie e e 51
6.5. CloSiNG the CONNECLIONciveiii e e e e e e e e e e e eaen 51
LS S o = 0 To 1T o = T =P 51
6.6.1. Interpreting EXECULION EITOISccvuuiiiiiiiiie e e e e e e e 52
6.6.2. HaNAliNg TIMEOULSuuiiiiiieiie e e e e e e e e e e e et e e et e e e eeas 53
6.6.3. Writing Handlers to Interpret Other ErTorsoovvvvviiviieiiiiicieeeeece e, 54

6.7. Compiling and Running Client AppliCatioNScovviiieiiii e e 56
6.7.1. Starting the Client AppliCationccoouiiiiiiiii e 57
6.7.2. Running Clients from Outside the CIUStErccooviiiiiiiiiii e, 57

7. Simplifying Application DeVEIOPMENTiiiiiieiie e e e e e e e e aanas 58
7.1. USiNg DefaUlt ProCEOUIESuiiii e et e e e e e e e e e e e e eeaen 58
7.2. Shorteut for Defining Simple Stored Proceduresoovvvvii i 59
7.3. Verifying Expected QUEry RESUIScuuiiiiieiii e 60
7.4. Scheduling Stored Procedures @S TasKSccuuiviinieiiiieiiiieeiie e e e e e e e e 61
7.5. Directed Procedures. Distributing Transactions to Every Partitionccoccevvee. 62
8. Using VolItDB with Other Programming LanQUAgEScevvvieiiiieiiiieiiiieee e e e e 64
S IO O 1= 0| 1= 1 = o 64
8.1.1. Writing VoltDB Client Applications in CH++ccviiiiiiieiiiciii e 64
8.1.2. Creating a Connection to the Database CIUStErcccvievviiiiiiiciieece e, 65
8.1.3. Invoking Stored ProCedUIEScovuiiiiiiiiie e e 65
8.1.4. Invoking Stored Procedures Asynchronouslycc.oeeveieiiiiieiiiiciiiiecie e 66
8.1.5. Interpreting the RESUILSccvviiiii e 67

8.2. JSON HTTP INEITACE ...ueeiiiiii e e e e et e e e eeaaneeeees 67
8.2.1. How the JSON Interface WOrKSccouuiiiiiiiieii e 67
8.2.2. Using the JSON Interface from Client Applicationscccovevviiiiiiieiinennnnn. 69
8.2.3. How Parameters Are INterpretedooovviiiiiiiiii e 71
8.2.4. Interpreting the JSON RESUILSc.uiiiiiiiiii e e 72
8.2.5. Error Handling using the JSON INterfaceccooveviiieiiiiiiiiiicceec e, 73

8.3, IDBC INEEITACE ...t e 74
8.3.1. Using JDBC to Connect to a VOItDB Databaseooevvvviviiieeiiiieiiieeieeeeenn, 74
8.3.2. Using JDBC to Query a VOoltDB Databasecoevvveiiiieiiiiieiieeiiieeeie e 75

9. USING VOIIDB N @ CIUSLEN .uuiiiiiiiii et e e e e e e e et e et e et e e e e eaenas 77
9.1. Starting a Databhase CIUSLENccuuiiiiiieiii e e e e e e e eaa s 77
9.2. Defining the Cluster CoNfigUIationc.uieiiiieiiiie e e e e e e 77
9.3. Elastic Scaling to ReSIZE the CIUSIErcovniii i 78
9.3.1. Adding Nodes with Elastic SCalingccoccviiiiiiiiiiii e 79
9.3.2. Removing Nodes with Elastic SCalingcccoviiiiiiiiiiieiiiiec e, 80
9.3.3. Configuring How VoltDB Rebalances Nodes During Elastic Scaling 80

O N =] = o 1) Y PO 82
10.1. HOW K-Safety WOTKS .. couniiiiiciii et e e e e e e e e e e e e e eanees 82

Using VoltDB

10.2. ENabliNg K-Saf@LY ...covuiiiiiciii e e 83
10.2.1. What Happens When You Enable K-Safetyccooooviiiiiiiiiiin e, 84
10.2.2. Calculating the Appropriate Number of Nodes for K-Safetyccoovvvveeinnnnns 84

10.3. Recovering from System FaillUreScouuiiiiieii e e e e 85
10.3.1. What Happens When a Node Rejoinsthe Clustercccovevviveiiiiiiiiinceinee, 85
10.3.2. Where and When Recovery May Failccooeiiiiiiiiiiiiiii e, 86

10.4. Avoiding NEtWOrk Partitionscouuiiiiiiiiiiiiei e e 86
10.4.1. K-Safety and Network Partitionscccoeuieiiiiiiiiiiccieecin e e 86
10.4.2. Network Fault ProteCtioNoooviuiiiiiiiiie e e 87

11. Active(N) Database REPIICAIONccuuiiiiiciie e e e e e eaa s 89

11.1. How Database Replication WOIKSoiiuniiiiiicii e 90
11.1.1. Starting Database ReEPlICatioNcc.uiiiiiiiiii e 90
11.1.2. Database Replication, Availability, and Disaster RECOVENYccuvevivneevnnnnnnn. 91
11.1.3. Database Replication and Completenessovevvieiiiieiiiiicii e 92

11.2. Using Active(N) Cross Datacenter RepliCationccocvvvieiiiiiiiiiieiie e, 93
11.2.1. Designing Your Schema for Active Replicationcccocoiviviiiiiiiiiiiinecieens 93
11.2.2. Configuring the Database CIUSLErScoevviiiiii e 94
11.2.3. Starting the Databhase CIUSLErSccuuiiiiiieiiiiecc e e 96
11.2.4. Loading a Matching Schema and Starting Replicationccoovevviieviineennnn. 97
11.2.5. Stopping REPIICALONcovvniiicci e 97
11.2.6. Example XDCR Configurationsceeeuuieiriieiiiieeiiieesiieeeieeeanneesineeeaneeeens 98
11.2.7. Understanding Conflict RESOIULIONoiivniiiiiiiiie e 99

11.3. Updating the Schema During RepliCationccocouiiiiiiiiiiiccin e 106
11.3.1. Safely Updating the Schema While the Clusters are Pausedcc....... 106
11.3.2. Adding and Removing Tables Without Pausingcccoeeviiieiiiniiiineeiinnnns 107
11.3.3. Using Dynamic Schema Change to Add, Remove, and Modify Table Columns
WIhOUL PaLISING ...eeiiiciiie e e e e e e e e e e e e et e e ean e eens 107

11.4. Monitoring Database REPIICAIONovuiiiiiiieiie e e 111

11.5. Tuning Active(N) to Meet Your Application NEedscccoveviiiiiiiieiii e, 111
11.5.1. The XDCR WOIKIIOWvvveiiieeiiiiiiiiiee e e e e 111
11.5.2. Detecting and Correcting Bottlenecks in the XDCR Workflow 113

S = o U4 Y 116

12.1. How Security WOrkS in VOITDBccouiiiiiiiiii e 116

12.2. Enabling Authentication and AUthOFIZatioNcoovvviieiiii e 116

12.3. Defining UsSers and ROIESc.uiiiiiicii e e e e 117

12.4. Assigning Access t0 StOred ProCEOUIEScvuuueiuiieiiii e e e e e e e e 118

12.5. Assigning Access by Function (System Procedures, SQL Queries, and Default Proce-

o LU= 118

12.6. USING BUIt-IN ROIES ...oviiii e e e 119

12.7. Encrypting VoltDB Communication Using TLS/SSLccocoiieiiiiiiiiieciiiece e 120
12.7.1. Creating the TLS/SSL CertifiCateSuivvvieiiiiiiiii e 120
12.7.2. Using Certificate Revocation ListS (CRLS)ccuvvevviieiiiiieiiieeeieece e, 121
12.7.3. Configuring TLS/SSL on the VOItDB SErVercocovviviiiiiiiieciccee e, 122
12.7.4. Configuring Mutual TLS/SSL on the Server and Clientscccooevvvevinnnn. 123
12.7.5. Using the VoltDB Command Line Utilitieswith TLS/SSLccooevvvieennnnnns 123
12.7.6. Implementing TLS/SSL in the Java Client Applicationscccooevvveeinnennn. 124
12.7.7. Configuring Database Replication (XDCR) With TLS/SSLcccovevevneennnn. 125
12.7.8. Updating TLS/SSL Certificates and Certificate Revocation Lists (CRLS) 126

12.8. Integrating LDAP Security With VOIIDBccooviiiiiiiiii e 126
12.8.1. Configuring LDAP Security in VOIIDBovviiiiiii e 127
12.8.2. Configuring VoltDB Security iINLDAPccooiiiiiii e, 129

12.9. Integrating Kerberas Security With VOItDBccooiiiiiiiiiii e, 129
12.9.1. Installing and Configuring Kerberoscccooeviiiiiiii i, 130
12.9.2. Installing and Configuring the Java Security EXtENSIONSccocveviveeinnnnen. 131

Using VoltDB

12.9.3. Configuring the VoltDB Servers and CHentsccoecvviveviiiiiin i, 132
12.9.4. Accessing the Database from the Command Line and the Web 133

13. Saving & Restoring a VoItDB Databhaseccuuiiiiiiiiiiieiiii e 134
13.1. Performing a Manual Save and Restore of a VoItDB CIUsterccccovveviiiiiinceinnnnns 134
13.1.1. How to Save the Contents of a VoItDB Databaseovveveviiieiiiiinnennnnn, 135
13.1.2. How to Restore the Contents of aVVoltDB Database Manualy 135
13.1.3. Changing the Cluster Configuration Using Save and Restorec.c.c...... 136

13.2. Scheduling Automated SnapPShOLSccvuiiiiiicie e 138
13.3. Tuning the SnapshOt PrOCESScccviiiii e e 138
13.4. Managing Snapshot FilEScouviiii e 139
13.5. Special Notes Concerning Save and RESIOMEocvviiiiiiiiiie e 140
14. Command Logging and RECOVETYivuuiiiiiciiie e e e e e e e aanas 142
14.1. How Command Logging WOTKSccuuiiiiiiiiiii e e e 142
14.2. Controlling Command LOGOINGcvuueiiieiiieeii e ee e e e e e e e e e e e e e eaenas 143
14.3. Configuring Command Logging for Optimal Performancecccooeeeveviiiieiinnennnn. 143
Tt O o o T T 144
14.3.2. LOQ FrEOUENCY ..uiviiiieieieit et et e et e e e e et e e n e e e e et e nenaas 144
14.3.3. Synchronous vs. Asynchronous Loggingccuuvevivieeiiieeiiineiiieesieeeeieeennnn 144
14.3.4. Hardware CONSIAEralioNSvveevunieieeiiiee et s e eeei e e et e e e e e e eennns 145

15. Streaming Data: Import, Export, and Migrationccooeeiiiiiiiieiiii e 147
15.1. How Data Streaming Works in VOITDBccouiiiiiiiiiiieiie e 148
15.1.1. Understanding IMPOItcoouiiiiiiiii e e e e e e e 150
15.1.2. Understanding EXPOITcoouuiiiiiiiiiiceeee e e e e 150
15.1.3. Understanding Migrafionoeeuuiieiiieiiieec e eee e e e e e e 151
15.1.4. Understanding TOPICS ...vuueveuneeiieeeieeeie e e e e et e e e e e e e e et e e et eeanaeeanaas 152

15.2. The Business Case for Streaming Datalvevueiiiieiiiieeie e e e 154
15.2.1. Extract, Transform, Load (ETL)c..oviiiiiiiiiiiii e e e e e 154
15.2.2. Change Data Captureoeiuueeiiieie e ee e e e e e e e e e e e e e e aen 155
15.2.3. Streaming Data Validationccoeiiiiiiiiiiiiici e 155
S A @ 4 11 o o PSP 156
15.2.5. ArChIVING .oviii i 157

15.3. VOItDB EXPOrt CONNECIOISivviiiiiieiiieeeiiie e e e e e e e e et e e et e e et e e et e e e eeaenns 158
15.3.1. HOW EXPOIt WOFKS ...vuiiiiiii e e e e e et e e e e e 159
15.3.2. The File EXPort CONNECLONcvviiiiiiieiieec e e e e e e e e e 160
15.3.3. The HTTP EXPOrt CONNECLON ... cevuiiiiieiiieeeieece e e e e e e e e e e e e 162
15.3.4. The JDBC EXPOrt CONNECIONivvteiiieeiiieeei e e et e et e et e et e et e e e e eaanaas 167
15.3.5. The Kafka EXPOrt CONNECIONcvvuiiiiieeiieecieeeie e e e e e e e e e e e 168
15.3.6. The Elasticsearch EXport CONNECLONccvuieiiiieiiiieiiii e 171

15.4. VOItDB IMpPOrt CONNECIOIScvvuiiiiieiiie et e e e et e e e e e e e e et e e et e e et e e eeanans 172
15.4.1. Bulk Loading Data Using VoltDB Standalone Utilitiescccoevevveeinnnnns 172
15.4.2. Streaming Import Using Built-in Import Featurescococeeeviiiiiiinciins 173
15.4.3. The Kafka IMPOItEroovuiiiiii e e e e e e 174

15.5. VOItDB IMpOrt FOIMEErScvvvniiiieeiieee e e e e e e e e e e e e e e e e eeeen 176
15.6. VOIIDB TOPICS ..uuiiiteiiieeii ettt e et e et e e e e e e e e e e e e et e e et e e et eean e e et e esanaaetnees 177
15.6.1. TYPES Of VOItDB TOPICS . cevuueiineiiieeiieeeiee e e e e et e e e e e e et e e ea e eeanas 178
15.6.2. Declaring VOITDB TOPICS ..uucvvuniiiiieiii e e e e e e e e e e e e e eeen 180
15.6.3. Configuring and Managing TOPICS ...uvvuueveinieiiieeeiiieeiieee e e e e e eeenns 181
15.6.4. Configuring the TOPIC SEIVEN ...ccvuiiiiiiiii e e 184
15.6.5. Cadlling Topics from Consumers and Producersccevevvveeiiniecinieeinnennnn. 185
15.6.6. USING OPaUE TOPICS ..u.evvnieiiieeiiieiiiie e et e e et e e e e e e e e et e e eae e et e esateeanneeeens 186

A. Supported SQL DDL StAatEMENLSuuiiiiieiiieiii e e e e e e e s e e e et e e et eean s 187
ALTER STREAM .ottt et e et e e e et e e e et e e e e e 188
ALTER TABLE ...ttt e et e e et e e e b 189
ALTER TASK oottt e et e e et e e e e st e e e e et eaeaa s 192

Vi

Using VoltDB

ALTER VIEW .ottt e e e et e e e e e e e e et a e e e e e e e e aanennn s 193
CREATE AGGREGATE FUNCTION ...uitiiiiieiieieiiiis s e e e ee et as s e e e e esaaanananseeeaaeaanne 194
CREATE FUNCTION ...ttt ee et s s e e et s s e e e e e e et s e e e e e e eastaanseeeeaeeannes 196
L@ N I 1 N P 198
CREATE PROCEDURE AS ..ottt ettt a e e e e et s e e e e e e e st s e e e e e e e 200
CREATE PROCEDURE FROM CLASSottt e e a e e e naaaaannns 202
(O N I o L | U 205
CREATE STREAM ...ttt ettt e s e e e e e e et s e e e e e e eaataansaaeaeeeaenes 207
(O N I 17 = 211
O N I 17 PR 218
CREATE VIEW ..ottt ettt et e et e e e e e e e e e e et n s e e e e e e e aaaaan s 221
[B I 1 U 225
DROP FUNCTION ..oiitttiiiiieeetes ettt et e e e e e ettt a e e e e e e ae ettt s s s e e e e e easataa s s s e eeaeeeasnnennas 226
DROP INDEX ..ttttiiiieeiitieiiiis et s e e e e et ettt s e e e e e e e e s st naaaeeaeeesatann e aseeeeeeesennes 227
DROP PROCEDUREuuuiiiieiiiittiiis et e e s s e e e e e et s e e e e e e aesaatn e e e e e eaeaasnnnnan 228
DROP ROLE ...oiiiiiic ittt s et e e e e et e e s e e e e e e et n e e e e e e aeanennnnas 229
[@ =S I = N P 230
DROP TABLE ..o oottt e e e e e e e e e e e e e e e e e 231
DROP TASK o tttittt sttt ettt et e ettt ettt e e et ettt e et e e e e e et e et e et e e e eaeasatn e e e e eeeaeanernnnan 232
DROP VIEW ..ottt ettt ettt e e e e ettt e e e e e e e et e e s e e e e et aaatan e e e e e eeeeneennnan 233
L I 1 17 = 234
B. SUPPOrted SOL StAEMENEScivi it eeie e e e e e e et e e e e e e e et e e et e e et e e et e e eaneeetnees 235
3] I U 236
LE NN S P 238
Y N P 240
Sl P 241
TRUNGCATE TABLE ..ottt e e e e e e e e e e e aaa s 250
LU I PSS 251
LU PR 252
(O @ I = ¥ o 1T 254
N = 1 P 257
APPROX_COUNT_DISTINCT() wvvvuuneieeeiieeiiiiianseeeeeseesiiiinsaeeeessessssnnnanseessesesnsnnnns 258
N) P 259
ARRAY _ELEMENT() ..iieieietiiiiie st e ettt s e e ettt s s e e e e e ettt s e e e e e e aeaaatnn e e e e e e e 260
N Y A I N I T PP 261
S G I TP 262
N 263
2 N 264
2 S 1 W 0 PSS 265
2 S 1 W {1 I 266
2 AN N1 S 267
2 1 1 USRS 268
2 1O] P 269
2 10 | T 270
L@ 2 (S PPU 271
L0 N 272
L@ N I (] PP 273
L@ L = 274
(@0 A = I N I T PR 275
(@@ Y I S TP 276
L@][N I S 277
L0\ 17 1 PP 278
L0 1S TSP 279
L@ I T 280

Vii

Using VoltDB

COUNT) vttt et ettt ettt e ettt ettt ettt 281
CSC() ettt ettt ettt ettt ettt ettt 282
CURRENT_TIMESTAMP() ..ottt ee et ee ettt 283
DATEADD() .ttt et et e ettt e ettt ettt 284
DATEDIFF() vt eteeeeeeee ettt e ettt ettt ettt et et r e et 285
DAY (), DAY OFMONTH() «.vvvvereeeeeeeetee e eeeeet et s e eeees s et et s et eenenenen 286
DAY OFWEEK() .. vveveeeeeeeee oot e e et es et et et e et ee et e e et en e et et e s 287
DAY OFYEAR(-ttt ettt ettt et e ettt ee et et e ettt 288
DECODE() ..ttt ettt ettt ee et e ettt e et e et et e ettt 289
DEGREES() ...ttt eeeeeeeeeeeeeeeet et et e e et et e e e e et et s e e et et s eee ettt e e e et seannd 290
DISTANCE(.. eveveeeee ettt et et e e ee et e ettt e et e ettt ee e 201
DWITHINQ ettt ettt ettt e et et e et e et et et et e e et ee et s e eeeeenon 292
EXP() et eeeee et e e ee et ettt ettt ettt ettt 293
EXTRACT() cvoveveeeeeeeeeee et s e e e et e e ee et et s e ee et e e e et et et e e eee s e e et eseseneeees 294
FIELDU) v vttt ettt et e e et et e et et et s e ettt 296
FLOOR() -+ eveveeee et et e e ee e ee et e e et e et et es e e et ee e ettt n e e et e s s s 298
FORMAT() vttt ettt ettt ettt e ettt ettt n e, 299
FORMAT_CURRENCY () ..vvvveteeeeeeeeeeseeseeeeeeeeees e eeeees s sttt s e ees s e s s, 300
FORMAT_TIMESTAMP) ..ottt s et 301
FROM _UNIXTIMEQ) «vvveveeeeeeeeeee et eeee ettt ee ettt s s et en s eeenenan 302
HEX() v veveeee ettt ettt e et ee e et e e e ettt ettt ettt 303
HOUR() ettt ettt ettt et ee ettt et e et et et s e 304
INETE ATON() e eeeeeeeeeee s e eeee et es e e et et e s et es s e e et et s e ee et ee e eerenenes 305
INETE _NTOA() vt eeeeeeeeee e eet e e e et et e et e e et n ettt ee e erenenen 306
INET _ATON() «.vvevee et ettt e e et ee et ee ettt e e et s e e ettt s e e et e s e e et e s s eneeeees 307
INET _NTOA() vt eeeeeeee et e e ettt et e et e e e ettt s et e e et sen e 308
ISINVALIDREASON() ...ttt eeeeseeeeeseeeeeee s et es e et s s et erenenen 309
ISVALID() ettt eeeeeeeee et ee et ettt ettt e e ettt e ettt e e, 310
IS VALID_TIMESTAMP() «.eveeeeeeeeeeee e eeeeeee et eeee e e ettt 312
LATITUDE(Q ettt ee et ettt et 313
LEFT() vttt ee e e et et e ee e e e et et et e e et et et e et ettt e et e e et rer e 314
LN, LOG() vttt ettt ettt 315
LOGILO() ettt e et ettt et et e ettt et et e ettt et 316
LONGITUDE() «.v vttt eeeeeeeetee ettt ettt s ettt e et et s et es e eee e, 317
LOWER() . vttt ettt ettt ettt et e et e ettt ettt e e, 318
MAKEVALIDPOLY GON() w..vveveteeeeeeeeeeeee et see et es e et s e et enenenen 319
IMAX() vttt ettt ettt ettt ettt ettt ettt ettt 320
MAX_VALID_TIMESTAMP() «..vveeteeeeeeeeteeeeeeeeeee et eeeeeees e s e eeeeeen s 321
IMIGRATING() ..ttt eeeeeee ettt s e ee et e et et et es e e ee et e s et et en e nee et es s e 322
NG ottt ettt ettt ettt ettt ettt 323
MIN_VALID_TIMESTAMP() ..oeeeeeeeeteeeeeeeeeteseeeeeeeeeeeseeeet et es et es oo eneeees 324
IMINUTEQ vttt ee ettt e et es e e et et s e e e ee s e s eeeeetereneneseeed 325
IMOD() vttt ettt et ettt et et et e ettt ettt ettt ettt 326
IMONTHI) .ttt te et e ettt et ettt et e ettt e et 327
NOWI() oottt et e ettt ettt e e e et et e e et et s e e eee st e e et s s eneseeed 328
NUMINTERIORRINGS() .. v vevevevteeeeeeeeeseseeeeeeeeseseseeseeseses s seeeeseseseseseseesesesesseeees 329
NUMPOINTS() vttt eeeeeeeeteteeeeeeeee e seeeeeeeet et s e e et es et e et et et s e eee e es s eees s s e 330
OCTET_LENGTH() . evevtvetete e eeeeeeeees et e et ee e s eee et s et s e eeeeser e 331
OVERLAY () vttt ettt ettt ettt e e et ettt et n e e ee s eeanes 332
PL(vttt t ettt e et 333
POINTFROMTEXT() «.vevtvveteeeeeeeeeeeeseeeeeeeeeeseseeeeeetese e s seseeseses e eeeeetes s s eeeseseneseeeeed 334
POLY GONFROMTEXT() «.vevveveeeeeeeeeeeeeeeeeeeeeeee et seeeeeeteses e eeeteseseseeeeet et es e eeeeen e, 335
POSITION() «.v vt eeeeeeee ettt ee ettt ettt e ee st e ettt ee et eeren s 336
POWER() .ttt v eeeee et e s e e e ee et e e et et e e e et ee et s e e et et s e e et er s e e e s, 337

Using VoltDB

(@18 7 o 8 = RPN 338
T B N AN 1S SR 339
REGEXP_POSITION() .. eetttttttttieseeeeettttttis s s e e e e e aeaatta s s s e e e aeeasataesaeeaaaeaesssnnnaaaeeeees 340
Ll N I PP 341
o Y ! SR 342
L1 I I SRR 343
[11 N PSSP 344
S (PSRN 345
SO0 1N 5§ 346
S I = T 347
S 1§ PSSP 349
SN S 350
S N[O i 0 T 351
S AN 1 (S 352
S (PP 353
S I TSR 354
S S I N (PP 355
S P 356
17 N P 357
TIME_WINDOWI/() .. eeeeteettiiieie e e eee ettt s e e e et s e e e e e e et s e e e e e e e aa it s e e e e e e easannnnn s 358
TO_TIMESTAMP) ... ceeeeeeee ettt s e e e e et et e s e e e e e e e aaataasaeeeaaeennees 359
B I PSP 360
I {8 N 2N I TP 361
LU o PP 362
VALIDPOLY GONFROMTEXT() . eeettteutiiiiseeeeeeeeaiiiiaeseeeeeeeesatasnseaeeessssssnnnnnsaaeeseennes 363
WEEK(), WEEKOFYEAR() .. etttetitiie i ettt et n e e e e ettt n e e e e e e aesnna s 364
LT S YN PR 365
27 2 PSPPSR 366
D. VOIDB CLI COMMANGStuuiiiieiiiieiiiie et e e e e e ee e s e e e et e e st e e st e e stt e e e saneeatneeetnaeranaees 367
(oY o= o = S 368
[Lo ex o= o (= LN 373
G 16 0 = o L= 377
S o | 1.1 P 382
A7) 7= | 0 11 o P 388
A7 (o [USSP 399
E. YAML Configuration PropertiESccvuniiii e e e e e e e e e s e e et e e eaneeees 408
E.1 Understanding YAML SYNEAXcovuiiiiiiiiiiiiii e ee e e e e s e e e e e s e eaneens 408
I O N 1 I = 408

L300 720 B To Lo = o o PN 409

E.2. YAML Properties for Configuring Volt Databases on Bare Metalccoevevenneeeen. 411
F. VoItDB Datatype Compatibilitycccuuiiiiiiiiiiici e e 418
F.1. Java and VoltDB Datatype Compatibilityccoovviiiiiiiiiiiii e, 418
LTS Y= (= 0 (01000 0= 421
@ATHOC ... 422
(@)X 1 o (o1 s 424
(@] (L= T 425
(@Y S0 =T L oo 426
(@Y (o = T A A= P 427
@GELPArtItIONKEYS ...oeuiiiii e e e e 429
@GELY amlCONfIGUIBLION .. .ouvuiii e e e e e e e e e e e e e e et e e et e e et e e eanaeeanaens 431
L@V L= Tt 433
(2] Lo < 434
@] U P 435
(@2 T 0T 436

Using VoltDB

(N VS = £ 437
(@2 N 1= o= P 439
(@RS 0 441
@SEtY amICONFIQUIBLIONiiii e e e e e e e e et e e e e e et e e e eeaens 442
(@S V10 [0 o 444
@SNAPSNOIDEIELEcevecee e e e 445
@ SNAPSNOIRESIONE ...ttt ceee e et e e e e e e e aaaas 447
@ SNAPSNOLSAVE ...ceveeiii et e e e e e e e r e 450
LIS g0 g0 o= o 454
(VS = 11 ok 457
(@S (o] o) N Lo [T 493
(ST I o = 495
(S Y (=410 = o 496
ES YA (=101 1o 17 1 o o 502
LU0 0 (O = ST PPN 507
(@VLU 0o = (I o o 1 oo PN 509

List of Figures

1.1, Partitioning TaIESc.uuiiiiiii e e 2
1.2, SEri@liZE0 PrOCESSING ... ceevuueeeeti ettt ettt ettt et et e e et e e e e e e 3
1.3. REPIICAING TADIES ...ttt e et e et e e e e ees 4
4.1. Components of a Datahase SChEIMAceuuuiiiii e 16
4.2. Partitions Distribute Table Data and Stored Procedure ProCeSSiNgovevevvneeeeiiineeeeiinnaees 17
4.3. Diagram Representing the Flight Reservation Systemooooiiiiiiiiini e, 19
5.1. Array of VOITEDIE SIIUCIUIEScieiiiieeee et 37
5.2. One VoltTable Structure is returned for each Queued SQL Statementccocevvevvnievennnenn. 38
5.3. Stored Procedures Execute in the Appropriate Partition Based on the Partitioned Parameter

VAU ettt aaas 44
8.1. The Structure of the VOItDB JSON RESPONSEccvvtiiieiiiiiieeeiiii ettt 72
10.1. K-SAfELY 1N ACHON ...ttt ettt e e et e e s 83
10.2. NEWOIK Partitioncc.uuiiieiiiiiiit ettt et e e et e e e e e ane e e enanns 87
10.3. Network Fault ProteCtion in ACHONoooiiiiiiiiii e 88
11.1. Active(N) Cross Datacenter REPIICAIIONuuiiiiiiiiiiiiii e 89
11.2. Replicating an EXisting Databaseuieiiiiiiiiiiii e 91
11.3. DiISASIEr RECOVEIY ...ttt ettt ettt ettt ettt e ettt e e e e et e et e et e e e eete e eeeanaaeeees 92
11.4. Standard XDCR CONfIQUIELIONccuuuiiiiiiieiiii ettt et e e eeaans 98
11.5. XDCR Configuration with Read-Only ReEPIICASoviiiiiiiiiiiiiiieiiii e 98
11.6. Transaction Order and Conflict RESOIULIONccoevuiiiiiiiie e 99
11.7. The XDCR Producer/Consumer WOrkflOWiiiiiiiiiiiiii e 112
14.1. Command Logging iN ACHONuiiiiii ittt e 142
14.2. RECOVENY IN ACHION ..ottt ettt e et eeana s 143
15.1. Overview Of Data SIrAMINGuu ittt 149
15.2. OVENVIEW OF TOPICS .. .eeeitieeiiiti ettt e ettt ettt e et ettt e e e et e e e eaba s e e eentnaeeeens 149

Xi

List of Tables

2.1. Operating System and Software REQUIFEMENTSociiriiieiiiiie e 5
2.2. Components Installed Dy VOITDBoiiiiiiiiiiiiii e 7
4.1. Example Application WOrKIOadoooieeiiiiiiiii e 19
5.1. Methods of the VOITTabIE ClaSSeScoouuuieiiii e 39
8.1. Datatypes in the JISON INLErfaCEccouuuiiiiii et 71
11.1. Structure of the XDCR CONFIICE LOGS ... eeierineeieiiieeeei et 104
12.1. Named Security PErMISSIONSccouuuuiiiiiii ittt ettt eeeaanas 119
15.1. File EXPOIt PrOPEITIES ettt ettt et e e e e e naan s 160
15.2. EXPOIT MEIBOAEAceeeee ettt ettt e 162
15.3. HTTP EXPOrt PrOPErtiES . .coveieeiii ettt 164
15.4. IDBC EXPOIT PrOPEITIESceeeiiieieiiie ettt ettt ettt et e e e e ennas 167
15.5. Kafka EXPOIT PrOPEITIES ... ceeeii ittt ettt e e e e e eaees 170
15.6. Elasticsearch EXPOrt PrOpErtiESuuiiiiiiiieeiiiii ettt e e e e e 171
15.7. Kafka IMPOrt PrOPEITIES ... ceeiii ettt et ettt e e e e e eaees 175
15.8. CSV and TSV FOrmatter ProPertiesoeeiiiiieeiiiiie ettt 176
15.9. TopiC FOrmMatting ProPertiescoeeuui it e e e e e e eees 183
A.L SUPPOrted SQL DEIBLYPES ... eeeerin ettt ettt e et e et e et e e e e e e 211
C.1. Selectable Values for the EXTRACT FUNCLIONo.uuiiiiiiiiieiii e 294
E.1. Complete List of Volt Configuration Propertiesooceveviiieiiiiiieeiii e 411
F.1. Java and VoItDB Datatype Compatibilityccooeriiiiiiiiiii e 418
G.1. @SNaPSNOtRESIONEOPLIONS ... et ettt ettt e ettt e e et e et e e et e e et eeena s 447
G.2. @SNAPSNOLSAVE OPLIONS ... eeeetiee ettt ettt e et e e et e et et e e e e et e e e eete e e eeebanaeeees 451

Xii

List of Examples

4.1. DDL Example of a Reservation SChemaooiiiuiiiiiiiii e 18
5.1. Components of a VoItDB Java Stored ProCeaUIeiiieiiieiiiii e 34
5.2. Cycles of Queue and Execute in a Stored ProCedUreooveuieiiiiiiiieieeee e 37
5.3. Displaying the Contents of VOITTabIE AITaYSooiiiiiieiiii e 40
12.1. Creating a TLS Certificate for the Databhase SEIVEN'Sccovvuiviiiiiieieiii e 121
12.2. Creating Mutual TLS Certificates for Both Servers and Clientscoveeveviieeiiiiineeiennnnnn. 121

Xiii

About This Book

Thisbook is acomplete guide to VoltDB. It describes what VoltDB is, how it works, and — more impor-
tantly — how to use it to build high performance, data intensive applications. The book is divided into

five parts:

Part 1: Getting Started

Explains what VolItDB is, how it works, how to install it, and how to
start using VoltDB. The chapters in this section are:

e Chapter 1, Overview
» Chapter 2, Installing VoltDB

» Chapter 3, Starting the Database

Part 2: Developing VoltDB Data-
base Applications

Describes how to design and develop applications using VoltDB. The
chaptersin this section are:

Chapter 4, Designing the Database Schema

Chapter 5, Designing Stored Procedures to Access the Database

L]

Chapter 6, Designing VoltDB Client Applications

Chapter 7, Smplifying Application Devel opment

» Chapter 8, Using VoltDB with Other Programming Languages

Part 3: Running VoltDB inaClus-
ter

Describesadditional featuresuseful for running adatabasein acluster.
The chaptersin this section are:

e Chapter 9, Using VoItDB in a Cluster
e Chapter 10, Availability
« Chapter 11, Active(N) Database Replication

e Chapter 12, Security

Part 4: Managing the Data

Provides techniques for ensuring data durability and integrity. The
chaptersin this section are:

e Chapter 13, Saving & Restoring a VoltDB Database
¢ Chapter 14, Command Logging and Recovery

» Chapter 15, Streaming Data: Import, Export, and Migration

Part 5: Reference Material

Provides reference information about the languages and interfaces
used by VoltDB, including:

« Appendix A, Supported SQL DDL Satements

* Appendix B, Supported SQL Satements

Appendix C, SQL Functions

» Appendix D, VoltDB CLI Commands

Xiv

About This Book

« Appendix E, YAML Configuration Properties
e Appendix F, VoltDB Datatype Compatibility

* Appendix G, System Procedures

This book provides the most complete description of the VoltDB product. It describes both core features
from the commercial product plus separately licensed features that extend the durability, availability, and
maintainability of VoltDB. In general, the features described in Parts 1 and 2 are available in all versions
of the product. Some features in Parts 3 and 4 require additional licenses.

If you are new to VoltDB, the VoltDB Tutorial provides anintroduction to the product and itsfeatures. The
tutorial, and other books, are available on theweb from ht t p: / / docs. vol t act i vedat a. cont .

XV

https://docs.voltactivedata.com/v14docs/tutorial/
https://docs.voltactivedata.com/v14docs/

Chapter 1. Overview
1.1. What is VoltDB?

VoltDB is arevolutionary new database product. Designed from the ground up to be the best solution for
high performance business-critical applications, the VoltDB architectureisable to achieve 45 times higher
throughput than current database products. The architecture also allows VoltDB databases to scale easily
by adding processors to the cluster as the data volume and transaction requirements grow.

Current commercia database products are designed as general -purpose data management solutions. They
can be tweaked for specific application requirements. However, the one-size-fits-all architecture of tradi-
tional databases limits the extent to which they can be optimized.

Although the basic architecture of databases has not changed significantly in 30 years, computing has. As
have the demands and expectations of business applications and the corporations that depend on them.

VoltDB is designed to take full advantage of the modern computing environment:
» VoItDB uses in-memory storage to maximize throughput, avoiding costly disk access.

* Further performance gains are achieved by serializing all data access, avoiding many of the time-con-
suming functions of traditional databases such as locking, latching, and maintaining transaction logs.

 Scalability, reliability, and high availability are achieved through clustering and replication across mul-
tiple servers and server farms.

VoltDB isafully ACID-compliant transactional database, relieving the application developer from having
to develop code to perform transactions and manage rollbacks within their own application. By using
ANSI standard SQL for the schema definition and data access, VoltDB also reduces the learning curve
for experienced database designers.

1.2. Who Should Use VoltDB

VoltDB is not intended to solve all database problems. It is targeted at a specific segment of business
computing.

VoltDB focuses specifically on fast data. That is, applications that must process large streams of data
quickly. This includes financia applications, social media applications, and the burgeoning field of the
Internet of Things. The key requirementsfor these applications are scalability, reliability, high availability,
and outstanding throughput.

VoltDB is used today for traditional high performance applications such as capital markets data feeds, fi-
nancial trade, telco record streams and sensor-based distribution systems. It's also used in emerging appli-
cations like wireless, online gaming, fraud detection, digital ad exchanges and micro transaction systems.
Any application requiring high database throughput, linear scaling and uncompromising data accuracy
will benefit immediately from VoltDB.

However, VoltDB is not optimized for all types of queries. For example, VoltDB is not the optimal choice
for collecting and collating extremely large historical data sets which must be queried across multiple
tables. This sort of activity is commonly found in business intelligence and data warehousing solutions,
for which other database products are better suited.

Overview

To aid businesses that require both exceptional transaction performance and ad hoc reporting, VoltDB
includes integration functions so that historical data can be exported to an analytic database for larger
scale data mining.

1.3. How VoltDB Works

VoltDB is not like traditional database products. Each VoltDB database is optimized for a specific appli-
cation by partitioning the database tables and the stored procedures that access those tables across multiple
"sites" or partitions on one or more host machines to create the distributed database. Because both the data
and the work is partitioned, multiple queries can be run in parallel. At the same time, because each site
operates independently, each transaction can run to completion without the overhead of locking individ-
ual records that consumes much of the processing time of traditional databases. Finally, VoltDB balances
the requirements of maximum performance with the flexibility to accommodate less intense but equally
important queries that cross partitions. The following sections describe these concepts in more detail.

1.3.1. Partitioning

In VoltDB, each stored procedure is defined as a transaction. The stored procedure (i.e. transaction) suc-
ceeds or rolls back as awhole, ensuring database consistency.

By analyzing and precompiling the data access logic in the stored procedures, VVoltDB can distribute both
the data and the processing associated with it to the individual partitions on the cluster. In this way, each
partition containsaunique "dlice" of the data and the data processing. Each node in the cluster can support
multiple partitions.

Figure 1.1. Partitioning Tables

Table

B Database
Table Table Schema
A C
A B' CI A" | B" cll A g™ Cm Ru n.—-.ri rn.e
Partitioning
Partition Partition Partition
X Y Z

1.3.2. Serialized (Single-Threaded) Processing

At run-time, cals to the stored procedures are passed to the appropriate partition. When procedures are
"single-partitioned” (meaning they operate on data within a single partition) the server process executes
the procedure by itself, freeing the rest of the cluster to handle other requestsin parallel.

By using serialized processing, VoltDB ensurestransactional consistency without the overhead of locking,
latching, and transaction logs, while partitioning lets the database handle multiple requests at atime. As

Overview

1.3.3.

ageneral rule of thumb, the more processors (and therefore the more partitions) in the cluster, the more
transactions VoltDB completes per second, providing an easy, aimost linear path for scaling an applica
tion's capacity and performance.

When a procedure does require data from multiple partitions, one node acts as a coordinator and hands out
the necessary work to the other nodes, collectsthe results and completes the task. This coordination makes
multi-partitioned transactions slightly slower than single-partitioned transactions. However, transactional

integrity is maintained and the architecture of multiple parallel partitions ensures throughput is kept at a
maximum.

Figure 1.2. Serialized Processing

Stored Proc.
Stored Proc. Workload
Queue

Stored Proc.

Stored Proc.

— 7 |

Stored Proc. Stored Proc. Stored Proc.

Stored Proc. Stored Proc. Stored Proc.

Stored Proc. Stored Proc. Stored Proc.P Distributed,
Serialized
Processing

Partition
z

Partition
X

Partition
Y

It isimportant to note that the V oltDB architecture is optimized for total throughput. Each transaction runs
uninterrupted in its own thread, minimizing the individual latency per transaction (the time from when the
transaction begins until processing ends). This also eliminates the overhead needed for locking, latching,
and other administrative tasks, reducing the amount of timerequestssit in the queue waiting to be executed.
Theresult isthat for a suitably partitioned schema, the number of transactions that can be completed in a
second (i.e. throughput) is orders of magnitude higher than traditional databases.

Partitioned vs. Replicated Tables

Tablesare partitioned in VoltDB based on acolumn that you, the devel oper or designer, specify. When you
choose partitioning columns that match the way the datais accessed by the stored procedures, it optimizes
execution at runtime.

To further optimize performance, VoltDB allows certain database tablesto be replicated to all nodes of the
cluster. For small tables that are largely read-only, this allows stored procedures to create joins between
this table and another larger table while remaining a single-partitioned transaction. For example, a retail
merchandising database that uses product codes as the primary key may have one table that smply corre-
lates the product code with the product's category and full name, Since this table is relatively small and
does not change frequently (unlike inventory and orders) it can be replicated for access by all partitions.
This way stored procedures can retrieve and return user-friendly product information when searching by
product code without impacting the performance of order and inventory updates and searches.

Overview

Figure 1.3. Replicating Tables

Tagle Database Schema
Table Table
A C
Table
D

AlB | Al Run-Time
Partitioning &
D D Replication
X z

1.3.4. Ease of Scaling to Meet Application Needs

The VoltDB architecture is designed to simplify the process of scaling the database to meet the changing
needs of your application. Increasing the number of nodesin aVoltDB cluster both increases throughput
(by increasing the number of simultaneous queues in operation) and increases the data capacity (by in-
creasing the number of partitions used for each table).

Scaling up a VoltDB database is a simple process that doesn't require any changes to the database schema
or application code. Y ou can either:

» Save the database (using a snapshot), then restart the database specifying the new number of nodes for
the resized cluster and using restore to rel oad the schema and data.

» Add nodes "on the fly" while the database is running.

1.4. Working with VoltDB Effectively

It is possible to use VoltDB like any other SQL database, creating tables and performing ad hoc SQL
gueries using standard SQL statements. However, to take full advantage of VoltDB's capabilities, it is best
to design your schemaand your stored proceduresto maximizethe use of partitioned tablesand procedures.
There are also additional features of VoltDB to increase the availability and durability of your data. The
following sections explain how to work effectively with VoltDB, including:

» Chapters 2 and 3 explain how to install VoltDB and create a new database.

» Chapters 4 through 8 explain how to design your database, stored procedures, and client applications
to maximize performance.

» Chapters 9 through 12 explain how to create and use VoltDB clusters to increase scalability and avail-
ability.

 Chapters 13 through 15 explain how VoltDB ensures the durability of your data and how you can inte-
grate VoltDB with other data sources using export for complete business solutions

Chapter 2. Installing VoltDB

VoltDB providesall the transactional consistency and durability of a SQL database, plus best-in-class per-
formance and throughput due to its innovative in-memory design and architecture. The VoltDB software
comes as pre-built distributions. This chapter explains the system requirements for running VoltDB, how
to install and upgrade the software, and what resources are provided in the kit.

2.1. Operating System and Software Requirements

The following are the requirements for developing and running VoltDB applications.

Table 2.1. Operating System and Softwar e Requirements

Operating System

VoltDB requires a 64-bit Linux-based operating system. Kits are built and
qualified on the following platforms:

Red Hat (RHEL) version 8.8 or later, including 9.0 and subsequent rel eases
Rocky Linux version 8.8 or later, including 9.0 and subsequent releases
Ubuntu versions 20.04, 22.04, 24.04 and subsequent releases.

Macintosh OS X 13.0 and later (for development only)

CPU

Dual core® x86_64 processor
64 bit
1.6 GHz

Memory

4 Gbytes?

Java®

Javal7 or 21

Required Software

Time synchronization service, such as NTP or chrony4

Python 3.9 or later

Recommended Software

Eclipse 3.x (or other Java IDE)

Footnotes:

optimal performance.

1. Dual core processors are a minimum requirement. Four or eight physical cores are recommended for

2. Memory requirementsare very specific to the storage needs of the application and the number of nodes
in the cluster. However, 4 Gigabytes should be considered a minimum configuration.

3. VoltDB supports JDKs from OpenJDK or Oracle.

4. Time synchronization services minimize the time difference between nodes in a database cluster,
which iscritical for VoltDB. All nodes of the cluster should be configured to synchronize against the
same time server. Using asingle local server is recommended, but not required.

2.2. Installing VoltDB

VoltDB is distributed as a compressed tar archive. The file name identifies the version number and hard-
ware architecture. The best way to install VoltDB isto unpack the distribution kit as afolder in the home
directory of your personal account, like so:

$ tar -zxvf voltdb-ent-14.0.0-x86_64.tar.gz -C $HOVE/

Installing VoltDB

Installing into your personal directory gives you full access to the software and is most useful for devel-
opment.

If you are installing VoltDB on a production server where the database will be run, you may want to
install the software into a standard system location so that the database cluster can be started with the
same commands on all nodes. The following shell commands install the VoltDB software in the folder
/ opt/vol t db:

$ sudo tar -zxvf voltdb-ent-14.0.0-x86_64.tar.gz -C /opt
$ cd /opt
$ sudo nv vol tdb-ent-14.0.0-x86_64 vol tdb

Note that installing as root using the sudo command makes the installation folders read-only for non-
privileged accounts. Which iswhy installing in $HOME is recommended for development activities.

2.2.1. Upgrading From Older Versions

When upgrading an existing database from a recent version of VoltDB, the simplest way to upgrade is
asfollows:

1. Perform an orderly shutdown of the database, saving afinal snapshot (voltadmin shutdown --save)
2. Upgrade the VoltDB software
3. Restart the database (voltdb start)

VoltDB automatically restores the final snapshot taken before the upgrade. This process allows you to
upgrade a single database cluster from any two supported versions of Volt Active Data. However, for pro-
duction environments Volt offers several methods for upgrading databases without incurring any down-
time, including upgrades utilizing multiple Active(n) clusters and performing in-service upgrades. See the
section on "Upgrading Existing VoltDB Installations" in the VoltDB Administrator's Guide or the section
on "Upgrading the VoltDB Software and Helm Charts" in the Kuber netes Administrator's Guide for more
information.

Finaly, if you are upgrading from a version before V6.8, you need to save and restore the snapshot man-
ually. In which case, the recommended steps for upgrading an existing database are:

1. Place the database in admin mode (voltadmin pause --wait).

2. Perform amanual snapshot of the database (voltadmin save --blocking).
Shutdown the database (voltadmin shutdown).

Upgrade VoltDB.

Initialize a new database root directory (voltdb init)

Start the new database in admin mode (voltdb start --pause).

N o o M W

Restore the snapshot created in Step #2 (voltadmin restor€).

8. Return the database to normal operations (voltadmin resume).

2.3. Setting Up Your Environment

VoltDB comeswith shell command scriptsthat simplify the process of devel oping and deploying VoltDB
applications. These scripts are in the /bin folder under the installation root and define short-cut commands

https://docs.voltactivedata.com/v14docs/AdminGuide/MaintainUpgradeVoltdb.php
https://docs.voltactivedata.com/v14docs/AdminGuide/
https://docs.voltactivedata.com/v14docs/KubernetesAdmin/OpsMngUpgrade.php
https://docs.voltactivedata.com/v14docs/KubernetesAdmin/

Installing VoltDB

for executing many VoltDB actions. To make the commands available to your session, you must include
the /bin directory as part of your PATH environment variable.

Y ou can add the/ bi n directory to your PATH variable by redefining PATH. For example, the following
shell command adds / bi n to the end of the environment PATH, assuming you installed the VoltDB
Enterprise Edition as/ vol t db- ent - n. n. n- xxxx in your $HOME directory:

$ export PATH="$PATH: $HOVE/ vol t db- ent - n. n. n- xxxx/ bi n"

To avoid having to redefine PATH every time you create a new session, you can add the preceding com-
mand to your shell login script. For example, if you are using the bash shell, you would add the preceding
command to the $HOVE/ . bashr c file.

2.4. What is Included in the VoltDB Distribution

Table 2.2 lists the components that are provided as part of the VoltDB distribution.

Table 2.2. Componentsinstalled by VoltDB

Component Description

VoltDB Software & Runtime The VoltDB software comes as Java archives (.JAR
files) and a callable library that can be found in the
/ vol t db subfolder. Other software libraries that
VoltDB dependson areincludedinaseparate/ | i b
subfolder.

Volt Management Center Volt Management Center is a browser-based man-
agement tool for monitoring, examining, and query-
ing a running VoltDB database. The Management
Center is bundled with the VoltDB server software
and runs as a separate process, either on one of the
database servers or a separate server. See the Volt
Administrator's Guide or Volt Kubernetes Adminis-
trator's Guide for instructions on configuring and
starting the VMC service.

Y ou start the management consol e interface by con-
necting to the HTTP port of the VMC server. For
example,

http://vol tvnc: 8080/ . Note that the VMC
service must be running to use the Management
Center or the HTTP programming interface.

Shell Commands The/ bi n subfolder contains executable scripts to
perform common VoltDB tasks, such as starting the
VoltDB server process and issuing database queries
from the command line using sglcmd, Add the /
bi n subfolder to your PATH environment variable
to use the following shell commands:

csvloader
jdbcloader
kafkal oader
sglemd
voltadmin

Installing VoltDB

Component

Description

voltdb

Documentation

Online documentation, including the full manuals
and javadoc describing the Java programming inter-
face, isavailablein the/ doc subfolder.

Chapter 3. Starting the Database

This chapter describes the procedures for starting and stopping a VoltDB database and includes details
about configuring the database. The chapter contains the following sections:

» Section 3.1, “Initializing and Starting a VoltDB Database”

» Section 3.2, “Initializing and Starting a VoltDB Database on a Cluster”
 Section 3.3, “Stopping a VoltDB Database’

» Section 3.5, “Restarting a VoltDB Database”

* Section 3.6, “Updating Nodes on the Cluster”

» Section 3.7, “Defining the Cluster Configuration”

3.1. Initializing and Starting a VoltDB Database

Beforeyou start aVoltDB database, you must initialize the root directory where VoltDB storesits config-
uration data, logs, and other disk-based information. Once you initialize the root directory, you can start
the database. For example, you can accept the defaultsfor the voltdb init and start commandstoinitialize
and start a new, single-node database suitable for developing and testing a database and application.

$ voltdb init
$ voltdb start

ThiscreatesaVoltDB root directory as asubfolder of your current working directory and starts a database
with all default options. Y ou only need to initialize the root directory once and can then start and stop the
database as often as you like.

$ vol tadm n shut down
$ voltdb start

If you are using command logging, which is enabled by default in the VVoltDB Enterprise Edition, VoltDB
automatically saves and recovers your database between any stoppage and a restart. If you are not using
command logging, you will want to save a snapshot before shutting down. The easiest way to do thisis
by adding the --save argument to the shutdown command.

The snapshot is automatically restored when the database restarts:

$ vol tadm n shutdown --save
$ voltdb start

If you want to create a new database, you can reinitialize the root directory. However, you must use the --
force flag if the database has already been used; VoltDB will not clear the root directory of existing data
unless you explicitly "force" it to.

$ voltdb init --force
$ voltdb start

Also, you can specify an alternate location for the root directory using the - - di r or - Dflag. Of course,
you must specify the same location for the root directory when both initializing and starting the database.
Y ou cannot start a database in adirectory that has not been initialized.

Starting the Database

$ voltdb init --dir=~/nydb
$ voltdb start --dir=~/nmydb

In most cases, you will want to use additional argumentsto configure the server and database options. But
the preceding commands are sufficient to get you started in a test environment. The rest of this chapter
explains how to use other arguments and how to start, stop, and recover a database when using a cluster.

Finally, when using the VoltDB Enterprise Edition, you must provide a license file when initializing the
database. VoltDB looks for the license asafilenamed | i cense. xmi in three possible locations, in the
following order:

1. The current working directory

2. The directory where the VoltDB image files are installed (usually in the / vol t db subfolder of the
installation directory)

3. The current user's home directory

If thelicensefileisnot in any of these locations, you must explicitly identify it when you issue the voltdb
init command using the- - | i cense or - | flag. For example, the command might be:

$ voltdb init -1 /usr/share/voltdb-Ilicense. xnl

The examples in this manual assume that the license file is in one of the default locations and therefore
do not show the - - | i cense flag for simplicity's sake.

3.2. Initializing and Starting a VoltDB Database on
a Cluster

You initialize and start a cluster the same way you start a single node: with the voltdb init and start
commands. The only difference is that when starting the cluster, you must tell the cluster nodes how big
the cluster is and which nodes to use as potential hosts for the startup.

You initialize aroot directory on each server using the voltdb init command. Y ou can accept the default
configuration as shown in the previous section. However, when setting up acluster you often want to make
some configuration adjustments (for example, enabling K-safety). So it isagood ideato get into the habit
of specifying a configuration file.

Y ou can specify one or more configuration files with the - - conf i g or - Cflag when you initialize the
root directory. All hodes must use the same configuration files. For example:

$ voltdb init -D ~/nydb --config=myconfig.yanl

Once the nodes are initialized, you start the cluster by issuing the voltdb start command on all nodes
specifying the following information:

* Number of nodesin the cluster: When you start the cluster, you specify how many servers will make
up the cluster using the - - count flag.

* Host names: Y ou specify the hostnames or |P addresses of one or more servers from the cluster that
are potential "hosts" for coordinating the formation of the cluster. Y ou specify the list of hosts with the
--host or - Hflag. You must specify at least one node as a host.

For each node of the cluster, log in and start the server process using the same voltdb start command. For
example, the following example starts a five-node database cluster specifying voltsvrl as the host node.

10

Starting the Database

Be sure the number of nodes on which you run the command match the number of nodes specified in the
- - count argument.

$ voltdb start --count=5 --host=voltsvrl
Or you can also use shortened forms for the argument flags:
$ voltdb start -¢c 5 -H voltsvrl

Although you only need to specify one potential host, it isagood ideato specify multiple hosts. Thisway,
you can use the exact same command for both starting and rejoining nodes in a highly-available cluster.
Even if the rejoining node isin the host list another, running node can be chosen to facilitate the rejoin.

To simplify even further, you can specify all of the serversinthe - - host argument. If you do this, you
can skip the - - count argument. If - - count ismissing, VoltDB assumes the number of serversin the
- - host list is complete and sets the server count to match. For example, the following command —
issued on al three servers — starts a three node cluster:

$ voltdb start --host=svrA svrB,svrC
When starting a VoltDB database on a cluster, the VoltDB server process performs the following actions:

1. If you are starting the database process on the node selected as the host node, it waits for initialization
messages from the remaining nodes. The host is selected from the list of hosts on the command line
and plays aspecial role during startup by managing the cluster initiation process. It isimportant that all
nodes in the cluster can resolve the hostnames or | P addresses of the host nodes you specify.

2. If you are starting the database on a non-host node, it sends an initialization message to the host indi-
cating that it is ready. The database is not operational until the correct number of nodes (as specified
on the command line) have connected.

3. Onceadll the nodes have sent initialization messages, the host sends out amessageto the other nodes that
the cluster is complete. Once the startup procedure is complete, the host'sroleis over and it becomes a
peer like every other nodein the cluster. It performs no further special functions.

Manually logging on to each node of the cluster every time you want to start the database can be tedious.
Instead, you can use secure shell (ssh) to execute shell commands remotely. By creating an ssh script (with
the appropriate permissions) you can copy files and/or start the database on each node in the cluster from
asingle script. Or you can use distributed system management tools such as Chef and Puppet to automate
the startup procedures.

3.3. Stopping a VoltDB Database

OncetheVoltDB databaseisup and running, you can shut it down by stopping the V oltDB server processes
on each cluster node. However, it is easier to stop the database as a whole with a single command. You
do this with the voltadmin shutdown command, which pauses database activity, completes al current
transactions, and empties any queued data (such as export or database replication) before shutting down.
For example, entering the following command without specifying a host server will perform an orderly
shut down the database cluster the current systemis part of.

$ vol tadmi n shut down

If you are not using command logging, which automatically saves all progress, be sure to add the --save
argument to save afinal snapshot before shutting down:

$ vol tadm n shutdown --save

11

Starting the Database

To shutdown a database running on another system, usethe - - host argument to access the remote data-
base. For example, the following command shuts down the VoltDB database that includes the server zeus:

$ voltadn n shutdown --host=zeus

You can pause the database using the voltadmin pause command to restrict clients from accessing it
whileyou perform changesin administration mode. Y ou resume the database using the voltadmin resume
command. See the VoltDB Administrator's Guide for more about modes of operation.

3.4. Saving the Data

Because VoltDB is an in-memory database, once the database server process stops, the database schema
and the dataitself are removed from memory. However, VoltDB can save thisinformation to disk through
the use of command logs and snapshots, so use of these features is strongly encouraged.

» Command logging provides the most complete data durability for VoltDB and is enabled by default
in the VoltDB Enterprise Edition. Command logging works automatically by saving a record of every
transaction. These logs can then be replayed if the database stops for any reason.

» Shapshots, on the other hand, provide a point-in-time copy of the database contents written to disk. You
can create snapshots manually with the voltadmin save command, you can enable periodic (al so known
as automatic) snapshots, or you can save a final snapshot when you shutdown the database using the
voltadmin shutdown --save command. Snapshots are restored when the database restarts, but only take
you back to the state of the database at the time the last snapshot was saved.

To learn more about using command logging see Chapter 14, Command Logging and Recovery. To learn
more about how to save and restore snapshots of the database, see Chapter 13, Saving & Restoring a
VoltDB Database.

3.5. Restarting a VoltDB Database

Once adatabase stops, you can restart it using the sasmevoltdb start command used to start the databasethe
first time. Once the database starts, any command logs or snapshots are restored. Inthe VoltDB Enterprise
Edition, command logs automatically restore the last state of the database. If no command log exist but a
snapshot does, the databaseisrestored toits state when that snapshot wastaken. For example, thefollowing
command restarts a single-node database:

$ voltdb start

Torestart adatabase on acluster, issuethe samevoltdb start command used to start that cluster, including
the server count and list of host nodes. For example:

$ voltdb start --count=5 --host=voltsvrl

3.6. Updating Nodes on the Cluster

A cluster is a dynamic system in which nodes might be stopped either deliberately or by unforeseen cir-
cumstances, or nodes might be added to the cluster on-the-fly to scale the database for improved perfor-
mance. The voltdb start command provides the following additional functions, described later in this
book, for rejoining and adding nodes to a running VoltDB database:

 Section 10.3, “Recovering from System Failures” — Use the same voltdb start command to start the
cluster or rejoin afailed node.

12

https://docs.voltactivedata.com/v14docs/AdminGuide/

Starting the Database

e Section 9.3.1, “Adding Nodes with Elastic Scaling” — Use voltdb start with the --add flag to add a
new node to the running database cluster.

3.7. Defining the Cluster Configuration

Two important aspects of a VoltDB database are the physical layout of the cluster that runs the database
and the database features you choose to use. Y ou define the physical cluster layout on the voltdb start
command using the- - count and- - host arguments. Y ou enable and disabl e specific database features
in configuration files when you initialize the database root directory with the voltdb init command.

In the simplest case — when running on a single node with no configuration specified — VoltDB defaults
to eight execution sites per host, and aK -saf ety value of zero. Y ou can customize the database by specifying
options in one or more YAML configuration files when you initialize the database with the voltdb init
command and the- - conf i g (or - C) qualifier. You can put all of the configuration propertiesinasingle
file, or you can modularize the configuration into separate files for individual topics. For example, the
following command customizes the database using separate Y AML filesfor common properties, directory
paths, and security:

$ voltdb init --config=comon. yanl, paths. yamn , security.yanl
Configuration files are in YAML format, where options are specified as a hierarchy of properties with

each element of the hierarchy indented on a separate line and terminated by a colon. The actua property
values follow the colon. For example:

depl oyment :
cluster:
sitesperhost: 12
kfactor: 1

In the preceding example, the child properties of thedepl oyrent . ¢l ust er element define the layout
of the database partitions, including:

* sitesperhost — specifies the number of partitions created on each server in the cluster. The si t es-
per host valuetimesthe number of servers gives you the total number of partitionsin the cluster. See
Section 3.7.1, “Determining How Many Sites per Host” for more information about partition count.

» kfactor — specifies the K-safety value to use for durability when creating the database. The K-safety
value controls the duplication of database partitions. See Chapter 10, Availability for more information
about K-safety.

Configuration files also enable and configure many runtime options related to the database, which are
described later in this book. For example, the configuration file can specify:

* Whether security is enabled and what users and passwords are needed to authenticate clients at runtime.
See Chapter 12, Security for more information.

» A schedule for saving automatic snapshots of the database. See Section 13.2, “ Scheduling Automated
Snapshots”.

 Properties for exporting and importing data to other data sources. See Chapter 15, Sreaming Data:
Import, Export, and Migration.

For the complete list of properties and YAML file syntax, see Appendix E, YAML Configuration Prop-
erties.

13

Starting the Database

3.7.1. Determining How Many Sites per Host

There is very little penalty for allocating more sites than needed for the partitions the database will use
(except for incremental memory usage). Consequently, VoltDB defaults to eight sites per node to provide
reasonable performance on most modern system configurations. This default does not normally need to be
changed. However, for systemswith alarge number of available processors (16 or more) or older machines
with fewer than 8 processors and limited memory, you may wish to tunethe si t esper host property.

The number of sites needed per node is related to the number of processor cores each system has, the
optimal number being approximately 3/4 of the number of CPUs reported by the operating system. For
example, if you are using a cluster of dual quad-core processors (in other words, 8 cores per node), the
optimal number of partitionsis likely to be 6 or 7 sites per node.

depl oyrent :
cluster:
sitesperhost: 6

For systems that support hyperthreading (where the number of physical cores support twice as many
threads), the operating system reports twice the number of physical cores. In other words, a dual quad-
core system would report 16 virtual CPUs. However, each partition is not quite as efficient as on non-
hyperthreading systems. So the optimal number of sitesis more likely to be between 10 and 12 per node
in this situation.

Because there are no hard and set rules, the optimal number of sites per nodeis best calculated by actually
benchmarking the application to see what combination of cores and sites produces the best results. How-
ever, it isimportant to remember that all nodesin the cluster will use the same number of sites. So the best
performanceisachieved by using acluster with all nodes having the same physical architecture (i.e. cores).

3.7.2. Configuring Paths for Runtime Features

An important aspect of some runtime featuresisthat they make use of disk resourcesfor persistent storage
across sessions. For example, automatic snapshots need a directory for storing snapshots of the database
contents. Similarly, export uses disk storage for writing overflow dataif the export connector cannot keep
up with the export queue.

Y ou can specify individual paths for each feature in the configuration. If not, VoltDB creates subfolders
for each feature in the database root directory as needed, which can be useful for testing. However, in
production, it isuseful to direct certain high volumefeatures, such ascommand | ogging, to separate devices
to avoid disk 1/0 affecting database performance.

Y ou can identify specific path locations for the following features using the pat hs property:

e Command logging (depl oynent . pat hs. conmrandl og)

» Command log snapshots(depl oyrnent . pat hs. conmandl ogsnapshot)

» Export overflow (depl oynent . pat hs. exportoverfl ow)

» Snapshots (depl oyrent . pat hs. snapshot s)

If you specify arelativerather than an absolute path, it isrelative to the database root directory. If you name
a specific feature path and it does not exist, VoltDB attempts to create it for you. For example, the export

overflow path containstemporary datawhich can be deleted periodically. The following configuration file
specifies/ opt / over f | owasthe directory for export overflow.

14

Starting the Database

depl oyrent :
pat hs:
exportoverfl ow
pat h: "/opt/overfl ow

3.7.3. Verifying your Hardware Configuration

The configuration files and start command options define the desired configuration of your database clus-
ter. However, there are several important aspects of the physical hardware and operating system configu-
ration that you should be aware of before running VoltDB:

» VoItDB can operate on heterogeneous clusters. However, best performance is achieved by running the
cluster on similar hardware with the same type of processors, number of processors, and amount of
memory on each node.

 All nodes must be able to resolve the I P addresses and host names of the other nodesin the cluster. That
means they must all have valid DNS entries or have the appropriate entries in their local hostsfile.

* You must run atime synchronization service such as Network Time Protocol (NTP) or chrony on all of
the cluster nodes, preferably synchronizing against the samelocal time server. If the time skew between
nodesin the cluster is greater than 200 milliseconds, VoltDB cannot start the database.

* Itisstrongly recommended that you configure your time service to avoid adjusting time backwards. For
example, in NTP thisis done using the - x argument. If the server time moves backward, VoltDB must
pause and wait for time to catch up.

15

Chapter 4. Designing the Database
Schema

VoltDB is arelationa database product. Relational databases consist of tables and columns, with con-
straints, indexes, and views. VoltDB uses standard SQL database definition language (DDL) statements
to specify the database schema. So designing the schemafor aVoltDB database uses the same skills and
knowledge as designing a database for Oracle, MySQL, or any other relational database product.

This guide describes the stages of application design by dividing the work into three chapters:

» Design the schema in DDL to define the database structure. Schema design is covered in this chapter.

» Design stored procedur esto access datain the database. Stored procedures provide client applications
an application programming interface (API) to the database. Stored procedures are coveredin Chapter 5,
Designing Stored Procedures to Access the Database.

» Design clients to provide business logic and also connect to the database to access data. Client appli-
cation design is covered in Chapter 6, Designing VoltDB Client Applications.

The database schema is a specification that describes the structure of the VoltDB database such as tables
and indexes, identifies the stored procedures that access data in the database, and defines the way tables
and stored procedures are partitioned for fast data access. When designing client applications to use the
database, the schema specifies the details needed about data types, tables, columns, and so on.

Figure 4.1. Components of a Database Schema

Schema
Stored
Procedures
o
Tables, :§ E
views, @ %
indexes, o=
etc.

Along with designing your database tables, an important aspect of VoltDB database design is partitioning,
which provides much more efficient access to data and processing. Partitioning distributes the rows of a
table and the processing to access the table across several, independent partitions instead of one. Y our
design requires coordinating the partitioning of both database tables and the stored procedures that access
the tables. At design time you choose a column on which to partition a table's rows. You aso partition
stored procedures on the same column if they use the column to identify which rows to operate on in the
table.

At runtime, VoltDB decides which cluster nodes and partitions to use for the table partitions and consis-
tently allocates rows to the appropriate partition. Figure 4.2, “ Partitions Distribute Table Data and Stored
Procedure Processing” shows how when data is inserted into a partitioned table, VoltDB automatically
allocates the data to the correct partition. Also, when a partitioned stored procedure is invoked, VoltDB
automatically executes the stored procedure in the single partition that has the data requested.

16

Designing the Database Schema

Figure 4.2. Partitions Distribute Table Data and Stored Procedur e Processing

Physical

Logical

Partition 1 Schema

Server 1

Pariion 2 - Procedure

-
- - . T
invocation

Partition 3

Partition 4

Server 2
information I

I Partitioning I

— — Ad hoc
Partition 5 L - SQL query

Server 3

)
@
o
o
D
n
®

Partition 6

The following sections of this chapter provide guidelines for designing VoltDB database schemas. Al-
though gathering business requirementsis a typical first step in database application design, it is outside
the scope of this guide.

4.1. How to Enter DDL Statements

Y ou use standard SQL DDL statements to design your schema. For afull list of valid VoltDB DDL, see
Appendix A, Supported SQL DDL Satements. The easiest way to enter your DDL statements is using
VoltDB's command line utility, sglcmd. Using sglcmd you can input DDL statementsin several ways.

* Redirect standard input from afile when you start sglemd:
$ sqlcmd < nyschema. sql
 Import from afile using the sglcmd file directive:

$ sqgl cnd
1> fil e nyschena. sql ;

» Enter DDL directly at the sglcmd prompt:

$ sqgl cnd

1>

2> CREATE TABLE Customer (

3> Custoner| D | NTEGER UNI QUE NOT NULL,
4> FirstName VARCHAR(15),

5> LastNane VARCHAR (15),

6> PRI MARY KEY(Cust oner | D)

7>);

» Copy DDL from another application and paste it into the sglcmd prompt:

$ sqgl cnd

1> CREATE TABLE Flight (

2> Flight1 D | NTEGER UNI QUE NOT NULL,
3> Depart Ti me Tl MESTAMP NOT NULL,

4> Origin VARCHAR(3) NOT NULL,

5> Destinati on VARCHAR(3) NOT NULL,
6> Nunber Of Seat s | NTEGER NOT NULL,

17

Designing the Database Schema

7> PRI MARY KEY(Flightl D)
8>);

The following sections show how to design and create schema objects. DDL statements and techniques
for changing a schema are described later in Section 4.6, “Modifying the Schema’.

4.2. Creating Tables and Primary Keys

The schema in this section is referred to throughout the design chapters of this guide. Let's assume you
are designing a flight reservation system. At its simplest, the application requires database tables for the
flights, the customers, and the reservations. Example 4.1, “DDL Example of aReservation Schema” shows
how the schemalooks as defined in standard SQL DDL. For the V oltDB-specific detailsfor creating tables,
see CREATE TABLE. When defining the data types for table columns, refer to Table A.1, “ Supported
SQL Datatypes’.

Example4.1. DDL Example of a Reservation Schema

CREATE TABLE Fl i ght (
Flight!I D | NTEGER UNI QUE NOT NULL,
Depart Ti ne Tl MESTAMP NOT NULL,
Oigin VARCHAR(3) NOT NULL,
Destinati on VARCHAR(3) NOT NULL,
Nunmber Of Seat s | NTEGER NOT NULL,
PRI MARY KEY(FI i ghtl D)

)

CREATE TABLE Reservation (
Reservel D | NTEGER NOT NULL,
Flight!I D | NTEGER NOT NULL,
Custoner| D | NTEGER NOT NULL,
Seat VARCHAR(5) DEFAULT NULL,
Confirmed TINYI NT DEFAULT 'O’

)

CREATE TABLE Customer (
Custoner | D | NTEGER UNI QUE NOT NULL,
Fi rst Nanme VARCHAR(15),
Last Name VARCHAR (15),
PRI MARY KEY(Cust orer | D)

)

To satisfy entity integrity you can specify atable's primary key by providing the usual PRIMARY KEY
constraint on one or more of the table’'s columns. To create a ssimple key, apply the PRIMARY KEY
constraint to one of the table's existing columns whose values are unique and not null, as shown in Exam-
ple4.1, “DDL Example of a Reservation Schema’.

To create a composite primary key from a combination of columnsin atable, apply the PRIMARY KEY
constraint to multiple columns with typical DDL such as the following:

$ sql cnd

1> CREATE TABLE Customer (

2> FirstName VARCHAR(15),

3> LastName VARCHAR (15),

4> CONSTRAI NT pkey PRI MARY KEY (FirstNanme, LastNane)
5>);

18

Designing the Database Schema

4.3. Analyzing Data Volume and Workload

A schemaisnot all you need to define the database effectively. Y ou al so need to know the expected volume
and workload on the database. For our example, let's assume that we expect the following volume of data
at any giventime:

» Flights: 2,000
» Reservations: 200,000
e Customers: 1,000,000

This additional information about the volume and workload affects the design of both the database and
the client application, because it impacts what SQL queries need to be written for accessing the data and
what attributes (columns) to share between tables. Table 4.1, “ Example Application Workload” definesa
set of procedures the application must perform. The table also shows the estimated workload as expected
frequency of each procedure. Proceduresin bold modify the database.

Table4.1. Example Application Workload

Use Case Frequency
Look up aflight (by origin and destination) 10,000/sec
Seeif aflight isavailable 5,000/sec
Make areservation 1,000/sec
Cancel areservation 200/sec
Look up areservation (by reservation 1D) 200/sec
Look up areservation (by customer ID) 100/sec
Updateflight info LVsec
Take off (close reservations and ar chive associated recor ds) l/sec

Y ou can make your procedures that access the database transactional by defining them as VoltDB stored
procedures. This means each stored procedure call completes or rolls back if necessary, thus maintaining
data integrity. Stored procedures are described in detail in Chapter 5, Designing Stored Procedures to
Access the Database.

In our analysis we a so need to consider referential integrity, where relationships are maintained between
tables with shared columns that link tables together. For example, Figure 4.3, “ Diagram Representing the
Flight Reservation System” shows that the Flight table links to the Reservation table where FlightID is
the shared column. Similarly, the Customer table links to the Reservation table where CustomerID is the
common column.

Figure 4.3. Diagram Representing the Flight Reservation System

Flight [Reservation | Customer
FlightlD .—m ReservelD CustomerlD
< FlightlD on
CustomerlD >
A flight can have many A customer can have many
reservations but a reservation reservations but a reservation
is for only one flight. is for only one customer.

19

Designing the Database Schema

Since VoltDB stored procedures are transactional, you can use stored procedures to maintain referential
integrity between tablesas dataisadded or removed. For example, if acustomer record isremoved fromthe
Customer table, all reservations for that customer need to be removed from the Reservations table as well.

With VoltDB, you use al thisadditional information about volume and workload to configure the database
and optimize performance. Specifically, you want to partition the individual tables to ensure efficiency.
Partitioning is described next.

4.4. Partitioning Database Tables

This section discusses how to partition a database to maximize throughput, using the flight reservation case
study as an example. To partition atable, you choose a column of thetablethat VoltDB can useto uniquely
identify and distribute the rows into partitions. The goal of partitioning a database table is to ensure that
the most frequent transactions on the table execute in the same partition asthe data accessed. We call thisa
single-partitioned transaction. Thus the stored procedure must uniquely identify arow by the partitioning
column value. Thisis particularly important for queriesthat modify the data, such asINSERT, UPDATE,
and DELETE statements.

Looking at the workload for the reservation system in the previous section, the important transactions to
focus on are:

» Look up aflight

» Seeif aflightisavailable
» Look up areservation

* Makeareservation

Of these transactions, only the last modifies the database.

4.4.1. Choosing a Column on which to Partition Table Rows

We will discuss the Flight table later, but first let's look at the Reservation table. Looking at the schema
alone (Example 4.1), Reservel D might look like a good attribute to use to partition the table rows. How-
ever, looking at the workload, there are only two transactions that are keyed to the Reservel D (“ Cancel
areservation” and “Look up areservation (by reservation ID)"), each of which occur only 200 times a
second. Whereas, “See if aflight is available” , which requires looking up reservations by the FlightID,
occurs 5,000 times a second, or 25 times as frequently. Therefore, the Reservation table is best partitioned
on the FlightID column.

. 5000/sec See ifa flight is available (FlightID)
~ Reservation 1000/sec Make a reservation (FlightlD, CustomerlD)
Eltiesrirl‘lgelD 200/sec Look up a reservation (ReservelD)
Cu%tomerlD 200/sec Cancel a reservation (ReservelD)
100/sec

Look up a reservation (CustomerID)

Moving to the Customer table, CustomerID is used for most data access. Although customers might need
to look up their record by name, the first and last names are not guaranteed to be unique. Therefore,
CustomerID isthe best column to use for partitioning the Customer table.

CREATE TABLE Custoner (

20

Designing the Database Schema

Cust onmer | D | NTEGER UNI QUE NOT NULL,
Fi r st Name VARCHAR(15),

Last Name VARCHAR (15),

PRI MARY KEY(Cust oner | D)

)

4.4.2. Specifying Partitioned Tables

4.4.3.

Once you choose the column to use for partitioning a database table, you define your partitioning choices
in the database schema. Specifying the partitioning along with the schema DDL helps keep al of the
database structural information in one place.

Y ou define the partitioning scheme using VoltDB's PARTITION TABLE statement, specifying the par-
titioning column for each table. For example, to specify FlightID and CustomerlD as the partitioning
columns for the Reservation and Customer tables, respectively, your database schema must include the
following statements:

$ sqglcnmd

1> PARTI TI ON TABLE Reservati on ON COLUWN Fl i ghtl D
2> PARTI TI ON TABLE Cust omer ON COLUWN Custoner | D;

Design Rules for Partitioning Tables

The following are the rules to keep in mind when choosing a column by which to partition table rows:

» There can be only one partition column per table. If you need to partition a table on two columns
(for examplefirst and last name), add an additional column (fullname) that combines the values of the
two columns and use this new column to partition the table.

 If thetablehasa primary key, the partitioning column must beincluded in the primary key.

» Any integer, string, or byte array column can identify the partition. VoltDB can partition rows on
any column that is an integer (TINYINT, SMALLINT, INTEGER, or BIGINT), string (VARCHAR),
or bytearray (VARBINARY) datatype. (See also Table A.1, “Supported SQL Datatypes’.)

 Partition column values cannot be null. The partition columns do not need to have unique values, but
you must specify NOT NULL in the schema for the partition column. Numeric fields can be zero and
string or character fields can be empty, but the column cannot contain a null value.

The following are some additional recommendations:

* Choose acolumn with areasonabl e distribution of values so that rows of datawill be evenly partitioned.

» Choose a column that maximizes use of single-partitioned stored procedures. If one procedure uses
column A to lookup data and two procedures use column B to lookup data, partition on column B. The
goal of partitioning isto make the most frequent transactions single-partitioned.

« If you partition more than one table on the same column attribute, VoltDB will partition them together.

4.5. Replicating Database Tables

With VoltDB, tables are either partitioned or replicated across all nodes and sites of a VoltDB database.
Smaller, mostly read-only tables are good candidates for replication. Note also that if atable needs to be

21

Designing the Database Schema

accessed frequently by columns other than the partitioning column, the table should be replicated instead
because there is no guarantee that a particular partition includes the data that the query seeks.

The previous section describes how to partition the Reservation and Customer tabl es as exampl es, but what
about the Flight table? It is possible to partition the Flight table (for example, on the FlightID column).
However, not all tables benefit from partitioning.

4.5.1. Choosing Replicated Tables

Looking at the workload of the flight reservation example, the Flight table has the most frequent accesses
(at 10,000 asecond). However, these transactions are read-only and may involve any combination of three
columns: the departure time, the point of origin, and the destination. This makes it hard to partition the
table in away that would make the transaction single-partitioned because the lookup is not restricted to
one table column.

Flight 10000isec | ook up a flight (DepartTime, Origin, Destination)
FlightlD < lsec___ypdate flight info (FlightD, DepartTime, Origin,

Destination, NumberOfSeats)
2000 records |=—LSEC———Tae off (FlightID)

Fortunately, the number of flights available for booking at any given timeis limited (estimated at 2,000)
and so the size of thetableisrelatively small (approximately 36 megabytes). In addition, the vast majority
of the transactions involving the Flight table are read-only except when new flights are added and at take-
off (when the records are deleted). Therefore, Flight is agood candidate for replication.

Note that the Customer table is also largely read-only. However, because of the volume of data in the
Customer table (amillion records), it is not agood candidate for replication, which iswhy it is partitioned.

4.5.2. Specifying Replicated Tables

InVoltDB, you do not explicitly state that atableisreplicated. If you do not specify a partitioning column
in the database schema, the table will by default be replicated.

So, in our flight reservation example, there is no explicit action required to replicate the Flight table.
However, it is very important to specify partitioning information for tables that you want to partition.
If not, they will be replicated by default, significantly changing the performance characteristics of your
application.

4.6. Modifying the Schema

You can use DDL to add, modify, or remove schema objects as the database is running. For alist of all
valid DDL you can use, see Appendix A, Supported SQL DDL Satements. Y ou can do the following types
of schema changes:

* Modifying Tables— Y ou can add, modify (alter), and remove (drop) table columns. Y ou can aso add
and drop table constraints. Finally, you can drop entire tables.

» Adding and Dropping Indexes — Y ou can add and remove (drop) named indexes.

» Modifying Partitioning for Tables and Stored Procedures — Y ou can un-partition stored procedures
and re-partition stored procedures on a different column, For tables you can change a table between
partitioned and replicated, and repartition atable on a different column,

22

Designing the Database Schema

4.6.1.

» Modify roles and users — To learn about modifying roles and users, see Chapter 12, Security.

VoltDB safely handles sglcmd DDL entered by different users on different nodes of the cluster because
it manages sglcmd commands as transactions, just like stored procedures. To demonstrate the DDL state-
mentsto modify the schema, the following sections use anew table, Airport, added to the fight reservation
as shown below:

CREATE TABLE Airport (
Airportl D integer NOT NULL,
Nane varchar (15) NOT NULL,
Cty varchar(25),

Country varchar (15),
PRI MARY KEY (AirportlD)

)
Effects of Schema Changes on Data and Clients

Y ou can make many schema changes on empty tables with few restrictions. However, be aware that if
a table has data, some schema changes are not allowed and other schema changes may modify or even
remove data. When working with test data in your database, you can use TRUNCATE TABLE to empty
the data from a table you are working on. Note that all DDL examples in this chapter assume the tables
are empty.

We can think of the effects of schema changes on datain three severity levels:
 Schema change compl etes without damage to data

 Schema change fails to complete to avoid damage to data

 Schema change destroys data

VoltDB error messages and the documentation can help you avoid schema change attempts that fail to
complete. For example, you cannot drop a table that has referencing procedures or views.

Obviously you need to be most aware of which schema changes cause data to be destroyed. In particular,
removing objects from the schemawill a so remove the datathey contain. Note that schema objects cannot
be renamed with DDL, but objects can be replaced by performing a DROP and then ADD. However, itis
important to realize that as aresult of a DROP operation, such as DROP TABLE, the data associated with
that table will be deleted before the new definition is added.

Plan and coordinate changes with client development. Stored procedures and ad hoc queries provide an
API that clients use to access the database correctly. Changesto the schema can break the stored procedure
calls client applications have developed, so use well-planned schedules to communicate database schema
changesto others. Client applications depend on many schemadefinition featuresincluding (but not limited
to):

» Table names

e Column names

Column data types
* Primary key definitions

e Table partitions

23

Designing the Database Schema

« Stored procedure names
 Stored procedure partitioning

Plan and test carefully before making schema changesto a production database. Be aware that clients may
experience connection issues during schema changes, especially for changes that take longer to compl ete,
such as view or index changes.

Schema changes not only affect data, but the existence of datain the database affects the time it takes to
process schema changes. For example, when there are large amounts of data, some DDL statements can
block processing, resulting in a noticeable delay for other pending transactions. Examples include adding
indexes, creating new table columns, and modifying views.

4.6.2. Viewing the Schema

4.6.3.

The Volt Management Center provides aweb browser view of database information, including the DDL
schema source. Use aweb browser to view the Volt Management Center (VMC) service on port 8080 (for
example, http://vmcsvc:8080).

Y ou can al'so use the sglemd show directive to see alist of the current database tables and all procedures.
For additional details about the schema, execute the @SystemCatal og system procedure. Use any of the
following arguments to @SystemCatal og to obtain details about a component of the database schema:

* TABLES

+ COLUMNS

* INDEXINFO

* PRIMARYKEYS

* PROCEDURES

* PROCEDURECOLUMNS

For example:

$ sqlcmd

1> SHOW TABLES;

2> SHOW PROCEDURES;
3> EXEC @byst enCat al og COLUWNS;

Modifying Tables

After creating a table in a database with CREATE TABLE, you can use ALTER TABLE to make the
following types of table changes:

« Altering a Table Column's Data Definition
» Adding and Dropping Table Columns
» Adding and Dropping Table Constraints

To drop an entire table, use the DROP TABLE DDL statement.

24

Designing the Database Schema

4.6.3.1. Altering a Table Column's Data Definition

Y ou can make the following types of aterationsto atable column's data definition:

$ sql cnd

1> ALTER TABLE Airport ALTER COLUWN Nanme VARCHAR(25); (1]
2> ALTER TABLE Airport ALTER COLUWN Country SET DEFAULT ' USA'; (2]
3> ALTER TABLE Ai rport ALTER COLUWN Name SET NOT NULL; (3]

The examples are described as follows:

(1]

Change a column's data type. In our example we decided we needed more than 15 characters for the
Airport Name so we changed it to 25 characters.

If the table has no existing data, you can make any data type changes. However, if the table already
contains data, the new type must be larger than the old one. This restriction prevents corrupting
existing data values that might be larger than the size of the new data type (See also Table A.1,
“Supported SQL Datatypes’.)

Set or drop the column's DEFAULT value. In our example we assume the application is to be used
mostly for US domestic travel so we can set a default value for the Airport Country of 'USA".

To remove a default, redefine the column data definition, for example:

ALTER TABLE Airport ALTER COLUWN Country VARCHAR(15);
Change whether the column isNULL or NOT NULL. In our example we set the Airportl D to be not
null because thisis arequired field.

If the table has existing data, you cannot change a column to not null.

4.6.3.2. Adding and Dropping Table Columns

$ sqlcnd

1> ALTER TABLE Airport ADD COLUMN Airport Code VARCHAR(3) o
2> BEFORE AirportlD;

3> ALTER TABLE Airport DROP COLUWN AirportlD; (2]

The examples are described as follows:

Add table columns. In our example, we have decided not to use the integer AirportID for airport
identification but to instead add an AirportCode, which uses auniquethree-letter codefor any airport
as defined by the International Air Transport Association's airport codes.

Y ou cannot rename or overwrite acolumn but you can drop and add columns. When adding acolumn,
you must include the new column name and the data type. Options you may include are:

o DEFAULT value— If atable contains data, the values for the new column will be automatically
filled in with the default value.

¢« NOT NULL — If the table contains data, you must include a default value if you specify a NOT
NULL column.

* One of the following index type constraints including PRIMARY KEY, UNIQUE, or ASSUME-
UNIQUE.

Note, werecommend that you not definethe UNIQUE or ASSUMEUNIQUE constraint directly on
acolumn definition when adding acolumn or creating atable. If you do, the constraint has no name

25

Designing the Database Schema

S0 you cannot drop the constraint without dropping the entire column. Instead, we recommend
you apply UNIQUE or ASSUMEUNIQUE by adding the constraint (see Section 4.6.3.3, “Adding
and Dropping Table Constraints’) or by adding an index with the constraint (see Section 4.6.4,
“Adding and Dropping Indexes’). Defining these constraints this way names the constraint, which
makes it easier to drop later if necessary.

¢ BEFORE column-name — Table columns cannot be reordered but the BEFORE clause allows

you to place anew column in a specific position with respect to the existing columns of the table.
Drop table columns. In our example we drop the AirportID column because we are replacing it with
the AirportCode column.

Y ou cannot remove a column that has a reference to it. You have to remove al references to the
column first. References to a column may include:

« A stored procedure
¢ Anindex

« Aview

4.6.3.3. Adding and Dropping Table Constraints

Y ou cannot alter atable constraint but you can add and drop table constraints. If the table contains existing
data, you cannot add UNIQUE, ASSUMEUNIQUE, or PRIMARY KEY constraints.

$ sqlcnd
1> ALTER TABLE Airport ADD CONSTRAI NT (1]

2>

uni quecode UNI QUE (Airportcode);

3> ALTER TABLE Airport ADD PRI MARY KEY (Airport Code); (2]

The examples are described as follows:

Add named constraints UNIQUE or ASSUMEUNIQUE. In our example, we add the UNIQUE con-
straint to the AirportCode column. To drop a named constraint, include the name using the format
in the following example:

ALTER TABLE Ai rport DROP CONSTRAI NT uni quecode;
Add unnamed constraint PRIMARY KEY. In our example, we add the PRIMARY KEY constraint
to the new AirportCode column.

When adding atable constraint, it must not conflict with the other columns of the table. For example,
only one primary key is allowed for a table so you cannot add the PRIMARY KEY constraint to
an additional column.

To drop the PRIMARY KEY, include the type of constraint using the following format:

ALTER TABLE Ai rport DROP PRI MARY KEY;

4.6.4. Adding and Dropping Indexes

Use CREATE INDEX to create anindex on one or more columns of atable. Use DROP INDEX to remove
an index from the schema. The following example modifies the flight reservation schema by adding an
index to the Flight table to improve performance when looking up flights.

$ sqglcmd
1> CREATE I NDEX flightTinmeldx ON Flight (departtine);

26

Designing the Database Schema

The CREATE INDEX statement explicitly creates an index. VoltDB creates an index implicitly when
you specify the table constraints UNIQUE, PRIMARY KEY, or ASSUMEUNIQUE. Use the ALTER
TABLE statement to add or drop these table constraints along with their associated indexes, as shown in
Section 4.6.3, “Modifying Tables’.

4.6.5. Modifying Partitioning for Tables and Stored Proce-
dures

Any changes to the schema must be carefully coordinated with the design and development of stored
procedures. This not only applies to column names, data types, and so on, but also to the partition plan.

How to partition tables and stored procedures using the PARTITION TABLE and CREATE PROCE-
DURE PARTITION ON statementsis explained in Section 4.4, “ Partitioning Database Tables” and Sec-
tion 5.3.3, “Partitioning Stored Procedures in the Schema’.

Y ou can change the partitioning of stored procedures, and you can change atable to a replicated table or
repartition it on a different column. However, because of the intricate dependencies of partitioned tables
and stored procedures, this can only be done by dropping and re-adding the tables and procedures. Also,
you must pay close attention to the order in which objects are dropped and added.

The following DDL examples demonstrate some partitioning modifications to a table and stored proce-
dures.

» Un-partitioning a Stored Procedure

» Changing a Partitioned Table to a Replicated Table
* Re-partitioning a Table to a Different Column

» Updating a Stored Procedure

» Removing a Stored Procedure from the Database

The following DDL is added to the Flight reservation schema to help demonstrate the DDL partition
changes described in this section.

$ sqlcnd

1> PARTI TI ON TABLE Airport ON COLUWN Nane;

2> CREATE PROCEDURE Fi ndAi r port CodeByNane

3> PARTI TI ON ON TABLE Ai rport COLUWMN Nane

4> AS SELECT TOP 1 AirportCode FROM Airport WHERE Name=?;
5>

6> CREATE PROCEDURE Fi ndAi rport CodeByCity AS

7> SELECT TOP 1 AirportCode FROM Ai rport WHERE City=?;

The stored procedures are tested with the following sglcmd directives:
$ sql cnd

1> exec Fi ndAi rport CodeByNane 'Logan Airport';
2> exec FindAirportCodeByCity 'Boston';

4.6.5.1. Un-partitioning a Stored Procedure

Inthe simplest case, you can un-partition asingle-partitioned stored procedure by dropping and re-creating
that procedure without including the PARTITION ON clause. You would do this if you are planning to

27

Designing the Database Schema

change the partitioning of thetableitself, or if you are modifying the SQL statements within the procedure
to require access to multiple partitions. In this example we drop the single-partitioned FindAirportCode-
ByName procedure and re-create it as multi-partitioned assuming it will need to search all partitions to
find an airport code by name.

$ sqlcmd

1> DROP PROCEDURE Fi ndAi r port CodeByNane;

2> CREATE PROCEDURE Fi ndAi r port CodeByName AS

3> SELECT TOP 1 AirportCode FROM Airport WHERE Nane=?;

4.6.5.2. Changing a Partitioned Table to a Replicated Table

I mportant

Y ou cannot change the partitioning of atablethat hasdatainit. To change a partitioned tableto a
replicated one, you drop and re-create the table, which deletes any datathat might be in the table.

Before executing the following steps, save the existing schema so you can easily re-create the table. The
Volt Management Center provides a view of the existing database schema DDL source, which you can
download and save.

$ sqlcnd

1> DROP PROCEDURE Fi ndAi r port CodeByNane; o
2> DROP PROCEDURE Fi ndAi r port CodeByCity;

3> DROP TABLE Airport |IF EXI STS CASCADE; (2]
4> CREATE TABLE Al RPORT ((3]

5> Al RPORTCODE var char (3) NOT NULL,

6> NAME var char (25),

7> CI TY varchar (25),

8> COUNTRY var char (15) DEFAULT ' USA',

9> CONSTRAI NT UNI QUECODE UNI QUE (Al RPORTCODE)

10> PRI MARY KEY (Al RPORTCODE)

11>);

12> CREATE PROCEDURE Fi ndAi r port CodeByNanme AS o
13> SELECT TOP 1 AirportCode FROM Airport WHERE Nane=?;
14> CREATE PROCEDURE Fi ndAi r port CodeByCity AS

15> SELECT TOP 1 AirportCode FROM Airport WHERE City=7?;

The example is described as follows:

© Drop al stored procedures that reference the table. You cannot drop a table if stored procedures
referenceit.
® Drop the table. Options you may include are;

e |IF EXISTS — Use the IF EXISTS option to avoid command errors if the named table is already
removed.

* CASCADE — A tahle cannot be removed if it has index or view references. You can remove
the references explicitly first or use the CASCADE option to have VoltDB remove the references
along with the table.

©® Re-createthetable. By default, anewly created table is areplicated table.
O Re-create the stored procedures that access the table. If the stored procedure is implemented with

Java and changes are required, modify and reload the code before re-creating the stored procedures.

For more, see Section 5.3, “Installing Stored Procedures into the Database”.

28

Designing the Database Schema

4.6.5.3. Re-partitioning a Table to a Different Column

I mportant

Y ou cannot change the partitioning of atable that has data in it. In order to re-partition a table
you have to drop and re-create the table, which deletes any data that might be in the table.

Follow these steps to re-partition atable:

1. Un-partition the table by following the instructions in Section 4.6.5.2, “ Changing a Partitioned Table
to a Replicated Table”. The sub-steps are summarized as follows:

a. Drop al stored procedures that reference the table.
b. Drop thetable.

C. Re-create thetable.

d. Re-create the stored procedures that access the table.

2. Partition the table on the new column. In our example, it makes sense to partition the Airport table on
the AirportCode column, where each row must be unique and non null.

$ sqglcmd
1> PARTI TI ON TABLE Airport ON COLUWN Air port Code;

3. Re-partition stored proceduresthat should be single-partitioned. See Section 4.6.5.4, “ Updating a Stored
Procedure”.

4.6.5.4. Updating a Stored Procedure

This section describes how to update a stored procedure that has already been declared in the database with
the CREATE PROCEDURE statement. The stepsto update astored procedure are summarized asfollows:

1. If the procedure isimplemented in Java, update the procedure's code, recompile, and repackage the jar
file. For details, see Section 5.3, “Installing Stored Procedures into the Database”.

2. Ensure all tables and columns the procedure accesses are in the database schema.
3. Update the procedure in the database.

« If the procedure is implemented in Java, use the sglcmd load classes directive to update the class
in the database. For example:

$ sqgl cnd
1> | oad classes GetAirport.jar;

* If the procedureisimplemented with SQL, use the CREATE PROCEDURE AS command to update
the SQL.

4. If required, re-partition the stored procedure. You partition procedures using the PARTITION ON
clauseinthe CREATE PROCEDURE statement. If you need to re-partition the procedure, either chang-
ing the partitioning column or switching from replicated to partitioned or vice versa, perform the fol-
lowing steps:

a. Use DROP PROCEDURE to remove the stored procedure.

29

Designing the Database Schema

b. Use CREATE PROCEDURE to re-declare the stored procedure, including the new partitioning
scheme.

In our example so far, we have three stored procedures that are adequate to access the Airport table, so
no additional procedures need to be partitioned:

» VolItDB automatically defined adefault select stored procedure, which is partitioned on the Airport-
Code column. It takes an AirportCode as input and returns atable structure containing the Airport-
Code, Name, City, and Country.

» TheFindAirportCodeByName stored procedure should remain multi-partitioned because it needsto
search in all partitions.

» TheFindAirportCodeByCity stored procedure should al so remain multi-partitioned because it needs
to searchin all partitions.

4.6.5.5. Removing a Stored Procedure from the Database

If you've decided a stored procedure is no longer needed, use the following steps to remove it from the
database:

1. Drop the stored procedure from the database.

$ sqglcnmd
1> DROP PROCEDURE Get Airport;

2. Removethe code from the database. If the procedure isimplemented with Java, use the sglcmd remove
classes directive to remove the procedure's class from the database.

2> renpve cl asses myapp. procedures. Get Ai rport;

30

Chapter 5. Designing Stored Procedures
to Access the Database

Asyou can see from Chapter 4, Designing the Database Schema, defining the database schema and the
partitioning plan go hand in hand with understanding how the data is accessed. The two must be coordi-
nated to ensure optimum performance. Y our stored procedures must use the same attribute for partitioning
as the table being accessed. Proper partitioning ensures that the table rows the stored procedure requests
are in the same partition in which the procedure executes, thereby ensuring maximum efficiency.

It doesn't matter whether you design the partitioning first or the data access first, as long as in the end
they work together. However, for the sake of example, we will use the schema and partitioning outlined
in Chapter 4, Designing the Database Schema when discussing how to design the data access.

5.1. How Stored Procedures Work

The key to designing the data access for VoltDB applications is that complex or performance sensitive
access to the database should be done through stored procedures. It is possible to perform ad hoc queries
onaVoltDB database. However, ad hoc queries do not benefit asfully from the performance optimizations
VoltDB specializesin and therefore should not be used for frequent, repetitive, or complex transactions.

Within the stored procedure, you access the database using standard SQL syntax, with statements such
as SELECT, UPDATE, INSERT, and DELETE. You can also include your own code within the stored
procedure to perform cal culations on the returned values, to evaluate and execute conditional statements,
or to perform many other functions your applications may need.

5.1.1. VoltDB Stored Procedures are Transactional

In VoltDB, a stored procedure and a transaction are one and the same. Thus when you define a stored
procedure, VoltDB automatically provides ACID transaction guarantees for the stored procedure. This
means that stored procedures fully succeed or automatically roll back asawholeif an error occurs (atom-
ic). When stored procedures change the data, the database is guaranteed to remain consistent. Stored pro-
cedures execute and access the database compl etely isolated from each other, including when they execute
concurrently. Finally, stored procedure changes to the database are guaranteed to be saved and available
for subsequent database access (durable).

Because the transaction is defined in advance as a stored procedure, there is no need for your application
to manage transactions using specific transaction commands such as BEGIN, ROLLBACK, COMMIT
or END.!

5.1.2. VoltDB Stored Procedures are Deterministic

To ensuredataconsistency and durability, VVoltDB procedures must bedeterministic. That is, given specific
input values, the outcome of the procedureis consistent and predictable. Determinismiscritical becauseit
allows the same stored procedure to run in multiple locations and give the same results. It is determinism
that makes it possible to run redundant copies of the database partitions without impacting performance.
(See Chapter 10, Availability for more information on redundancy and availability.)

The following sections discuss three potential causes of non-determinism that you should avoid:

One side effect of transactions bei ng precompiled as stored procedures is that external transaction management frameworks, such as Spring or
JEE, are not supported by VoltDB.

31

Designing Stored Proce-
duresto Access the Database

 Using system-specific functions such as system time or file or network 1/0
» Misusing static variables

* Altering mutable parameters

5.1.2.1. Avoid Introducing Non-deterministic Values from External Func-

tions

One key to deterministic behavior is avoiding calls within your stored procedures to external functions
or procedures that can introduce arbitrary data. External functions include file and network 1/0O (which
should be avoided any way because they can impact latency), as well as many common system-specific
procedures such as Date and Time.

If a stored procedure does introduce arbitrary data and causes different results on different copies of a
partition, VoltDB detects the mismatch, reportsit as apotential source of data corruption, and shuts down
all but one copy of each partition. By switching to reduced K-safety mode, VoltDB avoids the threat
of data corruption due to non-determinism. However, it also means that the cluster is no longer K-safe;
there is only one copy of each partition and any node failure will crash the database. So, athough the
database continues to operate after a mismatch, it is critically important you determine the cause of the
non-deterministic behavior, correct the affected procedures, take afinal snapshot, and restart the database
to restore full K-safety.

However, this constraint does not mean you cannot use arbitrary datain VoltDB stored procedures. It just
means you must either generate the arbitrary data before the stored procedure call and pass it in as input
parameters or generate it in a deterministic way. For example, if you need to load a set of records from a
file, you can open the filein your application and pass each row of datato a stored procedure that loads the
datainto the VoltDB database. Thisis the best method when retrieving arbitrary data from sources (such
asfiles or network resources) that would impact latency.

The other alternative is to use data that can be generated deterministically. For two of the most common
cases, timestamps and random values, VoltDB provides methods for this:

* Vol t Procedur e. get Transacti onTi nme() returnsatimestamp that can be used in place of the
Java Date or Time classes.

* Vol t Procedur e. get SeededRandom\unber Gener at or () returns a pseudo random number
that can be used in place of the Java Util.Random class.

These procedures use the current transaction 1D to generate a deterministic value for the timestamp and
the random number. See the VoltDB Java Stored Procedure API for more.

5.1.2.2. Stored Procedures have no Persistence

Even seemingly harmless programming techniques, such as static variables can introduce nondeterminis-
tic behavior. VoltDB provides no guarantees concerning the state of the stored procedure class instance
across invocations. Any information that you want to persist across invocations must either be stored in
the database itself or passed into the stored procedure as a parameter.

5.1.2.3. Be Careful with Mutable Parameters

You can pass mutable parameters — most notably arrays — to stored procedures and those arrays can
be used as parameters to SQL statements. To protect you against non-deterministic behavior from the
contents of the mutable parameter being changed, VoltDB makes a copy of the array before passing it

32

https://docs.voltactivedata.com/v14docs/javadoc/procedure-api/

Designing Stored Proce-
duresto Access the Database

to any SQL statements. If you call such procedures frequently with large arrays, the copy operation can
consume significant amounts of memory, impacting your application.

The aternative, if you are sure that your procedures do not modify the mutable parameters, is to config-
ure the database not to copy such parameters. Y ou do this by setting the depl oynent . syst enset -

tings. procedure. copypar anet er s property to "false". However, there is a significant risk as-
sociated with this setting. If you disable copying and a stored procedure does modify an array parameter, it
can result in unpredictable behavior including run-time errors, database crashes, or even data corruption.
So this feature should be used with extreme caution.

5.2. The Anatomy of a VoltDB Stored Procedure

Y ou can write VoltDB stored procedures as Java classes. The following code sampleillustrates the basic
structure of aVoltDB java stored procedure.

i mport org.voltdb. *;
public class Procedure-name extends VoltProcedure {
/!l Declare SQ. statenents ...
public datatype run (argunents) throws Volt Abort Exception {

/1 Body of the Stored Procedure ...

}

The key points to remember are to:

1. Import the VoItDB classesfrom or g. vol t db. *

2. Include the class definition, which extends the abstract class Vol t Pr ocedur e

3. Definethemethodr un() , which performsthe SQL queriesand processing that make up thetransaction

Itisimportant to understand the details of how to design and devel op stored proceduresfor your application
as described in the following sections. However, for simple data access, the following techniques may
suffice for some of your stored procedures:

» VoltDB defines default stored procedures to perform the most common table access such as inserting,
selecting, updating, and deleting records based on a specific key value. See Section 7.1, “Using Default
Procedures’ for more.

» You can create stored procedures without writing any Java code by using the DDL statement CREATE
PROCEDURE AS, where you define asingle SQL query asastored procedure. See Section 7.2, “ Short-
cut for Defining Simple Stored Procedures”.

The following sections describe the components of a stored procedure in more detail.

5.2.1. The Structure of the Stored Procedure

The stored procedures themselves are written as Java classes, each procedure being a separate class. Ex-
ample 5.1, “Components of aVoltDB Java Stored Procedure” shows the stored procedure that looks up a
flight to see if there are any available seats. The callouts identify the key components of a VoltDB stored
procedure.

33

Designing Stored Proce-
duresto Access the Database

Example 5.1. Components of a VoltDB Java Stored Procedure

package fadvi sor. procedures;

i mport org.voltdb. *; o
public class HowManySeats extends VoltProcedure { (2]
public final SQStnt GetSeatCount = new SQLSt nt ((3]

"SELECT Nunber Of Seats, COUNT(ReservelD) " +
"FROM Flight AS F, Reservation AS R" +

"WHERE F.Flight I D=R Flight!D AND R FlightID=? " +
"GROUP BY Nunber Of Seats; ") ;

public long run(int flightid) o
t hrows Vol t Abort Exception {

| ong nunof seat s;
| ong seat si nuse;
Vol t Tabl e[] queryresults;

vol t QueueSQL(Get Seat Count, flightid); (5]
qgueryresults = vol t Execut eSQL(); (6]
Vol t Tabl e result = queryresults[0]; (7]
if (result.getRowCount() < 1) { return -1; }

nunof seats = result.fetchRow 0).get Long(0); (8]
seatsinuse = result.fetchRow(0).getlLong(1l);

nunof seats = nunofseats - seatsinuse;

return nunofseats; // Return avail able seats (9]

O Stored procedures are written as Java classes. To access the VoltDB classes and methods, be sure
toi mport org.vol tdb. *.

Although VolItDB stored procedures must be written in Java and the primary client interface is Java
(asdescribed in Chapter 6, Designing VoltDB Client Applications), it is possible to write client appli-
cations using other programming languages. See Chapter 8, Using VoltDB with Other Programming
Languages for more information on alternate client interfaces.

® Each stored procedure extends the generic class Vol t Pr ocedur e.

©® Within the stored procedure you access the database using ANSI-standard SQL statements. To do
this, you declare the statement as a special Java type called SQLSt nt , which must be declared as
final.

In the SQL statement, you insert a question mark (?) everywhere you want to replace a value by a
variable at runtime. In this example, the query GetSeatCount has one input variable, FlightID. (See
Appendix B, Supported SQL Statements for details on the supported SQL statements.)

To ensure the stored procedure code is single partitioned, queries must filter on the partitioning
columnfor asinglevaue (using equal, =). Filtering for arange of valueswill not be single-partitioned
because the code will haveto look up in all the partitions to ensure the entire range is found.

Designing Stored Proce-
duresto Access the Database

5.2.2.

O Thebulk of the stored procedureisther un() method, whoseinput specifiesthe input argumentsfor
the stored procedure. See Section 5.2.2, “ Passing Arguments to a Stored Procedure” next for details.

Note that the r un() method throws the exception Vol t Abor t Except i on if any exceptions are
not caught. Vol t Abor t Except i on causesthe stored procedure transaction to rollback. (See Sec-
tion 5.2.6, “Rolling Back a Transaction” for more information about rollback.)

© To perform database queries, you queue SQL statements, specifying both the SQL statement and
the variables it requires, using thevol t QueueSQ.() method. More details are described in Sec-
tion 5.2.3, “Creating and Executing SQL Queriesin Stored Procedures’.

O After you queue al of the SQL statements you want to perform, use vol t Execut eSQL() to
execute the statements in the queue.

@ Eachstatement returnsitsresultsinaVol t Tabl e structure. Because the queue can contain multiple
queries, vol t Execut eSQL() returns an array of Vol t Tabl e structures, one array element for
each query. More details are described in Section 5.2.4, “Interpreting the Results of SQL Queries’.

® |nadditionto queueing and executing queries, stored procedures can contain custom code. However,
you should limit the amount of custom code in stored procedures to only that processing that is
necessary to complete the transaction, so as not to delay subsequent transactions.

© Stored procedures can return along integer, a Vol t Tabl e structure, or an array of Vol t Tabl e
structures. For more details, see Section 5.2.5, “ Returning Results from a Stored Procedure”.

Passing Arguments to a Stored Procedure

Y ou specify the number and type of the argumentsthat the stored procedure acceptsinther un() method.
For example, the following is the declaration of ther un() methodforanlinitialize() stored pro-
cedure from the voter sample application found inthe/ doc/ t ut ori al s/ vot er folder whereVoltis
installed. This procedure accepts two arguments. an integer and a string.

public long run(int maxContestants, String contestants) {

VoltDB stored procedures can accept parameters of any of the following Java and VVoltDB datatypes:

Integer types byte, short, int, long, Byte, Short, Integer, and Long

Floating point types float, double, Float, Double

Fixed decimal types BigDecimal

String and binary types | String and byte]]

Timestamp types org.voltdb.types. TimestampType
javautil.Date, java.sgl.Date, java.sgl.Timestamp
VoltDB type VoltTable

The arguments can be scalar objects or arrays of any of the preceding types. For example, the following
run() method defines three arguments: a scalar long and two arrays, one array of timestamps and one
array of Strings:

i mport org.voltdb. *;
public class LogMessagesByEvent extends Vol tProcedure {

public long run (
| ong event Type,
org.vol tdb. types. Ti mest anpType[] event Ti meSt anps,
String[] event Messages
) throws Vol t Abort Exception {

35

Designing Stored Proce-
duresto Access the Database

The calling client application can use any of the preceding datatypes when invoking the cal | Pr oce-
dur e() method and, where necessary, VoltDB makes the appropriate type conversions (for example,
from int to String or from String to Double). See Section 6.2, “Invoking Stored Procedures’ for more on
usingthecal | Procedur e() method.

5.2.3. Creating and Executing SQL Queries in Stored Proce-
dures

The main function of the stored procedure is to perform database queries. In VoltDB thisis done in two
steps:

1. Queuethe queries using thevol t QueueSQL() function
2. Execute the queue and return the resultsusing the vol t Execut eSQL() function

Queuing SQL Statements Thefirst argumentto vol t QueueSQL() isthe SQL statement to be executed.
The SQL statement is declared using a special class, SQLSt nt , with question marks as placeholders for
values that will be inserted at runtime.

The SQL statements must be declared asf i nal and initialized at compile time, either when declared or
within aconstructor or staticinitializer. Thisallowsthe VoltDB planner to determinethe optimal execution
plan for each statement when the procedureisloaded and declared in the schema. To allow for code reuse,
SQL Stmt objects can be inherited from parent classes or constructed from other compile-time constants.

The remaining argumentsto vol t QueueSQL() aretheactual valuesthat VoltDB insertsinto the place-
holders. For example, if you want to perform a SELECT of a table using two columns in the WHERE
clause, your SQL statement might look something like this:

SELECT Customer| D FROM Cust omer WHERE Fi r st Name=? AND Last Nane=?;

At runtime, you want the questions marks replaced by values passed in as arguments from the calling
application. So the actual vol t QueueSQL() invocation might look like this:

public final SQ.Stnt getcustid = new SQLSt nt (
"SELECT Custonerl D FROM Cust oner " +
"WHERE First Name=? AND Last Nane=?;");

vol t QueueSQL(getcustid, firstnm Ilastnm;

Y our stored procedure can call vol t QueueSQL() morethan once to queue up multiple SQL statements
before they are executed. Queuing multiple SQL statements improves performance when the SQL queries
execute because it minimizes the amount of network traffic within the cluster. Once you have queued all
of the SQL statements you want to execute together, you then process the queue using the vol t Exe-
cut eSQL() function.

Vol t Tabl e[] queryresults = volt Execut eSQL();

Cycles of Queue and Execute

Y our procedure can queue and execute SQL statements in as many cycles as necessary to complete the
transaction. For example, if you want to make a flight reservation, you may need to access the database
and verify that the flight exists before creating the reservation in the database. One way to do thisis to
look up the flight, verify that avalid row was returned, then insert the reservation, like so:

36

Designing Stored Proce-
duresto Access the Database

Example 5.2. Cycles of Queue and Executein a Stored Procedure

final String getflight = "SELECT Flightl D FROM Fl i ght WHERE Fl i ghtl D=?;"; (1]
final String makeres = "I NSERT | NTO Reservation (?,?,?,?,?);";

public final
public final

SQLStnt getflightsgl = new SQ.Stnt (getflight);
SQLStmt makeressqgl = new SQLSt nt (makeres);

public VoltTable[] run(int reservenum int flightnum int customernum) (2]
t hrows Vol t Abort Exception {

/1 Verify flight ID
vol t QueueSQL(getflightsql, flightnum; (3]
Vol t Tabl e[] queryresults = volt Execut eSQL();

/1

If there is no matching record, rollback

if (queryresults[0].getRowCount() == 0) throw new Vol t Abort Exception(); (4]

5.24.

/1 Make reservation
vol t QueueSQL(nmaker essql, reservenum flightnum custonmernum O, 0); (5]
return vol t Execut eSQL();

This stored procedure code to make areservation is described as follows:

(1]

(2]

Define the SQL statements to use. The getflight string contains an SQL statement that verifies the
flight 1D, and the makeres string contains the SQL statement that makes the reservation.
Definether un() method for the stored procedure. This stored procedure takes as input arguments
the reservation number, the flight number, and the customer number.

Queue and execute an SQL statement. Inthisexamplethevol t Execut eSQ.() method processes
thesingleget f I i ght sqgl () function, which executesthe SQL statement specified in the getflight
string.

Process results. If the flight is not available, the exception Vol t Abor t Except i on aborts the
stored procedure and rolls back the transaction.

The second SQL statement to make the reservation is then queued and executed. The vol t Ex-
ecut eSQL() method processes the single maker essql () function, which executes the SQL
statement specified in the makeres string.

Interpreting the Results of SQL Queries

Withthevol t Execut eSQ.() cal, theresultsof all the queued SQL statementsarereturned in an array
of Vol t Tabl e structures. The array contains one Vol t Tabl e for each SQL statement in the queue.
TheVol t Tabl e structures are returned in the same order as the respective SQL statementsin the queue.

The Vol t Tabl e itself consists of rows, where each row contains columns, and each column has the
column name and a value of afixed datatype. The number of rows and columns per row depends on the
specific query.

Figure5.1. Array of VoltTable Structures

Column-name, value e Column-name, value

]]

37

Designing Stored Proce-
duresto Access the Database

For example, if you queue two SQL SELECT statements, one looking for the destination of a specific
flight and the second looking up the Reservel D and Customer name (first and last) of reservations for that
flight, the code for the stored procedure might look like the following:

public final SQStnt getdestsql = new SQLSt nt (
"SELECT Destinati on FROM Fl i ght WHERE Fl i ghtlD=?;");
public final SQStnt getressql = new SQLStnt (
"SELECT r.Reservel D, c.FirstNane, c.LastName " +
"FROM Reservation AS r, Customer AS c " +
"WHERE r. FlightlD=? AND r. Custoner| D=c. Custoner|D;");

vol t QueueSQL(get destsql, flightnuny;
vol t QueueSQL(getressql,flightnum;
Vol t Tabl e[] results = volt Execut eSQL();
The array returned by vol t Execut eSQL() will have two elements:

e Thefirst array elementisaVol t Tabl e with one row (FlightID is defined as unique) containing one
column, because the SELECT statement returns only one value.

e Thesecond array elementisaVol t Tabl e with as many rows as there are reservations for the specific
flight, each row containing three columns. Reservel D, FirstName, and LastName.

Assuming the stored procedure call input was a FlightID value of 134, the data returned for the second
array element might be represented as follows:

Figure5.2. One VoltTable Structureisreturned for each Queued SQL Statement

FlightID, 134 ReservelD, 4747 FirstName, Will LastName, Poger

ReservelID, 9879 FirstName, Janice | LastName, Josly
ReserveID, 3456 FirstName, Holly LastName, Eagan
ReserveID, 1098 FirstName, Ralph LastName, Finess

VoltDB provides a set of convenience methods for accessing the contents of the Vol t Tabl e array. Ta
ble5.1, “Methods of the VoltTable Classes’ lists some of the most common methods. (See a so Java Stored
Procedure API.)

38

https://docs.voltactivedata.com/v14docs/javadoc/procedure-api/
https://docs.voltactivedata.com/v14docs/javadoc/procedure-api/

Designing Stored Proce-
duresto Access the Database

Table5.1. Methods of the VoltTable Classes

Method

Description

int fetchRow(int index)

Returns an instance of the VoltTableRow class for
the row specified by index.

int getRowCount()

Returns the number of rows in the table.

int getColumnCount()

Returns the number of columns for each row in the
table.

Type getColumnType(int index)

Returns the datatype of the column at the specified
index. Typeis an enumerated type with the follow-
ing possible values:

BIGINT
DECIMAL
FLOAT
GEOGRAPHY
GEOGRAPHY _POINT
INTEGER
INVALID
NULL
NUMERIC
SMALLINT
STRING
TIMESTAMP
TINYINT
VARBINARY
VOLTTABLE

String getColumnName(int index)

Returns the name of the column at the specified in-
dex.

double getDouble(int index)

long getL ong(int index)

String getString(int index)

BigDecimal getDecimal AsBigDecimal(int index)
double getDecimal AsDoubl&(int index)

Date getTimestampAsTimestamp(int index)

long getTimestampAsLong(int index)

byte[] getVarbinary(int index)

Methods of VoltTable.Row

Return the value of the column at the specified index
in the appropriate datatype. Because the datatype of
the columnsvary depending onthe SQL query, there
is no generic method for returning the value. You
must specify what datatype to use when fetching the
value.

Itisalso possibleto retrieve the column values by name. Y ou can invoke any of the getDatatype() methods
and pass a string argument specifying the name of the column, rather than the numeric index. Accessing
the columns by name can make code easier to read and less susceptible to errors due to changes in the
SQL schema (such as changing the order of the columns). On the other hand, accessing column values by
numeric index is potentially more efficient under heavy load conditions.

Example 5.3, “Displaying the Contents of VoltTable Arrays’ shows a generic routine for “walking”
through the return results of a stored procedure. In this example, the contents of the Vol t Tabl e array

are written to standard outpui.

39

Designing Stored Proce-
duresto Access the Database

Example 5.3. Displaying the Contents of VoltTable Arrays

public void displayResults(VoltTable[] results) {
int table = 1;
for (VoltTable result : results) {
Systemout.printf("*** Table % ***\n",tabl et++);
di spl ayTabl e(resul t);

}

public void displayTabl e(VoltTable t) {

final int col Count = t.get Col umCount();
i nt rowCount = 1;
t.reset RowPosition();
while (t.advanceRowm)) {
Systemout.printf("--- Row % ---\n", rowCount ++);

for (int col=0; col<col Count; col ++) {
Systemout.printf("%: ",t.getColumNane(col));
switch(t. get Col umType(col)) {
case TINYINT: case SMALLI NT: case Bl G NT: case | NTEGER
Systemout.printf("%\n", t.getLong(col));
br eak;
case STRI NG
Systemout.printf("%\n", t.getString(col));
br eak;
case DECI MAL:
Systemout.printf("%\n", t.getDeciml AsBi gDeci nal (col));
br eak;
case FLOAT:
Systemout.printf("%\n", t.getDouble(col));
br eak;

For further details on interpreting the VoltTable structure, see the Java documentation that is provided
onlineinthedoc/ subfolder for your VoltDB installation.

5.2.5. Returning Results from a Stored Procedure

Stored procedures can return the following types:
» Long integer

* SingleVoltTable

» Array of VoltTable structures

Y ou canreturn all of the query results by returning the Vol t Tabl e array, or you can return ascalar value
that is the logical result of the transaction. (For example, the stored procedure in Example 5.1, “ Compo-
nents of a VoltDB Java Stored Procedure” returns a long integer representing the number of remaining
seats available in the flight.)

40

Designing Stored Proce-
duresto Access the Database

5.2.6.

Whatever value the stored procedure returns, make sure the r un() method includes the appropriate
datatype in its definition. For example, the following two definitions specify different return datatypes,
the first returns along integer and the second returns the results of a SQL query asa Vol t Tabl e array.

public long run(int flightid)

public VoltTable[] run (String lastname, String firstnanme)

Note that you can interpret the results of SQL queries either in the stored procedure or in the client appli-
cation. However, for performance reasons, it is best to limit the amount of additional processing done by
the stored procedure to ensure it executes quickly and frees the queue for the next stored procedure. So
unless the processing is necessary for subsequent SQL queries, it isusually best to return the query results
(in other words, the Vol t Tabl e array) directly to the calling application and interpret them there.

Rolling Back a Transaction

Finally, if a problem arises while a stored procedure is executing, whether the problem is anticipated or
unexpected, it isimportant that the transaction rolls back. Rollback means that any changes made during
the transaction are undone and the database is|eft in the same state it was in before the transaction started.

VoltDB is a fully transactional database, which means that if a transaction (stored procedure) fails, the
transaction isautomatically rolled back and the appropriate exception is returned to the calling application.
Exceptions that can cause arollback include the following:

» Runtime errorsin the stored procedure code, such as division by zero or datatype overflow.

* Violating database constraintsin SQL queries, such asinserting a duplicate value into acolumn defined
as unique.

The atomicity of the stored procedure depends on VoltDB being able to roll back incomplete database
changes. VoltDB relies on Java exception handling outside the stored procedure to perform the roll back.
Therefore, you should not attempt to alter any exceptions thrown by the voltExecuteSql method. If your
procedure code does catch exceptions thrown as a result of executing SQL statements, make sure that the
exception handler re-throws the exception to allow VoltDB to perform the necessary roll back activities
before the stored procedure returns to the calling program.

Onthe other hand, there may be situati ons where an exception occursin the program logic. Theissue might
not be one that is caught by Java or VoltDB, but still there is no practical way for the transaction logic to
complete. In these situations, you can force a rollback by explicitly throwing the Vol t Abor t Excep-
t i on exception. For example, if aflight ID does not exist, you do not want to create a reservation so the
stored procedure can force arollback like so:

if (!flightid) { throw new VoltAbortException(); }

See Section 7.3, “ Verifying Expected Query Results’ for another way to roll back procedureswhen queries
do not meet necessary conditions.

5.3. Installing Stored Procedures into the Database

When your stored procedure code is ready, you need to get the procedures into the database and ready to
use. You first compile the procedure code, create ajar file, and load the resulting jar file into the database.
Then you need to declare in the schema which procedures are stored procedures. Finally, depending on
which table each stored procedure accesses, you need to partition each procedure to match the table par-
titioning. These processes are covered in the following sections:

» Compiling, Packaging, and Loading Stored Procedures

41

Designing Stored Proce-
duresto Access the Database

 Declaring Stored Procedures in the Schema
* Partitioning Stored Procedures in the Schema

These sections show how to use DDL to declare and partition stored procedures in the database schema.
If you find you need to modify the schema, see Section 4.6, “Modifying the Schema”.

5.3.1. Compiling, Packaging, and Loading Stored Procedures

The VoltDB stored procedures are written as Java classes, so you compile them using the Java compiler.
Anytime you update your stored procedure code, remember to recompile, package, and reload it into the
database using the following steps:

$ javac -classpath "./:/opt/voltdb/voltdb/*" \ o
-d ./obj \
*.java
$ jar cvf nyproc.jar -C obj . (2]
$ sqglcnmd (3]

1> | oad cl asses myproc.jar;
2> show cl asses;

The steps are described as follows:
O Usethejavac command to compile the procedure Java code.

You include libraries by using the - cl asspat h argument on the command line or by defining the
environment variable CLASSPATH. Y ou must include the VoltDB librariesin the classpath so Java
can resolve references to the VoltDB classes and methods. This example assumes that the VoltDB
software has been installed in the folder / opt / vol t db. If you installed VoltDB in a different
directory, you need to include your installation path. Also, if your client application depends on other
libraries, they need to be included in the classpath as well.

Usethe - d flag to specify an output directory in which to create the resulting classfiles.
® Usethejar command to package your Java classes into a Java archive, or JAR file.

The JAR file must have the same Java package structure as the classesin the JAR file. For example,
if a class has a structure such as nyapp. pr ocedur es. Pr ocedur eFoo, then the JAR file has
to have myapp/ pr ocedur es/ Pr ocedur eFoo. cl ass asthe class structure for thisfile.

The JAR filemust include any inner classes or other dependent classes used by the stored procedures.
It can also be used to load any resource files, such as XML or other data files, that the procedures
need. Any additional resources in the JAR file are loaded into the server as long as they are in a
subfolder. (Resourcesin the root directory of the JAR file are ignored.)

® Usethesglemd load classes directive to load the stored procedure classes into the database.

You can use the show classes command to display information about the classes installed in the
cluster.

Before a stored procedure can be called by aclient application, you need to declare it in the schema, which
is described next.

5.3.2. Declaring Stored Procedures in the Schema

To make your stored procedures accessible in the database, you must declare them in the schema using
the CREATE PROCEDURE statement. Be sure to identify all of your stored procedures or they will not

42

Designing Stored Proce-
duresto Access the Database

5.3.3.

be available to the client applications at runtime. Also, before you declare a procedure, ensure the tables
and columns the procedure accesses are in the schema.

The following DDL statements declare five stored procedures, identifying them by their class name:

$ sqgl cnd

1> CREATE PROCEDURE FROM CLASS f advi sor. procedur es. LookupFl i ght;

2> CREATE PROCEDURE FROM CLASS f advi sor. procedur es. Howivany Seat s;

3> CREATE PROCEDURE FROM CLASS f advi sor. procedur es. MakeReservati on;
4> CREATE PROCEDURE FROM CLASS f advi sor. procedures. Cancel Reservati on;
5> CREATE PROCEDURE FROM CLASS f advi sor. procedur es. RemoveFl i ght;

For some situations, you can create stored procedures directly in the schema using SQL instead of loading
Javacode. Seehow to usethe CREATE PROCEDURE A Sstatement in Section 7.2, “ Shortcut for Defining
Simple Stored Procedures’.

For more about modifying a schemawith DDL, see Section 4.6, “Modifying the Schema’.

Partitioning Stored Procedures in the Schema

Wewant the most frequently used stored proceduresto be single-partitioned. Thismeansthat the procedure
executes in the one partition that also has the data it needs. Single-partitioned stored procedures do not
have the overhead of processing across multiple partitions and servers, wasting time searching through the
data of the entire table. To ensure single-partitioned efficiency, the parameter the stored procedure usesto
identify its required data must be the same as the column on which the table rows are partitioned.

Remember that in our sample application the RESERVATION table is partitioned on FLIGHTID. Let's
say you create a stored procedure, MakeReservation(), with two arguments, flight_id and customer_id.
The following figure shows how the stored procedure will automatically execute in the partition that has
the requested row.

43

Designing Stored Proce-
duresto Access the Database

Figure 5.3. Stored Procedures Execute in the Appropriate Partition Based on the
Partitioned Parameter Value

1 exec MakeReservation, 145, 35791

exec MakeReservation, 321, 23650 'C

FlightlD CustomerlD FlightlD CustomerlD FlightlD CustomerlD
145 35791 687 45678 321 23650
145 46785 135 50987 487 36016
156 67093 . .

If you do not declare a procedure as single-partitioned, it is assumed to be multi-partitioned by default.
The advantage of multi-partitioned stored procedures is that they have full access to al of the datain
the database, across all partitions. However, the real focus of VoltDB, and the way to achieve maximum
throughput for your application, is through the use of single-partitioned stored procedures.

5.3.3.1. How to Declare Single-Partition Procedures
Before declaring a single-partitioned procedure, ensure the following prerequisites:

1. Thetable that the stored procedure accesses has been partitioned in the schema. See Section 4.4, “ Par-
titioning Database Tables’.

2. If the procedureisimplemented with Javacode, it isloaded into the database. See Section 5.3.1, “Com-
piling, Packaging, and Loading Stored Procedures’.

When you declare a stored procedure as single-partitioned, you must specify both the associated table and
the column on which it is partitioned using the PARTITION ON clause in the CREATE PROCEDURE
statement. The following example uses the RESERVATION table and the FLIGHTID column as the par-
titioning column. For example:

CREATE PROCEDURE
PARTI TI ON ON
TABLE Reservation COLUW FlightlD
FROM CLASS f advi sor. procedur es. MakeReservati on;

The PARTITION ON clause assumes that the partitioning column value is also the first parameter to the
stored procedure. Suppose you wish to partition a stored procedure on the third parameter such as the

44

Designing Stored Proce-
duresto Access the Database

procedure Get Cust oner Det ai | s() , where the third parameter is a customer_id. You must specify
the partitioning parameter using the PARAMETER clause and an index for the parameter position. The
index is zero-based so the third parameter would be "2" and the CREATE PROCEDURE statement would
be asfollows:

CREATE PROCEDURE
PARTI TI ON ON
TABLE Customer COLUMN Cust orer | D PARAMETER 2
FROM CLASS f advi sor. procedures. Get CustonerDetails;

5.3.3.2. Queries in Single-Partitioned Stored Procedures

Single-partitioned stored procedures are special because they operate independently of other partitions,
which is why they are so fast. At the same time, single-partitioned stored procedures operate on only a
subset of the entire data, that is, only the data within the specified partition.

Caution

It is the application developer's responsibility to ensure that the queries in a single-partitioned
stored procedure are truly single-partitioned. VoltDB does not warn you about SELECT or
DEL ETE statements that might return incompl ete results. For example, if your single-partitioned
procedure attempts to operate on a range of values for the partitioning column, the range isin-
complete and includes only a subset of the table data that is in the current partition.

VoltDB does generate a runtime error if you attempt to INSERT arow that does not belong in
the current partition.

After you partition a procedure, your stored procedure can operate on only those recordsin the partitioned
table that are identified by the partitioning column, in this example the RESERVATION table identified
by aFLIGHTID. Y our stored procedure can access recordsin replicated tables because the entire table is
availableto every partition. However, for other partitioned tables, the stored procedure can only operate on
thoserecordsif both tablesare partitioned on the same attribute. | n thisexamplethat would be FLIGHTID.

In other words, the following rules apply:
e Any SELECT, UPDATE, or DELETE queries must use the constraint, WHERE i denti fi er =?

The question mark is replaced at runtime by the input value that identifies the row of datain the table.
In our example, queries on the RESERVATION table must use the constraint, WHERE FLI GHTI D=7

» SELECT statements can join the partitioned table to replicated tables, aslong as the preceding WHERE
constraint is aso applied.

» SELECT statements can join the partitioned table to other partitioned tables as long as the following
aretrue:

* Thetwo tables are partitioned on the same attribute or column (in our example, FLIGHTID).
¢ Thetablesare joined on the shared partitioning column.

» The following WHERE constraint is also used: WHERE partitioned-table. identifi-
er =? In thisexample, WHERE RESERVATI ON. FLI GHTI D="

For example, the RESERVATION table can be joined with the FLIGHT table (which is replicated). How-
ever, the RESERVATION table cannot be joined with the CUSTOMER tablein asingle-partitioned stored

45

Designing Stored Proce-
duresto Access the Database

procedure because the two tables use different partitioning columns. (CUSTOMER is partitioned on the
CUSTOMERID column.)

The following are examples of invalid SQL queries for a single-partitioned stored procedure partitioned
on FLIGHTID:

e INVALID: SELECT * FROM reservati on WHERE r eser vati oni d=?

The RESERVATION table is being constrained by a column (RESERVATIONID) which is not the
partitioning column.

 INVALID: SELECT c. | astname FROM reservation AS r, custoner AS ¢ WHERE
r.flightid=? AND c.customerid = r.custonerid

The correct partitioning column is being used in the WHERE clause, but the tables are being joined on
adifferent column. As aresult, not all CUSTOMER rows are available to the stored procedure since
the CUSTOMER table is partitioned on a different column than RESERVATION.

46

Chapter 6. Designing VoltDB Client
Applications

After you design and partition your database schema (Chapter 4, Designing the Database Schema), and
after you design the necessary stored procedures (Chapter 5, Designing Sored Procedures to Access the
Database), you areready to writethe client application logic. The client code containsall the business-spe-
cific logic required for the application, including business rule validation and keeping track of constraints
such as proper data ranges for arguments entered in stored procedure calls.

The three steps to using VoltDB from aclient application are:
1. Creating a connection to the database

2. Cdling stored procedures

3. Closing the client connection

The following sections explain how to perform these functions using the latest VoltDB Java client inter-
face, knownasd i ent 2. (See VoltDB Java Client API.) The VoltDB Java Client is a thread-safe class
library that provides runtime access to VoltDB databases and functions.

It is possible to call VoltDB stored procedures from programming languages other than Java. However,
reading this chapter is still recommended to understand the processfor invoking and interpreting the results
of aVoltDB stored procedure. See Chapter 8, Using VoltDB with Other Programming Languagesfor more
information about using VVoltDB from client applications written in other languages.

Client2 uses modern Java programming techniques and smarter defaults to provide a structured and ex-
tensible interface, including:

» A "builder" pattern for the Client2Config, with individual methods that can be chained to set configu-
ration options.

» No mandatory settings, all attributes have default values.
» Smarter default behavior to simplify application devel opment.

« Individually configured notifications, set as callbacks on the configuration object, that | et the application
decide which events it wants to be notified about and how.

» Use of Java CompletableFutures to handle asynchronous procedure calls, giving the application devel-
oper more structured and precise handling of invocation events.

6.1. Connecting to the VoltDB Database

The first task for the calling program is to create a connection to the VoltDB database. Y ou do this with
the following steps:

Cient2 client = null;
Cient2Config config = null;

try {
config = new Cient2Config().usernane("advent"). password("xyzzy"); ©
client = dientFactory.createCient(config); (2]

47

https://docs.voltactivedata.com/v14docs/javadoc/java-client-api/

Designing VoltDB Client Applications

6.1.1.

}

o0

client.connect Sync("nyserver.xyz.net");
catch (java.io.|lCException ex) {

ex. print StackTrace();

Systemexit(-1);

Define the configuration for your connections. The Cl i ent 2Conf i g class uses the "builder" pat-
tern to set up up the configuration for all connections from a single client. The configuration object
is aways required, but the attributes you need to set can vary. As shown here, the user nane and
passwor d attributes are set. It is also possible to define additional characteristics of the client con-
nections as part of the configuration, such as the timeout period for procedure invocations, or han-
dlersfor various notifications. (See Section 6.6, “Handling Errors’.)

Create an instance of the VoItDB Ol i ent 2 class.

Call theconnect Sync() method. After you instantiate your client object, the argument to con-

nect Sync() specifiesthe database node to connect to. Y ou can specify the server node as a host-
name (as in the preceding example) or as an |P address. Y ou can also add a second argument if you
want to connect to a port other than the default. For example, the following connect Sync() call
attempts to connect to the admin port, 21211:

client.connect Sync("mnmyserver.xyz.net", 21211);

If security is enabled, and the username and password in the Cl i ent 2Confi g() calls do not
match a user defined in the configuration, the call to connect Sync() will throw an exception.
See Chapter 12, Security for more information about the use of security with VVoltDB databases.

When you are done with the connection, you should make sure your application callsthecl ose() method
to clean up any memory allocated for the connections. See Section 6.5, “Closing the Connection”.

How Connections To The Cluster Work

A

call toconnect Sync() setsup aconnection to asingle node in the database cluster beforeit returns.

The VoltDB client software (by default) then automatically establishes connectionsto all available cluster
nodes.

This automatic management of connections has these major benefits:

Multiple connections distribute the stored procedure requests around the cluster, avoiding a bottleneck
where all requests are queued through asingle host. Thisis particularly important when using asynchro-
nous procedure calls or multiple clients.

For Java applications, the VoltDB Javaclient library uses client affinity. That is, the client knowswhich
server to send each request to based on the partitioning, thereby eliminating unnecessary network hops.

Finally, if aserver fails for any reason, when using K-safety the client can continue to submit requests
through connections to the remaining nodes. This avoids a single point of failure between client and
database cluster. See Chapter 10, Availability for more.

Theclient will automatically reconnect whenever thetopology changes. That is, if aserver failsand then
rejoinsthe cluster, or new nodes are added to the cluster, the client will automatically create connections
to the newly available servers.

6.1.2. Specifying Multiple Servers

Y ou can specify more than one hostname or IP address in the connect Sync cal. The VoltDB client
software will then connect to the first available host in the list and then return to your application code.
From that point, the automatic management of connections will take over. The advantage of specifying

48

Designing VoltDB Client Applications

more than one host is that it builds in some resilency against temporary failure of some hosts. The con-
nect Sync() call will only fail in the case that all of the given hosts are unavailable.

For example, the following Java code creates the client object specifying three aternative nodes for the
initial connection to the cluster. In this case, security is not enabled, so username and password are not
needed:

try {
client = dientFactory.createdient(new Cient2Config());

client.connect Sync("serverl.xyz.net, server2.xyz.net, server3.xyz.net");
} catch (java.io.lOException ex) {

ex. print StackTrace();

Systemexit(-1);
}

6.2. Invoking Stored Procedures

After your client creates the connection to the database, it is ready to call the stored procedures. Y ou
invoke astored procedureusingthecal | Procedur eSync() method, passing the procedure name and
variables as arguments. For example:

Vol t Tabl e[] results;

try {
results = client.callProcedureSync("LookupFlight", (1]
origin,
dest,
departtine).getResul ts(); 2]
} catch (Exception ex) { (3]

ex. printStackTrace();
System exit(-1);

©® Thecall ProcedureSync() method takes the procedure name and the procedure's variables
as arguments. The LookupFl i ght () stored procedure requires three variables: the originating
airport, the destination, and the departure time.

® Onceasynchronous call completes, you can eval uate the results of the stored procedure. Thecal | -
Pr ocedur eSync() method returns a C i ent Response object, which includes information
about the success or failure of the stored procedure. To retrieve the actual return values you use the
get Resul t s() method. See Section 5.2.4, “Interpreting the Results of SQL Queries’ for more
information about interpreting the results of VoltDB stored procedures.

® Notethat sincecal | Procedur eSync() can throw an exception (such as Pr ocCal | Excep-
ti on) itisagood practice to perform error handling and catch known exceptions.

6.3. Invoking Stored Procedures Asynchronously

Calling stored procedures synchronously simplifiesthe program logic because your client application waits
for the procedure to complete before continuing. However, for high performance applications looking to
maximize throughput, it is better to queue stored procedure invocations asynchronously.

Asynchronous Invocation

To invoke stored procedures asynchronously, use the cal | Procedur eAsync() method. The proce-
dure call will be queued internally for transmission. The immediate return value is a standard Java Com

49

Designing VoltDB Client Applications

pl et abl eFut ur e object, whichwill be"completed" when the procedure compl etes (or an error occurs).
For example, to invoke aNewCust oner () stored procedure asynchronously, thecall tocal | Pr oce-
dur eAsync() might look like the following:

Conpl et abl eFut ur e<d i ent Response> future =
client.call ProcedureAsync("NewCust oner",
firstname,
| ast nane,
cust | D};

To handle the eventual ClientResponse, you can use any of the features of Conpl et abl eFut ur e that
Java provides. These include awaiting completion with get () , declaring a handler for the eventual com-
pletion with handl e() , and so on.

The following are other important points to note when making asynchronous invocations of stored pro-
cedures:

e Cadlstocal | Procedur eAsync() return control to the calling application as soon as the procedure
call islocally queued.

« Errorsthat occur before the procedure call is queued may be reported via a Java exception. The calling
application should include appropriate handling.

» Oncethe procedure is queued, any subsequent error (such as an exception in the stored procedure itself
or loss of connection to the database) is returned viathe Conpl et abl eFut ur e.

» Thereisalimit onthelocal queue size, after which callswill be rejected. The default queue sizeis 1000
calls, but this can be changed with O i ent 2Conf i g. Robust applications should either ensure they
can never exceed the local queue size, or implement appropriate handling. Y ou can configure a handler
to receive notifications when the queue is approaching capacity; seether equest Backpr essur e-
Handl er () method of Client2Config.

« If the database server queue is full, transmission is temporarily suspended. This condition, known as
network backpressure (distinct from request-queue backpressure), ishandled internally tothed i ent 2
API. This situation does not normally happen unless the database cluster is not scaled sufficiently for
the workload, or there are abnormal spikes in the workload. See Section 6.6.3, “Writing Handlers to
Interpret Other Errors’ for more information.

Using CompletableFuture with Asynchronous Calls

The Conpl et abl eFut ur e is"completed normally" when the called procedure has been executed on
the cluster, and has returned a response. It can also be completed, in this case "exceptionaly”, when an
error or timeout occurs.

Normal completion allowsaccesstoaC i ent Response structure, the same structurethat isreturned in
a synchronous invocation. The Cl i ent Response contains information about the results of execution.
In particular, the methods get St at us() and get Resul t s() let you determine whether the stored
procedure was successful and evaluate the results of the procedure.

Exceptional completion does not have aCl i ent Response structure; the exception itself conveys the
error information.

Completions themselves can be processed synchronously or asynchronously, using the standard facilities
of Conpl et abl eFut ur e. The VoltDB Java client is single threaded, so synchronous completions are

50

Designing VoltDB Client Applications

processed one at atime. Consequently, it is good practice to keep synchronous completion processing to a
minimum, returning control to the main thread as soon as possible. If more complex processing isrequired,
use one of the available methods for handling the completion asynchronously.

6.4. Defining Options on a Per-Call Basis

Some invocation attributes defined in the configuration by Client2Config can be overridden on a per-call
basis by means of an options object. Y ou create a new option object with Client2CallOptions, then apply
it to a procedure call as the first argument. For example, the following code sets a call-specific timeout
of 1,234 milliseconds and a priority of 3;

Cient2Call Options opts = new O ient2Call Options()
.clientTimeout (1234, TimeUnit.M LLI SECONDS)
.requestPriority(3);
addUser Future = cal |l ProcedureAsync(opts, "AddUser", usernane, password);

Options that are not specified in Client2CallOptions are defined by the configuration settings (or their
defaults), so the interface is extensible without forcing application code changes.

6.5. Closing the Connection

When the client application is done interacting with the VoltDB database, it isagood practice to close the
connection. This ensures that any pending transactions are completed in an orderly way. The following
example demonstrates how to close the client connection:

try {
client.drain();

client.close();

} catch (InterruptedException ex) ({
ex. print StackTrace();

}

There are two steps to closing the connection:

1. Cdldrai n() tomakesureal asynchronous calls have completed. Thedr ai n() method pausesthe
current thread until all outstanding asynchronous calls (and their callback procedures) complete. This
call is not necessary if the application only makes synchronous procedure calls. However, there is no
penalty for calling dr ai n() and so it can beincluded for completenessin all applications.

2. Call cl ose() tocloseall of the connections and release any resources associated with the client.

6.6. Handling Errors

A special situation to consider when calling VoltDB stored proceduresiserror handling. TheVoltDB client
interface catches most exceptions, including connection errors, errors thrown by the stored procedures
themselves, and even exceptions that occur in asynchronous callbacks. These error conditions are not
returned to the client application as exceptions. However, the application can still receive notification and
interpret these conditions using the client interface.

The following sections explain how to identify and interpret errors that occur when executing stored pro-
cedures and in asynchronous callbacks. These include;

51

Designing VoltDB Client Applications

6.6.1.

* Interpreting Execution Errors
» Handling Timeouts

» Writing Handlers to Interpret Other Errors

Interpreting Execution Errors

If an error occurs in a stored procedure (such as an SQL constraint violation), VoltDB catches the error
and returns information about it to the calling application as part of the Cl i ent Response class. The
C i ent Response class provides several methods to help the calling application determine whether
the stored procedure completed successfully and, if not, what caused the failure. The two most important
methods areget St at us() andget Stat usString().

If you are using synchronous procedure callsin your application, aresponse whose status shows afailure
will beturned into aPr ocCal | Except i on. Call the exception'sget O i ent Response() method
toretrievethed i ent Response.

If you are using asynchronous procedure calls in your application, the response is always obtained from
the completed Conpl et abl eFut ur e.

For both synchronous and asynchronous calls, errors that occur locally in the Client2 library may result
in an exception being thrown, for examplean | OExcept i on. Y ou should establish appropriate handlers
so that your application is robust.

cal | ProcedureAsync("MProc", "sonmeArg")

.thenAccept ((resp) -> processResponse(resp)) o
.exceptional ly((th) -> processException(th));

voi d processResponse(d i ent Response resp) {
final byte AppCodeWarm = 1;
final byte AppCodeFuzzy = 2;

if (resp.getStatus() != dientResponse. SUCCESS) { (2]
Systemerr.println(resp.getStatusString()); ;)
} else {
if (resp.getAppStatus() == AppCodeFuzzy) { o

}

Systemerr.println(resp.getAppStatusString());

}
nmyEval uat eResul t sProc(resp. getResults());

voi d processException(Throwable th) {
Systemerr.println("Exception: " + th);

}

© thenAccept andexcepti onal | y arejust two examples of the many ways of establishing han-
dlersthat will be executed when the asynchronous procedure call completes. See the Java documen-
tation for Conpl et abl eFut ur e.

® Theget St at us() method tells you whether the stored procedure completed successfully and, if
not, what type of error occurred. It is good practice to always check the status of the Cl i ent Re-
sponse before evaluating the results of aprocedure call, because if the status is anything but SUC-
CESS, there will not be any results returned. Some possible values of get St at us() are:

52

Designing VoltDB Client Applications

e CLIENT_REQUEST_TIMEOUT — The request timed out in the client before it could be sent
to the cluster.

e CLIENT_RESPONSE_TIMEOUT — Therequest timed out in the client after it had been sent
to the cluster. The stored procedure may or may not have been executed. It may or may not have
completed execution. See Section 6.6.2, “Handling Timeouts’” for more information about han-
dling this condition.

« CONNECTION_LOST — Thenetwork connection waslost beforethe stored procedure returned
status information to the calling application. The stored procedure may or may not have been
executed. It may or may not have completed execution.

¢ GRACEFUL_FAILURE — An error occurred and the stored procedure was gracefully rolled
back.

« RESPONSE_UNKNOWN — This is a rare error that occurs if the coordinating node for the
transaction fails before returning a response. The node to which your application is connected
cannot determine if the transaction failed or succeeded before the coordinator was lost. The best
course of action, if you receive this error, is to use a new query to determine if the transaction
failed or succeeded and then take action based on that knowledge.

e SUCCESS — The stored procedure completed successfully.

e UNEXPECTED_FAILURE — An unexpected error occurred on the server and the procedure
failed.

« USER_ABORT — The code of the stored procedure intentionally threw a UserAbort exception
and the stored procedure was rolled back.

©® Ifaget Status() call identifiesan error status other than SUCCESS, you can use the get St a-
tusStri ng() method to return atext message providing moreinformation about the specific error
that occurred.

O If youwant the stored procedureto provide additional information to the calling application, thereare
two more methodsto the Gl i ent Response that you can use. The methods get AppSt at us()
andget AppSt at usSt ri ng() actlikeget St at us() andget St at usSt ri ng() , but rather
than returning information set by VoltDB, get AppSt at us() and get AppSt at usStri ng()
return information set in the stored procedure code itself.

In the stored procedure, you can use the methods set AppSt at usCode() and set AppSt a-
tusString() to setthe values returned to the calling application by the stored procedure. For
example:

/* stored procedure code */
final byte AppCodeVarm = 1;
final byte AppCodeFuzzy = 2;

set AppSt at usCode(AppCodeFuzzy) ;
set AppStatusString("l'mnot sure about that...");

6.6.2. Handling Timeouts

One particular error that needs specia handling isif aconnection or a stored procedure call times out after
is has been sent to the cluster. By default, the client interface only waits a specified amount of time (two
minutes) for a stored procedure to complete. If no response is received from the server before the timeout

53

Designing VoltDB Client Applications

period expires, the client interface returns control to your application, notifying it of the error. The status
inthed i ent Response object will be CLIENT_RESPONSE TIMEOUT.

Itisimportant to notethat CLIENT_RESPONSE TIMEOUT does not necessarily mean the procedure call
failed. Infact, it isvery possible that the procedure may complete and return information after the timeout
error is reported. The timeout is provided to avoid locking up the client application when procedures are
delayed or the connection to the cluster hangs for any reason.

Similarly, if no response of any kind is returned on a connection (even if no transactions are pending)
within the specified timeout period, the client connection will time out. When this happens, the connection
is closed, and any open stored procedures on that connection are closed with areturn status of CONNEC-
TION_LOST. Unlike aprocedure timeout, when the connection times out, the connection no longer exists,
so your client application will receive no further notifications concerning pending procedures, whether
they succeed or fail.

CONNECTION_LOST does not necessarily mean a pending procedure call failed. It is possible that the
procedure completed but was unable to return its status due to a connection failure. The goal of the con-
nection timeout is to notify the client application of alost connection in atimely manner, even if there are
no outstanding procedures using the connection.

There are several things you can do to address potential timeouts in your application:

» Change the timeout period by calling either or both the methods pr ocedur eCal | Ti meout () and
connecti onResponseTi meout () ontheC i ent 2Conf i g object. The default timeout period
is2 minutesfor both procedures and connections. A value of zero or less disablesthe timeout altogether.
For example, the following client code resets the procedure timeout to 90 seconds and the connection
timeout period to 3 minutes, or 180 seconds:

config = new dient2Config()

. procedur eCal | Ti meout (90, Ti neUnit. SECONDS)

. connecti onResponseTi neout (3, TimeUnit. M NUTES);
client = CientFactory.createdient(config);

» Respond to the timeout error as part of the response to a procedure call. For example, the following
code reports the error to the console.

voi d processResponse(d i ent Response response) {

if (response.getStatus() == Cdient Response. RESPONSE CONNECTI ON_TI MEQUT) {
Systemout.println("A procedure invocation has tinmed out.");
return,

}

if (response.getStatus() == Cdient Response. CONNECTI ON_LOST) {
System out. println("Connection |ost before procedure response.");
return,

}

[l ... further non-tineout processing here ...

}

» Setupahandler to receivetheresultsof any procedureinvocationsthat complete after the client interface
times out. See the following Section 6.6.3, “Writing Handlersto Interpret Other Errors’ for an example
of creating a handler for delayed procedure responses.

6.6.3. Writing Handlers to Interpret Other Errors

Certain types of errors can occur that the Cl i ent Response class cannot notify you about immediately.
In these cases, an error happens and is caught by the client interface outside of the normal stored procedure

Designing VoltDB Client Applications

/*

execution cycle. If you want your application to address these situations, you need to create handlers,
which are each a special type of asynchronous callback that the client interface will notify whenever such
errors occur.

Handlersareindividually defined for each type of event, by aspecificcall toaC i ent 2Conf i g method.
The application handler must implement the corresponding interface, as defined inthe Cl i ent 2Not i -
ficati on class. Thetypes of event that handlers address include:

Connect Failure

Notification that an attempt to connect or reconnect to a cluster member has failed. This applies to
both initial connection requests from the application, and to automatic reconnection attempts by the
Client2 implementation.

Connection Up
Notification that a connection has been established to a particular cluster member.
Connection Down

Notification that the connection to aparticular cluster member has become disconnected. Outstanding
procedure calls may or may not have completed successfully.

Late Response

Procedure invocations that time out in the client may later complete on the server and return results.
Since the client application can no longer react to this response inline, the client may want a way
to process the returned results. A ClientResponse object will be provided as an argument when this
notification is called.

Request Backpressure

Indicates that the procedure-call queuein the Client2 API is nearing itslimit. The queue has two lim-
its: awarning limit and a hard limit. This notification is triggered when the queue length exceeds the
warning limit. If the hard limit is exceeded, further procedure calls are rejected until the queue length
fals sufficiently. The limits can be set in the O i ent 2Conf i g> with cl i ent Request Back-
pressurelLevel () andd i ent Request Li mi t, for warning and hard limits respectively.

Error Log

Certain unlikely error situations in the Client2 APl are not directly associated with a procedure call.
By default, amessage is printed on standard error. The application can choose to handle the message
instead, perhapswriting it to its own log. The application should not attempt to interpret the message;
the wording may change without notice.

For the sake of example, the following late-response handler does little more than display a message on
standard output. However, in real world applications the handler would take appropriate actions based on
the circumstances.

* Define a | ate response handl er.

*/

voi d nyLat eResponseHandl er (Cl i ent Response resp, String host, int port) { ©

Systemout.printf("A procedure that tined out on host % port %"

+ " has now responded with status %\ n", host, port, resp.getStatus());

55

Designing VoltDB Client Applications

/*
* Declare the client configuration, specifying
* a usernane, a password, and the handler.

*/
Cient2Config nyconfig = new dient2Config() (2]
. user name(" user nane")
. passwor d(" passwor d")
. | at eResponseHandl er (t hi s: : nyLat eResponseHandl| er) ;
/*
* Create the client using the specified configuration.
*/
Cient2 nyclient = CientFactory.created ient(nyconfig); (3]

By performing the operationsin the order as described here, you ensure that all connectionsto the VoltDB
database cluster use the same credentials for authentication and will notify the status listener of any error
conditions outside of normal procedure execution.

© Declare alate-response handler. Define the handler before you define the VVoltDB client or open a
connection. The handler signature must conform to the interface defined for thishandlerinCl i en-
t 2Not i fi cati on, with the three formal arguments shown.

0@ Define the client configuration C i ent 2Conf i g object. After you declare your Cl i ent St a-
t usLi st ener Ext, you create aCl i ent 2Conf i g object to use for all connections, which in-
cludes the username, password, and late-response handler. This configuration is then used to define
the client.

©® Create aclient with the specified configuration.

6.7. Compiling and Running Client Applications

VoltDB client applications written in Java compile and run like other Java applications. (See Chapter 8,
Using VoltDB with Other Programming Languagesfor more on writing client applications using other lan-
guages.) To compile, you must include the VoltDB librariesin the classpath so Java can resolve references
to the VoltDB classes and methods. It is possible to do this manually by defining the environment variable
CLASSPATH or by using the - cl asspat h argument on the command line. If your client application
depends on other libraries, they need to be included in the classpath aswell. Y ou can also specify whereto
create theresulting classfilesusing the - d flag to specify an output directory, asin thefollowing example:

$ javac -classpath "./:/opt/voltdb/voltdb/*" \
-d ./obj \
*.java

The preceding example assumes that the VoltDB software has been installed in the folder / opt / vol t -
db. If you installed VoItDB in a different directory, you need to include your installation path in the -
cl asspat h argument.

If you are using Apache Maven to manage your application development, the VoltDB Java client library
is available from the central Maven repository. So rather than installing VoltDB locally, you can simply
include it as a dependency in your Maven project object model, or pom.xml, like so:

<dependency>
<gr oupl d>or g. vol t db</ gr oupl d>
<artifactld>voltdbclient</artifactld>
<versi on>5. 1</ ver si on>

56

Designing VoltDB Client Applications

</ dependency>

6.7.1. Starting the Client Application

6.7.2.

Before you start your client application, the VoltDB database must be running. When you start your client
application, you must ensure that the VoltDB library JAR fileisin the classpath. For example:

$ java -classpath "./:/opt/voltdb/voltdb/*" M ientApp

Running Clients from Outside the Cluster

If you are running the database on a cluster and the client applications on separate machines, you
do not need to include all of the VoltDB software with your client application. The VoltDB distribu-
tion comes with two separate libraries: vol t db-n. n. nn. j ar and vol tdbcli ent-n.n.nn.jar
(where n.n.nn isthe VoltDB version number). Thefirst fileisacomplete library that isrequired for build-
ing and running a VoltDB database server.

Thesecondfile, vol t dbcl i ent-n. n. nn. jar,isasmaler library containing only those components
needed to runaclient application. If you aredistributing your client applications, you only need to distribute
the client classes and the VoltDB client library. You do not need to install all of the VoltDB software
distribution on the client nodes.

57

Chapter 7. Simplifying Application
Development

The previous chapter (Chapter 6, Designing VoltDB Client Applications) explains how to develop your
VoltDB database application using the full power and flexibility of the Java client interface. However,
some database tasks — such as inserting records into a table or retrieving a specific column value — do
not need al of the capabilities that the Java API provides. In other cases, there are automation techniques
that can reduce the amount of application code you need to write and maintain.

Now that you know how the VoltDB programming interface works, VoltDB hasfeaturesto simplify com-
mon tasks and make your application development easier. Those features include:

» Using Default Procedures

« Shortcut for Defining Simple Stored Procedures

Verifying Expected Query Results

Scheduling Stored Procedures as Tasks
* Directed Procedures: Distributing Transactions to Every Partition

The following sections describe each of these features separately.

7.1. Using Default Procedures

Although it is possible to define quite complex SQL queries, often the simplest are also the most common.
Inserting, selecting, updating, and deleting records based on a specific key value are the most basic opera-
tionsfor a database. Another common practice is upsert, where if arow matching the primary key already
exists, the record is updated — if not, a new record is inserted. To simplify these operations, VoltDB
defines these default stored procedures for tables.

Thedefault stored procedures use astandard naming scheme, where the name of the procedureiscomposed
of the name of the table (in all uppercase), a period, and the name of the query in lowercase. For example,
the Hello World tutorial (doc/ t ut ori al s/ hel | owor | d) contains a single table, HELLOWORLD,
with three columns and the partitioning column, DIALECT, as the primary key. As a result, five default
stored procedures are included in addition to any user-defined procedures declared in the schema. The
parameters to the procedures differ based on the procedure.

VoltDB defines a default insert stored procedure when any table is defined:

HELLOWORLD.insert | The parameters are the table columns, in the same order as defined in the
schema.

VoltDB defines default update, upsert, and delete stored procedures if the table has a primary key:

HELLOWORLD.update | The parameters are the new column values, in the order defined by the schema,
followed by the primary key column values. This means the primary key col-
umn values are specified twice: once as their corresponding new column val-
ues and once as the primary key value.

HELLOWORLD.upsert | The parameters are the table columns, in the same order as defined in the
schema.

58

Simplifying Application Development

HELLOWORLD.delete |The parameters are the primary key column values, listed in the order they
appear in the primary key definition.

VoltDB defines adefault select stored procedure if the table has a primary key and the table is partitioned:

HELLOWORLD.select |The parameters are the primary key column values, listed in the order they
appear in the primary key definition.

Usethe sglemd command show proceduresto list all the stored procedures availableincluding the number
and type of parametersrequired. Use @yst entCat al og wi t h t he PROCEDURECOLUMNS selector
to show more details about the order and meaning of each procedure's parameters.

The following code example uses the default procedures for the HELLOWORLD table to insert, retrieve
(select), update, and delete a new record with the key value "American":

Vol t Tabl e[] results;

client.call Procedure("HELLOAORLD. i nsert",
"Anerican", "Howdy", "Earth");

results = client.callProcedure("HELLOAORLD. sel ect ",
"Anerican").get Resul ts();

client.call Procedure("HELLOAORLD. updat e",
"Anerican", "Yo", "Bi osphere",
"Anerican");

client.call Procedure("HELLOADRLD. del ete",
"Anerican");

7.2. Shortcut for Defining Simple Stored Proce-
dures

Sometimesall you want isto execute asingle SQL query and return theresultsto the calling application. In
these simple cases, writing the necessary Java code to create a stored procedure can be tedious, so VoltDB
provides a shortcut. For very simple stored procedures that execute a single SQL query and return the
results, you can define the entire stored procedure as part of the database schema.

Recall from Section 5.3.2, “Declaring Stored Proceduresin the Schema’, that normally you use the CRE-
ATE PROCEDURE statement to specify the class name of the Java procedure you coded, for example:

CREATE PROCEDURE FROM CLASS MakeReservati on;
CREATE PROCEDURE FROM CLASS Cancel Reservati on;

However, to create procedures without writing any Java, you can simply insert a SQL query in the AS
clause:

CREATE PROCEDURE Count Reservations AS
SELECT COUNT(*) FROM RESERVATI ON;

VolItDB creates the procedure when you include the SQL query in the CREATE PROCEDURE AS state-
ment. Note that you must specify a unique class name for the procedure, which is unique among all stored
procedures, including both those declared in the schema and those created as Java classes. (Y ou can use
the sglcmd command show proceduresto display alist of all stored procedures.)

It is also possible to pass arguments to the SQL query in simple stored procedures. If you use the ques-
tion mark placeholder in the SQL, any additional arguments you pass in client applications through the

59

Simplifying Application Development

cal | Procedur e() method are used to replace the placeholders, in their respective order. For example,
the following simple stored procedure expects to receive three additional parameters:

CREATE PROCEDURE MyReservationsByTrip AS
SELECT R RESERVEI D, F. FLIGHTI D, F.DEPARTTI ME
FROM RESERVATI ON AS R, FLIGHT AS F
VWHERE R. CUSTOMERID = ?
AND R FLI GHTI D = F. FLI GHTI D
AND F. ORI G N=? AND F. DESTI NATI ON=7;

Y ou can also specify whether the simple procedure is single-partitioned or not. By default, stored proce-
dures are assumed to be multi-partitioned. But if your procedure should be single-partitioned, specify its
partitioning in the PARTITION ON clause. In the following example, the stored procedure is partitioned
on the FLIGHTID column of the RESERVATION table using the first parameter as the partitioning key.

CREATE PROCEDURE Fet chReservati ons
PARTI TI ON ON
TABLE Reservation COLUWN flightid
AS
SELECT * FROM RESERVATI ON WHERE FLI GHTI D=7?;

Finally, if you want to execute multiple SQL statements within a simple procedure, you must enclose the
SQL inaBEGIN-END clause. For example, the following CREATE PROCEDURE AS statement fetches
separate records from the CUSTOMER and ORDER tables:

CREATE PROCEDURE OpenOrders
AS BEG N
SELECT ful | nane FROM CUSTOVER WHERE CUSTOVERI D=7?;
SELECT * FROM ORDER WHERE CUSTOMERI D=7;
END;

Some important points to note concerning multi-statement simple procedures:
» The END statement and all of the enclosed SQL statements, must be terminated with a semi-colon.
* The procedure returns an array of VoltTables, one for each statement in the procedure.

» Each placeholder represents one parameter to the stored procedure. Parameters cannot be reused. Soin
the previous example, the customer ID would need to be entered twice as separate parameters to the
stored procedure, one parameter for the first statement and one parameter for the second statement.

7.3. Verifying Expected Query Results

The automated default and simple stored procedures reduce the coding needed to perform simple queries.
However, another substantial chunk of stored procedure and client application code is often required to
verify the correctness of the results returned by the queries. Did you get the right number of records? Does
the query return the correct value?

Rather than you having to write the code to validate the query results manually, VoltDB provides a way
to perform several common validations as part of the query itself. The Java client interface includes an
Expect at i on object that you can useto definethe expected results of aquery. Then, if the query doesnot
meet those expectations, the executing stored procedure automatically throwsaVol t Abort Excepti on
and rolls back.

Y ou specify the expectation as the second parameter (after the SQL statement but before any arguments)
when queuing the query. For example, when making a reservation in the Flight application, the procedure

60

Simplifying Application Development

must make sure there are seats available. To do this, the procedure must determine how many seats the
flight has. This query can also be used to verify that the flight itself exists, because there should be one
and only one record for every flight ID.

Thefollowing code fragment usesthe EXPECT_ONE_ROW expectation to both fetch the number of seats
and verify that the flight itself exists and is unique.

i mport org.voltdb. Expectation;

public final SQStnt GetSeats = new SQ.Stnt (
" SELECT nunber of seats FROM Fl i ght WHERE flightid=?;");

vol t QueueSQL(Get Seats, EXPECT_ONE ROW flightid);
Vol t Tabl e[] recordset = voltExecuteSQ();
Long nunofseats = recordset[0].asScal arLong();

By using the expectation, the stored procedure code does not need to do additional error checking to verify
that there is one and only one row in the result set. The following table describes all of the expectations
that are available to usein stored procedures.

Expectation Description

EXPECT_EMPTY The query must return no rows.

EXPECT_ONE_ROW The query must return one and only one row.

EXPECT_ZERO OR _ONE_ROW The query must return no more than one row.

EXPECT_NON_EMPTY The query must return at least one row.

EXPECT_SCALAR The query must return asingle value (that is, one row with one
column).

EXPECT_SCALAR_LONG The query must return a single value with a datatype of Long.

EXPECT_SCALAR MATCH(long) |The query must return a single value equal to the specified
Long value.

7.4. Scheduling Stored Procedures as Tasks

There are often repetitive tasks you want to perform on the database that can be scheduled at regular
intervals. These tasks may include general cleanup, pruning, or periodic data validation. Rather than write
a separate application and scheduler to do this, VoltDB lets you automate tasks at intervals ranging from
milliseconds to days.

A task is a stored procedure that you schedule using the CREATE TASK statement. The statement spec-
ifies what procedure to run and when to run it and what arguments to use. In the simplest case, you can
schedule a multi-partition procedure at specific times of day (using cron notation), at a regular interval
(using EVERY), or with aregular pause between iterations (using DELAY). For example, The following
statements define a procedure called OrphanedRecords that deletes reservations from a specific airline
with no associated flight number and a task called RemoveOrphans that uses that procedure to delete or-
phaned records for FlyByNight airlines every two hours.

CREATE PROCEDURE Or phanedRecor ds
AS DELETE FROM reservati ons
WHERE aireline=? AND flight _id I'S NULL;

61

Simplifying Application Development

CREATE TASK RenoveOr phans
ON SCHEDULE EVERY 2 HOURS
PROCEDURE Or phanedRecords W TH (' Fl yByNi ght');

Since the task definition is part of the schema, VoltDB automates starting and stopping the tasks with the
database. Other clausesto the CREATE TASK statement let you further refinehow thetask isrunincluding
what user account runsit and what to do in case of errors. Thereare a so corresponding ALTER TASK and
DROP TASK statements for managing your task definitions. See the description of the CREATE TASK
statement for details.

7.5. Directed Procedures: Distributing Transac-
tions to Every Partition

As useful as scheduling regular stored procedures is in simplifying application development, it can be
disruptive to ongoing workflow if multi-partition procedures take too long or run too frequently. It would
be nice to be able to schedule some partitioned activities as well to do piecemeal work on each partition
without tying up al of the partitions at once. Thisis exactly what directed procedures are designed to do.

A directed procedureis aspecia type of stored procedure, declared using the DIRECTED clause instead
of PARTITION ON. You write a directed procedure the same way you write a regular stored procedure:
either as a simple procedure of one or more SQL statements or as a Java class extending voltProcedure,
using the voltQueueSQL method to queue SQL statements. Since it is transactional, the procedure must
also be deterministic.

However, if you declare the procedure as DIRECTED, when you invoke it a separate instance of the
procedure is queued on every partition in the database. Each instance is its own transaction and acts like
a partitioned procedure. So the separate transactions do not block the other partitions. However, because
they are separate, there isno coordination between the transactions and no guarantee that they are executed
at the sametime.

This makes directed procedures particularly useful for non-critical procedures that need to access data
across the database but do not need to be coordinated as a single, atomic transaction. Because of the
special nature of directed procedures, you cannot invoke them the way you would normal partitioned or
multi-partitioned procedures. Instead, the primary way to invoke them is as a scheduled task.

To schedule a directed procedure as a task, you use the same syntax for the CREATE TASK statement
as for a multi-partitioned procedure, except you add the RUN ON PARTITIONS clause. The RUN ON
PARTITIONS clause specifies that the task is scheduled separately for each and every partition. For ex-
ample, if you want to run the RemoveOrphans task defined in the previous section as a directed procedure
soit will not block the ongoing database workload, you would add the DIRECTED clause to the CREATE
PROCEDURE statement and the RUN ON PARTITIONS clausetothe CREATE TASK statement, like so:

CREATE PROCEDURE Or phanedRecords DI RECTED
AS DELETE FROM reservations
VWHERE airline=? AND flight_id IS NULL;
CREATE TASK RenpveOr phans
ON SCHEDULE EVERY 2 HOURS
PROCEDURE Or phanedRecords W TH (' Fl yByNi ght ')
RUN ON PARTI Tl ONS;

Although scheduled tasks are the easiest way to invoke directed procedures, you can aso invoke them
directly from your Java applications. Y ou cannot call them with the cal | Pr ocedur e method, but you
canusingthecal | Al l Partiti onProcedur e method where the resultsfrom all of the partitions are

62

Simplifying Application Development

returned as an array of VoltTables, one per partition. See the descriptions of the CREATE PROCEDURE
AS, CREATE PROCEDURE FROM CLASS, and CREATE TASK statementsfor moreinformation about
using directed procedures.

63

Chapter 8. Using VoltDB with Other
Programming Languages

VoltDB stored procedures are written in Java and the primary client interface also uses Java. However,
that is not the only programming language you can use with VoltDB.

It is possible to have client interfaces written in almost any language. These client interfaces allow pro-
grams written in different programming languages to interact with a VVoltDB database using native func-
tions of the language. The client interface then takes responsibility for translating those requests into a
standard communication protocol with the database server as described in the VVoltDB wire protocol.

Some client interfaces are developed and packaged as part of the standard VoltDB distribution kit while
othersare compiled and distributed as separate client kits. As of thiswriting, thefollowing client interfaces
are available for VoltDB:

o C#

o C++

e Erlang

+ Go

» Java (packaged with VoltDB)

» JDBC (packaged with VoltDB)

» JSON (packaged with the VMC service)
* Nodejs

« PHP

 Python (packaged with VVoltDB)

The following sections explain how to use the C++, JSON, and JDBC client interfaces.

8.1. C++ Client Interface

VoltDB provides aclient interface for programswritten in C++. The C++ client interfaceis available pre-
compiled asaseparatekit from the VoltDB web site, or in source format from the V oltDB github repository
(http://github.com/V oltDB/voltdb-client-cpp). Thefollowing sections describe how to write VVoltDB client
applicationsin C++.

8.1.1. Writing VoltDB Client Applications in C++

When using the VoItDB client library, aswith any C++ library, it isimportant to include all of the neces-
sary definitions at the beginning of your source code. For VVoltDB client applications, thisincludes defin-
itions for the VoltDB methods, structures, and datatypes as well as the libraries that VVoltDB depends on
(specifically, boost shared pointers). For example:

#define __ STDC_CONSTANT MACROS

http://voltactivedata.com/
http://github.com/VoltDB/voltdb-client-cpp

Using VoltDB with Oth-
er Programming Languages

#define __ STDC LI M T_MACRCS

#i ncl ude <vector>

#i ncl ude <boost/shared_ptr. hpp>
#include "Cient.h"

#i ncl ude "Tabl e. h"

#i nclude "Tabl elterator.h”

#i ncl ude " Row. hpp"

#i nclude "WreType. h"

#i ncl ude "Paramnet er. hpp"

#i ncl ude "Paranet er Set . hpp"

#i ncl ude "ProcedureCal | back. hpp"

Once you have included al of the necessary declarations, there are three steps to using the interface to
interact with VoltDB:

1. Create and open aclient connection
2. Invoke stored procedures
3. Interpret the results

The following sections explain how to perform each of these functions.

8.1.2. Creating a Connection to the Database Cluster

8.1.3.

Beforeyou can call VoltDB stored procedures, you must create aclient instance and connect to the database
cluster. For example:

vol tdb:: dientConfig config("nyusernane", "mypassword");
voltdb::dient client = voltdb::dient::create(config);
client.createConnection("nyserver");

As with the Java client interface, you can create connections to multiple nodes in the cluster by making
multiple calls to the cr eateConnection method specifying a different | P address for each connection.

Invoking Stored Procedures

The C++ client library provides both a synchronous and asynchronous interface. To make a synchronous
stored procedure call, you must declare objects for the parameter types, the procedure call itself, the para-
meters, and the response. Note that the datatypes, the procedure, and the parameters need to be declared
in aspecific order. For example:

/* Declare the nunber and type of parameters */

std::vector<vol tdb:: Paraneter> paraneterTypes(3);

par amet er Types|[0] vol t db: : Paranet er (vol tdb: : WRE_TYPE_BI G NT) ;
par amet er Types|[1] vol t db: : Paranet er (vol tdb: : WRE_TYPE_STRI NG ;
par amet er Types| 2] vol t db: : Paranet er (vol tdb: : WRE_TYPE_STRI NG ;

/* Declare the procedure and paraneter structures */
vol tdb: : Procedure procedure("AddCustoner", paraneterTypes);
vol t db: : Paranet er Set* parans = procedure. parans();

/* Declare a client response to receive the status and return val ues */
vol tdb: : I nvocat i onResponse response;

65

Using VoltDB with Oth-
er Programming Languages

8.1.4.

Once you instantiate these objects, you can reuse them for multiple callsto the stored procedure, inserting
different values into params each time. For example:

par anms- >addl nt 64(13505) . addString("WIlianm').addString("Smth");
response = client.invoke(procedure);

par anms- >addl nt 64(13506) . addString("Mary").addString("WI1liams");
response = client.invoke(procedure);

par ans- >addl nt 64(13507) . addString("Bill").addString("Snythe");
response = client.invoke(procedure);

Invoking Stored Procedures Asynchronously

To make asynchronous procedure calls, you must also declare a callback structure and method that will
be used when the procedure call completes.

cl ass AsyncCal | back : public voltdb:: ProcedureCall back

{
publi c:
bool call back
(vol tdb: : I nvocati onResponse response)
throw (vol tdb: : Excepti on)
{
/*
* The work of your call back goes here..
*/
}
b

Then, when you go to make the actual stored procedure invocation, you declare an callback instance and
invoke the procedure, using both the procedure structure and the callback instance:

boost : : shared_ptr<AsyncCal | back> cal | back(new AsyncCal | back());
client.invoke(procedure, call back);

Note that the C++ interface is single-threaded. The interface is not thread-safe and you should not use
instances of the client, client response, or other client interface structures from within multiple concurrent
threads. Also, the application must release control occasionally to give the client interface an opportunity
to issue network requests and retrieve responses. Y ou can do this by calling either the run() or runOnce()
methods.

The run() method waits for and processes network reguests, responses, and callbacks until told not to.
(That is, until acallback returns avalue of false.)

The runOnce() method processes any outstanding work and then returns control to the client application.

In most applications, you will want to create a loop that makes asynchronous requests and then calls
runOnce(). This allows the application to queue stored procedure requests as quickly as possible while
also processing any incoming responses in atimely manner.

Another important difference when making stored procedure calls asynchronously is that you must make
sureall of the procedure calls compl ete before the client connection is closed. The client objects destructor
automatically closes the connection when your application leaves the context or scope within which the
client is defined. Therefore, to make sure all asynchronous calls have completed, be sure to call the drain
method until it returns true before leaving your client context:

while (!client.drain()) {}

66

Using VoltDB with Oth-
er Programming Languages

8.1.5. Interpreting the Results

Both the synchronous and asynchronous invocations return a client response object that contains both the
status of the call and the return values. Y ou can use the status information to report problems encountered
while running the stored procedure. For example:

if (response.failure())

{
std::cout << "Stored procedure failed. " << response.toString();
exit(-1);

}

If the stored procedure is successful, you can use the client response to retrieve the results. The results
are returned as an array of VoltTable structures. Within each VoltTable object you can use an iterator to
walk through the rows. There are also methods for retrieving each datatype from the row. For example,
the following example displays the results of asingle VVoltTable containing two strings in each row:

/* Retrieve the results and an iterator for the first volttable */
std::vector<voltdb:: Table> results = response.results();
voltdb:: Tablelterator iterator = results[0O].iterator();

/* lterate through the rows */
while (iterator.hasNext())

vol tdb:: Row row = iterator.next();
std::cout << row.getString(0) << ", " << row.getString(l) << std::endl;

}

8.2. JSON HTTP Interface

JSON (JavaScript Object Notation) is not a programming language; it is a data format. The JSON "inter-
face" to VoltDB is actually aweb interface that the Volt Management Center service makes available for
processing requests and returning datain JSON format.

The JSON interface lets you invoke VoltDB stored procedures and receive their results through HTTP
requests. To invoke a stored procedure, you pass V oltDB the procedure name and parameters as aquerys-
tring to the HTTP request, using either the GET or POST method.

Although many programming languages provide methods to simplify the encoding and decoding of JISON
strings, you still need to understand the data structures that are created. So if you are not familiar with
JSON encoding, you may want to read more about it at ht t p: / / www. j son. or g.

8.2.1. How the JSON Interface Works

When you start the Volt Management Center (VMC) service and point it at a VoltDB cluster, it opens
port 8080 as asimple web server. Y ou can customize this service through the VM C configuration options,
including:

» Enabling TLS encryption on the port
» Changing the port number

See the section on the "Web Interface Port" in the VoltDB Administrator's Guide for more information
on configuring the HTTP port.

67

http://www.json.org/
https://docs.voltactivedata.com/v14docs/AdminGuide/HostConfigPortOpts.php#ServerConfigHttpdPort
https://docs.voltactivedata.com/v14docs/AdminGuide/

Using VoltDB with Oth-
er Programming Languages

This section assumes the VMC service is using the default httpd configuration. In which case, any HTTP
requests sent to thelocation/api/2.0/ on that port areinterpreted as JISON requeststo run astored procedure.
The structure of the request is:

URL http://<server>:8080/api/2.0/

Arguments Procedure=<procedure-name>
Parameters=<procedure-parameters>

User=<username for authentication>
Password=<password for authentication>
Hashedpassword=<Hashed password for authentication>
admin=<truejfalse>

jsonp=<function-name>

The arguments can be passed either using the GET or the POST method. For example, the following URL
uses the GET method (where the arguments are appended to the URL) to execute the system procedure
@Systeminformation on the VoltDB database cluster connected to the VMC service at vmc.mycompa
ny.com:

http://vnc. myconpany. com 8080/ api / 2. 0/ ?Pr ocedur e=@yst end nf or mati on

Note that only the Pr ocedur e argument is required. Y ou can authenticate using the User and Pass-
wor d (or Hashedpasswor d) argumentsif security is enabled for the database. Use Passwor d to send
the password as plain text or Hashedpasswor d to send the password as an encoded string. (The hashed
password must be a 64-byte hex-encoding of the 32-byte SHA-256 hash.)l

Y ou can al so include the parameters on the request. However, it isimportant to note that the parameters —
and the response returned by the stored procedure — are JSON encoded. The parametersare an array (even
if thereisonly one element to that array) and therefore must be enclosed in square brackets. Also, although
there is an upper limit of 2 megabytes for the entire length of the parameter string, large parameter sets
must be sent using POST to avoid stricter limitations on allowable URL lengths.

The adm n argument specifies whether the request is submitted on the standard client port (the default)
or the admin port (when you specify adni n=t r ue). When the database is in admin mode, the client
port is read-only; so you must submit write requests with adm n=t r ue or else the request is rejected
by the server.

The j sonp argument is provided as a convenience for browser-based applications (such as Javascript)
where cross-domain browsing is disabled. When you include thej sonp argument, the entire responseis
wrapped as a function call using the function name you specify. Using this technique, the response is a
complete and valid Javascript statement and can be executed to create the appropriate language-specific
object. For example, calling the @Statistics system procedure in Javascript using the jQuery library looks
like this:

$.get JSON(' http://myvntserver: 8080/ api/ 2. 0/ ?Procedure=@bt ati stics' +
" &Par anet er s=[" MANAGEMVENT", 0] & sonp=?",
{}, WCal | Back) ;

Perhaps the best way to understand the JSON interfaceisto seeit in action. If you build and start the Hello
World example application that is provided in the VoltDB distribution kit (including the client that loads
data into the database and the VMC service), you can then open a web browser and connect to the local
system through port 8080, to retrieve the French translation of "Hello World". For example:

"Hashi ng the password stops the text of your password from being detectable from network traffic. However, it does not make the database access
any more secure. To secure the transmission of credentials and data between client applications and VoltDB, enable TLS encryption for the HTTP
port using the configuration file.

68

Using VoltDB with Oth-
er Programming Languages

http://1 ocal host: 8080/ api /2. 0/ ?Pr ocedur e=Sel ect &Par anet er s=[" French"]
The query returns the following results:

{"status": 1, "appstatus":-128,"statusstring":null,"appstatusstring":null,
"results": {"0":[{ "HELLO':"Bonjour", "WORLD': "Monde"}]}}

Asyou can see, the JSON-encoded results are not particularly easy to read. But they do provide asimple,
generic interface accessible from almost any programming language, most of which provide methods for
encoding and decoding JSON strings and interpreting their results.

8.2.2. Using the JSON Interface from Client Applications

The general process for using the JSON interface from within a programiis:
1. Encode the parameters for the stored procedure as a JSON-encoded string

2. Instantiate and execute an HTTP request, passing the name of the procedure and the parameters as
arguments using either GET or POST.

3. Decode the resulting JSON string into alanguage-specific data structure and interpret the results.

The following are examples of invoking the Hello World Insert stored procedure from several different
languages. In each case, the three arguments (the name of the language and the words for "Hello" and
"World") are encoded as a JSON string.

PHP

<?php
/1 Construct the procedure nane, paraneter list, and URL.

$vol t dbserver = "http:// myserver:8080/api/2.0/";
$proc = "Insert";

$a = array("Croatian", "Pozdrav", "Svijet");

$parans = json_encode($a);

$paranms = url encode($par ams) ;

$querystring = "Procedure=$pr oc&Par anet er s=$par ans" ;

/1 create a new cURL resource and set options
$ch = curl _init();
curl _setopt($ch, CURLOPT_URL, $voltdbserver);
curl _setopt($ch, CURLOPT_HEADER, 0);
curl _setopt($ch, CURLOPT_FAI LONERROR, 1);
curl _setopt($ch, CURLOPT_POST, 1);
curl _setopt($ch, CURLOPT_POSTFI ELDS, $querystring);
curl _setopt($ch, CURLOPT_RETURNTRANSFER, true);

/1 Execute the request

$resultstring = curl _exec($ch);
?>

Python

inmport urllib

69

Using VoltDB with Oth-
er Programming Languages

Perl

C#

i mport urllib2
i mport json

Construct the procedure nane, paraneter |ist, and URL.
url = "http://nmyserver: 8080/ api/2.0/"
vol t parans = json. dunps(["Croatian", "Pozdrav", "Svijet"])
httpparanms = urllib.url encode({
"Procedure': 'Insert',
' Parameters' : voltparans
})
print httpparans
Execute the request
data = urllib2.urlopen(url, httpparans).read()

Decode the results
result = json.l|oads(data)

use LWP:: Si mpl e;
ny $server = 'http://nmyserver:8080/api/2.0/";

Insert "Hello Wrld" in Croatian

ny $proc = 'lInsert’;
ny $parans = '["Croatian", "Pozdrav","Svijet"]";
ny $url = $server . "?Procedur e=$pr oc&Par anet er s=$par ans";

ny $content = get $url;
die "Couldn't get $url" unless defined $content;

usi ng System

usi ng System Text;
usi ng System Net ;
using System1Q

nanespace hel | ovol t

{
cl ass Program
{
static void Main(string[] args)
{
string Vol tDBServer = "http://nyserver:8080/api/2.0/";
string VoltDBProc = "Insert";
string VoltDBParanms = "[\"Croatian\",\"Pozdrav\",\"Svijet\"]";
string Ul = Vol tDBServer + "?Procedure=" + Vol tDBProc

+ " &Par anet ers=" + Vol t DBPar arrs;

string result = null;
WebResponse response = nul | ;
StreanReader reader = null;

70

Using VoltDB with Oth-
er Programming Languages

try

Ht t pWebRequest request = (Htt pWbRequest)WbRequest. Create(Url);
request. Method = "GET";

response = request. CGet Response();

reader = new StreanReader (response. Get ResponseSt rean(), Encodi ng. UTF8) ;
result = reader. ReadToEnd();

}
catch (Exception ex)
{ /1 handl e error
Consol e. WitelLi ne(ex. Message);
}
finally
{
if (reader != null)reader.C ose();
if (response != null) response.C ose();
}

}
}
}

8.2.3. How Parameters Are Interpreted

When you pass arguments to the stored procedure through the JSON interface, VoltDB does its best to
map the data to the datatype required by the stored procedure. Thisisimportant to make sure partitioning
values are interpreted correctly.

For integer values, the JSON interface maps the parameter to the smallest possible integer type capable of
holding the value. (For example, BY TE for values less than 128). Any values containing a decimal point
are interpreted as DOUBLE.

String values (those that are quoted) are handled in several different ways. If the stored procedure is ex-
pecting a BIGDECIMAL, the JSON interface will try to interpret the quoted string as a decimal value.
If the stored procedure is expecting a TIMESTAMP, the JSON interface will try to interpret the quoted
string as a JDBC-encoded timestamp vaue. (You can aternately pass the argument as an integer value
representing the number of microseconds from the epoch.) Otherwise, quoted strings are interpreted as
astring datatype.

Table 8.1, “Datatypes in the JSON Interface” summarizes how to pass different datatypes in the JSON
interface.

Table 8.1. Datatypesin the JSON Interface

Datatype How to Pass Example
Integers (Byte, Short, Integer,|An integer value 12345
Long)
DOUBLE A value with a decimal point 123.45
BIGDECIMAL A quoted string containing avalue|"123.45"
with a decimal point

71

Using VoltDB with Oth-
er Programming Languages

8.2.4.

Datatype How to Pass Example

TIMESTAMP

Either an integer value or aquoted| 12345

string containing a JDBC-encod-
ed date and time "2010-07-01 12:30:21"

String

A quoted string "I am astring"

Interpreting the JSON Results

Making the request and decoding the result string are only the first steps. Once the request is completed,
your application needs to interpret the results.

When you decode a JSON string, it is converted into alanguage-specific structure within your application,
composed of objects and arrays. If your request is successful, VoltDB returns a JSON-encoded string that
represents the same ClientResponse object returned by callsto the call Procedure method in the Javaclient
interface. Figure 8.1, “The Structure of the VoltDB JSON Response” shows the structure of the object
returned by the JSON interface.

Figure8.1. The Structure of the VoltDB JSON Response

{ status (i nteger)
appst at us (i nteger)
statusstring (string)
appst atusstring (string)
results (list)

{ result-index (array)
[
{ columm-name (any type) ,...
}
]
}
}

The key components of the JSON response are the following:

status

appstatus

results

It is possible to

Indicates the success or failure of the stored procedure. If statusisfalse, statusstring con-
tains the text of the status message..

Returns additional information, provided by the application developer, about the success
or failure of the stored procedure. The values of appstatus and appstatusstring can be
set programmatically in the stored procedure. (See Section 6.6.1, “Interpreting Execution
Errors’ for details.)

A list of objects representing the VoltTables returned by the stored procedure. Each ele-
ment of thelist isone set of results, identified by an index value ("0, "1", "2" and so on).
Within each set is an array of rows. And within each row isalist of columns represented
by the column name and value. If the stored procedure does not return any results (i.e. is
void or null), then the results object will be null.

create a generic procedure for testing and evaluating the result values from any VoltDB

stored procedure. However, in most cases it is far more expedient to evaluate the values that you know
the individual procedures return.

For example, again using the Hello World exampl e that is provided with the Vol tDB software, it ispossible
to usethe JSON interface to call the Select stored procedure and return the valuesfor "Hello" and "World"

72

Using VoltDB with Oth-
er Programming Languages

8.2.5.

in a specific language. Rather than evaluate the entire results array (including the name and type fields),
we know we are only receiving one result object with two column values. So we can simplify the code,
asin the following python example:

import urllib
i mport urllib2
i mport json

i mport pprint

Construct the procedure name, paraneter list, and URL.
url = "http://1ocal host: 8080/ api/2.0/"'
vol t parans = json. dunmps(["French"])
httpparanms = urllib.url encode({
"Procedure': 'Select',
' Parameters' : voltparans

1)

Execute the request
data = urllib2.urlopen(url, httpparans).read()

Decode the results

results = json.loads(data)[u' results']
volttable = results[u' 0']

row = vol ttabl e[0]

CGet the data by colum nane and display them
hello = row u' HELLO]
world = row u' WORLD]

print hello, world

Error Handling using the JSON Interface

There are anumber of different reasonswhy a stored procedure request using the JSON interface may fail:
the VoltDB server may be unreachable, the database may not be started yet, the stored procedure name
may be misspelled, the stored procedure itself may fail... When using the standard Java client interface,
these different situations are handled at different times. (For example, server and database access issues
are addressed when instantiating the client, whereas stored procedure errors can be handled when the
procedures themselves are called.) The JSON interface simplifies the programming by rolling all of these
activitiesinto asingle call. But you must be more organized in how you handle errors as a consequence.

When using the JSON interface, you should check for errorsin the following order:

1. First check to seethat the HT TP request was submitted without errors. How thisisdone depends on what
language-specific methodsyou usefor submitting the request. In most cases, you can usethe appropriate
programming language error handlers (such as try-catch) to catch and interpret HTTP request errors.

2. Next check to seeif VoltDB successfully invoked the stored procedure. Y ou can do this by verifying
that the HTTP request returned a valid JSON-encoded string and that its statusis set to true.

3. If theVoltDB server successfully invoked the stored procedure, then check to seeif the stored procedure
itself succeeded, by checking to see if appstatusistrue.

4. Finally, check to seethat the results are what you expect. (For example, that the data array is non-empty
and contains the values you need.)

73

Using VoltDB with Oth-
er Programming Languages

8.3. JDBC Interface

8.3.1.

JDBC (Java Database Connectivity) is aprogramming interface for Java programmers that abstracts data-
base specifics from the methods used to access the data. JDBC provides standard methods and classes
for accessing a relational database and vendors then provide JDBC drivers to implement the abstracted
methods on their specific software.

VoltDB provides a JDBC driver for those who would prefer to use JIDBC asthe data accessinterface. The
VoltDB JDBC driver supportsad hoc queries, prepared statements, calling stored procedures, and methods
for examining the metadata that describes the database schema.

Using JDBC to Connect to a VoltDB Database

The VoltDB driver is a standard class within the VoltDB software jar. To load the driver you use the
Class.forName method to load the class org.voltdb.jdbc.Driver.

Once the driver is loaded, you create a connection to a running VoltDB database server by constructing
a JDBC url using the "jdbc:" protocol, followed by "voltdb://", the server name, a colon, and the port
number. In other words, the complete JDBC connection url is"jdbc:voltdb://{ server} :{ port}". To connect
to multiple nodes in the cluster, use a comma separated list of server names and port numbers after the
"jdbc:voltdb://" prefix.

For example, the following code loads the VoltDB JDBC driver and connectsto the servers svrl and svr2
using the default client port:

Cl ass. forNane("org.vol tdb.jdbc.Driver");
Connection ¢ = DriverMnager. get Connecti on(
"jdbc:voltdb://svrl:21212, svr2:21212");

If, after the connection is made, the connection to one or more of the servers is lost due to a network
issue or server failure, the VoltDB JDBC client does not automatically reconnect the broken connection
by default. However, you can have the JDBC driver reconnect lost connections, as well as make other
adjustments as the cluster topology changes, by adding thet opol ogychangeawar e argument to the
connection string. For example:

Cl ass. forNane("org.vol tdb.jdbc.Driver");
Connection ¢ = DriverMnager. get Connecti on(
"jdbc:vol tdb://svrl:21212, svr2:21212?t opol ogychangeawar e=t rue");

When topology awareness is enabled and a server goes offline, the JDBC driver periodically attempts to
reconnect to the missing server until it comes back online and the connection is reestablished. If a differ-
ent server replaces a lost node, topology awareness also identifies this change and makes the necessary
connections.

If security is enabled for the database, you must aso provide a username and password. Set these as
properties using the setProperty method before creating the connection and then pass the properties as a
second argument to getConnection. For example, the following code uses the username/password pair of
"Hemingway" and "KeyWest" to authenticate to the VoltDB database:

Cl ass.forName("org. vol tdb.jdbc. Driver");
Properties props = new Properties();

props. set Property("user", “Hem ngway");
props. set Property("password”, “KeyWst");
Connection ¢ = DriverManager. get Connecti on(

74

Using VoltDB with Oth-
er Programming Languages

"jdbc:vol tdb://svrl:21212, svr2:21212", props);

8.3.2. Using JDBC to Query a VoltDB Database

Once the connection is made, you use the standard JDBC classes and methods to access the database. (See
the JDBC documentation at ht t p: / / downl oad. or acl e. conl j avase/ 8/ docs/t echnot es/
gui des/ j dbc for details.) Note, however, when running the JDBC application, you must make sure
both the VoltDB software jar and the Guavalibrary are in the Java classpath. Guavaisathird party library
that is shipped as part of the VoltDB kit in the /lib directory. Unless you include both components in the
classpath, your application will not be able to find and load the necessary driver class.

The following is a complete example that uses JDBC to access the Hello World tutorial that comes with
the VoltDB software in the subdirectory / doc/ t ut ori al s/ hel | owor | d. The IDBC demo program
executes both an ad hoc query and a call to the VoltDB stored procedure, Select.

i mport java.sql.*;
i mport java.io.?*;

public class JdbcDenmo {
public static void main(String[] args) {

String driver = "org.voltdb.jdbc.Driver";

String url = "jdbc:voltdb://Ilocal host:21212";
String sgl = "SELECT di al ect FROM hel | owor| d";
try {

/1 Load driver. Create connection.
Cl ass. forName(driver);
Connection conn = DriverManager. get Connection(url);

/] create a statenent
Statement query = conn.createStatenent();
Resul t Set results = query. executeQuery(sql);
while (results.next()) {

System out. printl n("Language is

+ results.getString(1));
}

/1 call a stored procedure
Cal | abl eSt atement proc = conn. prepareCall ("{call Select(?)}");
proc.setString(1l, "French");
results = proc. executeQery();
while (results.next()) {
Systemout.printf("%, %!\n", results.getString(1l),
results.getString(2));

/1 Cl ose statenents, connections, etc.
query. cl ose();
proc. cl ose();
results.close();
conn. cl ose();

} catch (Exception e) {

75

http://download.oracle.com/javase/8/docs/technotes/guides/jdbc
http://download.oracle.com/javase/8/docs/technotes/guides/jdbc

Using VoltDB with Oth-
er Programming Languages

e.printStackTrace();

76

Chapter 9. Using VoltDB in a Cluster

Itispossibleto runVoltDB onasingle server and still get all the advantages of parallelism because VoltDB
creates multiple partitions on each server. However, there are practical limits to how much memory or
processing power any one server can sustain.

One of the key advantages of VoItDB is its ease of expansion. Y ou can increase both capacity and pro-
cessing (i.e. the total number of partitions) simply by adding serversto the cluster to achieve amost linear
scalability. Using VoltDB in acluster also gives you the ability to increase the availability of the database
— protecting it against possible server failures or network glitches.

This chapter explains how to create a cluster of VoltDB servers running a single database. It also explains
how to expand the cluster when additional capacity or processing power isneeded. The following chapters
explain how to increase the availability of your database through the use of K-safety and database repli-
cation, as well as how to enable security to limit access to the data.

9.1. Starting a Database Cluster

As described in Chapter 3, Starting the Database, starting aVVoltDB cluster is similar to starting VoltDB
on asingle server — you use the same commands. To start a single server database, you use the voltdb
start command by itself. To customize database features, you specify or more configuration files when
you initialize the root directory with voltdb init.

To start a cluster, you aso use the voltdb start command. In addition, you must:
« Specify the number of nodesin the cluster using the --count argument.

» Choose one or more nodes as the potential lead or "host" node and specify those nodes using the --host
argument on the start command

* |ssue the same voltdb start command on all nodes of the cluster

For example, if you are creating anew five node cluster and choose nodes server2 and server3 asthe hosts,
you would issue a command like the following on al five nodes:

$ voltdb start --host=server2,server3 --count=5

Torestart acluster using command logs or automatic snapshots, you repeat the same command. Alternate-
ly, you can specify all nodesin the cluster in the --host argument and skip the server count:

$ voltdb start --host=serverl, server?2, server3, server4, server5

No matter which approach you choose, you must specify the same list of potential hosts on all nodes of
the cluster. Once the database cluster is running the leader's special roleis complete and al nodes become
peers.

9.2. Defining the Cluster Configuration

Before you start the cluster, you choose what database features to use by specifying one or more YAML
configuration files when you initialize the database root directory on each node using the voltdb init
command. Y ou must specify the same configuration files on every node of the cluster. For example:

$ voltdb init --config=configuration.yan

77

Using VoltDB in a Cluster

If you choose to change database options, many of the features can be adjusted while the database is
running by either:

 Using the web-based Volt Management Center to make changes interactively in the Admin tab

« Editing the original configuration file(s) and applying the modifications with the voltadmin update
command

* Setting or editing individual configuration properties using the voltadmin set command

For example, you can change security settings, import and export configurations, and resource limits dy-
namically. The changes you make are saved by VoltDB in the database root directory.

However, there are some changes that cannot be made while the database is running. For example, chang-
ing the K-safety value or the number of partitions per server require shutting down, re-initializing, and
restarting the database. To change these static aspects of your cluster, you must save the database contents,
reconfigure the root directory, then restart and restore the database. The steps for changing static config-
uration options are:

1. Pause the database (voltadmin pause)
2. Save a snapshot of the contents (voltadmin save {path} {file-prefix})
3. Shutdown the database (voltadmin shutdown)

4. Re-initialize the root directory with the new configuration file and the - - f or ce argument (voltdb
init --for ce --config=file)

5. Restart the database in admin mode (voltdb start --pause)
6. Restore the snapshot (voltadmin restore {path} {file-prefix})
7. Resume normal operations (voltadmin resume)

See Table E.1, “Complete List of Volt Configuration Properties” for a list of which properties can and
cannot be modified dynamically. See Chapter 13, Saving & Restoring a VVoltDB Database for information
on using save and restore. When doing benchmarking, where you need to change the number of parti-
tions or adjust other static configuration options, this is the recommended approach. However, if you are
adjusting the size of the cluster to increase or decrease capacity or performance, you can perform these
operations while the database is running. Adding and removing nodes "on the fly" is known as elastic
scaling and is described in the next section.

9.3. Elastic Scaling to Resize the Cluster

Elastic scaling is the ability to resize the cluster as needed, without having to shutdown the database.
Elastic scaling supports both increasing and decreasing the size of the cluster. For example, you might
want to increase the size of the cluster ahead of an important announcement that will drive additional
traffic — and subsequently require additional capacity. Similarly, you may want to reduce the size for the
cluster during slow periodsto limit the number of resources that would be under utilized.

Adding and removing nodes using elastic scaling are each handled separately because increasing the size
of the cluster requires adding new nodes to the cluster first. While when decreasing the size of the cluster,
the nodes are already part of the cluster and VoltDB decides which node are most advantageous to remove
based on the distribution of partitions within the cluster.

78

Using VoltDB in a Cluster

To add nodes to the cluster you start the additional nodes using the voltdb start --add command. To
remove nodes from the cluster, you use the voltadmin resize command and the cluster decides which
nodes to remove.

But in both cases, the correct number of hodes must be added or removed at the same time. The number
of nodes added or removed must result in the resized cluster meeting the requirements for a K-safe cluster
based on the K-safety value and number of sites per host (as described in Section 10.2.2, “Calculating
the Appropriate Number of Nodes for K-Safety”). So for a cluster with no K-safety (K=0), nodes can be
added and removed individually. For K-safe clusters, K+1 nodes must be added or removed at atime. For
example, with K=1 two nodes must be added at atime. Whilein the case of reducing the size of the cluster,
two nodes must be removed but the resulting cluster must also meet the requirement that the total number
of partitions (sites per host X number of nodes) isdivisible by K+1.

Finally, resizing the cluster "on the fly" does require both time and some amount of resources while the
data and partitions are rebalanced. The length of time required to complete the rebalancing depends on
the amount of data present and the current workload. Similarly, the performance impact of resizing on
the ongoing operation of the cluster depends on how much additional capacity the cluster has to assign
to rebalance tasks.

The following sections describe how to:
» Add nodes using elastic scaling
* Remove nodes using elastic scaling

 Control the time and performance impact of elastic scaling by configuring the rebalance workoad

9.3.1. Adding Nodes with Elastic Scaling

When you are ready to extend the cluster by adding one or more nodes, you simply initialize and start the
VoltDB database process on the new nodes using the voltdb init command to initialize and the voltdb
start command to start with the - - add argument, specifying the name of one or more of the existing
cluster nodes as the hosts. For example, if you are adding node ServerX to a cluster where ServerA is
already a member, you can execute the following commands on ServerX:

$ voltdb init --config=configuration.yamn
$ voltdb start --add --host=ServerA

Once the elastic add action is initiated, the cluster performs the following tasks:
1. The cluster acknowledges the presence of a new server.
2. Copies of the current schema and configuration settings are sent to the new node.

3. Once sufficient nodes are added, copies of al replicated tables and their share of the partitioned tables
are sent to the new nodes.

4. Asthe datais redistributed (or rebalanced), the added nodes begin participating as full members of
the cluster.

There are some important notes to consider when expanding the cluster using elastic scaling:

e You must add a sufficient number of nodes to create an integral K-safe unit. That is, K+1 nodes. For
example, if the K-safety value for the cluster is two, you must add three nodes at a time to expand the
cluster. If the cluster is not K-safe (in other words it has a K-safety value of zero), you can add one
node at atime.

79

Using VoltDB in a Cluster

» When you add nodes to a K-safe cluster, the nodes added first will complete steps #1 and #2 above,
but will not complete steps #3 and #4 until the correct number of nodes are added, at which point all
nodes rebalance together.

» Whilethecluster isrebal ancing (Step #3), the database continuesto handleincoming requests. However,
depending on the workload and amount of data in the database, rebalancing may take a significant
amount of time,

» Oncedadtic scaling iscomplete, your database configuration has changed. If you shutdown the database
and then restart, you must specify the new server count in the - - count argument to the voltdb start
command.

9.3.2. Removing Nodes with Elastic Scaling

When you want to reduce the size of your cluster, you use the voltadmin resize command to start the
resizing process. First, as with any significant maintenance activity, it is a good idea to take a snapshot of
the database contents before you begin, just in case you need to restore it later. The next step isto test to
make sure the cluster can be reduced. Y ou do this using the voltadmin resize --test command:

$ voltadmin resize --test

The --test qualifier verifies that there are sufficient nodes and partitions to reduce the cluster while main-
taining the K-safety and sitesperhost settings. If not, the command will report that the cluster cannot be
reduced in size. If resizing is possible, the command reports which nodes will be removed when resizing
begins.

Once you are ready to begin the resizing process, you use the voltadmin resize command:
$ voltadnin resize
The command repeats the test phase, reports which nodes will be removed and starts the resizing process.

Onceresizing begins, the process cannot be canceled. Even if the cluster stops, resizing will continue once
the cluster restarts (and you must restart all of the original nodes so the resize operation can complete). So
be sure you want to reduce the cluster size before you issue the voltadmin resize command.

The length of time it takes for resizing to complete depends on the amount of data in the database and
the current workload. Y ou can adjust parameters that affect resizing (as described in Section 9.3.3, “Con-
figuring How VoltDB Rebalances Nodes During Elastic Scaling”). However, increasing the duration or
throughput for resizing will likely have a corresponding inverse impact on the performance of ongoing
database activities. Use the voltadmin status to check on the current status of the resizing operation, or
use the @Statistics system procedure with the REBALANCE selector for details.

Finally, if an unexpected event causes the resize processto fail — which will bereported in the server logs
— you can restart the resize operation using the voltadmin resize --restart command.

9.3.3. Configuring How VoltDB Rebalances Nodes During
Elastic Scaling

Asyou add or remove nodesusing el astic scaling, V oltDB rebalancesthe cluster by rearranging datawithin
the partitions. During €elastic expansion, as soon as you add the necessary number of nodes (based on the
K-safety value), VoltDB rebalances the cluster, moving data from existing partitions to partitions on the
new nodes. During elastic contraction, before the nodes are removed, VoltDB rebalances the cluster by
moving data from partitions that are being removed to partitions that will remain.

80

Using VoltDB in a Cluster

During the rebalance phase, the database remains available and actively processing client requests. How
long the rebalance operation takes is dependent on two factors: how often rebalance tasks are processed
and how much data each transaction moves.

Rebalancetasksare fully transactional, meaning they operate within the database's ACID-compliant trans-
actional model. Because they involve moving data between two or more partitions, they are also mul-
ti-partition transactions. This means that each rebalance work unit can incrementally add to the latency
of pending client transactions.

Y ou can control how quickly the rebal ance operation compl etes versus how much rebalance work impacts
ongoing client transactions using the subproperties of depl oynent . syst ensettings. el asti c:

e Thedur at i on property setsatarget value for the length of time each rebalance transaction will take,
specified in milliseconds. The default is 50 milliseconds.

e Thet hroughput property sets a target value for the number of megabytes per second that will be
processed by the rebal ance transactions. The default is 2 megabytes.

When you change the target duration, VoltDB adjusts the amount of datathat is moved in each transaction
to reach the target execution time. If you increase the duration, the volume of data moved per transaction
increases. Similarly, if you reduce the duration, the volume per transaction decreases.

When you change the target throughput, VoltDB adjuststhe frequency of rebalance transactionsto achieve
the desired volume of data moved per second. If you increase the target throughout, the number of rebal-
ance transactions per second increases. Similarly, if you decrease the target throughout, the number of
transactions decreases.

For example, the following configuration file sets the target duration to 15 milliseconds and the target
throughput to 1 megabyte per second before starting the database:

depl oyrent :
systensettings:
el astic:
duration: 15
t hroughput: 1

81

Chapter 10. Availability

10.1.

Durability is one of the four key ACID attributes required to ensure the accurate and reliable operation of
atransactional database. Durability refers to the ability to maintain database consistency and availability
in the face of external problems, such as hardware or operating system failure. Durability is provided by
four features of VVoltDB: snapshots, command logging, K-safety, and disaster recovery through database
replication.

» Snapshots are a "snapshot” of the data within the database at a given point in time written to disk. You
can use these snapshot filesto restore the database to a previous, known state after afailure which brings
down the database. The snapshots are guaranteed to be transactionally consistent at the point at which
the snapshot was taken. Chapter 13, Saving & Restoring a VoltDB Database describes how to create
and restore database snapshots.

« Command Logging isafeature where, in addition to periodic snapshots, the system keeps alog of every
stored procedure (or "command") asit is invoked. If, for any reason, the serversfail, they can "replay"
the log on startup to reinstate the database contents completely rather than just to an arbitrary point-
in-time. Chapter 14, Command Logging and Recovery describes how to enable, configure, and replay
command logs.

» K-safety refers to the practice of duplicating database partitions so that the database can withstand the
loss of cluster nodes without interrupting the service. For example, aK value of zero means that there
isno duplication and losing any serverswill result in aloss of data and database operations. If there are
two copies of every partition (a K value of one), then the cluster can withstand the loss of at least one
node (and possibly more) without any interruption in service.

» Database Replication issimilar to K-safety, sinceit involvesreplicating data. However, rather than cre-
ating redundant partitions within a single database, database replication involves creating and maintain-
ing a complete copy of the entire database. Database replication has a number of uses, but specifically
in terms of durability, replication lets you maintain two copies of the database in separate geographic
locations. In case of catastrophic events, such as fires, earthquakes, or large scale power outages, the
replica can be used as a replacement for adisabled cluster.

Subsequent chapters describe snapshots and command logging. The next chapter describes how you can
use database replication for disaster recovery. This chapter explains how K-safety works, how to configure
your VoltDB database for different values of K, and how to recover in the case of a system failure.

How K-Safety Works

K-safety involves duplicating database partitions so that if a partition is lost (either due to hardware or
software problems) the database can continue to function with the remaining duplicates. In the case of
VoltDB, the duplicate partitions are fully functioning members of the cluster, including all read and write
operations that apply to those partitions. (In other words, the duplicates function as peers rather than in
amaster-slave relationship.)

Itisalsoimportant to notethat K-safety isdifferent than WAN replication. In replication the entire database
cluster isreplicated (usually at aremote location to provide for disaster recovery in case the entire cluster
or site goes down due to catastrophic failure of some type).

In replication, the replicated cluster operates independently and cannot assist when only part of the active
cluster fails. The replicate is intended to take over only when the primary database cluster fails entirely.
So, in caseswhere the database is mission critical, it is not uncommon to use both K-safety and replication
to achieve the highest levels of service.

82

Availability

To achieve K=1, it is necessary to duplicate all partitions. (If you don't, failure of a node that contains a
non-duplicated partition would cause the database to fail.) Similarly, K=2 requires two duplicates of every
partition, and so on.

What happens during normal operations is that any work assigned to a duplicated partition is sent to all
copies (asshown in Figure 10.1, “K-Safety in Action”). If anode fails, the database continues to function
sending the work to the unaffected copies of the partition.

Figure 10.1. K-Safety in Action

10.2. Enabling K-Safety

Y ou specify the desired K-safety value as part of the cluster configuration when you initialize the database
root directory. By default, VoltDB uses aK-safety value of zero (no duplicate partitions). Y ou can specify
alarger K-safety value using the kf act or property. For example, in the following configuration file,
the K-safety value is set to 2:

depl oynent :
cluster:
kfactor: 2

When you start the database specifying a K-safety value greater than zero, the appropriate number of
partitions out of the cluster will be assigned as duplicates. For example, if you start a cluster with 3 nodes
and the default partitions per node of 8, there are atotal of 24 partitions. With K=1, half of those partitions
(12) will be assigned as duplicates of the other half. If K isincreased to 2, the cluster would be divided
into 3 copies consisting of 8 partitions each.

The important point to note when setting the K value is that, if you do not change the hardware configu-
ration, you are dividing the avail able partitions among the duplicate copies. Therefore performance (and

83

Availability

capacity) will be proportionally decreased as K-safety is increased. So running K=1 on a 6-node cluster
will be approximately equivalent to running a 3-node cluster with K=0.

If you wish to increase reliability without impacting performance, you must increase the cluster size to
provide the appropriate capacity to accommodate for K-safety.

10.2.1. What Happens When You Enable K-Safety

Of course, to ensure a system failure does not impact the database, not only do the partitions need to be
duplicated, but VVoltDB must ensure that the duplicates are kept on separate nodes of the cluster. To achieve
this, VoltDB calculates the maximum number of unique partitions that can be created, given the number
of nodes, partitions per node, and the desired K-safety value.

When the number of nodes is an integral multiple of the duplicates needed, thisis easy to calculate. For
example, if you have asix node cluster and choose K=1, VoltDB will create two instances of three nodes
each. If you choose K=2, VoltDB will create three instances of two nodes each. And so on.

If the number of nodesis not amultiple of the number of duplicates, VoltDB doesits best to distribute the
partitions evenly. For example, if you have a three node cluster with two partitions per node, when you
ask for K=1 (in other words, two of every partition), VoltDB will duplicate three partitions, distributing
the six total partitions across the three nodes.

10.2.2. Calculating the Appropriate Number of Nodes for K-
Safety

By now it should be clear that there is a correlation between the K value and the number of nodes and
partitionsin the cluster. Ideally, the number of nodesisamultiple of the number of copies needed (in other
words, the K value plus one). Thisis both the easiest configuration to understand and manage.

However, if the number of nodes is not an exact multiple, VoltDB distributes the duplicated partitions
across the cluster using the largest number of unique partitions possible. Thisis the highest whole integer
where the number of unigque partitions is equal to the total number of partitions divided by the needed
number of copies:

Uni que partitions = (nodes * partitions/node) / (K + 1)

Therefore, when you specify a cluster size that is not a multiple of K+1, but where the total number of
partitionsis, VoltDB will use all of the partitions to achieve the required K-safety value.

Note that the total number of partitions must be a whole multiple of the number of copies (that is, K+1).
If neither the number of nodes nor the total number of partitions is divisible by K+1, then VoltDB will
not let the cluster start and will display an appropriate error message. For example, if the configuration
specifies 3 sites per host and a K-safety value of 1 but the voltdb start command specifies a server count
of 3, the cluster cannot start because the total number of partitions (3X3=9) isnot a multiple of the number
of copies (K+1=2). To start the cluster, you must either change the configuration to increase the K-safety
value to 2 (so the number of copies is 3) or change the sites per host to 2 or 4 so the total number of
partitionsis divisible by 2.

Finally, if the configuration specifiesaK value higher than the available number of nodes, it isnot possible
to achieve the requested K-safety. Even if there are enough partitions to create the requested duplicates,
VoltDB cannot distribute the duplicates to distinct nodes. For example, if you start a 3 node cluster when
the configuration specifies 4 partitions per node (12 total partitions) and a K-safety value of 3, the number
of total partitions (12) isdivisible by K+1 (4) but not without some duplicates residing on the same node.
In this situation, VoltDB issues an error message. You must either reduce the K-safety or increase the
number of nodes.

Availability

10.3. Recovering from System Failures

When running without K-safety (in other words, a K-safety value of zero) any node failure is fatal and
will bring down the database (since there are no longer enough partitions to maintain operation). When
running with K-safety on, if a node goes down, the remaining nodes of the database cluster log an error
indicating that a node has failed.

By default, these error messages are logged to the console terminal. Since the loss of one or more nodes
reducesthereliability of the cluster, you may want to increase the urgency of these messages. For example,
you can configure a separate Log4J appender (such as the SMTP appender) to report node failure mes-
sages. To do this, you should configure the appender to handle messages of classHOST and severity level
ERROR or greater. See the chapter on Logging in the VoltDB Administrator's Guide for more information
about configuring logging.

When a node fails with K-safety enabled, the database continues to operate. But at the earliest possible
convenience, you should repair (or replace) the failed node.

To replace a failed node to a running VoltDB cluster, you restart the VoltDB server process specifying
the address of at least one of the remaining nodes of the cluster as the host. For example, to rejoin a node
to the VoltDB cluster where server5 is one of the current member nodes, you use the following voltdb
start command:

$ voltdb start --host=server5

If you started the servers specifying multiple hosts, you can use the same voltdb start command used to
start the cluster as a whole since, even if the failed node is in the host list, one of the other nodes in the
list can serviceitsrejoin request.

If thefailed server cannot be restarted (for example, if hardware problems caused the failure) you can start
areplacement server inits place. Note you will need to initialize aroot directory on the replacement server
before you can start the database process. Y ou can either initialize the root with the original configuration
file. Or, if you have changed the configuration, you can retrieve a copy of the current configuration from
one of the other servers with the voltdb get deployment command and then using that file to initialize
the root directory before starting:

$ voltdb init --config=latest-config.yan
$ voltdb start --host=server5

Note that at least one node you specify in the --host argument must be an active member of the cluster. It
does not have to be one of the nodes identified as the host when the cluster was originally started.

10.3.1. What Happens When a Node Rejoins the Cluster

When you use voltdb start to bring back a server to a running cluster, the node first rejoins the cluster,
then retrieves a copy of the database schema and the appropriate data for its partitions from other nodes
in the cluster. Rgjoining the cluster only takes seconds and once this is done and the schema is received,
the node can accept and distribute stored procedure requests like any other member.

However, the new node will not actively participate in the work until afull working copy of its partition
datais received. While the datais being copied, the cluster separates the rejoin process from the standard
transactional workflow, allowing the database to continue operating with a minimal impact to throughput
or latency. So the database remains available and responsive to client applications throughout the rejoin
procedure.

85

https://docs.voltactivedata.com/v14docs/AdminGuide/ChapLogging.php
https://docs.voltactivedata.com/v14docs/AdminGuide/

Availability

Itisimportant to remember that the cluster isnot fully K-safeuntil the restorationiscomplete. For example,
if the cluster was established with a K-safety value of two and one node failed, until that node rejoins and
is updated, the cluster is operating with a K-safety value of one. Once the node is up to date, the cluster
becomes fully operational and the original K-safety is restored.

10.3.2. Where and When Recovery May Fail

It is possible to rejoin any appropriately configured node to the cluster. It does not have to be the same
physical machine that failed. This way, if a node fails for hardware reasons, it is possible to replace it
in the cluster immediately with a new node, giving you time to diagnose and repair the faulty hardware
without endangering the database itself.

There are afew conditions in which the rejoin operation may fail. Those situations include the following:
* Insufficient K-safety

If the database is running without K-safety, or more nodesfail simultaneously than the cluster is capable
of sustaining, the entire cluster will fail and must be restarted from scratch. (At a minimum, aVoltDB
database running with K-safety can withstand at least as many simultaneous failures as the K-safety
value. It may be able to withstand more node failures, depending upon the specific situation. But the K-
safety value tells you the minimum number of node failures that the cluster can withstand.)

» Mismatched configuration in the root directory

If the configuration file that you specify when initializing the root directory does not match the current
configuration of the database, the cluster will refuse to let the node rejoin.

» More nodes attempt to rejoin than have failed

If one or more nodes fail, the cluster will accept rejoin reguests from as many nodes as failed. For
example, if one node fails, the first node requesting to rejoin will be accepted. Once the cluster is back
to the correct number of nodes, any further requeststo rejoin will be rejected. (Thisisthe same behavior
asif you try to start more nodes than specified in the - - count argument to the voltdb start command
when starting the database.)

10.4. Avoiding Network Partitions

VoltDB achieves scalability by creating a tightly bound network of servers that distribute both data and
processing. When you configure and manage your own server hardware, you can ensure that the cluster
resides on asingle network switch, guaranteeing the best network connection between nodes and reducing
the possibility of network faults interfering with communication.

However, there are situations where this is not the case. For example, if you run VoltDB "in the cloud”,
you may not control or even know what is the physical configuration of your cluster.

The danger is that a network fault — between switches, for example — can interrupt communication
between nodes in the cluster. The server nodes continue to run, and may even be able to communicate
with others nodes on their side of the fault, but cannot "see" the rest of the cluster. In fact, both halves of
the cluster think that the other half has failed. This condition is known as a network partition.

10.4.1. K-Safety and Network Partitions

When you run aVoltDB cluster without availability (in other words, no K-safety) the danger of anetwork
partition is simple: loss of the database. Any node failure makes the cluster incomplete and the database

86

Availability

will stop, Y ou will need to reestablish network communications, restart VoltDB, and restore the database
from the last snapshot.

However, if you are running acluster with K-safety, it is possible that when anetwork partition occurs, the
two separate segments of the cluster might have enough partitions each to continue running, each thinking
the other group of nodes has failed.

For example, if you have a 3 node cluster with 2 sites per node, and a K-safety value of 2, each nodeisa
separate, self-sustaining copy of the database, as shown in Figure 10.2, “ Network Partition”. If a network
partition separates nodes A and B from node C, each segment has sufficient partitions remaining to sustain
the database. Nodes A and B think node C has failed; node C thinks that nodes A and B have failed.

Figure 10.2. Network Partition

Network Partition

Server
B

The problemisthat you never want two separate copies of the database continuing to operate and accepting
requests thinking they are the only viable copy. If the cluster is physically on a single network switch,
the threat of a network partition is reduced. But if the cluster is on multiple switches, the risk increases
significantly and must be accounted for.

10.4.2. Network Fault Protection

VoltDB provides a mechanism for guaranteeing that a network partition does not accidentally create two
separate copies of the database. The feature is called network fault protection. When a fault is detected
(either dueto anetwork fault or one or more serversfailing), any viable segment of the cluster will perform
the following steps:

1. Determine what nodes are missing
2. Determineif the missing nodes are also a viable self-sustained cluster. If so...
3. Determine which segment is the larger segment (that is, contains more nodes).

« If the current segment is larger, continue to operate assuming the nodes in the smaller segment have
failed.

* If the other segment is larger, shutdown to avoid creating two separate copies of the database.

For example, in the case shown in Figure 10.2, “ Network Partition”, if anetwork partition separates nodes
A and B from C, the larger segment (nodes A and B) will continue to run and node C will shutdown (as
shown in Figure 10.3, “Network Fault Protection in Action”).

87

Availability

Figure 10.3. Network Fault Protection in Action

Network Partition

If a network partition creates two viable segments of the same size (for example, if a four node cluster
is split into two two-node segments), a specia case is invoked where one segment is uniquely chosen
to continue, based on the internal numbering of the host nodes. Thereby ensuring that only one viable
segment of the partitioned database continues.

Network fault protection is avery valuable tool when running VoltDB clustersin adistributed or uncon-
trolled environment where network partitions may occur. The one downside is that there is no way to
differentiate between network partitions and actual node failures. In the case where no network partition
occurs but a large number of nodes actually fail, the remaining nodes may believe they are the smaller
segment. In this case, the remaining nodes will shut themselves down to avoid partitioning.

For example, in the previous case shown in Figure 10.3, “Network Fault Protection in Action”, if rather
than a network partition, nodes A and B fail, node C is the only node still running. Although node C is
viable and could continue because the database was configured with K -saf ety set to 2, with fault protection
node C will shut itself down to avoid a partition. For higher values of K-safety, the calculation of which
segment stays up becomes more complex since the network topology can change dynamically if network
partitions happen in sequence. However, the principle remains the same: to ensure that only one segment
continuesto run and it is possible all segmentswill shut down if thereis ambiguity about which segments
may still be viable. Specifically, if anode loses contact with all other nodes, even if it would normally be
the surviving node, if it was previoudly part of a cluster with three or more nodes, it will shut itself down
to avoid a potential network partition.

Intheworst case, if half the nodes of acluster fail, the remaining nodes may actually shut themselves down
under the special provisions for a network partition that splits a cluster into two equal parts. For example,
consider the situation where atwo node cluster with ak-safety value of one has network partition detection
enabled. If one of the nodes fails (half the cluster), thereis only a 50/50 chance the remaining node is the
"blessed" node chosen to continue under these conditions. If the remaining node is not the chosen node, it
will shut itself down to avoid a conflict, taking the database out of servicein the process.

Because this situation — a 50/50 split — could result in either a network partition or a viable cluster
shutting down, VoltDB recommends always using clusters with an odd number of nodes when creating
small clusters. By using an odd number of servers, you avoid even the possibility of a50/50 split, whether
caused by partitioning or node failures. For larger clusters, the chance of losing exactly half the cluster is
relatively small and so an even number of nodes (such as six, eight, or larger) israrely a problem.

88

Chapter 11. Active(N) Database
Replication

There are times when it is useful to create multiple copies of a database. Not just a snapshot of a moment
intime, but live, constantly updated copies.

K-safety maintains redundant copies of partitions within a single VoltDB database, which helps protect
the database cluster against individua node failure. Database replication also creates a copy. However,
database replication creates and maintains copiesin separate, often remote, databases.

Volt Active Data uses Active(N)® to replicate databases. Unlike passive, or one-way database replica
tion where there is a master database and a read-only replicathat only receives changes from the master,
Active(N) creates multiple active databases (also known as cross datacenter replication, or XDCR) that
are synchronized in both directions. Which means you can create an Active(N) network of two or more
databases all of which can process database transactions and update the contents simultaneously, and those
changes are replicated to al the participating database clusters.

Figure 11.1. Active(N) Cross Datacenter Replication

Cluster 1 Cluster 2

un
o .
J ¥ XA
L S "'I
Qo A Pt QU
lul RN ’ 0 jn e
Clients ~ & Cluster3 « , Clients
. ~‘ TR
0
jul
Clients

Of course, you can implement passive replication using Active(N), simply by creating a two cluster re-
lationship and pausing the "replica” cluster to make it read-only. This can be useful for certain business
applications, such as disaster recovery, where you want to maintain a read-only copy of the active data-
base in a different geographic location in case the primary database becomes physically disabled in some
way. Or if you want to maintain a read-only copy for reporting purposes and to offload these potentially
complex queries from the active database.

Active(N) database replication (XDCR) solves two key business problems:

1. Supporting business operations on a global scale 24/7. XDCR lets you globally distribute and operate
separate, active, but coordinated copies of a single database in multiple locations. For example, you
can maintain copies of a product inventory database at two or more separate warehouses, close to the
applications that need the data. This feature makes it possible to support massive numbers of clients
that could not be supported by a single database instance or might result in unacceptable latency when
the database and the users are geographically separated. The databases can even reside on separate
continents.

89

Active(N) Database Replication

2. Protecting your business and its data against catastrophic events, such as power outages or natural
disasters, capable of taking down an entire cluster or data center. This is often referred to as disaster
recovery. Because the Active(N) clusters can be in different geographic locations, XDCR allows the
other clusters to continue unaffected when one becomes inoperable. XDCR also allows you to offload
read-only workloads, such as reporting, from the primary database instances.

It is important to note, however, that database replication is not instantaneous. The transactions are com-
mitted locally, then copied to the other database or databases. So when using XDCR to maintain multiple
active clusters you must be careful to design your applications to avoid possible conflicts when transac-
tions change the same record in two databases at approximately the same time. See Section 11.2.7, “Un-
derstanding Conflict Resolution” for more information about conflict resolution.

The remainder of this chapter discusses the following topics:

» Section 11.1, “How Database Replication Works”

e Section 11.2, “Using Active(N) Cross Datacenter Replication”
» Section 11.3, “Updating the Schema During Replication”

* Section 11.4, “Monitoring Database Replication”

» Section 11.5, “Tuning Active(N) to Meet Y our Application Needs’

11.1. How Database Replication Works

Database replication (DR) involves duplicating the contents of selected tables between two database clus-
ters. You identify which tables to replicate in the schema, by specifying the table namein aDR TABLE
statement. For example, to replicate al tables in the voter sample application, you would execute three
DR TABLE statements when defining the database schema:

DR TABLE cont estants;
DR TABLE vot es;
DR TABLE area_code_state;

11.1.1. Starting Database Replication

YouenableDRusingthedr property inthe configuration wheninitializing the database. The subproperties
of dr identify three pieces of information:

e A unique cluster ID for each database. The ID is required and can be any number between 0 and 127,
aslong as each cluster has a different ID.

* The database role as xdcr.
* A connection source listing the host name or I P address of one or more nodes from the other databases.
For example:

depl oynent :
dr:
id: 2
role: xdcr
connecti on:
source: serverAl, server A2

90

Active(N) Database Replication

Each cluster must have aunique ID. All clusters must also includetheconnect i on property pointing to
at least one other cluster. If you are establishing an XDCR network with multiple clusters, the connec-

t i on property can specify hosts from one or more of the other clusters. The participating clusters will
coordinate establishing the correct connections, even if theconnect i on property does not list them all.

Note that you must specify the cluster i d property and ther ol e before starting each cluster.

The actual replication process is performed in multiple parallel streams; each unique partition on one
cluster sends a binary log of completed transactions to the other clusters. Replicating by partition has two
key advantages:

» Theprocessisfaster — Because the replication process uses abinary log of the results of the transaction
(rather than the transaction itself), the receiving cluster (or consumer) does not need to reprocess the
transaction; it simply applies the results. Also, since each partition replicates autonomously, multiple
streams of data are processed in parallel, significantly increasing throughout.

e The process is more durable — In a K-safe environment, if a server fails on a DR cluster, individual
partition streams can be redirected to other nodes or a stream can wait for the server to rejoin — without
interfering with the replication of the other partitions.

If data aready exists in one of the clusters before database replication starts for the first time, that data-
base sends a snapshot of the existing data to the other, as shown in Figure 11.2, “Replicating an Existing
Database”. Once the snapshot isreceived and applied (and the two clusters are in sync), the partitions start
sending binary logs of transaction results to keep the clusters synchronized.

Figure 11.2. Replicating an Existing Database

Q) b
S
Existing @-e' ég
Data ‘5?)
==QQOOOD%IIIII*==
HE HE
Cluster 1 Cluster 2

For XDCR, the first database that is started can have datain the DR tables. If other clusters contain data,
replication cannot start. Once DR has started, the databases can stop and recover using command logging
without having to restart DR from the beginning.

11.1.2. Database Replication, Availability, and Disaster Re-
covery

Once replication begins, the DR process is designed to withstand normal failures and operational down-
time. When using K-safety, if anode fails on any cluster, you can rejoin the node (or a replacement) us-
ing the voltdb start command without breaking replication. Similarly, if a cluster shuts down, you can
use voltdb start to restart the database and restart replication where it left off. The ability to restart DR

91

Active(N) Database Replication

assumes you are using command logging. Specifically, synchronous command logging is recommended
to ensure compl ete durability.

If unforeseen events occur that make a database unreachable, database replication lets you replace the
missing database with its copy. Thisprocessisknown as disaster recovery. For cross datacenter replication
(XDCR), you simply need to redirect your client applications to the remaining cluster(s). If one of the
databases was being used as a read-only copy, you can use the voltadmin resume command to switch it
from read-only mode to a fully operational database.

Figure 11.3. Disaster Recovery

St
we

NN
Cluster 1 Cluster 2

$ voltadmin resume

11.1.3. Database Replication and Completeness

It isimportant to note that, unlike K-safety where multiple copies of each partition are updated simultane-
ously, database replication involves shipping the results of completed transactions from one database to
another. Because replication happens after the fact, there is no guarantee that the contents of the clusters
are identical at any given point in time. Instead, the receiving database (or consumer) "catches up" with
the sending database (or producer) after the binary logs are received and applied by each partition.

Also, because DR occurs on aper partition basis, changes to partitions may not occur in the same order on
the consumer, since one partition may replicate faster than another. Normally thisis not a problem because
the results of all transactions are atomic in the binary log. However, if the producer cluster crashes, there
is no guarantee that the consumer has managed to retrieve al the logs that were queued. Therefore, it is
possible that some transactions that completed on the producer are not reflected on the consumer.

Fortunately, using command logging, when you restart the failed cluster, any unacknowledged transac-
tions will be replayed from the failed cluster's disk-based DR cache, allowing the clusters to recover and
resume DR where they |eft off. To ensure effective recovery, the use of synchronous command logging is
recommended. Synchronous command logging guarantees that all transactions are recorded in the com-
mand log and no transactions are lost. If you use asynchronous command logging, there is a possibility
that abinary log is applied but not captured by the command log before the cluster crashes. Then when the

92

Active(N) Database Replication

database recovers, the clusters will not agree on the last acknowledged DR transaction, and DR will not
be able to resume. At this point, you will need to decide which cluster to use as the authoritative source,
then reinitialize and restart DR from scratch for the other cluster.

11.2. Using Active(N) Cross Datacenter Replica-

tion

The following sections provide step-by-step instructions for setting up and running XDCR between two
or more VolItDB clusters. The sections describe how to:

1. Design your schemaand identify the DR tables
2. Configure the database clusters, including:

» Choosing unique cluster IDs

* Identifying the DR connections
3. Start the databases
4. Load the schemaand start replication
Later sections discuss other aspects of managing XDCR, including:
* Stopping database replication
» Resolving conflicts

I mportant

XDCR isaseparately licensed feature. If your current VVoltDB license does not include akey for
XDCR you will not be able to complete the tasks described in this section. See your VoltDB sales
representative for more information on licensing XDCR.

11.2.1. Designing Your Schema for Active Replication

To manage XDCR, VoltDB storesasmall amount (8 bytes) of extrametadatawith every row of datathat is
shared. Thisadditional spaceisallocated automatically for any table declared asaDR TABLE on acluster
configured with the depl oynent . dr. r ol e property set to xdcr. Be sure to take this additional space
requirement into consideration when planning the memory usage of servers participating in an XDCR
network.

Next, you must identify which tables you wish to share between the databases. Only the selected tables are
copied. Y ou identify the tables in the schema with the DR TABLE statement. For example, the following
statements identify two tables to be replicated, the Customers and Orders tables:

CREATE TABLE custoners (
custoner| D | NTEGER NOT NULL,
firstname VARCHAR(128),
LASTNAME var char (128)

);

CREATE TABLE orders (
order | D | NTEGER NOT NULL,
custoner| D | NTEGER NOT NULL,
pl aced TI MESTAMP

93

Active(N) Database Replication

)
DR TABLE custoners;
DR TABLE orders;

Y ou can identify any regular table, whether partitioned or not, asa DR table, aslong asthe tableis empty.
That is, the table must have no datain it when you issue the DR TABLE statement. The important point
to remember is that the schema definitions for al DR tables, including the DR TABLE statements, must
beidentical on all the participating clusters.

11.2.2. Configuring the Database Clusters

The next step is to configure and initialize the database root directories. The database clusters can have
different physical configurations (that is, different numbers of nodes, different sites per host, or adifferent
K factor). Identical cluster configurations guarantee the most efficient replication, because the databases
do not need to repartition the incoming binary logs. Differing configurations, on the other hand, may
incrementally increase the time needed to apply the binary logs.

Wheninitializing the database root directories, you must al so enable and configure DR in the configuration,
including:

» Choosing aunique ID for each cluster

 Specifying the DR connections

11.2.2.1. Choosing Unique IDs

Y ou enable DR in the configuration using the depl oynent . dr property, including a unique cluster ID
for each database cluster. To manage the DR process VoltDB needsto uniquely identify the clusters. You
providethisuniqueidentifier asanumber between 0 and 127 when you configurethe clusters. For example,
if weassign ID=1to acluster in New Y ork and ID=2 to another in Chicago, their respective configuration
filesmust contain the following properties. Y ou must al so specify that the cluster is participating in XDCR
by specifying the role. For example:

New York Cluster

depl oyment :
dr:
id: 1
role: xdcr

Chicago Cluster

depl oyrent :
dr:
id: 2
role: xdcr

11.2.2.2. Identifying the DR Connections

For each database cluster, you must also specify the source of replication inthe connect i on property.
Y ou do this by pointing each cluster to at least one of the other clusters, specifying one or more servers
on the remote cluster(s) i the sour ce subproperty.

You only need to point each connection source at servers from one of the other clusters, even if more
clusters are participating in the XDRC relationship. However, it is a good idea to include them all in the
source string so the current cluster is not dependent on the order in which the clusters start.

94

Active(N) Database Replication

For example, say there are two clusters. The New York cluster has nodes NY serverA, NY serverB, and
NY serverC. While the Chicago cluster has CHIserverX, CHIserverY, and CHIserverZ. The configuration
files for the two clusters might look like this:

New York Cluster

depl oyrent :
dr:
id: 1
role: xdcr
connecti on:
source: CHIserverX, CH serverY

Chicago Cluster

depl oyment :
dr:
id: 2
role: xdcr
connecti on:
source: NYserverA, NYserver B, NYserverC

Note that both clusters must have a connection defined for active replication to start. An alternative ap-
proach is to initialize the databases leaving the source property empty. You can then update the config-
uration to add source servers once the database is up and running and the appropriate schema has been
applied. For example, you can initialize the cluster with an empty source property:

depl oyrent :
dr:
id: 1
role: xdcr
connecti on:
source: ""

Then update the source using voltadmin set once the database is running:
$ vol tadm n set depl oynent. dr. connection. source="CHl server X, CHl server Y"

Once the configuration files have the necessary declarations, you can initialize the root directories on all
cluster nodes using the appropriate configuration files:

New York Cluster

$ voltdb init -D ~/nydb --config=nyconfig.yanl
Chicago Cluster

$ voltdb init -D ~/chidb --config=chiconfig.yan

If you then want to add a third cluster to the XDRC relationship (say San Francisco), you can define a
configuration file that points at either or both of the other clusters:

San Francisco Cluster

depl oyrent :
dr:
id: 3
role: xdcr

95

Active(N) Database Replication

comecti on:
source: CHI server X, CH serverY, NYserver A NYserver B

When configuring three or more XDCR clusters, you also have the option of specifying which cluster a
new instance uses as the source for downloading theinitial snapshot. For example, if two of the clustersare
located in the same physical location, you can specify the cluster 1D of apreferred sourceto reducethetime
needed to synchronize the clusters. Note that the preferred source attribute only applies when the database
first joins the XDCR environment or if DR is restarted from scratch. When the cluster recovers existing
data under normal operation the preferred sourceisignored. For example, a second Chicago cluster could
specify the cluster ID of the original Chicago database as the preferred source, like so:

2nd Chicago Cluster

depl oynent :
dr:
id: 4
rol e: xdcr
comecti on:
source: CHiserver X, CH serverY, NYserver A, NYserverB
preferredSource: 2

11.2.3. Starting the Database Clusters

Oncethe serversareinitialized with the necessary configuration, you can start the database clusters. How-
ever, it isimportant to note three important points:

* Only one of the clusters can have data in the DR tables when setting up XDCR and that database must
bethefirst inthe XDCR network. In other words, start the database containing the datafirst. Then start
and connect a second, empty databaseto it.

» Assoon asthe databases start, they automatically attempt to contact each other, verify that the DR table
schema match, and start the DR process

» Only one database can join the XDCR network at a time. You must wait for each joining cluster to
complete theinitial synchronization before starting the next.

Often the easiest method for starting the databasesisto:

1. Start one cluster

2. Load the schema (including the DR table declarations) and any pre-existing data on that cluster

3. Oncethefirst cluster isfully configured, start the second cluster and load the schema

4. Oncethe second cluster finishes synchronizing with thefirst, start each additional cluster, one at atime.

Using this approach, DR does not start until step #3 is complete and the first two clusters are fully config-
ured. Then any additional clusters are added separately.

You can then start and load the schema on the databases and perform any other preparatory work you
require. Then use the voltadmin set command to update the connection property for each cluster filling
inthe sour ce property to point at the other cluster. For example:

$ vol tadm n set depl oynent. dr.connection. source="CHl server X, CHl server Y"

As soon as the source property is filled out, the DR process will begin for the first pair of clusters. Once
the first two clusters synchronize, you can repeat this process, one at atime, with any other participating
clusters.

96

Active(N) Database Replication

Note

Although the source property can be modified on arunning database, the unique cluster ID cannot
be changed after the database starts. So it isimportant to include thedr property with the unique
ID and xdcr role when initializing the database root directories.

11.2.4. Loading a Matching Schema and Starting Replication

As soon as the databases start with DR enabled, they attempt to contact a cooperating database to start
replication. Each cluster will issue warnings until the schemafor the databases match. Thisis normal and
gives you time to load a matching schema. The key point is that once matching schema are loaded on the
databases, replication will begin automatically.

When replication starts, the following actions occur:
1. Theclusters verify that the DR tables match on both clusters.

2. If dataalready existsin the DR tables of the first database, that cluster sends a snapshot of the current
contents to the other cluster where it is restored into the appropriate tables.

3. Oncethe snapshot, if any, isrestored, both databases (and any other participating clusters) start sending
binary logs of changes from DR tables to the other cluster.

If any errors occur during the snapshot transmission, replication stops and must be restarted from the
beginning. However, once the third step is reached, replication proceeds independently for each unique
partition and, in aK safe environment, the DR process becomes durable across node failures and rejoins
aswell as cluster shutdowns and restarts.

11.2.5. Stopping Replication

If, for any reason, you need to break replication between the XDCR databases, you canissuethevoltadmin
dr reset command to any cluster. For example, if one of two clusters goes down and will not be brought
back online for an extended period, you canissue avoltadmin dr reset command on the remaining cluster
to tell it to stop queuing binary logs. If not, the logs will be saved on disk, waiting for the other cluster
to return, until you run out of disk space.

When using multiple clusters in an XDCR environment, you must choose whether to break replication
with al other clusters (voltadmin dr reset --all) or with one specific cluster. Breaking replication with
all clusters means that all of the other clusters will need to restart DR from scratch to rejoin the XDCR
environment. Breaking replication with a single cluster means the remaining clusters retain their XDCR
relationship.

If you wish to remove just one, active cluster from the XDCR relationship, you can issue the voltadmin
dr drop command to the cluster you wish to remove. This command finalizes any remaining DR logs on
the cluster and tells all other clustersto break their DR connection with that cluster. If the cluster you want
to removeis not currently running, you can issue the voltadmin dr reset --cluster=n to al the remaining
clusters where n isthe cluster 1D of the cluster being removed.

However, there is a danger that if you remove afailed cluster from a multi-cluster XDCR environment,
the failed cluster may not have sent the same binary logsto all of the other clusters. In which case, when
you drop that cluster from the environment, the data on the remaining clusters will diverge. So, using dr
reset --cluster isrecommended only if you are sure that there were no outstanding logs to be sent from the
failed cluster. For example, stopping an XDCR cluster with an orderly shutdown (voltadmin shutdown)
ensures that all its binary logs are transmitted and therefore the other clusters arein sync.

97

Active(N) Database Replication

When using the dr reset --cluster command, you must also include the --for ce option to verify that you
understand the risks associated with this action. So, the process for removing asingle, failed cluster from
amulti-cluster XDCR environment is:

1. Identify the cluster ID of the cluster that has failed.

2. Issuethevoltadmin dr reset --cluster={failed-cluster-1 D} --for ce command on all the remaining clus-
tersto clear the binary log queues.

Thisway, the remaining clusters can maintain their XDCR relationship but not retain queued data for the

failed cluster. If, later, you want to rejoin the failed cluster to the XDCR environment, you will need to
reinitialize the failed cluster's root directories and restart its XDCR relationship from scratch.

11.2.6. Example XDCR Configurations

Normally, in an XDCR environment, all cluster participate equally. They can all initiate transactions and
replicate those transactions among themselves, as shown in Figure 11.4, “ Standard XDCR Configuration”.

Figure 11.4. Standard XDCR Configuration

id=3
¥ am V-

- - L] ~ ~ .
|d=1£ ‘id=2
HE = === ===s==m= b Emm
L REEEE i

If you also want to have one (or more) clusters on "standby", for example, purely for disaster recovery
or to off-load read-only workloads, you can dedicate clusters from within your XDCR environment for
that purpose. The easiest way to do that is to configure the extra clusters as normal XDCR clusters. That
is setting their role as "XDCR" and assigning them a unique DR ID. However, rather than starting the
clustersin normal operational mode, you can usethe - - pause flag on the voltdb start command to start
them in admin mode. Thisway no transactions can be initiated on the cluster's client ports. However, the
cluster will receive and process DR binary logs from the other clustersin the DR relationship. Figure 11.5,
“XDCR Configuration with Read-Only Replicas’ demonstrates one such configuration.

Figure 11.5. XDCR Configuration with Read-Only Replicas

’
TR -
EEE = --—-

B

Y

voltdb start --pause

98

Active(N) Database Replication

11.2.7. Understanding Conflict Resolution

One aspect of database replication that you need to prepare for and manage is conflicts between the data-
bases. With XDCR replication occurring in both directions, it is possible for changes to be made to the
same data at approximately the same time on two databases. Those changes are then sent to the other
database, resulting in possible inconsistencies or invalid transactions.

For example, say clusters A and B are processing transactions as shown in Figure 11.6, “ Transaction
Order and Conflict Resolution”. Cluster A executes a transaction that modifies a specific record and this
transaction is included in the binary log A;. By the time cluster B receives the binary log and processes
A, cluster B has aready processed its own transactions B, and B». Those transactions may have modified
the same record as the transaction in A1, or another record that would conflict with the changein A1, such
as a matching unique index entry.

Figure 11.6. Transaction Order and Conflict Resolution

.

Cluster A Cluster B
A Bi=
A= o e
Bi— «4 T AT/
Az — B;——
As—— B.—/—

Under these conditions, cluster B cannot simply apply the changes in A4 because doing so could violate
the uniqueness constraints of the schema and, more importantly, is likely to result in the content of the
two database clusters diverging. Instead, cluster B must decide which change takes priority. That is, what
resolution to the conflict is most likely to produce meaningful results or match the intent of the business
application. This decision making processis called conflict resolution.

No matter what the resolution, it isimportant that the database administrators are notified of the conflict,
why it occurred, and what action was taken. The following sections explain:

» How to avoid conflicts
» How VolItDB resolves conflicts when they do occur
» What types of conflicts can occur

» How those conflicts are reported

11.2.7.1. Designing Your Application to Avoid Conflicts

VoltDB uses well-defined rules for resolving conflicts. However, the best protection against conflicts and
the problems they can cause is to design your application to avoid conflictsin the first place. There are at
least two things you can do in your client applications to avoid conflicts:

* UsePrimary Keys

It is best, wherever possible, to define a primary key for al DR tables. The primary key index greatly
improves performance for finding the matching row to apply the change on aconsumer cluster. It isalso

99

Active(N) Database Replication

11.2.7.2.

required if you want conflictsto be resolved using the standard rules described in the following section.
Any conflicting action without a primary key isrejected.

Apply related transactionsto the same cluster

Another tactic for avoiding conflictsisto make sure any autonomous set of transactions affecting a set
of rows are al applied on the same cluster. For example, ensuring that all transactions for a single user
session, or associated with a particular purchase order, are directed to the same cluster.

Do not use TRUNCATE TABLE

TRUNCATE TABLE is a convenient statement for deleting all records in a table. The statement is
optimized to avoid deleting row by row. However, this optimization means that the binary log does
not report which rows were deleted. As a consequence, a TRUNCATE TABLE statement can easily
produce a conflict between two XDCR clusters that is not detected or reported in the conflict log.

Therefore, do not use TRUNCATE TABLE with XDCR. Instead, explicitly delete all rows with a
DELETE statement and afilter. For example, DELETE * FROM t abl e WHERE col urmm=col umm
ensures all deleted rows are identified in the binary log and any conflicts are accurately reported.

Note that DELETE FROM t abl e isnot sufficient, since its execution plan is optimized to equate to
TRUNCATE TABLE. Also, when deleting all rowsin atable, itis best to perform the deletein smaller
batches to avoid overflowing the maximum size allowed for the binary log packets.

How Conflicts are Resolved

Even with the best application design possible, errorsin program logic or operation may occur that result
in conflicting records being written to two or more databases. When a conflict does occur, VoltDB follows
specific rules for resolving the issue. The conflict resolution rules are:

Conflicts are resolved on a per action basis. That is, resolution rules apply to the individual INSERT,
UPDATE, or DELETE operation on a specific tuple. Resolutions are not applied to the transaction as
awhole.

The resolution is that the incoming action is accepted (that is, applied to the receiving database) or
rejected.

Only actions involving a table with a primary key can be accepted, all other conflicting actions are
rejected.

Accepted actions are applied as a whole — the entire record is changed to match the result on the
producer cluster. That meansfor UPDATE actions, all columnsarewritten not just the columns specified
in the SQL statement.

For tables with primary keys, the rules for which transaction wins are, in order:
1. DELETE transactions alwayswin

2. If neither action isa DELETE, the last transaction (based on the timestamp) wins

Let'slook at asimple example to see how these rules work. Assume that the database stores user records,
using a numeric user ID as the primary key and containing columns for the user's name and password. A
user logs on simultaneously in two locations and performs two separate updates: one on cluster A changing
their name and one on cluster B changing the password. These updates are almost simultaneous. However,
cluster A timestamps its transaction as occurring at 10:15.00.003 and cluster B timestamps its transaction
at 10:15.00.001.

100

Active(N) Database Replication

The binary logs from the two transactions include the type of action, the contents of the record before
and after the change, and the timestamps — both of the last previous transaction and the timestamp of the
new transaction. (Note that the timestamp includes both the time and the cluster ID where the transaction
occurred.) So the two binary logs might look like the following.

Binary Log A1:

Action: UPDATE
Current Tinestanp: 1, 10:15.00. 003
Previ ous Timestanp: 1, 06:30.00.000

Before After
User | D 12345 User | D: 12345
Nane: Joe Smith Nane: Joseph Smith
Passwor d: abal one Passwor d: abal one
Binary Log B;:

Action: UPDATE
Current Timestanp: 2, 10:15.00.001
Previ ous Tinmestanp: 1, 06:30.00.000

Before After
User | D: 12345 User | D: 12345
Name: Joe Snith Name: Joe Snith
Passwor d: abal one Password: fl ounder

When the binary log A, arrives at cluster B, the DR process performs the following steps:
1. Usesthe primary key (12345) to look up the current record in the database.
2. Compares the current timestamp in the database with the previous timestamp in the binary log.

3. Because the transaction in B, has aready been applied on cluster B, the time stamps do not match. A
conflict is recognized.

4. A primary key exists, so cluster B attempts to resolve the conflict by comparing the new timestamp,
10:15.00.003, to the current timestamp, 10:15.00.001.

5. Because the new timestamp isthe later of the two, the new transaction "wins' and the change is applied
to the database.

6. Findly, the conflict and resolution is logged. (See Section 11.2.7.4, “Reporting Conflicts’ for more
information about how conflicts are reported.)

Note that when the UPDATE from A1 is applied, the change to the password in B is overwritten and
the password is reset to "abalone". Which at first looks like a problem. However, when the binary log B,
arrives at cluster A, the same steps are followed. But when cluster A reaches steps #4 and 5, it finds that
the new timestamp from B, is older than the current timestamp, and so the action isrejected and the record
is left unchanged. As a result both databases end up with the same value for the record. Essentially, the
password change is dropped.

If the transaction on cluster B had been to delete the user record rather than change the password, then
the outcome would be different, but still consistent. In that case, when binary log A, reaches cluster B, it
would not be able to find the matching record in step #1. Thisis recognized as a DELETE action having

101

Active(N) Database Replication

occurred. Since DELETE awayswins, theincoming UPDATE isrejected. Similarly, when binary log B,
reaches cluster A, the previous timestamps do not match but, even though the incoming action in B, has
an older timestamp than the UPDATE action in A1, B; "wins' because it is a delete action and the record
isdeleted from cluster A. Again, the result is consistent across the two databases.

The real problem with conflicts is when there is no primary key on the database table. Primary keys
uniquely identify arecord. Without a primary key, thereisno way for VoltDB to tell, even if there are one
or more unique indexes on the table, whether two records are the same record modified or two different
records with the same unique key values.

As aresult, if there is a conflict between two transactions without a primary key, VoltDB has no way to
resolve the conflict and simply rejects the incoming action. Going back to our example, if the user table
had a unique index on the user 1D rather than a primary key, and both cluster A and cluster B update the
user record at approximately the same time, when binary log A1 arrives at cluster B, it would look for the
record based on al columnsin the record and fail to find a match.

However, when it attemptsto insert therecord, it will encounter a constraint violation on the unique index.
Again, since thereis no primary key, VoltDB cannot resolve the conflict and rejects the incoming action,
leaving the record with the changed password. On cluster A, the same process occurs and the password
changein B1 getsrejected, leaving cluster A with a changed name column and database B with a changed
password column — the databases diverge.

11.2.7.3. What Types of Conflict Can Occur

The preceding section uses a simple case of conflicting UPDATE transactions to illustrate the steps in-
volved in conflict resolution. However, there are several different types of conflict that can occur. First,
there are three possible actions that the binary log can contain: INSERT, UPDATE, or DELETE. There
are a'so three types of conflicts that can be generated:

* Missing row — The affected row is missing from the consumer database.

» Timestamp mismatch — The affected row exists in the consumer database, but has a different time-
stamp than expected (in other words, it has been modified).

» Congtraint violation — Applying theincoming action would result in one or more constraint violations
on unique indexes.

A missing row means that the binary log contains an UPDATE or DELETE action, but the affected row
cannot befound in the consumer database. (A missing row conflict cannot occur for INSERT actions, since
INSERT assumes no such row exists.) In the case of amissing row conflict, VoltDB assumes a DELETE
action has removed the affected row. Since the rule isthat DEL ETE wins, this means the incoming action
isrejected.

Note that if the table does not have aprimary key, the assumption that a DEL ETE action removed the row
is not guaranteed to be true, since it is possible an UPDATE changed the row. Without a primary key,
there isno way for the DR process to find the matching row when some columns may have changed, so it
assumes it was deleted. Asaresult, an UPDATE could occur on one cluster and a DELETE on the other.
Thisiswhy assigning primary keysis recommended for DR tables when using XDCR.

If the matching primary key is found, it is still possible that the contents of the row have been changed.
In which case, the timestamps will not match and a timestamp mismatch conflict occurs. Again, this can
happen for UPDATE and DEL ETE actionswhere an existing row isbeing modified. If theincoming action
is a DELETE, it takes precedence and the row is deleted. If not, if the incoming action has the later of
the two timestamps, it is accepted. If the existing record has the later timestamp, the incoming action is
rejected.

102

Active(N) Database Replication

Finally, whether the timestamps match or not, with an INSERT or UPDATE action, it is possible that
applying the action would violate one of more unique index constraints. This can happen because another
row has been updated with matching values for the unique index or another record has been inserted
with similar values. Whatever the cause, VoltDB cannot apply the incoming action so it is rejected. Note
that for a single action there can be more than one unique index that applies to the table, so there can
be multiple constraint violations as well as a possible incorrect timestamp. When a conflict occurs, all
conflicts associated with the action are included in the conflict log.

To summarize, the following chart shows the conflicts that can occur with each type of action and the
result for tables with a primary key.

Action Possible Conflict Result for Tableswith Primary Key
INSERT Constraint violation Rejected
UPDATE Missing row Rejected
Timestamp mismatch Last transaction wins
Constraint violation Rejected
DELETE Missing row Accepted (no op)
Timestamp mismatch Accepted

11.2.7.4. Reporting Conflicts

VoltDB makes arecord of every conflict that occurs when processing the DR binary logs. These conflict
logs include:

* Theintended action

» Thetype of conflict

» Thetimestamp and contents of the row before and after the action from the binary log

» Thetimestamp and contents of the row(s) in the consumer database that caused the conflict
» Thetimestamp and cluster ID of the conflict itself

By default, these logs are written as comma-separated value (CSV) files on the cluster where the con-
flictsoccur. Thesefilesare usually written to asubfolder of the voltdbroot directory (vol t dbr oot / xd-

cr_confl i ct s)usingthefileprefix LOG. However, you can configurethelogsto bewritten to different
destinations or locations using the VoltDB export configuration settings.

The DR process writes the conflicts as export data to the export stream VOLTDB_XDCR_CONFLICTS.
You do not need to explicitly configure export — the DR process automatically declares the necessary
export streams, establishes a default export configuration for the file connector, and enables the export
stream. However, if you want the datato be sent to adifferent location or using adifferent export connector,
you can do this by configuring the export stream yourself.

For example, if you want to export the XDCR conflicts to a Kafka stream where they can be used for
automatic notifications, you can change the export properties in the configuration. The following config-
uration writes the conflict logs to the Kafka topic sysops on the broker kafkabroker.mycompany.com:

depl oyrent :
export:
configuration:
- target: VOLTDB_XDCR_CONFLI CTS
type: kafka

103

Active(N) Database Replication

enabl ed: true
property:
- name: broker
val ue: kaf kabr oker. myconpany. com
- nane: topic
val ue: sysops

Each action in the binary log can generate one or more conflicts. When this occurs, VoltDB logs the
conflict(s) as multiple rows in the conflict report. Each row is identified by the type of action (INSERT,
UPDATE, DELETE) aswell asthe type of information the row contains:

e EXISTING (EXT) — The timestamp and contents of an existing row in the consumer database that
caused a conflict. There can be multiple existing row logs, if there are multiple conflicts.

* EXPECTED (EXP) — The timestamp and contents of the row that is expected before the action is
applied (from the binary log).

* NEW (NEW) — The new timestamp and contents for the row once the action is applied (from the
binary log).

* DELETE (DEL) — For aDELETE conflict, the timestamp and cluster 1D indicating when and where
the conflict occurred.

For an INSERT action, there is no EXPECTED row. For either an INSERT or an UPDATE action there
isno DELETE row. And for a DELETE action there isno NEW row. The order of the rowsin the report
isasfollows:

1. The EXISTING row, if thereis atimestamp mismatch

2. The EXPECTED row, if there is atimestamp mismatch

3. One or more EXISTING rows, if there are any constraint violations
4. The NEW row, for all actions but DELETE

5. The DELETE row, for the DELETE action only

Table 11.1, “ Structure of the XDCR Conflict Logs’ describes the structure and content of the conflict log
records in the export stream.

Table 11.1. Structure of the XDCR Conflict Logs

Column Name Datatype Description
ROW_TYPE 3 Bytestring The type of row, specified as:

EXT — existing
EXP — expected
NEW— new
DEL — delete

ACTION_TYPE 1 Byte string The type of action, specified as:

| —insert
U— update
D— delete

CONFLICT_TYPE 4 Byte string The type of conflict, specified as:

104

Active(N) Database Replication

Column Name Datatype Description

M SS — missing row

MBMT — timestamp mismatch
CNST — constraint violation
NONE — no violation?

CONFLICTS ON TINYINT Whether aconstraint violation is associated with the
_PRIMARY_KEY primary key. 1 for true and O for false.
DECISION 1 Byte string How the conflict was resolved, specified as:

A — the incoming action is accepted
R — the incoming action isrejected

CLUSTER_ID TINYINT The DR cluster ID of the cluster that last modified
the row

TIMESTAMP BIGINT The timestamp of the row.

DIVERGENCE 1 Byte string Whether the resulting action could cause the two

cluster to diverge, specified as:

C — the clusters are consistent
D — the cluster may have diverged

TABLE_NAME String The name of the table.

CURRENT TINYINT The DR cluster 1D of the cluster reporting the con-
_CLUSTER_ID flict.

CURRENT BIGINT The timestamp of the conflict.

_TIMESTAMP

TUPLE JSON-encoded string The schemaand contents of the row, as a JSON-en-

coded string. The column islimited to IMB in size.
If the schema and contents exceeds the IMB limit,
itistruncated.

8Update operations are executed as two separate statements; a delete and an insert, where only one of the two statements might result

in aviolation. For example, the delete may trigger amissing row violation but the insert not generate a violation. In which case the
EXT row of the conflict log reports the MISS conflict and the NEW row reports NONE.

11.2.7.5. Managing XDCR Conflict Logs

The XDCR conflict logs provide the information necessary to recover from unexpected conflictsin your
application workflow. Of course, not al conflicts that are logged are critical. For example, if arow is
deleted simultaneously by two XDCR clusters, one or both of the clusterswill log a"missing row" conflict
when it receives the matching delete transaction from the other cluster. It is a business decision which
conflicts are acceptable and which require intervention.

It is also abusiness decision how long the conflict logs need to be retained, either for corrective action or
as historical records. By default, VoltDB saves al conflict logs. However, over time these add up and put
astrain on system resources. So it isagood idea to establish aretention policy for managing the log files.

VoltDB lets you specify a retention period for conflict logs as part of the configuration, when initializ-
ing the database. Thedepl oynment . dr. confl i ctret enti on property specifies atime limit, after
which old conflict logs are deleted from the system. For example, the following configuration specifies
that the conflict logs are kept for 14 days:

depl oyrent :
dr:

105

Active(N) Database Replication

id: 1
rol e: xdcr
conflictretention: 14d

Theargumenttoconfl i ctret enti onisaninteger followed by asingle character specifying thetime
unit, where the time unit is s, m, h, or d representing seconds, minutes, hours, or days respectively. By
default, thereis no retention limit and all conflict log files are kept (except on Kubernetes, where a default
retention limit of 30 daysisapplied). Also,conf | i ct retenti on only appliesif you do not customize
the export connector for XDCR conflict logs, as described in Section 11.2.7.4, “Reporting Conflicts’. If
you do customize the export connector and are using afile exporter, you can usether et ai n subproperty
of confi gur at i on to specify aretention limit.

11.3

Updating the Schema During Replication

SQL statements that modify the database contents, such as DELETE, INSERT, and UPDATE, are trans-
mitted through the DR binary logs; however, schema changes are not. When updating the schemafor DR
tables, you must make the changes to each database separately.

By default, if the schema of the tables do not match when the results of atransaction are received asbinary
logs, the consumer will regject the change, causing the producer (that is the partition on the cluster that
sent the problematic binary log) to halt replication until the schemamismatch isresolved. In the best case,
there are mismatched transactions in only one direction (that is, from cluster B to cluster A). If so, once
you update the schema on the stalled consumer cluster A, replication resumes and cluster B can send the
subsequent transactions it had buffered.

In XDCR, while binary logs from the producer are stalled, the consumer continues to process client trans-
actionsitself and will send those transactions as binary logs to the other cluster. That is, cluster A also acts
asaproducer sending binary logsto cluster B asaconsumer. If there are simultaneous write transactionsto
the same table on the two clusters while the schema do not match, a deadlock can result. Both clusterswill
stall dueto mismatched schemaand their content will have diverged. Inthissituation, your only optionisto
choose one of the clusters asthe "winner" and reinitialize the other cluster and restart XDCR from scratch.

When planning schema changes you must be careful to avoid passing incompatible changes between the
databases while the schema of the two or more clusters do not match.

There are three aternatives that alow you to update the schema while the database is running:
* Pause the databases to safely modify the schema while transactions are paused

 Carefully add or remove tables without pausing

* Use dynamic schema change to add, remove, or modify columnsin atable without pausing

The following sections describe each of these approaches.

11.3.1. Safely Updating the Schema While the Clusters are
Paused

The safest process for changing the schemafor DR tablesisto:

1. Pause and drain the outstanding DR binary logs on all clusters using the voltadmin pause --wait com-
mand

2. Update the schemafor the DR tables on all clusters

106

Active(N) Database Replication

3. Resume all clusters using the voltadmin resume command

This process ensures that no transactions are processed until the schema on the clusters are updated and in
sync. However, this process also means that there are no client transactions processed during the update.
So thisisthe safest approach, but also has the largest negative impact on ongoing transactions.

11.3.2. Adding and Removing Tables Without Pausing

Because schema validation occurs on a per table, per transaction basis, it is possible to update the schema
without pausing the database. However, this only works if you ensure that no client transactions attempt
to modify the affected tables while the schema differ. If any transactions attempt to write to an affected
table while the schema differ, the consumer will stall until the schema match.

For example, it is possible to add tables to the database schema without pausing the database. Y ou can
add the new tables to the databases in one step, then update the stored procedures and client applications
in asecond step. Thisway no client applications access the new tables until their schema exist and match
on all of the XDCR databases. At the same time, ongoing transactions associated with older tables are
not impacted.

You can even modify existing tables without pausing the database. But in this case you must be much
more careful about avoiding operationsthat access the affected tables during the transition. One way to do
thisisto create a new table, matching the existing table but with the desired changes. Update the schema
on both clusters, then update the client applications and stored procedures to use the new table. Finally,
once al client applications are updated, the original table can be deleted.

11.3.3. Using Dynamic Schema Change to Add, Remove, and
Modify Table Columns Without Pausing

Itis possible to make additional schema changesin an XDCR environment without pausing the databases
and while continuing to process transactions during the schema transition. Thisis referred to as dynam-
ic schema change. However, because dynamic schema change introduces additional risk of the database
contents diverging, the feature is not enabled by default. To use dynamic schema change you must config-
ure the database server to allow schema change when you first start it. (Enabling schema change can also
be done when reinitializing servers as part of the software upgrade process when upgrading the VoltDB
software.)

Dynamic schema change lets you:

e Add acolumn to the end of an existing DR table, aslong asit has a default value
» Delete thelast column in thetable, aslong asit has a default value

» Modify the length of aVARCHAR column

The following sections describe the process for enabling and using dynamic schema change.

11.3.3.1. Configuring VoltDB Databases to Allow Dynamic Schema
Changes

Y ou enable dynamic schemachange by settingthedepl oynment . dr . schemachang. enabl ed prop-
erty to true in the configuration. The enabl ed property takes avalue of "true" or "false”, with a default
value of false. In other words, changing the schema and passing binary logs containing tuples with differ-

107

Active(N) Database Replication

ent schemawill continue to break replication as in previous versions unless you explicitly enable schema
change in the configuration. The following configuration demonstrates how to enable dynamic schema
change:

depl oynment:
dr:

id: 1

role: xdcr

schenmachange:
enabl ed: true

connecti on:
source: paris.nyconpany.com rone. myconpany. com

Y ou must configure the XDCR schema settings when you initialize the database. Y ou cannot change the
setting once the database has started.

11.3.3.2. How Dynamic Schema Change Works

Normally, if you changethe schemafor atablein an XDCR environment, as soon asarecord ispassed from
one cluster to another where the schemado not match, the clusters stop replication to avoid the possibility
of their data diverging. When you enable dynamic schema change, the clusters do not stop replication if
the differences are adding or removing the last column or changing the length of VARCHAR columns.
Instead, when tuples are received that do not match, XDCR uses aset of rulesto accommodate the changes.

For example, if there are two XDCR clusters, Alpha and Beta, and you modify the schemato add a new
column with a default value to one of the tables. When you apply the schema change to cluster Alpha, the
schema on the two clusters ook like this:

Column D

Column C Column C
Column B Column B
Column A Column A
Alpha Beta

When a record is inserted into cluster Alpha, data for all four columns in the updated table are sent as
abinary log to cluster Beta. But since Beta has the old schema, the data for the new column is dropped
when the binary log is applied.

ColumnD | [.ueees -

ColumnC | | ceees data + Column C
ColumnB | | === data |eeeees -* Column B
Column A | | =eeemy data @ eeeees -* Column A
Alpha Beta

108

Active(N) Database Replication

Similarly, when dataisinserted into Alphaduring the transition, thelogs passed to cluster Alphaonly have
three columns of data. So Volt uses the default value for the new column while applying the binary log.

Filled in with
Column D *- default value
Column C * data Column C
Column B * ------- data Column B
Column A + data @~ eeees Column A
Alpha Beta

Thismeansthat the data exchanged between the two clusters do not match while the schema do not match.
However, when you apply the schema change to cluster Beta, the new column of existing records gets
filled in with the default value. (Thisis why a default value is required when adding or dropping columns
as part of dynamic schema change.) As aresult, as long as al of the records passed from Alphato Beta
during the transition period use the default value for the new column, the content of the databases match
once the schema change is complete.

Existing records
Column D filled in with» Column D
default value
Column C Column C
SCHEMA
Column B UPDATE Column B
Column A Column A
Alpha Beta

Schema changes that remove columns from the table work on the same principle: binary logs containing
fewer columns than the current schema are filled in with the default value while logs containing more
columns than the current schema have the extra column's data dropped.

Changing the length of VARCHAR columns is dlightly different. First, when reducing the length of a
column, you can only make the schema change when the table is empty. Thisis true whether the cluster
is configured for XDCR or not. So the primary rule is to make sure you update the schema on all of the
clusters before any data is inserted into the table. Or else you will not be able to complete the schema
change process.

When lengthening a VARCHAR column, you must be careful not to insert any data that will exceed the
original length of the column. If you do insert data that is too long before all of the clusters schema are
updated, a cluster using the older schemawill receive a binary log that is too long for its current schema
and will break replication.

11.3.3.3. The Risks Associated with Dynamic Schema Change

Allowing alimited set of schema changes that can be applied dynamically provides away to adjust your
schemawithout interrupting ongoing processing. It also ensures that the resulting database contentsarein
sync at the conclusion of the schema change as long as you follow a set of simple rules.

109

Active(N) Database Replication

However, dynamic schema change, even under the current limitations, introduce additional risk. If client
applications attempt to use the new columns for non-default values during the transition between when
the database schema change starts and when all of the clusters schema are updated, the databases will
diverge without warning.

The primary risk isif, during the addition of a column, clients either insert or update the table using non-
default values for the additional column, the clusters will silently diverge. For example, let's say column
D is added to cluster Alpha with a default value of zero (0). Before cluster Beta is updated, an insert
transaction adds a record to the table on Alpha with a value of five (5) for the new column. When that
record is sent to Beta, which does not have the new column, the value is dropped. When the schema on
Betaisfinally updated, the new column isfilled in with the default value zero, not five which isthe value
Alpha hasfor that record.

The problem is that cluster Beta has no way to tell if the data being dropped during the transition is a
default or non-default value. So there are no entries in the conflict log for this event.

Note that thisissue is specific to adding columns. When dropping a column, even if non-default value are
inserted during the transition, ultimately all clusterswill drop the affected column and its associated data,
so the divergence is resolved once the schemafor all clusters are updated.

When increasing the length of VARCHAR columns there is arisk that during the transition, a client may
insert arecord that exceedsthe original limit into cluster Alphathat acceptsthelonger length. Fortunately,
in thissituation, VoltDB does not allow VARCHAR values that exceed the declared limit for the column.
So when the cluster Betareceives the binary log with avalue that exceeds the column'slimit, it will break
replication.

The good news is that VoltDB recognizes the problem and avoids any divergence. The bad news is the
replication stops and you must reinitialize and restart one of the clusters to reestablish XDCR communi-
cation.

Finally, you cannot decrease the length of a VARCHAR column unless the table is empty. So, under
normal circumstances, the table is empty when you start the schema change and no records should be
written to it until the change is complete on all clusters.

11.3.3.4. Rules for Dynamically Updating Schema in an XDCR Environ-
ment

Although dynamic schema change does introduce potential dangers, those dangers are easily avoided by
following afew very simple rules when modifying the schema of XDCR clusters:

* When adding a column to a table, do not insert data into the new column until the schema change is
complete. (That is, the schema has been updated on all clusters.) This ensures that all records added or
maodified during the transition period receive the default value for the new field.

» There are no specific requirements when dropping a column from atable. However it is good practice
to update your client applications to remove any reference to the column before beginning the schema
update, to avoid unnecessary run-time errors when the applications attempt to select, insert, or update
the column being removed.

» When extending the length of a VARCHAR column, make sure your applications do not make use of
the additional space until after the schema update is complete.

» When reducing thelength of aVARCHAR column the table must be empty, so be sure your applications
do not attempt to write any records into the table until the update is complete.

110

Active(N) Database Replication

11.4. Monitoring Database Replication

Database replication runs silently in the background. To ensure replication is proceeding effectively, Volt-
DB provides statistics on the producer and consumer clusters that help you understand the current state of
the DR process. Specificaly, the statistics can tell you:

» The amount of DR data waiting to be sent from the producer
» Thetimestamp and unique ID of the last transaction received by the consumer
» Whether any partitions are "falling behind" in processing DR data

This information is available from the @Statistics system procedure using the DRROLE, DR-
CONSUMER, and DRPRODUCER selectors. In XDCR, al clusters act as both producer and consumer
and provide statistics on both roles:

» The @Statistics DRROLE procedure provides summary information about the database's DR role (xdcr
or none), the cluster 1D, and the current state of the DR process.

* On the producer database, the @Statistics DRPRODUCER procedure includes columns for the cluster
IDs of the current cluster and the consumer, as well as the transaction ID and timestamp of the last
queued transaction and for the last transaction ACKed by the consumer. The difference between these
two events can tell you the approximate latency between the two databases.

* On the consumer database, the @Statistics DRCONSUMER procedure includes statistics, on a per par-
tition basis, showing whether it has an identified "host" server from each producer cluster "covering” it,
or in other words, providing it DR logs. The system procedure results a so include columns listing the
ID and timestamp of the last received transaction for each producer cluster. If a consumer partition is
not covered, it means it has lost contact with the server on the producer database that was providing it
logs (possibly due to a node failure). It is possible for the partition to recover, once the covering serv-
er rejoins. However, the difference between the last received timestamp of that partition and the other
partitions may give you an indication of how long the interruption has persisted and how far behind
that partition may be.

11.5. Tuning Active(N) to Meet Your Application
Needs

Active(N) database replication is designed to accommodate different workloads and will provide outstand-
ing performance for most active database applications. However, the default settings may not meet the
needs of all business use cases. There are anumber of configuration options availableto help you optimize
replication to meet your specific needs. Before adjusting the configuration, you need to understand how
the DR consumers and producers interoperate so you can understand what effect each option has on the
flow of data between the clusters.

The following sections explain the XDCR workflow process and how to detect and resolve possible bot-
tlenecks in runtime performance.

11.5.1. The XDCR Workflow

In an Active(N) environment, each unique partition within the cluster acts as both a DR producer and
consumer. Asaproducer, the cluster sendsthe results of any transactions that modify the database content

111

Active(N) Database Replication

to the participating clusters. At the same time, as a consumer the cluster receives transaction results from
the other clusters and applies them to its copy of the database. The producer and consumer operations are
performed on a per partition basis, as shown in Figure 11.7, “ The XDCR Producer/Consumer Workflow”.

Figure 11.7. The XDCR Producer/Consumer Workflow

Transactions Results Buffers Applied |
EEREESN == + I- +‘ e

(1) (2, (3)

(=]

| —
| |
| = |
_| j— |

—

el___

Partition Outbound Inbound Partition
DR Queue | | DR Queue
Acknowledge
Producer g Consumer

The workflow consists of four main steps:

(1]

(2]

As transactions are processed on the producer cluster, results of transactions that alter the database
contents are added as binary logsto buffersin the producer's outbound queue.

The buffers are then sent to the consumer cluster (or multiple consumers if there are three or more
clusters in the quorum). When the consumer receives the buffers, they are added to the consumer's
inbound queue.

The buffers are then processed in sequentia order, applying the binary logs to the consumer's data-
base contents.

Once a buffer is processed, acknowledgement is sent back to the producer cluster so it knows that
the data has been successfully processed and the buffer can (once all consumer clusters acknowledge
it) be deleted from the queue.

The workflow is optimized to allow each component to operate independently, maximizing efficiency:

The size of transaction results vary dramatically — from tens of bytes to as much as 37 megabytes —
depending on how many records are affected, the size of the records, etc. As a result, the number of
transactions in any given buffer can also vary, as can the size of the buffer itself.

When the producer sends buffersit sends all of the available buffers not already acknowledged by the
consumer.

On the receiving end, when the consumer receives buffers from the producer it places as many buffers
as it can fit on the inbound queue. If the queue limit is too low to accommodate all of the buffers, the
consumer simply drops the excess buffers. This means the producer will resend the dropped buffersin
the next packet it sends, which causes some redundancy. However, the additional network bandwidth is
usually aminimal cost to avoid any temporary delaysin the consumer causing backupsin the producer.

Evenif abuffer isadded to theinbound queue, it is possible the consumer does not havetimeto apply and
acknowledge the transactions before the producer sends the next batch of buffers. When this happens,
the same buffer may be sent twice. The consumer simply adds the duplicate buffer to the queue and
when it comes time to apply it, recognizes that the buffer has already been applied, throws it away and
moves on to the next buffer in the queue.

112

Active(N) Database Replication

11.5.2. Detecting and Correcting Bottlenecks in the XDCR
Workflow

Under normal conditions, there will be occasional buffers discarded by the consumer and some sent mul-
tiple times from the producer. Thisis not a problem because the workflow accommodates the exceptions
and allows each cluster to perform its functions at maximum speed. The producer periodically sending too
many buffers or duplicate buffers does not result in any noticeable performance impact.

However, if there are continual or increasingly frequent buffers rejected or resent, the condition points to
bottlenecksin the workflow that can result in delaysin datareplication. Volt provides metricsthat help you
detect and correct these situations. |n particular, there are three statisticsthat hel p detect issueswith XDCR:

» Buffersignored by the consumer — This is the number of excess buffers the consumer receives
from the producer but cannot fit within the consumer's inbound queue. The value is returned in the
IGNORED_BUFFERS column returned by the @Statistics DRCONSUMER selector.

» Duplicate buffersdropped by the consumer — Thisisthe number of duplicate buffersthat are sent to
the consumer, added to the queue, then discarded when it comestimeto apply them since the associated
transaction results have aready been applied. The value is returned in the DUPLICATE _BUFFERS
column returned by the @Statistics DRCONSUMER selector

» Latency between the producer and the consumer — There are four columns available on the pro-
ducer that provide information on the latency of DR transactions; that is, how long it takes for atrans-
action to be sent to the consumer, applied, and then acknowledged back to the producer. Thereis both a
maximum and average val ue in milliseconds, measured both over the past minute and past five minutes.
These DR_ROUNDTRIPTIME_* columns of the @Statistics DRPRODUCER selector can help you
determine if there are delays in the workflow and, with the other statistics, where those delays may be.

These statistics are avail abl e from the @Statistics system procedure or from the corresponding Prometheus
metrics, as described in the Volt Administrator's Guide. By tracking these statistics over time, you can
detect potential issues in the replication workflow, as described in the following sections.

11.5.2.1. Not Enough Space in the DR Consumer Queue

If the number of ignored buffers IGNORED_BUFFERS) ishigh or steadily increasing, while the number
of duplicate buffers remains low, it means that the maximum queue size for the consumer is not large
enough to hold the amount of buffered DR transactions being sent by the producer(s). By increasing the
maximum size you can provide the space needed to hold the volume of incoming buffers.

Y ou specify thesizein bytesl as part of the connection configuration, using the consumerlimit.naxsi ze
property. For example, the following configuration doubles the consumer queue from the default of 50MB
(52428800 bytes) to 100MB :

depl oynent :
dr:
id: 1
role: xdcr
connecti on:
sour ce: chi cago, boston
consunerlimt:
maxsi ze: 104857600

Ytisalso possible to specify the consumer queue size in number of buffers. However, that is not recommended since buffers can vary dramatically
in size. Specifying the queue size in bytes rather than buffers gives you control over how much memory may be consumed at run time.

113

https://docs.voltactivedata.com/v14docs/AdminGuide/MonitorOther.php

Active(N) Database Replication

Of course, increasing the queue size can reduce the number of ignored buffers, but it alsoincreases memory
utilization across the cluster. By specifying the limit in bytes you can estimate how much of an increase
that will be, since thetotal memory required for the consumer queuesis approximately the size of the queue
limit in bytes times the number of unique partitions on the cluster. The calculation is not exact because if
there is any room in the queue when the consumer receives buffers from the producer, at least one buffer
will be placed on the queue, even if that buffer extends the queue beyond its configured size. So be sure
to allow some additional space for this overflow.

Y ou can increase the consumer queue size on a running cluster using the voltadmin update or set com-
mand. After making the adjustment, be sure to measure the number of ignored buffers again to verify that
the change has the desired effect and the count of ignored buffers has gone down.

11.5.2.2. Unbalanced Workload or Servers

If the duplicate buffer count (DUPLICATE_BUFFERS) ishigh, and especialy if itisincreasing over time,
it means that the consumer cluster is not able to keep up processing the incoming buffers at the same rate
they are being generated. There are several possible causes for this situation and the resolution depends
on the cause.

* First and foremost, check the ignore buffers to make sure the consumer queue islarge enough to handle
the incoming traffic.

» Next, make sure the clusters are homogeneous; that is, they have the same physical configuration or
at least the same number of unique partitions. If the clusters have a different partition count, the DR
consumer will have to redistribute the transaction resultsit receives from the producer to the appropriate
partitionswithin the consumer cluster, significantly increasing the time needed to apply the buffers. Het-
erogeneous clusters may have asignificant impact on the latency of DR processing and are therefore not
generally recommended for production use, except temporarily during elastic expansion or contraction.

« If the cluster are homogeneous and have a suitably sized consumer queue, the next step isto check to see
if undue latency is delaying the delivery of buffersto the inbound queue, in particular, look for network
delays, as described in Section 11.5.2.3, “Too Much Latency Between Clusters’.

« If no other causes can be found, check for conflicts on the consumer cluster itself that could delay DR
processing. Issuesto look for are:

« Non-Volt processes competing for system resources,

« Frequent or long-running multi-partition procedures on the consumer blocking the individua parti-
tions from applying the inbound DR buffers

* Animbalance in the workload across the XDCR clusters

11.5.2.3. Too Much Latency Between Clusters

The DR_ROUNDTRIPTIME_* columns returned by the @Statistics DRPRODUCER selector tell you
how long it is taking for transactions to be sent from the producer to the consumer, be applied, and then
acknowledged. If the consumer queueistoo small or other activity on the server is delaying the processing
of buffersin the DR consumer queue, this latency will be reflected in the round trip times reported by
@Statistics, aswell asintheIGNORED_BUFFERS and DUPLICATE_BUFFERS counts reported by the
@Statistics DRCONSUMER selector.

However, if the consumer buffer isnot overflowing and DR transaction results are being applied efficiently
but the latency reported by the round trip timeis still high, there are two other possible issues that need to
be addressed. Thefirst isto investigate whether the latency is due to slow or erratic network performance.

114

Active(N) Database Replication

Y ou can use standard networking utilities such as ping to evaluate the network performance between the
clusters.

The other situation that can result in unexpected latency in DR processing isif the volume of write trans-
actions is so low or erratic, there is not enough traffic to actualy fill the outbound buffers in a timely
fashion. In this case the producer waits for additional transaction results to fill the buffer before adding
it to the outbound queue. Eventually, even if no additional transactions arrive, the producer will submit
whatever transaction results are waiting into a buffer and add them to the queue. However, the period
between when a transaction is executed and when the buffer is finally submitted will result in increased
latency. For workloads of this nature, there is a setting that hel ps reduce the latency between transaction
execution and adding the results to the outbound queue and thisisthe DR flush interval.

The flush interval specifies atimeout period where, even if there are not enough results to fill a buffer,
the results are submitted to the queue. The flush interval defaults to one second, but if you have an
low or erratic workload you can specify a shorter flush interval using the depl oynent . syst enset -
tings.flushinterval.dr.interval property. For example, thefollowing configuration setsthe
flush interval for XDCR to half a second. Note that you must make sure the global minimum flush interval
(depl oynent . syst ensettings. fl ushi nterval . m ni munj is less than or equal to the new
DR flush interval, or else the global minimum will override your DR setting:

depl oyrent :
systensettings:
flushinterval:
m ni mum 400
dr:
i nterval : 500

115

Chapter 12. Security

12.1.

12.2.

Security is an important feature of any application. By default, VoltDB does not perform any security
checks when a client application opens a connection to the database or invokes a stored procedure. This
is convenient when developing and distributing an application on a private network.

However, on public or semi-private networks, it isimportant to make sure only known client applications
are interacting with the database. VoltDB lets you control access to the database through settings in the
schema and configuration. The following sections explain how to enable and configure security for your
VoltDB application.

How Security Works in VoltDB

When an application creates aconnection to aV oltDB database (using ClientFactory.clientCreate), it pass-
es ausername and password as part of the client configuration. These parameters identify the client to the
database and are used for authenticating access.

At runtime, if security is enabled, the username and password passed in by the client application are vali-
dated by the server against the users defined in the configuration. If the client application passesin avalid
username and password pair for an account that has not expired, the connection is established. When the
application calls a stored procedure, permissions are checked again. If the schema identifies the user as
being assighed a role having access to that stored procedure, the procedure is executed. If not, an error is
returned to the calling application.

Note

VoltDB uses SHA-256 hashing rather than encryption when passing the username and password
between the client and the server. The passwords are also hashed within the database. To secure
the actual communication between the server and client, you can implement either Transport
Layer Security (TLS) or Kerberos security. Use of TLSisdescribed in Section 12.7, “Encrypting
VoltDB Communication Using TLS/SSL” while the use of Kerberos with VVoltDB is described
in Section 12.9, “Integrating Kerberos Security with VoltDB”.

There are three steps to enabling security for aVoltDB application:

1. Set the deploynent. security. enabl ed property to true in the configuration to turn on
authentication and authorization.

2. Define the users and roles you need to authenticate.
3. Define which roles have access to each stored procedure.

The following sections describe each step of this process, plus how to enable access to system procedures
and ad hoc queries.

Enabling Authentication and Authorization

By default VoltDB does not perform authenti cation and client applications have full accessto the database.
To enable authentication, add thesecur i t y property and its subpropertiesto the configuration. Y ou can
enable security when you initialize the database root directory, or you can use voltadmin set to change
the security settings on the running database. (Or you can change the setting interactively through the Volt
Management Center.)

116

Security

depl oyrent :
security:
enabl ed: true

12.3. Defining Users and Roles

Thekey to security for VoltDB applicationsisthe users and roles defined in the schemaand configuration.
Y ou define users in the configuration and roles in the schema.

Thissplit isdeliberate becauseit allows you to define the overall security structure globally inthe schema,
assigning permissionsto generic roles (such as operator, dbuser, apps, and so on). Y ou then define specific
users and assign them to the generic roles as part of the database configuration. This way you can create
one configuration (including cluster information and users) for development and testing, then move the
database to a different configuration and a different set of users for production by changing only onefile:
the configuration file.

Y ou define userswithinthedepl oynent . user s property inthe configuration. The syntax for defining
usersisasfollows.

depl oyrent :
users:
user:
- name: user-nane
password: password-string
roles: role-nane[,...]
expires: expiration-date

Note

If you do not want to distribute the account passwords in plain text, you can use the voltdb mask
command to hash the passwords in the configuration file.

Include auser list element for every username/password pair you want to define. You specify which
roles a user belongs to as part of the user definition in the configuration using ther ol es property. You
can assign users built-in roles, user-defined roles, or both. For user-defined roles, you define the rolesin
the database schema using the CREATE ROLE statement.

CREATE ROLE rol e- nane;

Y ou can optionally add an expiration date for the account using the expi r es property and specifying a
date in 1SO 8601 format (i.e. yyyy-MM-dd). If an expiration date is included, the account loses access to
the database after midnight of the specified date, until an administrator resets the account propertiesin the
configuration using the voltadmin update or set command.

Note that, since the user can no longer access the database once their password expires, it is strongly
suggested you do not set an expiration date on accountswiththe ADMINISTRATOR role. If the passwords
expire on all accounts with the ADMINISTRATOR role, there will be no way to access the database for
administrative functions and you may have to reinitialize the database from scratch to regain access.

At least one user must be assigned the built-in ADMINISTRATOR role. For example, the following code
definesthree users, assigning operator the built-in ADMINISTRATOR role and the user-defined OPSrole,
assigning devel oper the user-defined roles OPS and DBUSER, and assigning the user clientapp DBUSER.
When auser is assigned more than one role, you specify the role names as a comma-delimited list.

117

Security

depl oyrent :
users:

user:

- name: operator
password: nech
rol es: adm ni strator, ops

- nane: devel oper
password: tech
rol es: ops, dbuser
expires: 2029-02-17

- nane: clientapp
password: xyzzy
rol eszz; dbuser
expires: 2028-01-29

Four important notes concerning the assignment of users and roles:

» Users must be assigned at least one role, or else they have no permissions. (Permissions are assigned
by role.)

» At least one user must be assigned the built-in ADMINISTRATOR role.

» At least one user with the ADMINISTRATOR role should be defined without an expiration date to
avoid losing access to the database.

» There must be a corresponding role defined in the schema for any user-defined roles listed in the con-
figuration.

12.4. Assigning Access to Stored Procedures

Onceyou definethe usersand roles you need, you assign them accessto individual stored proceduresusing
the ALLOW clause of the CREATE PROCEDURE statement in the schema. In the following example,
usersassigned therolesdbuser and ops are permitted accessto both the MyProcl and MyProc2 procedures.
Only users assigned the ops role have access to the MyProc3 procedure.

CREATE PROCEDURE ALLOW dbuser, ops FROM CLASS MyProcl,;
CREATE PROCEDURE ALLOW dbuser, ops FROM CLASS MyProc?2;
CREATE PROCEDURE ALLOW ops FROM CLASS MyProc3;

Usually, when security isenabled, you must specify accessrightsfor each stored procedure. If aprocedure
declaration does not include an ALLOW clause, no accessis allowed. In other words, calling applications
will not be able to invoke that procedure.

12.5. Assigning Access by Function (System Proce-
dures, SQL Queries, and Default Procedures)

It isnot always convenient to assign permissionsone at atime. Y ou might want a special role for accessto
all user-defined stored procedures. Also, there are special capabilities available within VoltDB that are not
called out individually in the schema so cannot be assigned using the CREATE PROCEDURE statement.

For these specia cases VoltDB provides named permissions that you can use to assign functions as a
group. For example, the ALLPROC permission grants arole access to all user-defined stored procedures
so the role does not need to be granted access to each procedure individually.

118

Security

Severa of the special function permissions have two versions: a full access permission and a read-only
permission. So, for example, DEFAULTPROC assigns accessto all default procedures while DEFAULT-
PROCREAD allows accessto only the read-only default procedures; that is, the TABLE.select procedures.
Similarly, the SQL permission alows the user to execute both read and write SQL queries interactively
while SQLREAD only allows read-only (SELECT) queries to be executed.

One additional functional permission isaccessto the read-only system procedures, such as @Statistics and
@Systeminformation. This permission is special in that it does not have a name and does not need to be
assigned; al authenticated users are automatically assigned read-only access to these system procedures.

Table 12.1, “Named Security Permissions’ describes the named functional permissions.

Table 12.1. Named Security Permissions

Permission Description Inherits
DEFAULTPROCREAD |Access to read-only default procedures (TABLE.se-
lect)
DEFAULTPROC Accessto al default procedures (TABLE.select, TA-| DEFAULTPROCREAD
BLE.insert, TABLE.delete, TABLE.update, and TA-
BLE.upsert)
SQLREAD Accessto read-only ad hoc SQL queries (SELECT) | DEFAULTPROCREAD
SQL Accessto al ad hoc SQL queries and default proce-| SQLREAD, DEFAULT-
dures PROC
ALLPROC Access to all user-defined stored procedures
ADMIN Full accesstoall system procedures, all user-defined| ALLPROC, DEFAULT-
procedures, as well as default procedures, ad hoc| PROC, SQL
SQL, and DDL statements.
Note: For backwards compatibility, the special permissions ADHOC and SY SPROC are still recognized.
They areinterpreted as synonyms for SQL and ADMIN, respectively.

In the CREATE ROLE statement you enable access to these functions by including the permission name
in the WITH clause. (The default, if security is enabled and the keyword is not specified, is that the role
is not allowed access to the corresponding function.)

Note that the permissions are additive. So if a user is assigned one role that allows access to SQLREAD
but not DEFAULTPROC, but that user is aso assigned another role that allows DEFAULTPROC, the
user has both permissions.

The following example assigns full access to members of the ops role, access to interactive SQL queries
(and default procedures by inheritance) and all user-defined procedures to members of the developer role,
and no special access beyond read-only system procedures to members of the appsrole.

CREATE RCOLE ops W TH admi n;
CREATE RCOLE devel oper WTH sql, allproc;
CREATE ROLE apps;

12.6. Using Built-in Roles

To simplify the development process, VoltDB predefines two roles for you when you enable security:
administrator and user. Administrator has ADMIN permissions: accessto all functions including interac-
tive SQL queries, DDL, system procedures, and user-defined procedures. User has SQL and ALLPROC
pemissions: access to ad hoc SQL and all default and user-defined stored procedures.

119

Security

These predefined roles areimportant, because when you start the database thereis no schemaand therefore
no user-defined roles available to assign to users. So you must always include at |east one user who is
assigned the Administrator role when starting a database with security enabled. Y ou can use this account
to then load the schema — including additional security roles and permissions — and then update the
configuration to add more users as necessary.

12.7. Encrypting VoltDB Communication Using
TLS/SSL

VoltDB hashes usernames and passwords both within the database server and while passing them across
the network. However, the network communication itself is not encrypted by default. You can enable
Transport Layer Security (TLS) — the recommended upgrade from Secure Socket Layer (SSL) communi-
cation — for the client and admin ports, the internal interface, and the port used for cross datacenter data-
base replication (XDCR) for more thorough security. Similarly, you can enable TLSfor the Volt Manage-
ment Console (VMC) and HTTP/JSON port when configuring the separate VMC service. The following
sections summarize how to enable TLS for the serversin a cluster, including:

» Creating TLS/SSL certificates

» Using Certificate Revocation Lists (CRLS)

» Configuring TLS encryption on the server, including choosing which ports to encrypt
 Configuring mutual TLS encryption for both clients and servers

» Using the VoltDB command line utilitieswith TLS

* Implementing TLS communication in Java client applications

» Configuring Database Replication (XDCR) using TLS

12.7.1. Creating the TLS/SSL Certificates

TLS, like its predecessor SSL, uses certificates to validate the authenticity of the communication. You
can either use certificates created by a commercial certificate provider (such as Digitcert, GeoTrust, or
Symantec) or you can create your own certificates. If you use a commercia provider, that provider also
handles the authentication of the certificate. If you create a local or self-signed certificate, you need to
provide the certificate and authentication to the server and clients yourself.

If you chooseto use alocally created certificate, you must first generate the certificate key store and trust
store. For traditional TLSvalidation of the datarepository, you will need acertificatefor the cluster servers.
(All nodes in the cluster use the same certificate.) For mutual TLS, or mTLS, you will need separate
certificates for the server and the clients.

Note

Thefollowing instructions describe creating and using TLS/SSL certificatesin Privacy Enhanced
Mail, or PEM, format. PEM is atext-based format that is easy to work with and is accepted by all
Volt functions starting with Volt version 14.2.0 and Volt Operator 3.6.0. For earlier versions of
Volt, certain functionsrequireaJK Sfileinstead of PEM. Please seetheversion 13 documentation
for configuring TLS for instructions on creating and using certificates acceptable to previous
releases.

120

https://docs.voltactivedata.com/v14docs/v13docs/UsingVoltDB/SecuritySSL.php

Security

Y ou can create local certificatesin PEM format using the freely available OpenSSL command line utility.
(See the OpenSSL web site, https.//openssl.org, for more information and download instructions.) For
encryption with authentication of the server, you need to create akey store and atrust store for the server.
For example:

Example 12.1. Creating a TL S Certificate for the Database Servers

openssl req -x509 -newkey rsa: 4096 -sha256 -days 3650 \
-noenc -subj "/CN=mydb. myorg.org" \
-keyout keystore.pem -out truststore.pem

If you wish to use mutual TLS (mTLS), you need key and trust stores for both the server and the clients.
The easiest way to do thisisto create acommon certificate to act as the root authority for both, then create
key and trust stores based on the root authority. You can also append the trust store to the key store so
they can easily be shared. By doing this, you can use the root authority trust store for both clients and
servers. For example:

Example 12.2. Creating Mutual TLS Certificatesfor Both Serversand Clients

define the root authority
openssl req -x509 -newkey rsa: 4096 -sha256 -days 3650 \
-noenc -subj "/CN=mydb. myorg.org" \
-keyout root. keystore.pem -out root.truststore.pem
cat root.truststore.pem >> root. keystore. pem

Derive server key fromroot authority

openssl req -x509 -newkey rsa: 4096 -sha256 -days 3650 \
-noenc -subj "/CN=mydb. myorg.org" \
-CA root. keystore. pem\
-keyout server. keystore.pem-out truststore.tnp

cat truststore.tnp >> server. keystore. pem

Derive client key fromroot authority

openssl req -x509 -newkey rsa: 4096 -sha256 -days 3650 \
-noenc -subj "/CN=mydb. myorg.org" \
-CA root. keystore. pem\
-keyout client.keystore.pem-out truststore.tnp

cat truststore.tnp >> client. keystore. pem

12.7.2. Using Certificate Revocation Lists (CRLs)

Certificates specify the authenticity of the server and the truststore allows the server to authenticate the
certificate provided by the client applications in mutual TLS (mTLS). But there may be times when you
want to explicitly exclude certain client certificates. Thisis done using a certificate revocation list (CRL).
Y ou can add one or more CRLsto the VVolt server by creating a directory where PEM-formatted CRLs are
stored, which is then referenced in the cluster configuration.

You can create your own CRL. Or, if you purchase certificates from a commercial authority, you may
receive CRLs from the vendor. CRLs received from commercial authorities are often sent in a binary
format such as DER or PKCS. In this case, you need to convert the CRL to PEM format using an openssl
command such as the following:

$ openssl x509 -informder -in newcrl.der -out /etc/ssl/local/crls/newcrl.pem

121

https://www.openssl.org/

Security

12.7.3. Configuring TLS/SSL on the VoltDB Server

Once you create the key store and the trust store, you can reference them in the database configuration
fileto enable TLS when initializing the database root directory. For example, using the key store and trust
store created in Example 12.1, “Creating a TL S Certificate for the Database Servers’, the configuration
might look like this:

depl oyment :
ssl:
enabl ed: true
keyst ore:
path: /etc/ssl/l|ocal/keystore.pem
truststore:
path: /etc/ssl/local/truststore.pem

If you are purchasing acommercial certificate, rather than creating a self-signed certificate, the certificate
authority will provide you with asigned certificate, which you can use as the root authority when creating
your trust and key store. If you are using certificate revocation lists (CRLS), you must also specify the
CRL directory. For example:

depl oynment :
ssl:
keyst ore:
path: /etc/ssl/local/keystore.pem
truststore:
path: /etc/ssl/local/truststore. pem
crl:
path: /etc/ssl/local/crls

Once you identify the certificates to use, you need to enable TLS for the server using the depl oymen-
t.ssl. enabl ed property. You can also specify which ports to encrypt using subproperties of de-
pl oyment . ssl :

» External ports (depl oynent . ssl . ext er nal), including the client and admin ports

* Internal ports (depl oynent . ssl . i nt ernal), used for intra-cluster communication between the
nodes of the cluster

» Extranet ports (depl oynent . ssl . dr), including the replication port used for XDCR

For each type of port, you specify that the portsare either enabled ("true") or disabled ("false"). Thedefault
is false. For example, the following configuration enables TL S encryption on the external, internal, and
XCDR ports:

depl oyrment :
ssl:
enabl ed: true
external : true
internal: true
dr: true
keyst ore:
path: /etc/ssl/|ocal/keystore.pem
truststore:
path: /etc/ssl/local/truststore. pem

122

Security

Note that if you enable TLS encryption for the XDCR port, other clusters replicating from this cluster
must include the appropriate client configuration when they enable XDCR. See Section 12.7.7, “Config-
uring Database Replication (XDCR) With TLS/SSL” for information on setting up TL S when configuring
XDCR.

Also, enabling TLS encryption on the internal port means that all intra-cluster communication must be
encrypted and decrypted asit passes between nodes. Consequently, any operationsthat requireinteractions
between cluster nodes (such as K-safety or multi-partition transactions) may take longer and therefore
impact overall latency. Be sure to benchmark your application with and without TLS encryption before
enabling internal port encryption on production systems.

Finaly, it isimportant to note that all portswhere TLSisenabled and all the serverswithin asingle cluster
use the same certificate.

12.7.4. Configuring Mutual TLS/SSL on the Server and
Clients

If you choose to use mutual TLS, or mTLS, you need to configure both the servers and clients with the
appropriate key stores and trust stores, as well as enabling mTLS on the server. To do this on the server,
you must:

» Enable TLS/SSL
» Enable TLS/SSL for the category of portsto use (external, XDCR, or both)
e EnablemTLS (also called client authentication) for either or both of the port categories

For example, using the key stores for client and server and the shared trust store created in Example 12.2,
“Creating Mutual TLS Certificates for Both Servers and Clients” and enabling mTLS, the configuration
might look like the following. Notethat there are separate properties—depl oynment . ssl . drcl i en-

t aut hr equi r ed anddepl oynent . ssl . cl i ent aut hr equi r ed respectively —toenablemTLS
for XDCR and for the external ports, so you can choose which ports require mTL S authentication. (Mutual
TLSisnot available for theinternal ports.) In the following example, both XDCR and external ports have
MTLS enabled :

depl oynent :
ssl:
enabl ed: true
external : true
dr: true
clientauthrequired: true
drclientaut hrequired: true
keyst ore:
path: /etc/ssl/local/server. keystore. pem
truststore:
path: /etc/ssl/local/root.truststore. pem

12.7.5. Using the VoltDB Command Line Utilities with TLS/

SSL

Onceyou enable TL Sfor the external interfaces on your database servers, you must also enable TLSon the
command line utilities so they use the appropriate protocols to connect to the servers. (The voltdb utility
is the one exception. Since it only operates on the local server it does not require a network connection.)

123

Security

When invoking the command line utilities, such as voltadmin and sglcmd, you use the - - ss| option to
activate encryption with TLS-enabled VoltDB servers. If the servers are using a commercially-provided
certificate, you can specify sqlcmd withthe- - ssl option without an argument, or in the case of the other
commands, with an empty string as an argument. For example:

$ sglcmd --ssl
$ voltadnmin --ssl=""

If the servers are using alocal or self-signed certificate you must also specify a Java properties file as an
argument to the - - ssl option. For example:

$ sqglcnd --ssl=localcert.properties

The properties file must identify the filename and location of the trust store. So, using the trust store gen-
erated by the examplein Section 12.7.1, “ Creating the TLS/SSL Certificates’, thel ocal cert. prop-
erti es filemight look like the following:

trustStore=/etc/ssl/local/truststore.pem

If you configure the servers for mTLS on the external ports and create a root certificate authority for
the client and server keystores, the command line utilities can use the root trust store to validate the serv-
er, but must also include the key store for the client certificate. You do this by adding a line identify-
ing the client key store in the properties file. The following example shows the use of a properties file,
nl scert. properties,for accessing adatabase configured for mutual TLS using the key and trust
store files created in Example 12.2, “ Creating Mutual TL S Certificates for Both Servers and Clients’:

$ cat ntlscert.properties
trustStore=/etc/ssl/local/root.truststore.pem
keySt ore=/etc/ssl/local/client.keystore.pem

$ sqglcnd --ssl=ntlscert.properties

12.7.6. Implementing TLS/SSL in the Java Client Applications

Just as the command line tools must specify how to connect to an TLS-enabled server, client applications
must al so establish an appropriate connection. Using the VoltDB Java AP, you can enable TL S by setting
the appropriate attributes of the client configuration. Specificaly, if you are using a self-signed certificate,
you must provide the path to the trust store. Y ou can do this using either the .trustStore() or .trustStore-
FromPropertyFile() method. For example, the following two commands are equival ent, assuming thel o-
cal cert. properti es filematchesthe propertiesfile described in Section 12.7.5, “ Using the VoltDB
Command Line Utilitieswith TLS/SSL":

config.trustStore("/etc/ssl/local/truststore. pent, "");
config.trustStoreFronPropertyFile("local cert.properties");

After setting the trust store properties you can enable TL S communication using the .enableSSL () method
and create the client connection. For example:

ClientConfig2 config = new CientConfig2()
. user narre(" JDoe")
. passwor d(" JDsPasswd")
.trust StoreFronPropertyFile("local cert.properties")
. enabl eSSL() ;
client = dientFactory.createCient(config);

If the server enablesmTL Sfor the external ports, the client applications must provide both atrust store and
akey store, in the same way the VoltDB command line utilities do. In fact, using the .trustStoreFromPro-

124

Security

pertyFile() method, you can specify the same property file specifying both the root trust store and client
key storeto provide mTL S authentication with the servers. Or you can explicitly identify the trust and key
store using the .trustStoreWithM utual Auth() method. So, using the trust and key storesfrom the preceding
examples, the following two statements are equivalent;

config.trustStoreWthMit ual Aut h(
"/etc/ssl/local/root.truststore. pent, "",
"/etc/ssl/local/client. keystore. pent, "");

config.trustStoreFronPropertyFile("ntlscert. properties");

When using a commercially generated certificate, you do not need to specify the trust store and can use
just the .enableSSL () method.

12.7.7. Configuring Database Replication (XDCR) With TLS/

SSL

When using TL S encryption on the DR port, the DR snapshots and binary logs are encrypted as they pass
from the producer cluster to the consumer cluster. Since in XDCR the clusters act as both producer and
consumer, this meansthat the clusters must not only have TL S enabled for the DR port, but must configure
TLSfor their connections to the other clusters.

Section 12.7.3, “Configuring TLS/SSL on the VoltDB Server” describes how to enable TLS encryption
for the DR port, which must be done before the cluster starts. To configure TLS connectivity for commu-
nication with the other clusters, you add the ss| property to the connect i on list entry within the DR
configuration. The value of the ss| property is either blank — for commercial certificates — or the path
to a Java properties file specifying the trust store for the remote cluster(s) when using alocally-generated
certificate. These property valuesarethe sameasthe- - ssl argument you use when running the command
line utilities described in Section 12.7.5, “Using the VoltDB Command Line Utilitieswith TLS/SSL".

The configuration might look like this:
XDCR Cluster

depl oynent :
ssl:
enabl ed: true
dr: true
keyst ore:
path: /etc/ssl/|ocal/keystore.pem
truststore:
path: /etc/ssl/local/truststore.pem
dr:
id: 1
rol e: xdcr
connecti on:
source: NYCSvr A, NYCSvr B
ssl: /etc/ssl/local/nyccert. properties

When using mutual TLS, the configuration and TL S property file should include the root trust store and
server key store, since the server acts as both a server and aclient in the XDCR relationship. For example:

XDCR Cluster With Mutual TLS

depl oyment :
ssl:

125

Security

enabl ed: true
dr: true
drclientauthrequired: true
keyst ore:
path: /etc/ssl/|ocal/server. keystore. pem
truststore:
path: /etc/ssl/local/root.truststore. pem
dr:
id: 1
rol e: xdcr
connecti on:
source: NYCSvr A, NYCSvr B
ssl: /etc/ssl/local/nycntlscert. properties

When using commercialy purchased certificates, the ssl subproperties are left blank; so each cluster
can, if you choose, use a separate certificate. However, when using locally-generated certificates, thereis
only one properties file specified in the ss| property. So to use separate certificates for each cluster in
the XDCR relationship, you should start by creating a root authority certificate as you would for mutual
TLSasdescribed in Example 12.2, “ Creating Mutual TLS Certificates for Both Serversand Clients’, then
create the certificates for each cluster off the root certificate. This way you can use the root trust store to
authenticate all of the clusters.

12.7.8. Updating TLS/SSL Certificates and Certificate Revo-
cation Lists (CRLs)

12.8

TLS certificates have an expiration date. So there will come a time when you want to update or replace
the existing certificate. The following instructions explain how to update the TL S certificates and CRLS
on arunning Volt cluster.

To update the existing TL S certificate on a running system, you simply replace the current keystore and
truststore PEM files — using the exact same file names and locations as specified in the depl oynen-
t.ssl. keystore. pat handdepl oynment . ssl . trust st ore. pat h properties—thenissuethe
voltadmin ssl reload command. If the configuration also specifies a CRL directory with the depl oy-
nment . ssl . crl . pat h property, any CRLs in that directory will be reloaded as well.

When issuing the voltadmin ssl reload command, you must use a properties file pointing to the original
truststore when invoking voltadmin, since the original certificate is still in effect until the command is
compl eted:

$ voltadmin --ssl=oldcert.properties ssl reload

After issuing the command, you will need to use a properties file pointing to the new truststore when
invoking Volt command line utilities, as described in Section 12.7.5, “Using the VoltDB Command Line
Utilitieswith TLS/SSL".

Integrating LDAP Security with VoltDB

LDAP (Lightweight Directory Access Protocol) is a directory service for managing hierarchical informa-
tion. LDAP is often used within organizations to centralize the management and maintenance of security
information about employees and other resources. LDAP integration in Volt Active Data allows you to
use LDAPto authenticate Volt users and authorize their accessto specific featuresin place of the builtin
security described earlier in this chapter. In other words, manage users and permissions in LDAP rather
than internally within Volt.

126

Security

Note

LDAP integration does require at least one builtin user account with administrative permissions
to ensure the database is accessible in case the LDAP server is not available.

The following diagram shows the overall workflow of LDAP integration at runtime. The user, or client
application, connectsto the database passing intheir LDAP credentials: ausername and password. VoltDB
passes those credentials to LDAP for authentication. Once the user is authenticated, the VoltDB server
then looks for groupsin LDAP of which the user is amember. Finally, the LDAP group is mapped to one
or more VoltDB rolesto decide what permissions the user has.

m D SIGN IN

T -
AUTHENTICATE Username

password .

PROVIDE MAP Permissions Client App
Or User
List of groups LDAP Volt
containing Group -> Role
LDAP user Volt

LDAP integration allows VoltDB to use existing resources within LDAP for authentication and autho-
rization. That means that administrators can use the existing user and group definitions within LDAP for
security management of VoltDB. Of course, you can aways create specific users and/or groups for man-
aging VoltDB access, but it is not necessary. Asaresult, very little change is needed to an existing LDAP
infrastructure; most of the set up for LDAP integration belongs to the VoltDB servers, as shown below.

LDAP Info in config:
m D e LDAP Server address
e LDAP Account credentials for searches
o Users e LDAP schema info for users & groups
. Gl‘oﬁ s e Map of LDAP groups to Volt roles
p e Atleast one local admin account
In Schema:
¢ Role (and permission) definitions
LDAP Volt

The following sections explain how to configure VoltDB for LDAP integration and specific requirements
for the LDAP server.

12.8.1. Configuring LDAP Security in VoltDB

You configure LDAPintegrationinthedepl oynent . securi t y property of theVoltDB configuration
file. Thefollowing isan example configuration file that illustrates all of the available LDAP configuration
options.

depl oynent :
security:

127

Security

enabl ed: true

provider: |dap o
| dap:
server: |daps://|dap. myorg.com (2]
rootdn: "dc=l daptest, dc=voltactivedata, dc=cont (3]
timeout: 12 o
user: "cn=adm n, dc=I dapt est, dc=vol t, dc=cont (5]

password: secret. password

LDAP group to Volt Rol e mappi ng
group: (6
- nane: "cn=heroes, dc=Il dapt est, dc=vol t, dc=cont
role: admn
- nane: "cn=zeroes, dc=l dapt est, dc=vol t, dc=cont
rol e: user

ssl:

truststore: (7]
path: /ny/ssl/ldap/truststore.jks
password: trustpasswd

users:

user:
- nane: houdi ni

password: shazam

rol es: adm ni strator (8]

Enabling L DAP security — To enable LDAP integration, you must set the properties enabl ed
to "true" and pr ovi der to"ldap".

L DAP server address — The location of the LDAP server, using either plain ("ldap://") or secure
("ldaps:/I") LDAP protocol. Secure LDAP is recommended. But if you use secure LDAP, you must
also provide the TLS/SSL credentias (@).

Root domain name — The LDAP domain containing both the user and group objects needed for
Volt access.

Timeout (OPTIONAL) — The timeout period, in seconds, to wait for a response from the LDAP
server. After the timeout expires with no response from the LDAP server, the authentication of the
user will fail. The default timeout is 10 seconds.

L DAP privileged account (user name and passwor d) — The username and password of an LDAP
account that has read-only access to the specified root domain. This account is used to search the
domain for the specified username and the groups of which that user is a member. Y ou can mask
the password for the LDAP account so it does not appear in plain text in the configuration file using
the voltdb mask command.

LDAP group [0 Volt role mapping — The mapping of LDAP group hamesto Volt roles. Theroles
themselves are defined in the database schema. Each gr oup list element maps one LDAP group
name to one or more Volt roles, specifying the roles asacomma-separated list. If thereis no mapping
for the LDAP group, the group isignored.

TLS/SSL credentials — The ssl . t rust st or e property specifies the TLS/SSL credentials to
use when accessing the directory using secure LDAP (LDAPS://).

L ocal administrator'saccount — There must be at |east onelocal user account with administrative
privilegesdefined inthe configuration. Thisaccount providesaccessto thedatabasein casethe LDAP
server is not reachable. Y ou can define other local accounts if you wish. When a user attempts to

128

Security

access the server, Volt looks for the usernamein thelocal accountsfirst; if no local account with that
username exists, it then passes the credentials on to LDAP for authentication and authorization.

Finally, by default, Volt searches for the username in the uid attribute of the inetOrgPerson class, then
uses the full distinguished name to search the uniqueMember attribute of the groupOfUniqueNames class
to determine what groupsthey belong to. If your LDAP directory uses different classes or attribute settings
for usersand groups, you must specify the class and attribute namesas propertiesof depl oynent . | dap.
For example, the following configuration identifies posixAccount and posixGroup as the classes to use for
users and groups, respectively:

depl oyrent :

security:
enabl ed: true
provider: |dap

| dap:
server: |daps://|dap. nmyorg.com
rootdn: "dc=l daptest, dc=voltactivedata, dc=cont
usercl ass: posi xAccount
userui d: uid
groupcl ass: posi xG oup
groupnenber ui d: nenber ui d"
user: "cn=adm n, dc=I dapt est, dc=vol t, dc=cont
password: secret. password

12.8.2. Configuring VoltDB Security in LDAP

The goal of LDAP integration in VoltDB is to adapt to the customer's existing LDAP implementation,
avoiding any changes to the schema wherever possible. So, for example, there are configuration options
that allow VoltDB to access users and groups records defined in non-standard L DAP classes and objects.
However, there is one requirement on the LDAP user objects:

The LDAP user records must include the SHA-256 hash of the user's password as an
alternate password.

VoltDB never actualy receives the password sent by the user at runtime in clear text. The client APIs
hashes the password and sends the base-64 encoding of the SHA-256 hash instead. So Volt cannot pass
on the actual password to LDAP. Instead it sends the SHA-256 hash. So, to be able to authenticate the
user, LDAP must have the matching hash as one of the allowable passwords for the user. Y ou can get the
SHA-256 hash of a password using the shasum Linux utility. For example:

$ echo -n ' MyFavoritePasswd' | shasum-a 256
238d59ddd7b0b8d54d3b8f f 864855bcd332e66b1a06dad010f 676a23d1928a68 -

12.9. Integrating Kerberos Security with VoltDB

For environments where more secure communication is required than hashed usernames and passwords, it
ispossiblefor aVVoltDB database to use Kerberos to authenticate clients and servers. Kerberosisapopular
network security protocol that you can use to authenticate the Java client processes when they connect to
VoltDB database servers. Use of Kerberosis supported for the Javaclient library and JSON interface only.

To use Kerberos authentication for VoltDB security, you must perform the following steps:

1. Set up and configure Kerberos on your network, servers, and clients.

129

Security

2. Install and configure the Java security extensions on your VoltDB servers and clients.
3. Configure the VoltDB cluster and client applications to use Kerberos.

The following sections describe these steps in detail.

12.9.1. Installing and Configuring Kerberos

Kerberos is a complete software solution for establishing a secure network environment. It includes net-
work protocols and software for handling authentication and authorization in a secure, encrypted fashion.
Kerberos requires one or more servers known as key distribution centers (KDC) to authenticate and au-
thorize services and the users who access them.

To use Kerberos for VoltDB authentication you must first set up Kerberos within your network environ-
ment. If you do not already have aKerberos KDC, you will need to create one. Y ou will also need to install
the Kerberos client libraries on all of the VoltDB servers and clients and set up the appropriate principals
and services. Because Kerberos is a complete network environment rather than a single platform applica-
tion, it is beyond the scope of this document to explain how to install and configure Kerberos itself. This
section only provides notes specific to configuring Kerberosfor use by VoltDB. For compl ete information
about setting up and using Kerberos, please see the Kerberos documentation.

Part of the Kerberos setup is the creation of a configuration file on both the VoltDB server and client ma-
chines. By default, the configuration fileislocated in/ et ¢/ kr b5. conf on Linux systems. (On Mac-
intosh systems, the configuration fileisedu. mi t . Ker ber os located either in ~/ Li br ary/ Pr ef -
erences/ or/Library/ Preferences/.) Besure this file exists and points to the correct realm
and KDC.

Once a KDC exists and the nodes are configured correctly, you must create the necessary Kerberos ac-
counts — known as "user principals' for the accounts that run the VoltDB client applications and a " ser-
vice principal" for the VoltDB cluster. If you intend to use the web-based Volt Management Center or the
JSON interface, you will also want to create ahost and HT TP service principle for each server aswell. For
example, to create the service keytab file for the VoltDB database, you can issue the following commands
on the Kerberos KDC:

$ sudo kadnin. | ocal
kadm n. | ocal : addprinc -randkey service/voltdb
kadm n.l ocal : ktadd -k vol tdb. keytab service/voltdb

Then copy the keytab file to the database servers, making sure it is only accessible by the user account
that starts the database process:

$ scp vol tdb. keytab vol tadm n@ol t svr: vol t db. keyt ab
$ ssh vol tadm n@ol tsvr chnod 0600 vol t db. keyt ab

Y ou can then create host and HTTP service principles for each server in the cluster and write them to a
server-specific keytab. For example, to create a keytab file for the database node server1, the command
would be the following:

$ sudo kadnin. | ocal

kadm n. | ocal : addprinc -randkey host/server1. myconpany.| an
kadm n. | ocal : addprinc -randkey HTTP/ server1. myconpany. | an

kadm n. | ocal : ktadd -k serverl. nyconpany. | an. keytab HITP/ server 1. nyconpany. | an
kadm n. | ocal : ktadd -k serverl. nyconpany. | an. keytab host/server1l. nyconpany. | an

130

http://web.mit.edu/kerberos/

Security

12.9.2. Installing and Configuring the Java Security Exten-
sions

Thenext stepistoinstall and configure the Java security extension known as Java Cryptography Extension
(JCE). JCE enables the more robust encryption required by Kerberos within the Java Authentication and
Authorization Service (JAAS). Thisis necessary because VoltDB uses JAAS to interact with Kerberos.

The JCE that needs to be installed is specific to the version of Java you are running. See the the Java web
site for details. Again, you must install JCE on both the VoltDB servers and client nodes

Once JCE isinstalled, you create a JAAS login configuration file so Java knows how to authenticate the
current process. By default, the JAAS login configuration fileis $HOVE/ . j ava. | ogi n. confi g. On
the database servers, the configuration file must define the VoltDBService module and associate it with
the keytab created in the previous section.

To enable Kerberos access from the web-based Volt Management Center and JSON interface, you must
also include entries for the Java Generic Security Service (JGSS) declaring the VVoltDB service principle
and the server's HTTP service principle. For example:

Server JAAS Login Configuration File

Vol t DBSer vi ce {
com sun. security. aut h. nodul e. Kr bSLogi nMbdul e required
useKeyTab=t rue keyTab="/hone/voltadm n/voltdb. keyt ab"
doNot Pr onpt =t r ue
princi pal ="servi ce/ vol t db@WCOVPANY. LAN' st or eKey=tr ue;

b

com sun.security.jgss.initiate {
com sun. security. aut h. nodul e. Kr b5Logi nModul e required
princi pal ="servi ce/ vol t db@WCOVPANY. LAN"
keyTab="/hone/ vol t adm n/ vol t db. keyt ab"
useKeyTab=t rue
st or eKey=true
debug=f al se;

b

com sun. security.jgss.accept {
com sun. security. aut h. nodul e. Kr b5Logi nModul e required
princi pal ="HTTP/ server 1. nyconpany. | an@WCOVPANY. LAN"
useKeyTab=t rue
keyTab="/ et c/ kr b5. keyt ab"
st or eKey=t rue
debug=f al se
i slnitiator=fal se;

1
On the client nodes, the JAAS login configuration defines the VoltDBClient module.
Client JAAS Login Configuration File

Vol t DBCl i ent {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e required

131

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Security

useTi cket Cache=true renewlGI=t rue doNot Pronpt=true;
b

12.9.3. Configuring the VoltDB Servers and Clients

Finally, once Kerberos and the Java security extensions are installed and configured, you must configure
the VoltDB database cluster and client applications to use Kerberos.

On the database servers, you enable Kerberos security using security and its subproperties when you ini-
tialize the database root directory, specifying "kerberos" as the provider. For example:

depl oyrent :
security:
enabl ed: True
provi der: Kkerberos

Y ou then assign rolesto individual users as described in Section 12.3, “ Defining Users and Roles”, except
in place of generic usernames, you specify the Kerberos user — or "principal” — names, including their
realm. Since Kerberos uses encrypted certificates, the password property is ignored and can be filled in
with arbitrary text. For example:

depl oyrent :
security:
enabl ed: True
provi der: Kkerberos

users:

user:

- nane: "mwai n@WCOVPANY. LAN'
password: n/a
rol es=admi ni strator

- nane: "cdi ckens @AW COVPANY. LAN"
password: n/a
rol es: dev

- nane: "hbal zac @ANCOVPANY. LAN'
password: n/a
rol es: adhoc

Having configured Kerberosin aconfigurationfile, you areready toinitialize and start the VoltDB cluster.
When starting the VoltDB process, Java must know how to access the Kerberos and JAAS login configu-
ration files created in the preceding sections. If the files are not in their default locations, you can override
the default location using the VOLTDB_OPTS environment variable and setting the flags j ava. se-

curity. krb5. conf andj ava. security.auth.login.config, r&spectively.1

In Java client applications, you specify Kerberos as the security protocol when you create the client con-
nection, using the enableK erberosA uthentication method as part of the configuration. For example:

i mport org.voltdb.client.d ientConfig;
i mport org.voltdb.client.dientFactory;

ClientConfig config = new CientConfig();
/1 specify the JAAS | ogi n nodul e

on Macintosh systems, you must always specify thej ava. security. kr b5. conf property.

132

Security

confi g. enabl eKer ber osAut hentication("VoltDBd ient");

VoltClient client = CientFactory.createCient(config);
client.createConnection("voltsvr");

Note that the VoltDB client automatically picks up the Kerberos cached credentials of the current process,
the user'sKerberos"principal”. So you do not need to — and should not — specify ausername or password
as part of the VoltDB client configuration.

When using the VoltDB JDBC client interface, you can enable Kerberos by setting the ker ber os prop-
erty on the connection to match the settings in the Java API. For example, you can enable Kerberos by
setting the property on the connection string as a query parameter:

Cl ass.forName("org.vol tdb.jdbc. Driver");
Connection ¢ = DriverManager. get Connecti on(
"jdbc:vol tdb://svr1:21212, svr2:21212?ker beros=Vol t DBCl i ent ") ;

Alternately, you can supply alist of properties, including the ker ber os property, when you initialize
the connection:

Cl ass. forNane("org.vol tdb.jdbc.Driver");

Properties props = new Properties();

props. set Property("kerberos", “VoltDBOient");

Connection ¢ = DriverMnager. get Connecti on(
"jdbc:vol tdb://svrl:21212, svr2:21212", props);

12.9.4. Accessing the Database from the Command Line and
the Web

It is also important to note that once the cluster starts using Kerberos authentication, only Java, JDBC,
JSON, and Python clients can connect to the cluster and they must use Kerberosauthenticationto doit. The
sameistrue for the CLI commands, such has sglemd and voltadmin. To authenticateto a VoltDB server
with Kerberos security enabled using the Java-based utilities sqglcmd and cvsloader, you must include the
- - ker ber os flag identifying the name of the Kerberos client service module. For example:

$ sqlcnmd --kerberos=Vol t DBC i ent

If the configuration files are not in the default location, you must specify their location on the command
line:

$ sqlcnd --kerberos=VoltDBd ient \
-J-Dj ava. security. aut h.l ogi n.config=nyclient.kerberos. conf

To use the Python APl or Python-based voltadmin utility, you must first make sure you have the python-
gssapi package installed. Then, login to your Kerberos account using kinit before invoking the Python
client. When using the voltadmin utility, you must also include - - ker ber os flag, but you do not need
to specify any argument since it picks up the credentialsin the Kerberos user's cache. For example:

$ vol tadm n shutdown --kerberos

To use the Volt Management Center or the JSON interface to access the database, your web browser
must be configured to use the Simple and Protected GSS-API Negotiation Mechanism (also known as
SPNEGO). See your web browser's help for instructions on configuring SPNEGO.

133

Chapter 13. Saving & Restoring a VoltDB
Database

There are times when it is necessary to save the contents of aVoltDB database to disk and then restore it.
For example, if the cluster needs to be shut down for maintenance, you may want to save the current state
of the database before shutting down the cluster and then restore the database once the cluster comes back
online. Performing periodic backups of the data can also provide afallback in case of unexpected failures
— either physical failures, such as power outages, or logic errors where a client application mistakenly
corrupts the database contents.

VoltDB provides shell commands, system procedures, and an automated snapshot feature that help you
perform these operations. Thefollowing sections explain how to save and restorearunning VoltDB cluster,
either manually or automatically.

13.1. Performing a Manual Save and Restore of a
VoltDB Cluster

Manually saving and restoring a V oltDB database is useful when you need to modify the database's phys-
ical structure or make schema changes that cannot be made to a running database. For example, changing
the K-safety value, the number of sites per site, or changing the partitioning column of a partitioned table.
The normal way to perform such a maintenance operation using save and restore is as follows:

1. Stop database activities (using pause).

2. Use save to write a snapshot of the current data to disk.

3. Shutdown the cluster.

4. Make changesto the VoltDB schema, cluster configuration, and/or configuration file as desired.
5. Reinitialize the database with the modified configuration file, using voltdb init --for ce.

6. Restart the cluster in admin mode, using voltdb start --pause.

7. Optionally, reload the schema and stored procedures (if you are changing the schema).

8. Restore the previous snapshot.

9. Restart client activity (using resume).

Thekey isto make sure that all database activity is stopped before the save and shutdown are performed.
This ensuresthat no further changes to the database are made (and therefore lost) after the save and before
the shutdown. Similarly, it is important that no client activity starts until the database has started and the
restore operation completes.

Also note that Step #7, reloading the schema, is optional. If you are going to reuse the same schemain a
new database instance, the restore operation will automatically load the schema from the snapshot itself.
If you want to modify the schemain any way, such as changing indexes or tables and columns, you should
load the modified schema before restoring the data from the snapshot. If the database schemais not empty
(that is there are tables already defined), only the data is loaded from the snapshot. See Section 13.1.3.2,
“Modifying the Database Schemaand Stored Procedures’ for more information on modifying the schema
when restoring snapshots.

134

Saving & Restoring
aVoltDB Database

Save and restore operations are performed either by calling VoltDB system procedures or using the cor-
responding voltadmin shell commands. In most cases, the shell commands are simpler since they do not
require program code to use. Therefore, this chapter uses voltadmin commands in the examples. If you
are interested in programming the save and restore procedures, see Appendix G, System Procedures for
more information about the corresponding system procedures.

When you issue a save command, you specify a path where the data will be saved and a unique identifier
for tagging the files. VoltDB then saves the current data on each node of the cluster to a set of files at the
specified location (using the unique identifier as a prefix to the file names). This set of files is referred
to as a snapshot, since it contains a complete record of the database for a given point in time (when the
save operation was performed).

The - - bl ocki ng option lets you specify whether the save operation should block other transactions
until it completes. In the case of manual saves, it is a good idea to use this option since you do not want
additional changes made to the database during the save operation.

Note that every node in the cluster uses the same absolute path, so the path specified must be valid, must
exist on every node, and must not aready contain data from any previous saves using the same unique
identifier, or the save will fail.

When you issue a restore command, you specify the same absolute path and unique identifier used when
creating the snapshot. VoltDB checks to make sure the appropriate save set exists on each node, then
restores the data into memory.

13.1.1. How to Save the Contents of a VoltDB Database

To save the contents of a VoltDB database, use the voltadmin save command. The following example
creates a snapshot at the path /tmp/voltdb/backup using the unique identifier TestShapshot.

$ vol tadmi n save --bl ocking /tnp/voltdb/backup "Test Snapshot"

In this exampl e, the command tellsthe save operation to block all other transactionsuntil it completes. Itis
possible to save the contents without blocking other transactions (which is what automated snapshots do).
However, when performing a manual save prior to shutting down, it is normal to block other transactions
to ensure you save a known state of the database.

Notethat it is possible for the save operation to succeed on some nodes of the cluster and not others. When
you issue the voltadmin save command, VoltDB displays messages from each partition indicating the
status of the save operation. If there are any issues that would stop the process from starting, such as a
bad file path, they are displayed on the console. It is a good practice to examine these messages to make
sure all partitions are saved as expected.

Note that it is also possible to issue the voltadmin save command without arguments. In that case the
snapshot is saved to the default snapshots folder in the database root directory. This can be useful because
the voltdb start command can automatically restore the latest snapshot in that directory as described in
the next section.

13.1.2. How to Restore the Contents of a VoltDB Database
Manually

The easiest way to restore a snapshot is to let VoltDB do it for you as part of the recover operation. If
you are not changing the cluster configuration you can use an automated snapshot or other snapshot saved
into the vol t dbr oot / snapshot s directory by smply restarting the cluster nodes using the voltdb
start command. With the start action VoltDB automatically starts and restores the most recent snapshot.

135

Saving & Restoring
aVoltDB Database

If command logging is enabled, it also replays any logs after the snapshot. This approach has the added
benefit that VoltDB automatically |oads the previous schema as well as part of the snapshot.

However, you cannot use voltdb start to restore a snapshot if the physical configuration of the cluster has
changed or if you want to restore an earlier snapshot or a snapshot stored in an alternate location. In these
cases you must do a manual restore.

To manually restore a VoltDB database from a snapshot previously created by a save operation, you can
create a new database instance and use the voltadmin restore command. So, for example, if you modify
the configuration, you must re-initialize the root directory with the new configuration file, using the --
force flag to overwrite the previous configuration and database content:

$ voltdb init --config=newconfig.yam --force

Then you can start the reconfigured database, which creates a new empty database. It is also a good idea
to start the database in admin mode by including the --pause flag:

$ voltdb start --pause

Finally, you restore the previously saved snapshot using the same pathname and unique identifier used
during the save. The following example restores the snapshot created by the example in Section 13.1.1
and resumes hormal operation (that is, exits admin mode).

$ voltadm n restore /tnp/voltdb/backup "Test Snapshot"
$ voltadnin resune

Aswith save operations, it isalwaysagood ideato check the statusinformation displayed by the command
to ensure the operation completed as expected.

13.1.3. Changing the Cluster Configuration Using Save and
Restore

Most changes to a VoltDB database can be made "on the fly" while the database is running. Adding
and removing tables, enabling and disabling database features such as import and export, and adding or
updating stored procedures can al be done while the database is active. However, between a save and a
restore, it is possible to make changes to the database and cluster configuration that cannot be made on
arunning cluster. For example, you can:

» Add or remove nodes from the cluster

Modify the schema and/or stored procedures that:

» Change partitioned tablesto replicated and vice versa
« Change the partitioning column on partitioned tables
¢ Add unique indexes to tables with existing data
 Change the number of sites per host

e Change the K-safety value

The following sections discuss these procedures in more detail.

13.1.3.1. Adding and Removing Nodes from the Database

To add nodes to the cluster, use the following procedure:

136

Saving & Restoring
aVoltDB Database

1. Save the database with the voltadmin save command.

2. Shutdown and re-initialize the database root directories on each node (including initializing new root
directories for the nodes you are adding).

3. Startthecluster (including the new nodes) specifying the new server count withthe- - count argument
to the voltdb start command.

4. Restore the database with the voltadmin restor e command..

When the snapshot is restored, the database (and partitions) are redistributed over the new cluster config-
uration.

It is also possible to remove nodes from the cluster using this procedure. However, to make sure that no
dataislost in the process, you must copy the snapshot files from the nodes that are being removed to one
of the nodes that is remaining in the cluster. This way, the restore operation can find and restore the data
from partitions on the missing nodes.

13.1.3.2. Modifying the Database Schema and Stored Procedures

The easiest and recommended way to change the database schema is by sending the appropriate SQL
database definition language (DDL) statements to the sglcmd utility. Similarly you can update the stored
procedures on arunning database using the LOAD CLASSES and REMOVE CLASSES directives.

However, there are afew changes that cannot be made to a running database,. For example, changing the
partitioning column of atable if the table contains data. For these changes, you must use save and restore
to change the schema.

To modify the database schema or stored procedures between a save and restore, make the appropriate
changes to the source files (that is, the database DDL and the stored procedure Java source files). If you
modify the stored procedures, be sure to repackage any Java stored procedures into a JAR file. Then you
can:

1. Save the database with the voltadmin save command.

2. Shutdown and re-initialize the database root directories on each node.

3. Start the cluster with the voltdb start command.

4. Load the modified schema and stored procedures using sglcmd.

5. Restore the database contents with the voltadmin restore command.

Two points to note when modifying the database structure before restoring a snapshot are:

» When existing rows are restored to tables where new columns have been added, the new columns are
filled with either the default value (if defined by the schema) or nulls.

» When changing the datatypes of columns, it is possible to decrease the datatype size (for example, going
froman INT toan TINYINT). However, if any existing values exceed the capacity of the new datatype
(such as an integer value of 5,000 where the datatype has been changed to TINYINT), the entire restore
will fail.

If you remove or modify stored procedures (particularly if you change the number and/or datatype of the
parameters), you must make sure the corresponding changes are made to client applications as well.

137

Saving & Restoring
aVoltDB Database

13.2. Scheduling Automated Snapshots

13.3

Save and restore are useful when planning for scheduled down times. However, these functions are also
important for reducing the risk from unexpected outages. VoltDB assists in contingency planning and
recovery from such worst case scenarios as power failures, fatal system errors, or data corruption due to
application logic errors.

In these cases, the database stops unexpectedly or becomes unreliable. By automatically generating snap-
shots at set intervals, VoltDB gives you the ability to restore the database to a previous valid state.

Y ou schedule automated snapshots of the database as part of the configuration. The depl oynent . s-
napshot property lets you specify:

» Thefreguency of the snapshots. Y ou can specify any whole number of seconds, minutes, or hours (using
the suffix "s", "m", or "h", respectively, to denote the unit of measure). For example "3600s", "60m",
and "1h" are all equivalent. The default frequency is 24 hours.

» The unique identifier to use as a prefix for the snapshot files. The default prefix is"AUTOSNAP".

» Thenumber of snapshotsto retain. Snapshots are marked with atimestamp (as part of the file names), so
multiple snapshots can be saved. Ther et ai n property lets you specify how many snapshots to keep.
Older snapshots are purged once thislimit is reached. The default number of snapshots retained istwo.

Thefollowing example enables automated snapshots every thirty minutes using the prefix "flightsave" and
keeping only the three most recent snapshots.

depl oynent :
shapshot :
prefix: flightsave
frequency: 30m
retain: 3

By default, automated snapshots are stored in a snapshots subfolder of the VoltDB root directory (as
described in Section 3.7.2, “Configuring Paths for Runtime Features’). You can save the snapshots to
a specific path by adding the depl oymnent . pat hs. snapshot s. pat h property. For example, the
following example defines the path for automated snapshotsas/ et ¢/ vol t db/ aut obackup/ .

depl oyment :
pat hs:
snhapshot s:
pat h: /etc/voltdb/autobackup/

Tuning the Snapshot Process

Snapshot activity — for automated as well as manual, command logging, and other operational snapshots
— involves both processing and disk 1/0. The snapshot asawholeisbroken up into smaller snapshot tasks,
each writing a small part of the snapshot to disk. These tasks are interspersed among user transactionsin
the transaction queue. Since both snapshots and user transactions use the same queue, snapshots can have
a noticeable impact on performance (in terms of throughput and/or latency) on avery busy database.

However, there are ways you can adjust the overall impact of snapshots, by controlling the frequency and
size of theindividual snapshot tasks. By reducing the frequency or size of each snapshot task, the snapshot
can take longer but have less impact on the latency of user transactions. There are three ways to manage
snapshot activity:

138

Saving & Restoring
aVoltDB Database

 Snapshot Priority — Snapshot-specific priority isasimple control that increases or decreases the fre-
quency with which snapshot tasks are added to the queue. Y ou control the snapshot priority by setting
the depl oynment . syst ensetti ngs. snapshot. pri ority property as an integer value. The
larger the value, the longer the interval between snapshot tasks.

* Queue Priority — You can assign snapshots a priority for queueing the same way you can for other
user and operational tasks. This means you set the priority relative to other activities such as XDCR,
export, or user tasks. Y ou can even set the priority for individual user transactionsusing the Client2 API.
Y ou set the queue priority for snapshots by assigning thedepl oyrent . syst ensetti ngs. pri -
orities.snapshot. piority property an integer value between 1 and 8. Again, the higher the
number, the lower the priority. Note the snapshot-specific priority and queue priority are mutualy ex-
clusive. If queue priorities are enabled, the snapshot-specific prioritization will be disabled.

» Autotuning— Finally, you can chooseto et the system select the best option for the frequency and size
of snapshot tasks by enabling snapshot autotuning. Rather than setting fixed values, autotuning usesthe
current workload, measured as the size of the transaction queue, to decide how frequently to run snap-
shot tasks each time. The busier the queue, the less frequently snapshot tasks will run and the smaller
the tasks will be. Resulting in slower snapshots but less impact on latency. On the other hand, because
the adjustments are sensitive to the current queue size, when the workload is low the snapshot tasks can
be larger and run more frequently. So snapshot performance is not negatively affected during lullsin
the database workload. Y ou enable autotuning by setting thedepl oyment . syst enset ti ngs. s-
napshot . aut ot une. enabl ed property to true, which can be done either when configuring the
database or on the fly while the database is running.

If snapshots are impacting the latency of business transactions, you can try turning on autotuning to adjust
the snapshot processing to match the availabl e transaction capacity. The best way to determine if autotun-
ing is being effective is to use transaction performance statistics to compare the results between default
behavior with autotuning disabled and after autotuning is enabled.

1. Firdt, establish baseline performance statistics for the default snapshot behavior. One method of mea-
suring transaction performance is to collect raw statistics for the 99th percentile and maximum la-
tency of transactions before, during, and after a snapshot, which can be done by calling the @Statis-
tics system procedure with the LATENCY selector and examining the columns labeled P99 and
MAX. This information is also available in the metrics properties vol t db_i niti ator_pro-
cedure_invoked_tine_seconds_bucket and voltdb_initiator_procedure_in-
voked_ti ne_seconds_max.

2. Update the database configuration to enable snapshot autotuning by changing the depl oymen-
t.systensettings. snapshot. aut ot une. enabl ed property to true.

3. After enabling autotuning, capture the same metrics as in step #1 and compare the before and after
results.

4. To measure the effect on snapshot duration, you can repeat the preceding steps using the @Statistics
system procedure SNAPSHOTSUMMARY selector and comparing the DURATION column (or the
vol t db_snapshot _summar y_i nf o metric) to determine how long snapshots are taking.

Finally, you can use Prometheus and Grafana to graph the output from the metrics in Step #1 to visualize
the change in latency over time.

13.4. Managing Snapshot Files

VoltDB does not delete snapshots after they are restored; the snapshot files remain on each node of the
cluster. For automated snapshots, the oldest snapshot files are purged according to the settings in the

139

Saving & Restoring
aVoltDB Database

configuration. But if you create snapshots manually or if you change the directory path or the prefix for
automated snapshots, the old snapshots will also be left on the cluster.

To simplify maintenance, it is agood idea to observe certain guidelines when using save and restore:
 Create dedicated directories for use as the paths for VoltDB snapshots.

» Do not store any other filesin the directories used for VoltDB snapshots.

* Periodically cleanup the directories by deleting obsolete, unused snapshots.

Y ou can delete snapshots manually. To delete a snapshot, use the unique identifier, which is applied as
afilename prefix, to find al of the files in the snapshot. For example, the following commands remove
the snapshot with the ID TestSave from the directory /etc/voltdb/backup/. Note that VoltDB separates the
prefix from the remainder of the file name with a dash for manual snapshots:

$ rm/etc/vol tdb/ backup/ Test Save-*

However, it is easier if you use the system procedures VoltDB provides for managing snapshots. If you
delete snapshots manually, you must make sure you execute the commands on all nodes of the cluster.
When you use the system procedures, VoltDB distributes the operations across the cluster automatically.

VoltDB provides severa system procedures to assist with the management of snapshots:

» @Statistics"SNAPSHOTSTATUS" providesinformation about the most recently performed snapshots
for the current database. The response from @Statistics for this selector includes information about
up to ten recent snapshots, including their location, when they were created, how long the save took,
whether they completed successfully, and the size of theindividual filesthat make up the snapshot. See
the reference section on @Statistics for details.

e @SnapshotScan listsal of the snapshots availablein aspecified directory path. Y ou can usethis system
procedure to determine what snapshots exist and, as a consequence, which ought to be deleted. See the
reference section on @SnapshotScan for details.

* @SnapshotDelete deletes one or more snapshots based on the paths and prefixes you provide. The
parametersto the system procedure are two string arrays. Thefirst array specifies one or more directory
paths. The second array specifiesone or moreprefixes. Thearray elementsaretakenin pairsto determine
which snapshots to delete. For example, if the first array contains paths A, B, and C and the second
array contains the unique identifiers X, Y, and Z, the following three snapshots will be deleted: A/X,
B/Y, and C/Z. See the reference section on @SnapshotDelete for details.

13.5. Special Notes Concerning Save and Restore

The following are special considerations concerning save and restore that are important to keep in mind:

» Save and restore do not check the cluster health (whether al nodes exist and are running) before exe-
cuting. The user can find out what nodes were saved by looking at the messages displayed by the save
operation.

» Both the save and restore calls do a pre-check to see if the action is likely to succeed before the actual
savelrestore is attempted. For save, VoltDB checks to see if the path exists, if there is any data that
might be overwritten, and if it has write access to the directory. For restore, VoltDB verifies that the
saved data can be restored completely.

It is possible to provide additional protection against failure by copying the automated snapshots to
remote locations. Automated snapshots are saved locally on the cluster. However, you can set up a

140

Saving & Restoring
aVoltDB Database

network process to periodically copy the snapshot files to a remote system. (Be sure to copy the files
from all of the cluster nodes.) Another approach would be to save the snapshots to a SAN disk that is
aready set up to replicate to another location. (For example, using iSCSI.)

141

Chapter 14. Command Logging and
Recovery

By executing transactions in memory, VoltDB, freesitself from much of the management overhead and 1/
O costs of traditional database products. However, accidents do happen and it isimportant that the contents
of the database be safeguarded against loss or corruption.

Snapshots provide one mechanism for safeguarding your data, by creating a point-in-time copy of the
database contents. But what happens to the transactions that occur between snapshots?

Command logging provides a more complete solution to the durability and availability of your VoltDB
database. Command logging keeps arecord of every transaction (that is, stored procedure) asit is execut-
ed. Then, if the servers fail for any reason, the database can restore the last snapshot and "replay” the
subsequent logs to re-establish the database contents in their entirety.

The key to command logging is that it logs the invocations, not the consegquences, of the transactions. A
single stored procedure can include many individual SQL statements and each SQL statement can modify
hundreds or thousands of table rows. By recording only the invocation, the command logs are kept to a
bare minimum, limiting the impact the disk 1/O will have on performance.

Howev'er, any additional processing canimpact overall performance, especially whenitinvolvesdisk 1/O.
So it is important to understand the tradeoffs concerning different aspects of command logging and how
it interacts with the hardware and any other options you are utilizing. The following sections explain how
command logging works and how to configure it to meet your specific needs.

14.1. How Command Logging Works

When command logging is enabled, VoltDB keeps a log of every transaction (that is, stored procedure)
invocation. At first, the log of the invocations are held in memory. Then, at a set interval the logs are
physically written to disk. Of course, at a high transaction rate, even limiting the logs to just invocations,
the logs begin to fill up. So at a broader interval, the server initiates a snapshot. Once the snapshot is
complete, the command logging processis ableto free up — or "truncate” — thelog keeping only arecord
of procedure invocations since the last snapshot.

This process can continue indefinitely, using snapshots as a baseline and loading and truncating the com-
mand logs for all transactions since the last snapshot.

Figure 14.1. Command Logging in Action

; AN
aatae MMM sesceces MMM

S 7
]

Frequency

Snapshots @ @

The frequency with which the transactions are written to the command log is configurable (as described in
Section 14.3, “ Configuring Command Logging for Optimal Performance”). By adjusting thefrequency and

142

Command Logging and Recovery

type of logging (synchronous or asynchronous) you can balance the performance needs of your application
against the level of durability desired.

In reverse, when it is time to "replay" the logs, you start the database and the server nodes establish a
quorum, the first thing the database servers do is restore the most recent snapshot. Then they replay al of
the transactions in the log since that snapshot.

Figure 14.2. Recovery in Action

h A

Y] N

VolDB | \ Start \
database / Recover /
' I/ b 7
[Replay '
Command [IO
Logs
Restore

Snapshots @

14.2. Controlling Command Logging

Command logging is enabled by default. Using command logging is recommended to ensure durability
of your data. However, you can choose whether to have command logging enabled or not using the de-
pl oyrment . conmmandl og property in the configuration. For example:
depl oyrent :
conmand| og:
enabl ed: true
In its simplest form, the comand| og property enables or disables command logging by setting en-

abl ed to "true" or "false". You can also use other subproperties to control specific characteristics of
command logging. The following section describes those options in detail.

14.3. Configuring Command Logging for Optimal
Performance

Command logging can provide complete durability, preserving arecord of every transaction that is com-
pleted before the database stops. However, the amount of durability must be balanced against the perfor-
mance impact and hardware requirements to achieve effective /0.

VoltDB provides three settings you can use to optimize command logging:

e The amount of disk space allocated to the command logs

» The frequency between writes to the command logs

» Whether logging is synchronous or asynchronous

The following sections describe these options. A fourth section discusses the impact of storage hardware
on the different logging options.

143

Command Logging and Recovery

14.3.1. Log Size

The command log size specifies how much disk space is preallocated for storing the logs on disk. The
logs are divided into three "segments’ Once a segment is full, it is written to a snapshot (as shown in
Figure 14.1, “Command Logging in Action”).

For most workloads, the default log size of one gigabyte is sufficient. However, if your workload writes
large volumes of data or uses large strings for queries (so the procedure invocationsinclude large parame-
ter values), the log segments fill up very quickly. When this happens, VoltDB can end up snapshotting
continuously, because by the time one snapshot finishes, the next log segment is full.

Toavoid thissituation, you can increase thetotal 1og size, to reduce the frequency of snapshots. Y ou define
the log size in the configuration using the | ogsi ze property. Specify the desired log size as an integer
number of megabytes. For example:

depl oyment :
conmandl og:
enabl ed: true
| ogsi ze: 3072

When increasing thelog size, be aware that the larger thelog, thelonger it may taketo recover the database
since any transactions in the log since the last snapshot must be replayed before the recovery is complete.
So, while reducing the frequency of snapshots, you also may be increasing the time needed to restart.

The minimum log size is three megabytes. Note that the log size specifies the initial size. If the existing
segments are filled before a snapshot can truncate the logs, the server will allocate additional segments.

14.3.2. Log Frequency

The log frequency specifies how often transactions are written to the command log. In other words, the
interval between writes, as shown in Figure 14.1, “Command Logging in Action”. You can specify the
frequency in either or both time and number of transactions.

For example, you might specify that the command log is written every 200 milliseconds or every 10,000
transactions, whichever comes first. You do this by adding the f r equency property and specifying the
individual frequencies as attributes. For example:

depl oynent :
comandl og:
enabl ed: true
frequency:
tinme: 200
transacti ons: 10000"

Time freguency is specified in milliseconds and transaction frequency is specified as the number of trans-
actions. Y ou can specify either or both types of frequency. If you specify both, whichever limit is reached
first initiates awrite.

14.3.3. Synchronous vs. Asynchronous Logging

If the command logs are being written asynchronously (which is the default), results are returned to the
client applications as soon as the transactions are completed. This allows the transactions to execute un-
interrupted.

144

Command Logging and Recovery

However, with asynchronous logging there is always the possibility that a catastrophic event (such as a
power failure) could cause the cluster to fail. In that case, any transactions completed since the last write
and before thefailurewould be lost. The smaller the frequency, the less datathat could belost. Thisishow
you "dial up" the amount of durability you want using the configuration options for command logging.

In some cases, noloss of dataisacceptable. For those situations, it isbest to use synchronouslogging. When
you select synchronous logging, no results are returned to the client applications until those transactions
are written to the log. In other words, the results for all of the transactions since the last write are held on
the server until the next write occurs.

The advantage of synchronouslogging isthat no transaction is"complete”" and reported back to the calling
application until it is guaranteed to be logged — no transactions are lost. The obvious disadvantage of
synchronouslogging isthat the interval between writes (i.e. the frequency) while the results are held, adds
to the latency of the transactions. To reduce the penalty of synchronous logging, you need to reduce the
frequency.

When using synchronouslogging, it isrecommended that the frequency be limited to between 1 and 4 mil-
liseconds to avoid adding undue latency to the transaction rate. A frequency of 1 or 2 milliseconds should
have little or no measurable affect on overall latency. However, low frequencies can only be achieved
effectively when using appropriate hardware (as discussed in the next section, Section 14.3.4, “Hardware
Considerations”).

To select synchronous logging, usethe synchr onous property. For example:

depl oyrent :
conmand| og:
enabl ed: true
synchronous: true
frequency:
tine:2

14.3.4. Hardware Considerations

Clearly, synchronous logging is preferable since it provides complete durability. However, to avoid neg-
atively impacting database performance you must not only use very low frequencies, but you must have
storage hardware that is capable of handling frequent, small writes. Attempting to use aggressively low
log frequencies with storage devices that cannot keep up will also hurt transaction throughput and latency.

Standard, uncached storage devices can quickly become overwhel med with frequent writes. So you should
not use low frequencies (and therefore synchronous logging) with slower storage devices. Similarly, if the
command logs are competing for the device with other disk 1/0, performance will suffer. So do not write
the command logsto the same device that is being used for other I/O, such as snapshots or export overflow.

On the other hand, fast, cached devices such as disks with a battery-backed cache, are capable of handling
frequent writes. So it isstrongly recommended that you use such deviceswhen using synchronouslogging.

To specify where the command logs and their associated snapshots are written, you use command log sub-
properties of thedepl oynent . pat hs property. For example, the following example specifies that the
logs are writtento / f ast di sk/ vol t dbl og and the snapshots are written to / opt / vol t db/ cnd-
snaps:

depl oynent :
pat hs:
comandl og:
pat h: /fastdi sk/voltdbl og/

145

Command Logging and Recovery

conmandl| ogsnapshot :
pat h: /opt/voltdb/cnmdsnaps/

Note that the default paths for the command logs and the command log snapshots are both subfolders of
the voltdbroot directory. To avoid overloading a single device on production servers, it is recommended
that you specify an explicit path for the command logs, at a minimum, and preferably for both logs and
snapshots.

To summarize, the rules for balancing command logging with performance and throughput on production
databases are:

 Use asynchronous logging with slower storage devices.
» Write command logs to a dedicated device. Do not write logs and snapshots to the same device.
» Uselow (1-2 milisecond) frequencies when performing synchronous logging.

» Use moderate (100 millisecond or greater) frequencies when performing asynchronous logging.

146

Chapter 15. Streaming Data: Import,
Export, and Migration

Earlier chapters discuss features of VoltDB as a standal one component of your business application. But
like most technologies, VoltDB is often used within a diverse and heterogeneous computing ecosystem
whereit needsto "play well" with other services This chapter describes features of VoltDB that help inte-
grate it with other databases, systems, and applications to simplify, automate, and speed up your business
processes.

Just as VoltDB as adatabase aims to provide the optimal transaction throughput, VoltDB as adata service
aimsto efficiently and reliably transfer data to and from other services. Of course, you can always write
custom code to integrate VoltDB into your application environment, calling stored procedures to move
datain and out of the database. However, the VoltDB feature set simplifies and automates the process of
streaming datainto, out of, and through V oltDB allowing your application to focus on the important work
of analyzing, processing, and modifying the data in flight through secure, reliable transactions. To make
this possible, VoltDB introduces five key concepts:

» Streams
e |mport

* Export

* Migration
» Topics

Streams operate much like regular database tables. Y ou define them with a CREATE statement like tabl es,
they consist of columns and you insert data into streams the same way you insert data into tables using
the INSERT statement. You can define views that aggregate the data as it passes through the stream.
Interactions with streams within a stored procedure are transactional just liketables. The only differenceis
a stream does not store any data in the database. This allows you to use all the consistency and reliability
of atransactional database and the familiar syntax of SQL to manage data"in flight" without necessarily
having to saveit to persistent storage. Of course, sincethereis no storage associated with streams, they are
for INSERT only. Any attempt to SELECT, UPDATE, or DELETE datafrom a stream resultsin an error.

Import automates the process of pulling datafrom external sources and inserting it into the database work-
flow through the same stored procedures your applications use. The import connectors are declared as part
of the database configuration and stop and start with the database. The key point being that the database
manages the entire import process and ensures the durability of the datawhileit iswithin VoltDB. Alter-
nately, you can use one of the VoltDB data loading utilities to push data into the VoltDB database from
avariety of sources.

Export automates the reverse process from import: it manages copying any data written to an export table
or stream and sending it to the associated external target, whether it be a file, a service such as Kafka,
or another database. The export targets are defined in the database configuration, while the connection
of atable or stream to it specific export target is done in the data definition language (DDL) CREATE
statement using the EXPORT TO TARGET clause.

Topics are similar to import and export in that topics let you stream data into and out of the VoltDB
database. The differences are that a single topic can perform both import and output, there can be multiple
consumers and producersfor asingletopic, and it isthe external producers and consumersthat control how

147

Streaming Data: Import,
Export, and Migration

15.1.

and when data is transferred rather than VoltDB pulling from and pushing to individual external targets.
You identify the stream or table to use for output to the topic by specifying EXPORT TO TOPIC in the
CREATE STREAM or CREATE TABLE statement. Y ou then configure the topic, including the stored
procedure to use for input, in the configuration file. Another difference between export and topicsis that,
because topics do not have a single output consumer, there is no single event that determines when the
datatransfer is complete. Instead, you must define aretention/expiration policy (based on time or size) for
when datais no longer needed and can be deleted from the queue.

Migration is a specia case where export is more fully integrated into the business workflow. When you
define a table or view with the MIGRATE TO... clause instead of EXPORT TO..., data is not deleted
from the VoltDB table or view until it is successfully written to the associated target or topic. Y ou trigger
a migration of data using an explicit MIGRATE statement or you can declare the schema object with
USING TTL to schedule the migration based on a timestamp within the data records and an expiration
time defined asthe TTL value.

How you configure these features depends on your specific business goals. The bulk of this chapter de-
scribes how to declare and configure import, export and migration in detail. The next two sections provide
an overview of how data streaming works and how to use these features to perform common business
activities.

How Data Streaming Works in VoltDB

Import associates incoming data with a stored procedure that determines what is done with the data. Ex-
port associates a database object (atable or stream) with an external target, where the external target de-
termines how the exported data is handled. But in both cases the handling of streamed data follows three
key principles:

* Interaction with the VoltDB database is transactional, providing the same ACID guarantees as all other
transactions.

* Interaction with the external system occurs as a separate asynchronous process, avoiding any negative
impact on the latency of ongoing transactionsin the VoltDB database.

» The VoItDB server takes care of starting and stopping the import and export subsystems when the
database starts and stops. The server also takes responsibility for managing streaming data "in flight"
— ensuring that no datais lost once it enters the subsystem and before it reaches its final destination.

VoltDB database achieves these goalsis by having separate export and import connectors handle the data
asit passes from one system to the next as shown in Figure 15.1, “Overview of Data Streaming”.

148

Streaming Data: Import,
Export, and Migration

Figure 15.1. Overview of Data Streaming

Source
Import
| | mum .: Stored
| I m Procedure
Connector

Export
SQL =l [I>
Insert I
Connector
VoltDB Target

In the case of topics, there is no specific source or target; multiple producers and consumers can write to
and read from the topic. And the stored procedure that receives the incoming data can do whatever you
choose with that content: it can write it to the stream as output for the same topic, it can write into other
topics, it can writeinto other database tables, or any combination, providing the ultimate flexibility to meet
your business logic needs, as shown in Figure 15.2, “Overview of Topics’.

Figure 15.2. Overview of Topics

Producers

Topic
S
-_b | me ': Stored

m Procedure

SQL |

Insert
. Topic
s T L - =
'E II _ 1
VoltDB

Consumers

Which streaming features you use depend on your business requirements. The key point isthat orchestrat-
ing multiple disparate systems is complex and error prone and the VoltDB streaming services free you
from these complexities by ensuring that all operations start and stop automatically as part of the server
process, the datain flight is made durable across database sessions, and that all data is delivered at least
once or retained until delivery ispossible.

Thefollowing sections provide an overview of each service. Later sections describe the services and built-
in connectors in more detail. You can also define your own custom import and export connectors, as
described in the VoltDB Guide to Performance and Customization.

149

https://docs.voltactivedata.com/v14docs/PerfGuide/

Streaming Data: Import,
Export, and Migration

15.1.1. Understanding Import

Toimport datainto VoltDB from an external system you have two options: you can use one of the standard
VoltDB data loading utilities (such as csvloader) or you can define an import connector in the database
configuration that associates the external source with a stored procedure. The data loading utilities are
standal one external applicationsthat push datainto the VVoltDB database. VVoltDB import connectors use a
pull model. In other words, the connector periodically checks the data source to determine if new content
isavailable. If so, the connector retrievesthe dataand passesit to the stored procedure whereit can analyze
the data, validate it, manipulate it, insert it into the database, or even pass it along to an export stream;
whatever your application needs.

The creation of theimport connector isdone using thei mpor t property and thelist elements of thecon-
fi gurati on subproperty in the configuration. The child properties of theconf i gur ati on elements
specify the type of import connector to use (Kafka or custom) and, optionally, the input format (CSV by
default). Within the connector definition, the pr oper t y list elements specify the actual data source, the
stored procedure to use as a destination, and any other connector-specific attributes you wish to set.

For example, to process data from a Kafka topic, the connector definition must specify the type (Kafka),
the addresses of one or more Kafka brokers as the source, the name of the topic (or topics), and the stored
procedure to process the data. If the data does not need additional processing, you can use the default
stored procedure that VVoltDB generates for each table to insert the data directly into the database. The
following configuration reads the Kafka topics nyse and nasdaq in CSV format and inserts records into
the stocks table using the default insert procedure:

depl oyrent :
i mport:
configuration:
- type: kafka
format: csv
property:
- nane: brokers
val ue: kaf kasvr1: 9092, kaf kasvr 2: 9092
- nane: topics
val ue: nyse, nasdag
- nane: procedure
val ue: STOCKS. i nsert

Having the import connectors defined in the configuration lets VoltDB manage the entire import process,
from starting and stopping the connectorsto making sure the specified stored procedure exists, fetching the
datain batches and ensuring nothing is lost in transit. Y ou can even add, delete, or modify the connector
definitions on the fly by updating the database configuration while the database is running.

VoltDB provides a built-in import connector for Kafka. Section 15.4, “VoltDB Import Connectors’ de-
scribes the built-in connector and its required and optional properties. Section 15.5, “VoltDB Import For-
matters’ provides additional information about the input formatters that prepare the incoming data for the
stored procedure.

15.1.2. Understanding Export

To export data from VoltDB to an external system you define a database table or stream as the export
source by including the EXPORT TO TARGET clause in the DDL definition and associating that data
sourcewith alogical target name. For example, to associate the stream al ertswith atarget called systemlog,
you would declare a stream like so:

150

Streaming Data: Import,
Export, and Migration

CREATE STREAM al erts
EXPORT TO TARGET systemn og
({colum-definition} [,...]);

For tables, you can also specify when datais queued for export. By default, datainserted into export tables
with the INSERT statement (or UPSERT that results in a new record being inserted) is queued to the
target, similar to streams. However, you can customize the export to write on any combination of data
mani pulation language (DML) statements, using the ON clause. For example, to include updates into the
export steam, the CREATE TABLE statement might look like this:

CREATE TABLE orders
EXPORT TO TARGET orderprocessi ng ON | NSERT, UPDATE
({colum-definition} [,...]);

As soon as you declare a stream or table as exporting to atarget, any data written to that source (or in the
case of tables, the export actionsyou specified in the CREATE TABLE statement) is queued for the export
stream. You associate the named target with a specific connector and external system in the export
section of the database configuration. Note that you can define the target either before or after declaring
the source, and you can add, remove, or modify the export configuration at any time before or after the
database is started.

In the configuration you define the export connector as alist element of theconf i gur at i on property,
identifying the target name and type of connector to use. Y ou identify the specific external target to use and
any necessary connector-specific attributes as properties of the connector. For example, to write export
datato files locally on the database servers, you use the file connector and specify attributes such as the
file prefix, location, and roll-over frequency as properties:

depl oyment :
export:

configuration:

- target: systenl og
type: file
property:

- name: type
val ue: csv
- name: nonce
val ue: sysl og
- nane: period
val ue: 60 # roll every hour (60 m nutes)

VoltDB supports built-in connectors for five types of externa targets: file, HTTP (including Hadoop),
JDBC, Kafka, and Elasticsearch. Each export connector supports different properties specific to that type
of target. Section 15.3, “VoltDB Export Connectors’ describes the built-in export connectors and the
required and optional properties for each.

15.1.3. Understanding Migration

Migration is aspecial case of export that synchronizes export with the deletion of datain database tables.
Y ou can migrate data from either regular database tables or stream views. And you can migrate the data
to either an export target or to atopic.

When you migrate arecord, VoltDB ensuresthe datais successfully transmitted to (and acknowledged by)
thetarget before the datais del eted from the database. In the case of export to atarget, VoltDB waitsuntil it
receives acknowledgement that the data has reached the external system before deleting it. For export to a

151

Streaming Data: Import,
Export, and Migration

topic, the dataisdeleted as soon asit is available to topic consumers. Either way, migration ensuresthat the
dataisalwaysavailable from one of thetwo systems— it cannot temporarily "disappear” during the move.

Y ou define a VVoltDB table as a source of migration using the MIGRATE TO... clause, the same way you
define an export source with the EXPORT TO... clause. For example, the following CREATE TABLE
statement defines the orders table as a source for migration to the oldorders target connector:

CREATE TABLE orders
M GRATE TO TARGET ol dorders
({colum-definition} [,...]);

Migration uses the export subsystem to perform the interaction with the external data store. So you can use
any of the supported connectorsto configure the target of the migration; and you do so the exact same way
you do for any other export target. The difference isthat rather than exporting the data when it is inserted
into the table, the datais exported when you initiate migration.

Y ou trigger migration at run time using the MIGRATE SQL statement and a WHERE clause to identify
the specific rowsto move. For example, to migrate all of the orders for a specific customer, you could use
the following MIGRATE statement:

M GRATE FROM orders
WHERE custmer _id = ? AND NOT M GRATI NG,

Note the use of NOT MIGRATING. MIGRATING is a specia function that identifies all rows that are
currently being migrated; that is, where migration (and deletion) has not yet completed. Although not re-
quired — VoltDb will skip rowsthat are already migrating — adding AND NOT MIGRATING to aMI-
GRATE statement can improve performance by reducing the number of rows eval uated by the expression.

Once the rows are migrated and the external target acknowledges receipt, the rows are deleted from the
database.

To further automate the migration of datato external targets, you can usethe MIGRATE TO... clause with
USING TTL. USING TTL automates the deletion of records based on a TTL value and a TIMESTAMP
column in the table. For example, adding the clause USI NG TTL 12 HOURS ON COLUMWN cr eat ed
to atablewherethecr eat ed column defaultsto NOW, meansthat records will be deleted from the table
12 hours after they are inserted. By adding the MIGRATE TO TARGET clause, you can tell VoltDB to
migrate the data to the specified target before removing it when its TTL expiration is reached.

CREATE TABLE sessi ons
M GRATE TO TARCGET sessi onl og
(session_id BIG NT NOT NULL,
created TI MESTAVP DEFAULT NOW[,...]

)
USI NG TTL 12 HOURS ON COLUMWN cr eat ed;

15.1.4. Understanding Topics

Topicsallow you to integrate both import and export into asingle stream. They also allow multiple external
producers and consumers to access the topic at the same time, keeping track of where each consumer or
group of consumersisin the stream of output.

There are actually two distinct and independent components to a topic that you control separately: input
and output. Y ou declare a topic having either or both, depending on the schema and configuration. The
schema associates individual streams or tables with topics and the configuration defines the properties of
the topic, including what stored procedure to use for input. For example, you can declare an output-only
topic by specifying the topic in the CREATE STREAM.... EXPORT TO TOPIC statement but specifying

152

Streaming Data: Import,
Export, and Migration

no stored procedure in the configuration. In this case, any records written to the associated stream are
gueued for output and available to any consumers of the topic:

CREATE STREAM sessi on EXPORT TO TOPI C sessions ...

If, on the other hand, you specify a stored procedure in the configuration, records written to the topic
by producers invoke the specified procedure passing the message contents (and, optionaly, the key) as
arguments:

depl oyment :
t opi cs:
t opi c:
- name: sessions
procedure: ProcessSessions

If you include both the EXPORT TO TOPIC clause in the CREATE STEAM statement and the pr oce-
dur e property inthet opi c list element, the topic is available for both input and output. What happens
to the data asit passes through VoltDB is up to you. Y ou can simply passit from producers to consumers
by taking the data received by the input procedure and inserting it into the associated stream. Or the stored
procedure can filter, modify, or redirect the content as needed. For example, the following data definitions
create atopic where the input procedure uses an existing table in the database (users) to fill out additional
fields based on the matching username in the incoming records while writing the data to the stream for
output:

Schema CREATE TABLE tenpuser (usernane VARCHAR(128) NOT NULL);
CREATE TABLE users (usernane VARCHAR(128) NOT NULL,
country VARCHAR(32), userrank | NTEGER);
PARTI TI ON TABLE tenpuser on col utm user nane;
PARTI TI ON TABLE users on col umm user nane;

CREATE STREAM sessi on
EXPORT TO TOPI C sessi ons
PARTI TI ON ON COLUWN user nane (
username VARCHAR(128) NOT NULL,
| ogin TI MESTAMP, country VARCHAR(32), userrank | NTEGER);

CREATE PROCEDURE Pr ocessSessi ons
PARTI TI ON ON TABLE users COLUMN user nane
AS BEG N
I NSERT | NTO t enpuser VALUES(CAST(? AS VARCHAR)):
I NSERT | NTO sessi on SELECT u. user nane,
CAST(? AS Tl MESTAMP), u.country, u.userrank
FROM users AS u, tenpuser AS t
WHERE u. user nane=t. user naneg;
TRUNCATE TABLE tenpuser;
END;

Configuration depl oynent :
t opi cs:
topi c:
- nhane: sessions
procedure: ProcessSessions

Finally, if youwant to create atopic that is not processed but simply flowsthrough VoltDB from producers
to consumers, you declare the topic as "opaque’ in the configuration, without either specifying a stored
procedure for input or associating a stream with the topic for output.

153

Streaming Data: Import,
Export, and Migration

15.2.

depl oyrent :
t opi cs:
t opi c:
- name: Sysmsgs
opaque: true

Opaque topics are useful if you want to have a single set of brokers for al your topics but only need to
analyze and process some of the datafeeds. Opaguetopicslet VoltDB handle the additional topicswithout
requiring the stored procedure or stream definitions needed for processed topics.

The Business Case for Streaming Data

The streaming features of VoltDB provide arobust and flexible set of capabilitiesfor connecting aVoltDB
database to external systems. They can be configured in many different ways. At the most basic, they
let you automate the import and export data from aVoltDB database. The following section demonstrate
other ways these capabilities can simplify and automate common business processes, including:

» Section 15.2.1, “Extract, Transform, Load (ETL)”
» Section 15.2.2, “Change Data Capture”

» Section 15.2.3, “ Streaming Data Validation”

» Section 15.2.4, “Caching”

» Section 15.2.5, “ Archiving”

15.2.1. Extract, Transform, Load (ETL)

Extract, transform, load (ETL) is a common business pattern where you extract data from a database,
restructure and repurpose it, then load into another system. For example, an order processing database
might have separate tables for customer data, orders, and product information. When it comestimeto ship
the order, information from all three tables is needed: the customer ID and product SKU from the order,
the name and address from the customer record, and the product name and description from the product
table. Thisinformation is merged and passed to the shipping management system.

Rather than writing a separate application to perform these tasks, VoltDB lets you integrate them in a
single stored procedure. By creating a stream with the appropriate columns for the transformed data and
assigning it as an export source and defining a target that matches the shipping management system, you
can declare single stored procedure to compl ete the process:

CREATE STREAM shi ppi ng
EXPORT TO TARGET shi pngt system
(order_nunber BI G NT,
prod_sku BI G NT,
prod_nane VARCHAR(64),
cust omer _nanme VARCHAR(64),
cust omer _addr ess VARCHAR(128));
CREATE PROCEDURE shi porder AS
I NSERT | NTO shi ppi ng SELECT
0.id, p.sku, p.nane, c.nane, c.address
FROM orders AS o, products AS p, customers AS c
VWHERE o.id = ? AND
0.sku = p.sku AND o.custoner_id = c.id;

154

Streaming Data: Import,
Export, and Migration

15.2.2. Change Data Capture

Change Data Capture is the process of recording all changes to the content of a database. Those changes
can then be reused by inserting into another repository for redundancy, logging to a file, merging into
another database or whatever the business workflow call for.

VoltDB simplifies change data capture by allowing you to export all or any subset of datachangesto atable
to any of the available export targets. When you declare atable as an export source with the EXPORT TO
TARGET clause you can specify which actions trigger export using ON. Possible triggers are INSERT,
UPDATE, UPDATE_NEW, UPDATE_OLD, and DELETE.

INSERT and DELETE are self-explanatory. UPDATE, on the other hand, generates two export records:
one for the row before the update and one for the row after the update. To select only one or these records,
you can use the actions UPDATE_OLD or UPDATE_NEW.

For change data capture, you can export all changes by specifying ON INSERT, UPDATE, DELETE. For
example, the following schema definitions ensure that all data changes for the tables products and orders
are exported to the targets offsiteprod and offsiteorder, respectively:

CREATE TABLE products EXPORT TO TARGET of fsiteprod
ON | NSERT, UPDATE, DELETE
[... 1}

CREATE TABLE orders EXPORT TO TARGET of fsiteorder
ON | NSERT, UPDATE, DELETE

[... 1}

Note that the built-in connectors include six columns of metadata at the beginning of the export data by
default. For change data capture, the most important piece of metadataisthe sixth column, withisasingle
byte value that indicates which action triggered the export. The external target can use this information
to determine what to do with the record. The possible values for the operation indicator are shown in
Table 15.2, “Export Metadata’.

15.2.3. Streaming Data Validation

VoltDB provides the necessary speed and features to implement an intelligent data pipeline — where
information passing through a high performance stream is analyzed, validated and then accepted, rejected,
or modified as necessary and passed on to the next stage of the pipeline. Inthisuse case, thedatain VoltDB
is used as reference for comparison with the influx of data in the pipeline. VoltDB import connectors
accept the incoming data, where it is submitted to a stored procedure. The stored procedure analyses the
data against the reference tables, then inserts the validated content into a stream which isin turn declared
as asource for an export connector that sends it along to its next target.

For example, VoltDB can be inserted into a Kafka pipeline by using:

» A Kafkaimport connector as the input

» A VolItDB stream and a Kafka export connector as the output

A stored procedure analyzing the input and inserting it into the stream

The following schema and configuration illustrate a ssimple example that checks if the data in a Kafka
stream matches an existing user account with appropriate funds. The schema uses a reference table (ac-

count), a temporary table (incoming), and an export stream (outgoing). Any data matching the require-
ments is written to the export target; al other incoming data is dropped.

155

Streaming Data: Import,
Export, and Migration

CREATE TABLE account

(user_id BI QA NT, username VARCHAR(25), bal ance BIG NT);
CREATE TABLE i ncom ng

(trans_id BIG NT, ampbunt BI QA NT, user_id BIG@NT);
CREATE STREAM out goi ng EXPORT TO TARGET kaf ka_out put

(trans_id BIG NT, ampbunt BI QA NT, user_id BIG@NT);

CREATE PROCEDURE val i date AS
BEG N
I NSERT | NTO i ncoming (?,?,7?);
I NSERT | NTO out goi ng
SELECT i.trans_id, i.anount, i.user_id
FROM i ncoming AS i, account AS a
WHERE i.user_id = a.user_id AND a. bal ance + i.amount > O;
TRUNCATE TABLE i ncom ng;
END;

depl oyment :
i mport:
configuration:
- type: kafka
property:
- nane: procedure
val ue: validate
- name: brokers
val ue: kfkasrcl, kfksrc2
- nane: topics
val ue: transactions
export:
configuration:
- target: kafka_out put
type: kafka
property:
- name: bootstrap. servers
val ue: kf kdest 1, kf kdest 2
- nane: topic.key
val ue: outgoing.transactions
- nane: skipinternals
val ue: true

15.2.4. Caching

Because of its architecture, VoltDB is excellent at handling high volume transactions. It is not as well
suited for ad hoc analytical processing of extremely large volumes of historical data. But sometimes you
need both. Caching allows current, high touch content to be accessible from a fast front-end repository
while historical, less frequently accessed content is stored in slower, large back-end repositories (such as
Hadoop) sometimes called data lakes.

Export, Time To Live (TTL), and automated tasks help automate the use of VoltDB as a hot cache. By
declaring tables in VoltDB as export sources to a large back-end repository, any data added to VoltDB
automatically gets added to the historical data lake. Once data in VoltDB is no longer "hot", it can be
deleted but remains available from larger back-end servers.

156

Streaming Data: Import,
Export, and Migration

In the simplest case, caching can be done by declaring the VoltDB tables with EXPORT TO TARGET
and using ON INSERT, UPDATE_NEW so al data changes except deletes are exported to the data lake.
Y ou can then manually delete data from VoltDB when it becomes unnecessary in the cache.

CREATE TABLE sessi ons
EXPORT TO TARGET hi storical ON I NSERT, UPDATE_NEW
(id BIG NT NOT NULL,
| ogi n TI MESTAMP, | ast_access TIMESTAMP [,...]);

To makeit easier, VoltDB can automate the process of aging out old data. If the content istime sensitive,
you can add USING TTL to the table declaration to automatically delete records once a column exceeds
a certain time limit. Y ou specify the reference column and the time limit in the USING TTL clause. For
example, if you want to automatically delete any sessions that have not been accessed for more than two
hours, you can change the sessions table declaration like so:

CREATE TABLE sessi ons
EXPORT TO TARGET historical ON | NSERT, UPDATE_NEW
(1d BIG NT NOT NULL, user_id BIG NT,
l ogi n TI MESTAMP, | ast_access TINMESTAWVP [,...])
USI NG TTL 2 hours ON COLUWN | ast _access;

If your expiration criteriais more complex than a single column value, you can use a stored procedure to
identify rows that need deleting. To automate this process, you then define atask that executes the stored
procedure on aregular basis. For example, if you want to remove sessions more frequently if thereis no
access after theinitial login, you can define astored procedure GhostSessions to removeinactive sessions,
then execute that procedure periodically with the task RemoveGhosts. Note that the actual time limit can
be made adjustable by a parameter passed to the task.

CREATE PROCEDURE Ghost Sessi ons AS
DELETE FROM sessi ons
VWHERE | ogin = | ast_access AND DATEADD(M NUTE, ?, | ogi n) < NOW
CREATE TASK ON SCHEDULE EVERY 2 M NUTES
PROCEDURE Ghost Sessions WTH (20); -- 20 minute limt

15.2.5. Archiving

Archivingislike caching in that older datais maintained in slower, large-scale repositories. The difference
isthat for archiving, rather than having copies of the current data in both locations, data is not moved to
the archive until after it's usefulnessin VoltDB expires.

Y ou could simply export the data when you delete it from the VoltDB database. But since export is asyn-
chronous, there will be a short period of time when the data is neither in VoltDB or in the archive. To
avoid this situation, you can use migration rather than export, which ensures the data is not deleted from
VoltDB until the export target acknowledges receipt of the migrated content.

For example, if we are archiving orders, we can include the MIGRATE TO TARGET clause in the table
definition and then use the MIGRATE statement instead of DELETE to clear the records from VoltDB:

CREATE TABLE orders M GRATE TO TARGET archi ve
[.. . 1

If you are archiving records based on age, you can use MIGRATE TO TARGET with USING TTL to
automatically migrate the table rows once a specific column in the table expires. Used alone, USING TTL
simply deletesrecords; used with MIGRATE TO TARGET it initiatesamigration for the expired records:

157

Streaming Data: Import,
Export, and Migration

15.3.

CREATE TABLE orders M GRATE TO TARGET archi ve

[.. .1
USI NG TTL 30 DAYS ON CCOLUWN or der _conpl et ed;

VoltDB Export Connectors

Y ou usethe EXPORT TO TARGET or MIGRATE TO TARGET clausesto identify the sources of export
and start queuing export data. To enable the actual transmission of datato an export target at runtime, you
includetheexport andconf i gur ati on propertiesin the configuration. Y ou can configure the export
targets when you initialize the database root directory. Or you can add or modify the export configuration
while the database is running using the voltadmin update or set commands.

In the configuration file, the conf i gur ati on list elements specify the target you are configuring and
which export connector to use (with thet ype property). To export to multiple destinations, you include
multiple elements in the conf i gur ati on property, each specifying the target it is configuring. For
example:

depl oyment :
export:
configuration:

- target: log
enabl ed: true
type: file

- target: archive
enabl ed: true
type: file

Y ou configure each export connector by specifying properties as one or more list elementsto the pr op-
er ty property. For example, the following YAML code enables export to comma-separated (CSV) text
files using thefile prefix "MyExport".

depl oyrent :
export:
configuration:
- target: |og
enabl ed: true
type: file

property:
- name: type
val ue: csv
- name: nonce
val ue: MyExport

The propertiesthat are allowed and/or required depend on the export connector you select. VoltDB comes
with five export connectors:

» Export tofile (type "file")

» Export to HTTP, including Hadoop (type "http")
» Export to IDBC (type "jdbc")

» Export to Kafka (type "Kafka")

 Export to Elasticsearch (type "elasticsearch")

158

Streaming Data: Import,
Export, and Migration

15.3.1. How Export Works

Two important points about export to keep in mind are;

» Dataisqueued for export as soon you declare a stream or table with the EXPORT TO TARGET clause
and write to it. Even if the export target has not been configured yet. Be careful not to declare export
sources and forget to configure their targets, or el se the export queues could grow and cause disk space
issues. Similarly, when you drop the stream or table, its export queue is deleted, even if there is data
waiting to be delivered to the configured export target.

» VoltDB will send at least one copy of every export record to the target. It is possible, when recovering
command logs or rejoining nodes, that certain export records are resent. It isup to the downstream target
to handle these duplicate records. For example, using unique indexes or including a unique record ID
in the export stream.

All nodes in acluster queue export data, but only one actually writes to the external target. If one or more
nodes fail, responsihility for writing to the export targets is transferred to another currently active server.
Itispossiblefor gapsto appear in the export queues while serversare offline. Normally if agap isfound, it
is not a problem because another node can take over responsibility for writing (and queuing) export data.

However, in unusual cases where export falls behind and nodesfail and rejoin consecutively, it ispossible
for gapsto occur in all the available queues. When this happens, VoltDB issues a warning to the console
(and via SNMP) and waits for the missing data to be resolved. Y ou can also use the @Statistics system
procedure with the EXPORT selector to determine exactly what records are and are not present in the
gueues. If the gap cannot be resolved (usually by rejoining a failed server), you must use the voltadmin
export release command to free the queue and resume export at the next available record.

15.3.1.1. Export Overflow

VoltDB uses persistent files on disk to queue export data waiting to be written to its specified target. If
for any reason the export target can not keep up with the connector, VVoltDB writes the excess data in the
export buffer from memory to disk. This protects your database in severa ways:

« If the destination target is not configured, is unreachable, or cannot keep up with the data flow, writing
to disk helps VoltDB avoid consuming too much memory while waiting for the destination to accept
the data.

* If the database stops, the export data is retained across sessions. When the database restarts, the con-
nector will retrieve the overflow data and reinsert it in the export queue.

Even when the target does keep up with the flow, some amount of dataiswritten to the overflow directory
to ensure durability across database sessions. Y ou can specify where VoltDB writes the overflow export
datausing the pat hs and export over f | ow propertiesin the configuration. For example:

depl oynent :
pat hs:
exportoverfl ow
pat h: /tnp/export/

If you do not specify apath for export overflow, VoltDB creates asubfolder in the database root directory.
See Section 3.7.2, “ Configuring Paths for Runtime Features” for moreinformation about configuring paths
in the configuration.

15.3.1.2. Persistence Across Database Sessions

It isimportant to note that VoltDB only uses the disk storage for overflow data. However, you can force
VoltDB to write all queued export data to disk using any of the following methods:

159

Streaming Data: Import,
Export, and Migration

« Calling the @Quiesce system procedure
» Requesting a blocking snapshot (using voltadmin save --blocking)
» Performing an orderly shutdown (using voltadmin shutdown)

This means that if you perform an orderly shutdown with the voltadmin shutdown command, you can
recover the database — and any pending export queue data — by simply restarting the database cluster
in the same root directories.

Note that when you initialize or re-initialize a root directory, any subdirectories of the root are purged.1
So if your configuration did not specify a different location for the export overflow, and you re-initiaize
the root directories and then restore the database from a snapshot, the database is restored but the export
overflow will belost. If both your original and new configuration use the same, explicit directory outside
the root directory for export overflow, you can start a new database and restore a snapshot without losing
the overflow data

15.3.2. The File Export Connector

The file connector receives the serialized data from the export source and writesit out astext files (either
comma or tab separated) to disk. The file connector writes the data out one file per source table or stream,
"rolling" over to new files periodicaly. The filenames of the exported data are constructed from:

* A unique prefix (specified with the nonce property)
* A unique value identifying the current version of the database schema
* The stream or table name

* A timestamp identifying when the file was started

Optionally, the ID of the host server writing the file

While the file is being written, the file name a so contains the prefix "active-". Once the file is complete
and a new file started, the "active-" prefix is removed. Therefore, any export files without the prefix are
complete and can be copied, moved, deleted, or post-processed as desired.

Thereisonly one required property that must be set when using the file connector. The nonce property
specifies a unique prefix to identify all files that the connector writes out for this database instance. All
other properties are optional and have default values.

Table 15.1, “File Export Properties’ describes the supported properties for the file connector.

Table 15.1. File Export Properties

Property Allowable Values Description

nonce string A unique prefix for the output files.

type csv, tsv Specifies whether to create comma-separated (CSV) or tab-delimit-
ed (TSV) files. CSV isthe default format.

outdir directory path The directory where the files are created. Relative paths are relative

to the database root directory on each server. If you do not specify
an output path, VoltDB writes the output files into a subfolder of the
root directory itself.

Ynitializi ng aroot directory deletes any files in the command log and overflow directories. The snapshots directory is archived to a named subdi-

rectory.

160

Streaming Data: Import,
Export, and Migration

Property

Allowable Values

Description

period

Integer

The frequency, in minutes, for "rolling" the output file. The default
freguency is 60 minutes.

retention

string

Specifies how long exported files are retained. Y ou specify the re-
tention period as an integer number and a time unit identifier from
the following list:

e s— Seconds
* m— Minutes
* h— Hours

e d— Days

For example, "31d" setsthe retention limit at 31 days. After files ex-
ceed the specified time limit, they are deleted by the export subsys-
tem. The default isto retain al files indefinitely.

binaryencoding

hex, base64

Specifies whether VARBINARY datais encoded in hexadecimal or
BASE64 format. The default is hexadecimal .

charset

string

Specifies the character set encoding to use when writing VAR-
CHAR columns to the output stream. The default character encoding
isUTF-8.

dateformat

format string

The format of the date used when constructing the output file names.
Y ou specify the date format as a Java SimpleDateFormat string. The
default format is"yyyyMMddHHmMmss".

timezone

string

The time zone to use when formatting the timestamp. Specify the
time zone as a Java TimeZone identifier. For example, you can spec-
ify a continent and region ("America/New_Y ork") or atime zone
acronym ("EST"). The default is GMT.

delimiters

string

Specifies the delimiter characters for CSV output. The text string
specifies four characters in the following order: the separator, the
guote character, the escape character, and the end-of-line character.

Non-printing characters must be encoded as Java literals. For ex-
ample, the new line character (ASCII code 13) should be entered
as"\n". Alternately, you can use Java Unicode literals, such as
"\u000d". Enclose strings containing special characters such asthe
backslash in single quotation marks.

The following property definition matches the default delimiters.
That is, the comma, the double quotation character twice (as both
the quote and escape delimiters) and the new line character:

property:
nane: delimter

val ue: ,"An'

batched

true, false

Specifies whether to store the output files in subfolders that are
"rolled" according to the frequency specified by the period property.
The subfolders are named according to the nonce and the timestamp,
with "active-" prefixed to the subfolder currently being written.

skipinternals

true, false

Specifies whether to include six columns of VoltDB metadata (such
as transaction I1D and timestamp) in the output. If you specify skipin-
ternals as "true", the output files contain only the exported data.

161

Streaming Data: Import,
Export, and Migration

Property

Allowable Values Description

uniquenames true, false Specifies whether to include the host ID in the file name to ensure

that all files written are unique across a cluster. The export files are
always unique per server. But if you plan to write al cluster filesto
anetwork drive or copy them to asingle location, set this property
to true to avoid any possible conflict in the file names. The default is
false.

with-schema true, false Specifies whether to write a JSON representation of the source's

schema as part of the export. The JSON schema files can be used to
ensure the appropriate datatype and precision is maintained if and
when the output files are imported into another system.

"Required

Whatever properties you choose, the order and representation of the content within the output filesis the
same. The export connector writes a separate line of data for every INSERT it receives, including the
following information:;

 Six columns of metadata generated by the export connector.

» The remaining columns are the columns of the database source, in the same order asthey are listed in
the database definition (DDL) file.

Table 15.2, “Export Metadata” describes the six columns of metadata generated by the export connector
and the meaning of each column.

Table 15.2. Export Metadata
Column Datatype Description
Transaction ID BIGINT Identifier uniquely identifying the transaction that generated the ex-
port record.
Timestamp TIMESTAMP The time when the export record was generated.
Sequence Number BIGINT For internal use.
Partition ID BIGINT I dentifies the partition that sent the record to the export target.
SiteID BIGINT Identifies the site that sent the record to the export target.
Export Operation TINYINT A single byte value identifying the type of transaction that initiated
the export. Possible valuesinclude:
e 1—insert
e 2—delete

e 3 — update (record before update)
e 4 — update (record after update)
e 5— migration

15.3.3

. The HTTP Export Connector

The HTTP connector receives the serialized data from the export streams and writes it out via HTTP
requests. The connector is designed to be flexible enough to accommodate most potential targets. For
example, the connector can be configured to send out individual records using a GET request or batch
multiple records using POST and PUT requests. The connector also contains optimizations to support
export to Hadoop via WebHDFS.

162

Streaming Data: Import,
Export, and Migration

15.3.3.1. Understanding HTTP Properties

The HTTP connector is a general purpose export utility that can export to any number of destinations
from simple messaging services to more complex REST APIs. The properties work together to create a
consistent export process. However, it isimportant to understand how the properties interact to configure
your export correctly. The four key properties you need to consider are:

» batch.mode — whether datais exported in batches or one record at atime
» method — the HTTP regquest method used to transmit the data

» type— the format of the output

» endpoint — the target HTTP URL to which export iswritten

The properties are described in detail in Table 15.3, “HTTP Export Properties’. This section explains the
relationship between the properties.

There are essentially two types of HTTP export: batch mode and one record at a time. Batch mode is
appropriate for exporting large volumes of data to targets such as Hadoop. Exporting one record at atime
islessefficient for large volumes but can be very useful for writing intermittent messagesto other services.

In batch mode, the datais exported using aPOST or PUT method, where multiple records are combined in
either comma-separated value (CSV) or Avro format in the body of the request. When writing one record
at atime, you can choose whether to submit the HTTP request as a POST, PUT or GET (that is, as a
guerystring attached to the URL). When exporting in batch mode, the method must be either POST or PUT
and the type must be either csv or avr 0. When exporting one record at a time, you can use the GET,
POST, or PUT method, but the output type must bef or m

Finally, the endpoint property specifies the target URL where data is being sent, using either the http: or
https: protocol. Again, the endpoint must be compatible with the possible settings for the other properties.
In particular, if the endpoint isa WebHDFS URL, batch mode must enabled.

The URL can also contain placeholders that are filled in at runtime with metadata associated with the
export data. Each placeholder consists of a percent sign (%) and a single ASCII character. The following
are the valid placeholders for the HTTP endpoint property:

Placeholder Description

%ot The name of the VoltDB export source table or stream. The source name is inserted
into the endpoint in all uppercase.

%p TheVoltDB partition ID for the partition where the INSERT query to the export source
is executing. The partition ID is an integer value assigned by VoltDB internally and
can be used to randomly partition data. For example, when exporting to webHDFS, the
partition ID can be used to direct datato different HDFS files or directories.

%g The export generation. The generation is an identifier assigned by VoltDB. The gener-
ation increments each time the database starts or the database schema is modified in
any way.

%d The date and hour of the current export period. Applicable to WebHDFS export only.

This placeholder identifies the start of each period and the replacement value remains
the same until the period ends, at which point the date and hour is reset for the new
period.

You can use this placeholder to "roll over" WebHDFS export destination files on a
regular basis, as defined by the per i od property. The peri od property defaults to
one hour.

163

Streaming Data: Import,
Export, and Migration

When exporting in batch mode, the endpoint must contain at least one instance each of the %t, %p, and
%pg placeholders. However, beyond that requirement, it can contain as many placeholders as desired and
in any order. When not in batch mode, use of the placeholders are optional.

Table 15.3, “HTTP Export Properties’ describes the supported properties for the HT TP connector.

Table 15.3. HTTP Export Properties

Property Allowable Values Description

endpoi nt string Specifies the target URL. The endpoint can contain placeholders for
inserting the source name (%t), the partition 1D (%p), the date and
hour (%d), and the export generation (%g).

avro.compress true, false Specifies whether Avro output is compressed or not. The default is
false and this property isignored if the typeis not Avro.

avro.schema.location |string Specifies the location where the Avro schemawill be written. The
schema location can be either an absolute path name on the local
database server or awebHDFS URL and must include at least one
instance of the placeholder for the source name (%t). Optional-

ly it can contain other instances of both %t and %g. The default
location for the Avro schemaisthe file path expor t / avr o/

% avro_schena. j son on the database server under the voltd-
broot directory. This property isignored if the typeis not Avro.

batch.mode true, false Specifies whether to send multiple rows as a single request or send
each export row separately. The default is true. Batch mode must be
enabled for WebHDFS export.

httpfs.enable true, false Specifies that the target of WebHDFS export is an Apache HttpFS

(Hadoop HDFS over HTTP) server. This property must be set to true
when exporting webHDFS to HttpFS targets.

kerberos.enable true, false Specifies whether K erberos authentication is used when connecting
to aWebHDFS endpoint. This property is only valid when connect-
ing to WebHDFS servers and is false by default.

method get, post, put Specifiesthe HTTP method for transmitting the export data. The de-
fault method is POST. For WebHDFS export, this property isig-
nored.

period Integer Specifies the frequency, in hours, for "rolling" the WebHDFS output
date and time. The default frequency is every hour (1). For WebHD-
FS export only.

timezone string The time zone to use when formatting the timestamp. Specify the
time zone as a Java TimeZone identifier. For example, you can spec-
ify acontinent and region ("America/New_Y ork™) or atime zone
acronym ("EST"). The default isthe local time zone.

type csv, avro, form Specifies the output format. If batch.mode is true, the default typeis
CSV. If batch.mode is fal se, the default and only allowable value for
typeisform. Avro format is supported for WebHDFS export only
(see Section 15.3.3.2, “Exporting to Hadoop via WebHDFS' for de-
tails.)

"Required

164

Streaming Data: Import,
Export, and Migration

15.3.3.2. Exporting to Hadoop via WebHDFS

As mentioned earlier, the HTTP connector contains specia optimizations to support exporting data to
Hadoop via the WebHDFS protocol. If the endpoint property contains a WebHDFS URL (identified by
the URL path component starting with the string "/webhdfs/vl/"), special rules apply.

First, for WebHDFS URLSs, the batch.mode property must be enabled. Also, the endpoint must have at
least one instance each of the source name (%t), the partition ID (%p), and the export generation (%g)
placeholders and those placeholders must be part of the URL path, not the domain or querystring.

Next, the method property isignored. For WebHDFS, the HTTP connector uses a combination of POST,
PUT, and GET requests to perform the necessary operations using the WebHDFS REST API.

For example, Thefollowing configuration file exports stream datato WebHDFS using the HT TP connector
and writing each stream to a separate directory, with separate files based on the partition ID, generation,
and period timestamp, rolling over every 2 hours:

depl oyrment :
export:

configuration:

- target: hadoop
enabl ed: true
type: http
property:

- nane: endpoi nt

val ue: "http://myhadoopsvr/webhdfs/vl/ %/ dat a%-%. %d. csv”
- name: batch. node

val ue: true
- nane: period

val ue: 2

Note that the HTTP connector will create any directories or files in the WebHDFS endpoint path that do
not currently exist and then append the data to those files, using the POST or PUT method as appropriate
for the WebHDFS REST API.

Y ou also have a choice between two formats for the export data when using WebHDFS: comma-separated
values (CSV) and Apache Avro™ format. By default, data is written as CSV data with each record on
a separate line and batches of records attached as the contents of the HTTP request. However, you can
choose to set the output format to Avro by setting the t ype property, asin the following example:

depl oyrent :
export:
configuration:
- target: hadoop
enabl ed: true
type: http
property:
- nane: endpoi nt
val ue: "http://nmyhadoopsvr/webhdfs/vl/ %/ dat a%-%y. %d. avr o"
- nanme: type
val ue: avro
- name: avro. conpr ess
val ue: true
- name: avro.schema. | ocation
val ue: "http://myhadoopsvr/webhdfs/vl/ % /schema.json”

165

Streaming Data: Import,
Export, and Migration

Avro is adata serialization system that includes a binary format that is used natively by Hadoop utilities
such as Pig and Hive. Because it is abinary format, Avro data takes up less network bandwidth than text-
based formats such as CSV. In addition, you can choose to compress the data even further by setting the
avr 0. conpr ess property to true, asin the previous example.

When you select Avro as the output format, VVoltDB writes out an accompanying schema definition as a
JSON document. For compatibility purposes, the source name and columns names are converted, removing
underscores and changing the resulting words to lowercase with initial capital letters (sometimes called
"camelcase"). The source nameisgiven aninitial capital letter, while columns names start with alowercase
letter. For example, the stream EMPLOYEE_DATA and its column named EMPLOY EE_iD would be
converted to EmployeeData and employeeld in the Avro schema.

By default, the Avro schemaiis written to alocal file on the VoltDB database server. However, you can
specify an aternate location, including a webHDFS URL. So, for example, you can store the schemain
the same HDFS repository as the data by setting theavr o. schema. | ocat i on property, as shownin
the preceding example.

See the Apache Avro web site for more details on the Avro format.

15.3.3.3. Exporting to Hadoop Using Kerberos Security

If the WebHDFS service to which you are exporting data is configured to use Kerberos security, the
VoltDB servers must be able to authenticate using Kerberos as well. To do this, you must perform the
following two extra steps:

» Configure Kerberos security for the VoltDB cluster itself
» Enable Kerberos authentication in the export configuration

Thefirst step isto configure the VoltDB serversto use Kerberos as described in Section 12.9, “Integrating
Kerberos Security with VoltDB”. Because use of Kerberos authentication for VoltDB security changes
how the clients connect to the database cluster, It is best to set up, enable, and test Kerberos authentication
first to ensure your client applications work properly in this environment before trying to enable Kerberos
export aswell.

Once you have K erberos authentication working for the VoltDB cluster, you can enable K erberos authen-
tication in the configuration of the WebHDFS export target as well. Enabling Kerberos authentication in
the HTTP connector only requires one additional property, ker ber os. enabl e, to be set. To use Ker-
beros authentication, set the property to "true". For example:

depl oyrent :
export:
configuration:
- target: hadoop
enabl ed: true
type: http
property:
- nane: endpoi nt
val ue: "nyhadoopsvr/webhdfs/v1l/ % /dat a%p-%. %d. csv"
- nane: type
val ue: csv
- nane: kerberos. enable
val ue: true

Note that Kerberos authentication is only supported for WebHDFS endpoints.

166

http://avro.apache.org/

Streaming Data: Import,
Export, and Migration

15.3.4. The JDBC Export Connector

The JDBC connector receivesthe serialized datafrom the export source and writesit, in batches, to another
database through the standard JDBC (Java Database Connectivity) protocol.

By default, when the JDBC connector opens the connection to the remote database, it first attempts to
create tables in the remote database to match the VoltDB export source by executing CREATE TABLE
statements through JDBC. Thisisimportant to note because, it ensures there are suitable tablesto receive
the exported data. The tables are created using either the names from the VoltDB schemaor (if you do not
enable the ignoregenerations property) the name prefixed by the database generation ID.

If the target database has existing tables that match the VoltDB export sourcesin both name and structure
(that is, the number, order, and datatype of the columns), be sure to enable the ignoregenerations property
in the export configuration to ensure that VVoltDB uses those tables as the export target.

It isalso important to notethat the JDBC connector exports datathrough JDBC in batches. That is, multiple
INSERT instructions are passed to the target database at atime, in approximately two megabyte batches.
There are two conseguences of the batching of export data:

» For many databases, such as Netezza, where thereis a cost for individual invocations, batching reduces
the performance impact on the receiving database and avoids unnecessary latency in the export pro-
cessing.

» Ontheother hand, no matter what the target database, if aquery failsfor any reason the entire batch fails.

To avoid errors causing batch inserts to fail, it is strongly recommended that the target database not use
unique indexes on the receiving tables that might cause constraint violations.

If any errorsdo occur when the JIDBC connector attemptsto submit datato the remote database, the VoltDB
disconnects and then retries the connection. This process is repeated until the connection succeeds. If
the connection does not succeed, VoltDB eventually reduces the retry rate to approximately every eight
seconds.

Table 15.4, “JDBC Export Properties’ describes the supported properties for the JDBC connector.

Table 15.4. JDBC Export Properties

Property

Allowable Values Description

jdbeurl”

connection string

The JDBC connection string, also known as the URL.

jdbcuser”

string

The username for accessing the target database.

jdbcpassword

string

The password for accessing the target database.

jdbcdriver

string

The class name of the JIDBC driver. The JDBC driver class must be
accessible to the VVoltDB process for the JDBC export process to
work. Place the driver JAR filesinthel i b/ ext ensi on/ direc-
tory where VoltDB isinstalled to ensure they are accessible at run-
time.

Y ou do not need to specify the driver as a property value for several
popular databases, including MySQL, Netezza, Oracle, PostgreSQL,
and Vertica. However, you still must provide the driver JAR file.

schema

string

The schema name for the target database. The use of the schema
name is database specific. In some cases you must specify the data-
base name as the schema. In other cases, the schemaname is not

167

Streaming Data: Import,
Export, and Migration

Allowable Values Description

needed and the connection string contains al the information neces-
sary. See the documentation for the JDBC driver you are using for
more information.

minpoolsize integer The minimum number of connectionsin the pool of connections to
the target database. The default valueis 10.

maxpoolsize integer The maximum number of connectionsin the pool. The default value
is100.

maxidletime integer The number of milliseconds a connection can beidle beforeitisre-

moved from the pool. The default value is 60000 (one minute).

maxstatementcached |integer The maximum number of statements cached by the connection pooal.

The default value is 50.

true, false Specifies whether VoltDB should create the corresponding table in
the remote database. By default , VoltDB creates the table(s) to re-
ceive the exported data. (That is, the default istrue.) If you set this
property to false, you must create table(s) with matching names to
the VoltDB export sources before starting the export connector.

true, false Specifies whether VoltDB uses lowercase table and column names
or not. By default, VoltDB issues SQL statements using uppercase
names. However, some databases (such as PostgreSQL) are case
sensitive. When this property is set to true, VoltDB uses all lower-
case names rather than uppercase. The default isfalse.

ignoregenerations true, false Specifies whether a unique ID for the generation of the database

isincluded as part of the output table name(s). The generation ID
changes each time a database restarts or the database schemais up-
dated. The default isfalse.

skipinternals true, false Specifies whether to include six columns of VoltDB metadata (such

astransaction ID and timestamp) in the output. If you specify skip-
internals as true, the output contains only the exported stream data.
The default isfalse.

15.3.5. The Kafka Export Connector

The Kafkaconnector receives serialized datafrom the export sources and writesit to amessage queue using
the Apache Kafka version 0.10.2 protocols. Apache Kafkais a distributed messaging service that lets you
set up message queues which are written to and read from by "producers’ and "consumers', respectively.
In the Apache Kafka model, VoltDB export acts as a "producer” capable of writing to any Kafka service
using version 0.10.2 or later.

Before using the Kafka connector, we strongly recommend reading the Kafka documentation and becom-
ing familiar with the software, since you will need to set up a Kafka service and appropriate "consumer"
clientsto make use of VoltDB's Kafkaexport functionality. Theinstructionsin this section assume awork-
ing knowledge of Kafka and the Kafka operational model.

When the K afka connector receives datafrom the VVoltDB export sources, it establishes a connection to the
Kafka messaging service as a Kafka producer. It then writes records to Kafka topics based on the VoltDB
stream or table name and certain export connector properties.

The magjority of the Kafka export properties are identical in both in name and content to the Kafka pro-
ducer properties listed in the Kafka documentation. All but one of these properties are optional for the

168

http://kafka.apache.org/
http://kafka.apache.org/documentation.html

Streaming Data: Import,
Export, and Migration

Kafka connector and will use the standard Kafka default value. For example, if you do not specify the
gueue. buf f eri ng. max. ns property it defaults to 5000 milliseconds.

The only required property is boot st rap. server s, which lists the Kafka servers that the VoltDB
export connector should connect to. Y ou must include this property so VoltDB knows where to send the
export data. Specify each server by its IP address (or hostname) and port; for example, myserver:7777. If
there are multiple serversin the list, separate them with commas.

In addition to the standard K afka producer properties, there are several custom properties specific to Volt-
DB. The properties bi nar yencodi ng, ski pi nternal s, and ti mezone affect the format of the
data. Thet opi c. prefi x andt opi c. key properties affect how the datais written to Kafka.

Thet opi c. pr ef i x property specifiesthetext that precedesthe stream or table name when constructing
the Kafka topic. If you do not specify a prefix, it defaults to "voltdbexport”. Alternately, you can map
individual sourcesto topicsusingthet opi c. key property. Inthet opi c. key property you associate
a VoltDB export source name with the corresponding Kafka topic as a named pair separated by a period
(). Multiple named pairs are separated by commas (,). For example:

Enpl oyee. EnpTopi ¢, Conpany. CoTopi ¢, Ent er pri se. Ent Topi ¢

Any mappings in the t opi c. key property override the automated topic name specified by t op-
ic.prefix.

Note that unless you configure the Kafka brokers with the aut 0. cr eat e. t opi ¢s. enabl e property
set to true, you must create the topics for every export source manually before starting the export process.
Enabling auto-creation of topics when setting up the Kafka brokers is recommended.

When configuring the Kafka export connector, it isimportant to understand the relationship between syn-
chronous versus asynchronous processing and its effect on database latency. If the export data is sent
asynchronously, the impact of export on the database is reduced, since the export connector does not wait
for the Kafka infrastructure to respond. However, with asynchronous processing, VoltDB is not able to
resend the data if the message fails after it is sent.

If export to Kafkaisdone synchronously, the export connector waitsfor acknowledgement of each message
sent to Kafka before processing the next packet. This allows the connector to resend any packets that fail.
The drawback to synchronous processing is that on a heavily loaded database, the latency it introduces
means export may not be able to keep up with the influx of export data and and have to write to overflow.

Y ou specify the level of synchronicity and durability of the connection using the Kafka acks property.
Set acks to "0" for asynchronous processing, "1" for synchronous delivery to the Kafka broker, or "all"
to ensure durability on the Kafka broker. See the Kafka documentation for more information.

VoltDB guarantees that at least one copy of all export data is sent by the export connector. But when
operating in asynchronous mode, the Kafka connector cannot guarantee that the packet is actually received
and accepted by the Kafka broker. By operating in synchronous mode, VoltDB can catch errors returned
by the Kafka broker and resend any failed packets. However, you pay the penalty of additional latency
and possible export overflow.

Finally, the actual export datais sent to Kafka as a comma-separated values (CSV) formatted string. The
message includes six columns of metadata (such as the transaction ID and timestamp) followed by the
column values of the export stream.

Table 15.5, “Kafka Export Properties’ lists the supported properties for the Kafka connector, including
the standard Kafka producer properties and the VoltDB unique properties.

169

http://kafka.apache.org/documentation.html#producerconfigs

Streaming Data: Import,
Export, and Migration

Table 15.5. Kafka Export Properties

Property

Allowable Val-
ues

Description

bootstrap.servers

string

A comma-separated list of Kafka brokers (specified
as | P-address:port-number). Y ou can use net a-
dat a. broker. | i st asasynonym for boot -
strap. servers.

acks

0,1,al

Specifies whether export is synchronous (1 or all) or
asynchronous (0) and to what extent it ensures delivery.
The default is all, which is recommended to avoid pos-
sibly losing messages when a Kafka server becomes un-
available during export. See the Kafka documentation of
the producer properties for details.

acks.retry.timeout

integer

Specifies how long, in milliseconds, the connector will
wait for acknowledgment from Kafka for each packet.
The retry timeout only appliesif acknowledgements are
enabled. That is, if theacks property is set greater than
zero. The default timeout is 5,000 milliseconds. When
the timeout is reached, the connector will resend the
packet of messages.

binaryencoding

hex, base64

Specifies whether VARBINARY dataisencoded in
hexadecimal or BASE64 format. The default is hexadec-
imal.

skipinternals

true, false

Specifies whether to include six columns of VoltDB
metadata (such as transaction ID and timestamp) in the
output. If you specify skipinternals as true, the output
contains only the exported stream data. The default is
false.

timezone

string

The time zone to use when formatting the timestamp.
Specify the time zone as a Java TimeZone identifier. For
example, you can specify a continent and region ("Amer-
icalNew_Y ork™) or atime zone acronym ("EST"). The
defaultisGMT.

topic.key

string

A set of named pairs each identifying a VoltDB source
name and the corresponding Kafka topic name to which
the data is written. Separate the names with a period (.)
and the name pairs with acomma.(,).

The specific source/topic mappings declared by top-
ic.key override the automated topic names specified by
topic.prefix.

topic.prefix

string

The prefix to use when constructing the topic name.
Each row is sent to atopic identified by { prefix} { source-
name} . The default prefix is"voltdbexport”.

Kafka producer properties

various

Y ou can specify standard Kafka producer properties
as export connector properties and their values will be
passed to the Kafka interface. However, you cannot
modify the property bl ock. on. buffer. full.

"Required

170

http://kafka.apache.org/documentation.html#producerconfigs

Streaming Data: Import,
Export, and Migration

15.3.6. The Elasticsearch Export Connector

The Elasticsearch connector receives serialized data from the export source and inserts it into an Elastic-
search server or cluster. Elasticsearch is an open-source full-text search engine built on top of Apache
Lucene™. By exporting selected tables and streams from your VoltDB database to Elasticsearch you can
perform extensive full-text searches on the data not possible with VVoltDB alone.

Before using the Elasticsearch connector, we recommend reading the Elasticsearch documentation and
becoming familiar with the software. The instructions in this section assume a working knowledge of
Elasticsearch, its configuration and its capabilities.

The only required property when configuring El asticsearch isthe endpoint, which identifies the location of
the Elasticsearch server and what index to use when inserting recordsinto the target system. The structure
of the Elasticsearch endpoint is the following:

<protocol >://<server>: <port >//<i ndex- name>// <t ype- nane>

For example, if the target Elasticsearch service is on the server esear ch. | an using the default port
(9200) and the exported records are being inserted into the enpl oyees index as documents of type
per son, the endpoint declaration would look like this:

property:
- nane: endpoint
val ue: http://esearch.|an: 9200/ enpl oyees/ per son

You can use placeholders in the endpoint that are replaced at runtime with information from the export
data, such asthe source name (%t), the partition | D (%p), the export generation (%g), and the date and hour
(%d). For example, to use the source name as the index name, the endpoint might look like the following:

property:
- nane: endpoi nt
val ue: "http://esearch.|an: 9200/ % / per son"

When you export to Elasticsearch, the export connector creates the necessary index names and types in
Elasticsearch (if they do not already exist) and inserts each record as a separate document with the appro-
priate metadata. Table 15.6, “Elasticsearch Export Properties’ lists the supported properties for the Elas-
ticsearch connector.

Table 15.6. Elasticsear ch Export Properties

Property AllowableVal- |Description
ues
endpoi nt string Specifiesthe root URL of the RESTful interface for the

Elasticsearch cluster to which you want to export the da-
ta. The endpoint should include the protocol, host name
or IP address, port, and path. The path is assumed to in-
clude an index name and a type identifier.

The export connector will use the Elasticsearch RESTful
API to communicate with the server and insert records
into the specified locations. Y ou can use placeholders
to replace portions of the endpoint with data from the
exported records at runtime, including the source name

171

https://www.elastic.co/guide/index.html

Streaming Data: Import,
Export, and Migration

AllowableVal- |Description

ues
(%t), the partition 1D (%p), the date and hour (%d), and
the export generation (%g).
batch.mode true, false Specifies whether to send multiple rows asasingle re-
quest or send each export row separately. The default is
true.
string The time zone to use when formatting timestamps. Spec-

ify the time zone as a Java TimeZone identifier. For ex-
ample, you can specify a continent and region ("Amer-
ica/lNew_Y ork") or atime zone acronym ("EST"). The
default isthe local time zone.

15.4. VoltDB Import Connectors

Just as VoltDB can export data from selected streams and tables to external targets, it supports importing
datainto selected tables from externa sources. Import works in two ways:

 Bulk loading data using one of several standalone utilities VVoltDB provides. These dataloaders support
multiple standard input protocolsand can be run from any server, even remotely from the databaseitself.

 Streaming import as part of the database server process. For datathat is imported on an ongoing basis,
use of the built-in import functionality ensures that import starts and stops with the database.

The following sections discuss these two approaches to data import.

15.4.1. Bulk Loading Data Using VoltDB Standalone Utilities

Often, when migrating data from one database to another or when pre-loading a set of datainto VoltDB
asastarting point, you just want to perform the import once and then use the data natively within VoltDB.
For these one-time uses, or when you prefer to manage the import process externally, VoltDB provides
separate data loader utilities.

Each data loader supports a different source format. You can load data from text files — such as com-
ma-separated value (CSV) files— using the csvloader utility. Y ou can load datafrom another JDBC-com-
pliant database using the jdbcloader utility. Or you can load data from a streaming message service with
the Kafka loader utility, kafkal oader.

All of the data loaders operate in much the same way. For each utility you specify the source for the
import and either a table that the data will be loaded into or a stored procedure that will be used to load
the data. So, for example, to load records from a CSV file named staff.csv into the table EMPLOY EES,
the command might be the following:

$ csvl oader enployees --file=staff.csv
If instead you are copying the data from a JDBC-compliant database, the command might look like this:
$ j dbcl oader enpl oyees \

--jdbcurl =j dbc: postgresql : //renotesvr/ corphr \

- -j dbct abl e=enpl oyees \
--jdbcdriver=org. postgresql.Driver

172

Streaming Data: Import,
Export, and Migration

Each utility has arguments unique to the data source (such as - - j dbcur |) that alow you to properly
configure and connect to the source. See the description of each utility in Appendix D, VoltDB CLI Com-
mands for details.

15.4.2. Streaming Import Using Built-in Import Features

If importing datais an ongoing business process, rather than a one-time event, then it is desirable to make
it an integral part of the database system. This can be done by building a custom application to push data
into VoltDB using one of its standard APIs, such as the JDBC interface. Or you can take advantage of
VolItDB's built-in import infrastructure.

The built-in importers work in much the same way as the data loading utilities, where incoming data is
written into one or more database tables using an existing stored procedure. The differenceisthat the built-
in importers start automatically whenever the database starts and stop when the database stops, making
import an integral part of the database process.

You set up the built-in importers in the configuration the same way you configure export connections.
Within the i mpor t property, you declare each import stream using separate conf i gur ati on list el-
ements. Y ou use subproperties to specify the t ype and f or mat of data being imported and whether
the import configuration is enabled or not. Provide information required by the specific importer and/or
formatter within the pr oper t y list. For example:

depl oyrent :
i mport:
configuration:
type: kafka

format: csv
enabl ed: true
property:
- name: brokers
val ue: kafkasvr: 9092
- nane: topics
val ue: enpl oyees
- nane: procedure
val ue: EMPLOYEE. i nsert

When the database starts, the import infrastructure starts any enabled configurations. If you are importing
multiple streamsto separate tables through separate procedures, you must include multiple configurations,
even if they come from the same source. For example, the following configuration imports data from two
Kafka topics from the same Kafka servers into separate VVoltDB tables.

173

Streaming Data: Import,
Export, and Migration

depl oyrent :
i mport:
configuration:
- ni ckname: enpl oyees
type: kafka
format: csv
enabl ed: true
property:
- nane: brokers
val ue: kaf kasvr: 9092
- nane: topics
val ue: enpl oyees
- nane: procedure
val ue: EMPLOYEE. i nsert
- ni ckname: nmanagers
type: kafka
format: csv
enabl ed: true
property:
- nane: brokers
val ue: kaf kasvr: 9092
- nane: topics
val ue: managers
- nane: procedure
val ue: MANAGER i nsert

Note the addition of the ni ckname property to the configuration. Unlike export where the t ar get
property provides a unique identifier, there are no unique subproperties in the import configuration. The
ni ckname property lets you assigh a unigue name to each import connector. This way you can modify
the settings for individual connectors while the database is running using the voltadmin set command.
For example, the following command disables the managers import connector:

$ vol tadm n set depl oynent.inport.configuration[managers]. enabl ed=fal se

Without the nickname, you would have to update the entire database configuration to modify just one
import connector.

VoltDB currently provides support for a Kafkaimporter. It also supports two import formats. comma-sep-
arated values (csv) and tab-separated values (tsv). Comma-separated values are the default format. So if
you are using CSV-formatted input, you can leave out the format attribute, as in the preceding example.
The following sections describe the Kafka importer and the CSV/TSV formatter in more detail.

15.4.3. The Kafka Importer

The Kafka importer connects to the specified Kafka messaging service and imports one or more Kafka
topics and writes the records into the VoltDB database. The data is decoded according to the specified
format — comma-separated values (CSV) by default — and is inserted into the VoltDB database using
the specified stored procedure.

TheKafkaimporter supports Kafkaversion 0.10 or later. Y ou must specify at least thefollowing properties
for each configuration:

 brokers— Identifies one or more Kafkabrokers. That is, servers hosting the Kafka service and desired
topics. Specify asingle server or acommarseparated list of brokers.

174

Streaming Data: Import,
Export, and Migration

 topics — ldentifies the Kafka topics that will be imported. The property value can be a single topic
name or a commarseparated list of topics.

 procedure— ldentifiesthe stored procedure that isinvoked to insert the records into the VoltDB data-
base.

When import starts, the importer first checks to make sure the specified stored procedure exists in the
database schema. If not (for example, when you first create a database and before a schema is loaded), the
importer issues periodic warnings to the console.

Once the specified stored procedure is declared, the importer looks for the specified Kafka brokers and
topics. If the specified brokers cannot be found or the specified topics do not exist on the brokers, the
importer reports an error and stops. Y ou will need to restart import once this error condition is corrected.
You can restart import using any of the following methods:

 Stop and restart the database
* Pause and resume the database using the voltadmin pause and voltadmin resume commands

» Update the configuration using the voltadmin update command or the web-based Volt Management
Center

If the brokers are found and the topics exist, the importer starts fetching data from the Kafka topics and
submitting it to the stored procedureto insert into the database. In the simplest case, you can use the default
insert procedure for atable to insert recordsinto a single table. For more complex data you can write your
own import stored procedure to interpret the data and insert it into the appropriate table(s).

Table 15.7, “Kafka Import Properties’ lists the allowable properties for the Kafkaimporter. Y ou can also
specify properties associated with the formatter, as described in Table 15.8, “CSV and TSV Formatter
Properties”.

Table 15.7. Kafka Import Properties

Property

Allowable Val-
ues

Description

brokers’

string

A comma-separated list of Kafka brokers.

procedure

string

The stored procedure to invoke to insert the incoming
data into the database.

topics

string

A comma-separated list of Kafkatopics.

commit.policy

integer

Because the importer performs two distinct tasks — re-
trieving records from Kafka and then inserting them in-
to VoltDB — Kafka's automated tracking of the current
offset may not match what records are successfully in-
serted into the database. Therefore, by default, the im-
porter uses a manual commit policy to ensure the Kafka
offset matches the completed inserts.

Use of the default commit policy is recommended. How-
ever, you can, if you choose, use Kafka's automated
commit policy by specifying a commit interval, in mil-
liseconds, using this property.

groupid

string

A user-defined name for the group that the client belongs
to. Kafka maintains a single pointer for the current posi-
tion within the stream for all clients in the same group.

175

Streaming Data: Import,
Export, and Migration

Property

Allowable Val-
ues

Description

The default group ID is "voltdb". In the rare case where
you have two or more databases importing data from the
same Kafka brokers and topics, be sure to set this prop-
erty to give each database a unique group ID and avoid
the databases interfering with each other.

fetch.max.bytes string
heartbeat.interval.ms
max.partition.fetch.bytes
max.poll.interval.ms
max.poll.records
request.timeout.ms
session.timeout.ms

These Kafka consumer properties are supported asim-
port properties. See the Kafka 0.11 documentation for
details.

"Required

15.5. VoltDB Import Formatters

The import infrastructure uses formatters to interpret the incoming data and convert it for insertion into
the database. If you use the CSV or TSV formatter, you can control how the datais interpreted by setting
additional properties associated with those formatters. For example, the following configuration for the
Kafka importer includes the formatter property bl ank specifying that blank entries should generate an
error, rather than being interpreted as null or empty values:

depl oyrment :
i mport:
configuration:
- ni ckname: enpl oyees
type: kafka
format: csv
enabl ed: true
property:
- nane: brokers
val ue: kafkasvr: 9092
- nane: topics
val ue: enpl oyees
- nane: procedure
val ue: EMPLOYEE. i nsert
- nane: bl ank
val ue: error

You include the formatter properties in the import configuration along with the other import connector
properties. Table 15.8, “CSV and TSV Formatter Properties’ lists the alowable properties for the CSV

and TSV import formatters.

Table 15.8. CSV and TSV Formatter Properties

Property AllowableVal- |Description
ues
blank empty, error, null | Specifies what to do with missing valuesin the input.

If you specify enpt y, missing entries result in the cor-
responding "empty" value (that is, zero for INTEGER,

176

https://kafka.apache.org/documentation/#consumerconfigs

Streaming Data: Import,
Export, and Migration

Property

AllowableVal- |Description
ues

azero-length string for VARCHAR, and so on); if you
specify er r or , missing entries generate an error, if you
specify nul |, missing entries result in anull value. The
default interpretation of missing valuesisnul | .

nowhitespace true, false Specifies whether the input can contain whitespace be-

tween data values and separators. If you specify t r ue,
any input lines containing whitespace will generate an
error and not be inserted into the database. The default is
fal se.

nullstring

string Specifies a custom string to be interpreted as a null val-
ue. By default, the following entries are interpreted as
null:

¢ Anempty entry
e NULL (unguoted, uppercase)
« \ N(quoted or unquoted, either upper or lowercase)

If you specify a custom null string, it overrides all de-
fault null strings.

trimrawtext true, false Specifies whether any white space around unguoted

string valuesisincluded in the string input or not. If you
specify t r ue, surrounding white space is dropped; if
you specify f al se, surrounding white space between
the string value and the separatorsisincluded in the in-
put value. The defaultist r ue.

15.6.

VoltDB Topics

Topicsusethe Apache K afkaprotocol swhen interpreting input from K afka producers and when generating
output for Kafka consumers. The configuration declares the topic and specifies the stored procedure that
receives the inbound data. You can use a database table or stream — or even a stream view — as the
source for topic output. The CREATE... EXPORT TO TOPIC statement identifies the stream or table that
is used to queue outbound data to the specified topic. VoltDB topics operate just like Kafka topics, with
the database nodes acting as Kafka brokers. However, unlike Kafka, VoltDB topics also have the ability
to analyze, act on, or even modify the data as it passes through.

Stored Proc gL Stream
Insert

Kafka Kafka
Producer | > —) L oot

VoltDB

Asthe preceding diagram shows, data submitted to the topic from aK afkaproducer (either using the Kafka
API or using atool such as Kafka Connect) is passed to the stored procedure, which then interprets and
operatesonthedatabefore passing it al ong to the stream or table through standard SQL INSERT semantics.
Note that the named procedure must exist before input is accepted. Similarly, the stream or table must be
declared using the EXPORT TO TOPIC clause and the topic be defined in the configuration before any

177

Streaming Data: Import,
Export, and Migration

output is queued. So, it is a combination of the database schema and configuration that establishes the
complete topic workflow.

For example, the following SQL statements declare the necessary stored procedure and stream and the
configuration defines a topic eventLogs that integrates them:

Schema DDL CREATE STREAM event| og
PARTI TI ON ON COLUMWN e_type
EXPORT TO TOPI C event| ogs
(e_type INTEGER NOT NULL,
e tinme TIMESTAMP NOT NULL,
e msg VARCHAR(256)
)

CREATE PROCEDURE
PARTI TI ON ON TABLE eventl og COLUW e_type
FROM CLASS myconpany. nypr ocs. checkEvent ;
Configuration depl oynent :
t opi cs:
t opi c:
- nane: eventl ogs
procedure: checkEvent

Concerning Case Sensitivity

The names of Kafka topics are case sensitive. That means that the name of the topic matches
exactly how it is specified in the configuration. So in the previous example, the topic name event-
Logs is al lowercase except for the letter "L". This is how the producers and consumers must
specify the topic name. But SQL names — such as table and column names — are case insensi-
tive. As aresult, the topic name specified in the EXPORT TO TOPIC clause does not have to
match exactly. In other words, the topic "eventLogs' matches any stream or table that specifies
the topic name with the same spelling, regardless of case.

The structure of atopic message — that is, the fields included in the message and the message key — is
defined in the schema using the EXPORT TO TOPIC... WITH clause. Other characteristics of how the
message is handled, such as the data format, security, and retention policy, are controlled by pr operty
list in the configuration. The following sections discuss:

 Understanding the different types of topics

» Declaring VoltDB topics

» Configuring and managing topics

» Configuring the topic server

 Calling topics from external consumers and producers

 Using opague topics

15.6.1. Types of VoltDB Topics

VoltDB supports four different types of topics, depending on how the topic is declared:

A fully processed topic is a pipeline that supports both input and output and passes through a stored
procedure. Thisis defined using both the pr ocedur e property in the configuration and the EXPORT
TO TOPIC clause in the CREATE statement.

178

Streaming Data: Import,
Export, and Migration

Producer [::::::)

checkEvent

Insert

:> Consumer

events

topic:
- name: eventlLogs
procedure: checkEvent

CREATE STREAM events
EXPORT TO TOPIC eventLogs...

e Aninput-only topic only provides for input from Kafka producers. Y ou define an input-only topic by
specifying the pr ocedur e property, without any stream or table including a corresponding EXPORT

TO TOPIC clause.

Producer [::::::)

checkEvent

topic:
- name: eventlLogs
procedure: checkEvent

» An output-only topic only provides for output to Kafka consumers but can be written to by VoltDB
INSERT statements. Y ou define an output-only topic by including the EXPORT TO TOPIC clause, but
not specifying a procedure in the topic declaration.

:> Consumer
events

topic:

- name: eventlLogs

CREATE STREAM events
EXPORT TO TOPIC eventlLogs...

» Anopaquetopic supportsinput and output but provides for no processing or interpretation. Y ou define
an opaquetopic setting the opaque property to truein the configuration, asdescribed in Section 15.6.6,

“Using Opaque Topics’.

Producer

Consumer

topic:
- name: eventlLogs
opaque: true

179

Streaming Data: Import,
Export, and Migration

15.6.2. Declaring VoltDB Topics

Y ou declare and configure topics by combining SQL stored procedures and streams or tables with topic
declarations in the database configuration. The topic itself is defined in the configuration, using thet op-
i cs andt opi ¢ properties. The configuration also lets you identify the stored procedure used for input
from producers:

depl oyment :
t opi cs:
t opi c:
- name: eventLogs
procedure: eventWtch

15.6.2.1. Processing Topic Output

For output, you include the EXPORT TO TOPIC clause when you declare a stream or table. Once the
schema object includes the EXPORT TO TOPIC clause and the topic is defined in the configuration, any
records written into the stream or table are made available to consumers through the topic port.

You can control what parts of the records are sent to the topic, using the WITH KEY/VALUE clauses.
The WITH VALUE clause specifies which columns of the object are included in the body of the topic
message and their order. The WITH KEY clause lets you specify one or more columns as a key for the
message. Columns can appear in either the message body or the key, in both, or in neither, as needed. In
all cases, the lists of columns are enclosed in parentheses and separated by commas.

So, for example, the following stream declaration associates the stream events with the topic eventLogs
and selects two columns for the body of the topic message and one column as the key:

CREATE STREAM events
PARTI TI ON ON COLUWN event _type
EXPORT TO TOPI C event Logs
W TH KEY (event _type) VALUE (when, what)
(event _type | NTEGER NOT NULL,
when TI MESTAMP NOT NULL,
what VARCHAR(256)

)
15.6.2.2. Processing Topic Input

Since VoltDB does not control what content producers send to the topic, it cannot dictate what columns
or datatypes the stored procedure will receive. Instead, VoltDB interprets the content from its format. By
default, text data is interpreted as comma-separated values. All other datais interpreted asa single value
based on the data itself. On the other hand, if the topic is configured as using either JSON or AVRO
formatted datain the configuration, the incoming data from producers will be interpreted in the specified
format.

Any errors during the decoding of the input fields is recorded in the log file. If the input can be decoded,
the message fields are used, in order, as arguments to the store procedure call.

Only onekey field isallowed for input. By default, the key is not passed to the specified stored procedure;
only the messagefields of the topic are passed as parametersto the stored procedure. If you want to include
the key in the list of parameters to the stored procedure, you can set the property pr oducer . par ane-
ters. i ncl udeKey totrueand the key will beincluded as the partitioning parameter for the procedure.
For example:

180

Streaming Data: Import,
Export, and Migration

depl oyrent :
t opi cs:

t opi c:

- name: event Logs
procedure: eventWtch
property:
- nane: producer. paraneters.incl udeKey

val ue: true

15.6.3. Configuring and Managing Topics

Declaring the topic and its schema object and/or procedure are the only required elements for creating a
topic. However, there are several other attributes you can specify either as part of the declaration or as
clauses to the stored procedure and stream or table declarations. Those attributes include:

» Permissions— Controlling access to the topic by consumers and producers
 Retention — Managing how long datais retained in the topic queue before being deleted

 Data Format — Choosing aformat for the data passed to the external clients

15.6.3.1. Permissions

When security is enabled for the database, the external clients must authenticate using a username and
password when they initiate contact with the server. Accessto thetopicishandled separately for consumers
and producers.

For producers, access to the topic is controlled by the security permissions of the associated stored proce-
dure, as defined by the CREATE PROCEDURE... ALLOW clause or the generic permissions of the user
account'srole. (For example, arole with the ALLPROC or ADMIN permissions can write to any topic.)

For consumers, access to the topic is restricted by the al | ow property of the topic declaration in the
configuration. If al | ow is not specified, any authenticated user can read from the topic. If al | ow is
included in the declaration, only users with the specified role(s) have access. Y ou specify permissions
by providing a comma-separated list of roles that can read from the topic. For example, the following
declaration allows users with the kreader and operator roles to read from the topic eventL ogs:

depl oyrment :
t opi cs:
t opi c:
- name: event Logs
al | ow. kreader, operator

15.6.3.2. Retention

Unlike export or import, where there is a single destination or source, topics can have multiple consumers
and producers. So there is no specific event when the data transfer is complete and can be discarded.
Instead, you must set aretention policy that defines when datais aged out of the topic queues. Y ou specify
the retention policy in terms of either the length of time the dataisin queue or the volume of datain the
queue.

For example, if you specify aretention policy of five days, after a record has been in the queue for five
days, it will be deleted. If, instead, you set aretention policy of five gigabytes, as soon as the volume of

181

Streaming Data: Import,
Export, and Migration

data in the queue exceeds 5GB, data will deleted until the queue size is under the specified limit. In both
cases, dataaging isafirst in, first out process.

Y ou specify theretention policy inther et ent i on property of the topic declaration. The retention value
is a positive integer and a unit, such as "gh" for gigabytes or "dy" for days. The following is the list of
valid retention units:

Time mn— Minutes

hr — Hours
dy — Days
wk — Weeks
mo — Months
yr — Years
Size mb— Megabytes
gb — Gigabytes

If you do not specify aretention value, the default policy is seven days (7 dy).

15.6.3.3. Data Format

VoltDB topics are composed of three elements: a timestamp, a record with one or more fields, and an
optional set of keys values. The timestamp is generated automatically when the record isinserted into the
stream or table. The format of the record and the key depends on the data itself. Or you can specify a
format for the record, for the key, or for both using properties of the topic declaration in the configuration.

For single value records and keys, the data is sent in the native Kafka binary format for that datatype. For
multi-value records or keys, VoltDB defaults to sending the content as comma-separated values (CSV) in
atext string. Similarly, on input from producers, the topic record is interpreted as a single binary format
value or aCSV string, depending on the datatype of the content.

Y ou can control what format is used to send and receive the topic data using either the f or mat property
of thetopic definition, or separate pr oper t y list elementsto select theformat of individual components.
For example, to specify the format for the message and the keys for both input and output, you can use
thef or mat property:

epl oynent :
t opi cs:
t opi c:
- hame: eventLogs
format: avro

To specify individual formatsfor input versus output, or message versuskeys, you can use separate pr op-
erty elements, where the property name is either consumer or producer followed by f or mat and, op-
tionally, the component type — all separated by periods. For example, the following declaration specifies
Avro for both consumers and producers, and is equivalent to the preceding example using the f or mat

property:
epl oyment :
t opi cs:
t opi c:
- name: event Logs
property:

- nane: consuner. fornat
val ue: avro

- nane: producer. fornmat
val ue: avro

182

Streaming Data: Import,
Export, and Migration

The following are the valid formatting properties:

s consuner
s consuner
s consuner
» producer

. format
. format
. format
. format

. key
.val ue
.val ue

For input, note that you cannot specify the format of the key. This is because only a single key value is
supported for producers and it is always assumed to be in native binary or string format.

Depending on what format you choose, you can aso control specific aspects of how data is represented
in that format. For example, you can specify special characters such as the separator, quote, and escape
character in CSV format. Table 15.9, “Topic Formatting Properties’ lists all of the supported formatting
properties you can use when declaring topics in the configuration.

Table 15.9. Topic Formatting Properties

Property Values Description

consumer.format |avro, csv, json Format of keys and values sent to consumers. Supersedes the
format definition in the parent t opi ¢ element. The default is
Csv.

consumer.for- avro, csv, json Format of values sent to consumers. Supersedesthe format de-

mat.value finition in the parent t opi ¢ element and the "consumer.for-
mat" property. The default is CSV.

consumer.for- avro, csv, json Format of keys sent to consumers. Supersedes the format defi-

mat.key nitionintheparentt opi ¢ element and the"consumer.format"
property. The default is CSV.

producer.for- avro, csv, json Format of valuesreceived from producers. Supersedesthefor-

mat.value mat definition in the parent t opi ¢ element. The default is

Csv.

config.avro.time-
stamp

microseconds, mil-
liseconds

Unit of measurefor timestampsin AVRO formatted fields. The
default is microseconds.

config.avro.geogra-
phyPoint

binary, fixed bina-
ry, string

Datatype for GEOGRAPHY_POINT columns in AVRO for-
matted fields. The default is fixed binary.

tQuotes

config.avro.geogra- | binary,string Datatype for GEOGRAPHY columns in AVRO formatted

phy fields. The default is binary.

config.csv.escape |character Character used to escape the next character in a quoted string
in CSV format. The default isthe backslash "\".

config.csv.null character(s) Character(s) representing anull valuein CSV format. The de-
faultis"\N".

config.csv.quote | character Character used to enclose quoted strings in CSV format. The
default is the double quotation character ().

config.csv.separa- | character Character separating valuesin CSV format. The default isthe

tor comma",".

config.csv.quoteAll |true, false Whether all string valuesare quoted or only stringswith special
characters (such as commas, line breaks, and quotation marks)
in CSV format. The default isfalse.

config.csv.stric- true, false Whether all string values are expected to be quoted on input.

If true, any characters outside of quotation marksin text fields
areignored. The default isfalse.

183

Streaming Data: Import,
Export, and Migration

Property Values Description
config.csv.ignore- |true, false Whether leading spaces are included in string values in CSV
L eadingWhitespace format. The default istrue.

config.json.schema |embedded, none | Whether the JSON representation contains a property named
"schema' embedded within it or not. If embedded, the schema
property describesthe layout of the object. Thedefault isnone.

config.json.con- string Specifies the names of outgoing JSON elements. By defaullt,
sumer.attributes JSON elements are named after the table columns they repre-
sent. This property lets you rename the columns on output.
config.json.produc- |string Specifies the name and order of the JSON elements that are
er.attributes inserted as parameters to the topic input procedure.
producer.parame- |true, false Whether the topic key isincluded asthe partitioning parameter
ters.includeK ey to the stored procedure call. The default isfalse.
opaque.partitioned |true, false Whether the opaque topic is partitioned. Ignored if not an
opaque topic. The default isfalse
topic.store.encoded |true, false Whether the topic is stored in the same format asissued by the

producer: optimizes transcoding to consumers when producer
and consumer formats areidentical. The default isfalse.

When using AVRO format, you must also have access to an AVRO schema registry, which is where
VoltDB storesthe schemafor AVRO-formatted topics. The URL for theregistry isspecified in the database
configuration, as described in the next section.

15.6.4. Configuring the Topic Server

Communication between the VoltDB database and topic clients is handled by a separate server process:
the topic server. The topic server process is started whenever VoltDB starts with the t opi ¢s property
declared and enabled in the configuration.

By default, the topic server, when running, listens on port 9092. You can specify a different port with
the- -t opi csport flagwhen you start the server with the voltdb start command. Other aspects of the
topic server operation are configured aspr oper t y list elements of the br oker property. Thefollowing
are the supported subproperties of the br oker property:

e cluster.id

e group.initial.rebal ance. del ay. s
* group. | oad. max. si ze

e group. max. sessi on. tinmeout. ns

e group. mex. si ze

e group.mn.session.timeout.ns

* | 0g. cl eaner. dedupe. buffer. size

* | og.cleaner.delete.retention. ns
e | 0g. cl eaner. t hreads

* network.thread. count

» offsets.retention. check.interval.ns
o of fsets.retention.ninutes

e quota.throttle. max_ns

* quot a. request. bytes_per_second

* guot a. request . processi ng_percent
e quot a. response. bytes_per _second
e retention. policy.threads

184

Streaming Data: Import,
Export, and Migration

For example, this declaration configures the broker using a cluster ID of 3 and five network threads:

depl oyrent :
br oker :
property:
- name: cluster.id
val ue: 3
- nane: network.thread. count
val ue: 5

Finally, you can additionally tune the performance of the topic server by adjusting the threads that man-
age the inbound and outbound connections. Y ou can specify a threadpool for the topic server to use for
processing client requests using the t hr eadpool subproperty of t opi cs, then specify a size for the
pool inthet hr eadpool s property:

depl oyment :
t opi cs:
t hr eadpool : topics
t hr eadpool s:

pool :
- nane: topics
size: 10

15.6.5. Calling Topics from Consumers and Producers

Once the topic has been declared in the database configuration and the appropriate streams, tables, and
stored procedures created in the schema, the topic isready for use by external clients. Since VoltDB topics
usethe Kafka API protocol, any Kafka consumer or producer with the appropriate permissions can access
the topics. For example, you can use the console consumer that comes with Kakfa to read topics from
VoltDB:

$ bi n/ kaf ka- consol e- consuner. sh --from begi nning \
--topic eventLogs --bootstrap-server myvoltdb: 9092

You can even use the console producer. However, whether using an existing producer or creating your
own, you must explicitly disable idempotency or else VVoltDB will not accept data from your application.
Y ou disable idempotency by setting the Kafka property enabl e. i denpot ence to "false".

To optimize write operations, Kafka also heeds to know the VoltDB partitioning scheme. So it is strongly
recommended that you define the KafkaPr oducer Conf i g. PARTI TI ONER_CLASS_CONFI Gprop-
erty to point to the VoltDB partitioner for Kafka. By defining the PARTITIONER_CLASS CONFIG,
VoltDB can ensure that the producer sends records to the appropriate cluster node for each partitioning
key. For example, a Java-based client application should contain a producer definition similar to the fol-
lowing to disable idempotency and configure the partitioning scheme:

Properties props = new Properties();

props. put ("boot strap. servers”, "myvoltdb: 9092");

props. put (Producer Confi g. PARTI TI ONER_CLASS CONFI G Vol t DBKaf kaPartitioner. cl ass. get Nanme()
props. put ("enabl e. i denpot ence", "fal se");

props. put("client.id","nyConsumer");

props. put ("key.serializer", "org.apache. kaf ka. cormon. seri alization.StringSerializer");
props. put ("val ue. serializer", "org.apache. kaf ka. common. seri alization. StringSerializer");

185

Streaming Data: Import,
Export, and Migration

Producer<String, String> producer = new Kaf kaPr oducer <>(props);

To accessthe VoltDB partitioner for Kafka, be sure to include the VolItDB client library JAR file in your
classpath when compiling and running your producer client.

15.6.6. Using Opaque Topics

Opaquetopics are a special type of topic that do not receive any interpretation or modification by the data-
base. If you want to create atopic that is not processed but simply flows through VoltDB from producers
to consumers, you declare the topic as "opaque" in the configuration, without either specifying a stored
procedure for input or associating a stream or table with the topic for output.

depl oynent :
t opi cs:
t opi c:
- name: sSysmsgs
opaque: true

Opaque topics alow you to use asingle set of brokersfor all your topics even if you only need to analyze
and process certain data feeds. Because there is ho interpretation, you cannot specify a stored procedure,
stream, table, or format for the topic. However, there are a few properties specific to opague topics you
can use to control how the data are handled.

One important control is whether the opaque topics are partitioned or not. Partitioning the opaque topics
improves throughput by distributing processing acrossthe cluster. However, you can only partition opague
topicsthat have akey. To partition an opaguetopic you set theopaque. parti ti oned property totrue:

depl oynent :
t opi cs:
t opi c:
- name: sSysmsgs
opaque: true
- property:
- nane: opaque.partitioned
val ue: true

Y ou can specify aretention policy for opague topics, just like regular topics. In fact, opagque topics have
one additional retention option. Since the content is not analyzed in any way, it can be compressed to save
space whileit is stored. By specifying the retention policy as "compact" with atime limit, the records are
stored compressed until the time limit expires. For example, the following configuration compresses the
opague topic data then deletes it after two months:

depl oyrent :
t opi cs:

t opi c:

- name: sSysmsgs
opaque: true
retention: conmpact 2 no
- property:

- nane: opaque.partitioned
val ue: true

186

Appendix A. Supported SQL DDL
Statements

This appendix describes the subset of the SQL Data Definition Language (DDL) that VoltDB supports
when defining the schemafor aVoltDB database. VoltDB a so supports extensions to the standard syntax
to allow for the declaration of stored procedures and partitioning information related to tables and proce-
dures.

Thefollowing sections are not intended as a compl ete description of the standard SQL DDL. Instead, they
summarize the subset of standard SQL DDL statements that are allowed when defining aVoltDB schema
and any exceptions, extensions, or limitations that application devel opers should be aware of .

The supported standard SQL DDL statements are:

* ALTERTABLE
» CREATEINDEX
» CREATETABLE
*» CREATEVIEW
* DROPINDEX

» DROPTABLE

* DROPVIEW

The supported VoltDB-specific extensions for declaring functions, stored procedures, streams, and parti-
tioning are:

* ALTER STREAM

* ALTERTASK

* ALTERVIEW

* CREATE AGGREGATE FUNCTION
* CREATE FUNCTION

* CREATE PROCEDURE AS

* CREATE PROCEDURE FROM CLASS
* CREATEROLE

* CREATE STREAM

* CREATETASK

* DRTABLE

* DROP FUNCTION

* DROP PROCEDURE

* DROPROLE

* DROP STREAM

* DROPTASK

* PARTITION TABLE

187

Supported SQL DDL Statements

ALTER STREAM

ALTER STREAM — Modifies an existing stream definition.

Syntax

ALTER STREAM stream-name DROP [COLUMN] column-name
ALTER STREAM stream-name ADD column-definition [BEFORE column-name]
ALTER STREAM stream-name ALTER column-definition

ALTER STREAM stream-name ALTER [COLUMN] column-name SET {DEFAULT value | [NOT]
NULL}

column-definition: column-name datatype [DEFAULT value] [NOT NULL]

Description

The ALTER STREAM statement modifies an existing stream by adding, dropping, or modifying acolumn
associated with the stream. Y ou cannot drop or modify the columniif there are dependencies on that column.
For example, if stored procedure queries reference a dropped or modified column, you cannot make the
change. Inthiscase, you must drop the stored procedures before making the change to the stream'’s schema,
then recreate the stored procedures afterwards.

If you drop the stream as a whole (using the DROP STREAM statement) and then redefine it using
CREATE STREAM, any pending data not already sent to the stream's export target is deleted. ALTER
STREAM, on the other hand, does not interrupt pending data. By using ALTER STREAM to modify the
schema of the stream, al previously committed data stays in the queue for the target and any inserts after
the schema change are added the queue.

Example

The following example modifies an existing stream, invoice, to modify the definition of the customer
column.

ALTER STREAM ALTER CCLUMWN customer SET NOT NULL;

188

Supported SQL DDL Statements

ALTER TABLE

ALTER TABLE — Modifies an existing table definition.

Syntax

ALTER TABLE table-name DROP CONSTRAINT constraint-name

ALTER TABLE table-name DROP [COLUMN] column-name [CASCADE]
ALTER TABLE table-name DROP {PRIMARY KEY | TTL}

ALTER TABLE table-name ADD constraint-definition

ALTER TABLE table-name ADD column-definition [BEFORE column-name]
ALTER TABLE table-name ADD ttl-definition

ALTER TABLE table-name ALTER column-definition [CASCADE]

ALTER TABLE table-name ALTER [COLUMN] column-name SET {DEFAULT value | [NOT]
NULL}

ALTER TABLE table-name ALTER export-definition

ALTER TABLE table-name ALTER topic-definition

ALTER TABLE table-name ALTER ttl-definition

column-definition: [COLUMN] column-name datatype [DEFAULT value] [NOT NULL] [in-
dex-type]

constraint-definition: [CONSTRAINT constraint-name] { index-definition }

export-definition: EXPORT TO TARGET target-name [ON action [,...]]

topic-definition: EXPORT TO TOPIC topic-name [ON action [,...]]

index-definition: {index-type} (column-name [,...])

ttl-definition: USING TTL value [time-unit] ON COLUMN column-name
[BATCH_SIZE number-of-rows] [MAX_FREQUENCY value]

index-type: PRIMARY KEY | UNIQUE | ASSUMEUNIQUE

Description

The ALTER TABLE modifies an existing table definition by adding, removing or modifying a column,
constraint, or clause. There are several different forms of the ALTER TABLE statement, depending on
what attribute you are altering and how you are changing it. The key point to remember is that you only
alter one item at atime. For example, to change two columns or a column and a constraint, you need to
issuetwo ALTER TABLE statements.

There arethree ALTER TABLE operations:

189

Supported SQL DDL Statements

* ALTERTABLE ADD
* ALTER TABLE DROP
* ALTERTABLEALTER

The syntax of each statement depends on whether you are modifying a column, a constraint, or the TTL
clause. You can ADD or DROP columns, indexes, and the TTL clause and you can ALTER columns
and the TTL clause. However, you cannot ALTER indexes. To alter an existing constraint you must first
DROP the constraint and then ADD the new definition.

There are two forms of the ALTER TABLE DROP statement. Y ou can drop a column or constraint by
name or you can drop aPRIMARY KEY or a USING TTL clause by identifying the item to drop, since
there is only one such item for any given table.

The syntax for the ALTER TABLE ADD statement uses the same syntax to define a new column, con-
straint, or clause as that used in the CREATE TABLE command. When adding a column you can also
specify the BEFORE clause to specify where the new column fallsin the order of table columns. If you to
not specify BEFORE, the column is added at the end of the list of columns.

When modifying the USING TTL clause, the ALTER TABLE ALTER command specifies the complete
replacement definition for the clause, including either or both the BATCH_SIZE or MAX_FREQUENCY
clauses.

Y ou cannot alter the MIGRATE TO export target or topic attribute of the table. Y ou aso cannot alter any
attributes of the table that affect migration. For example, you cannot add, drop, or ater the USING TTL
clause if the table is declared with MIGRATE TO. And if the table has both MIGRATE TO and USING
TTL, you cannot add, drop, or ater the TTL column. However, you can alter the TTL value, batch size,
and freguency.

Toadd, drop, or ater the MIGRATE action you must drop thetablefirst and redefineit using the CREATE
TABLE statement.

When modifying columns, the ALTER TABLE ALTER COLUMN statement can have one of two forms.
Y ou can ater the column by providing a compl ete replacement definition, similar to the ALTER TABLE
ADD COLUMN statement, or you can ater a specific attribute using the ALTER TABLE ALTER COL-
UMN... SET syntax. Use SET DEFAULT to add or modify an existing default. Use SET DEFAULT
NULL to remove an existing default. Y ou can also use the SET clause to specify whether the column can
be null (SET NULL) or must not contain anull value (SET NOT NULL).

When modifying an export or topic definition using the ALTER TABLE ALTER command, you can only
change the ON action clause. Y ou cannot add an export or topic definition or change from one target to
another.

Handling Dependencies

You can only alter tablesif there are no dependencies on the table, column, or index that would be violated
by the change. For example, you cannot drop the partitioning column from a partitioned table if there
are stored procedures partitioned on that table and column as well. You must first drop the partitioned
store procedures before dropping the column. Note that by dropping the partitioning column, you are also
automatically changing the table into areplicated table.

The most common dependency is if the table already has data in it. You can add, delete, and (within
reasonable bounds) modify the columns of a table with existing data as long as those columns are not
named in an index, view, or PARTITION statement. If acolumn isreferenced in aview or index, you can
specify CASCADE when you drop the column to automatically drop the referring indexes and views.

190

Supported SQL DDL Statements

When atable hasrecordsin it, data associated with dropped columnsis deleted. Added columns are inter-
preted as null or filled in with the specified default value. (Y ou cannot add a column that is defined as
NOT NULL, but without a default, if the table has existing datain it.) Y ou can even change the datatype
of the column within reason. In other words, you can increase the size of the datatype (for example, from
INTEGER to BIGINT) but you cannot decrease the size (say, from INTEGER to TINYINT) since some
of the existing data may already violate the size constraint.

Y ou can also add non-unique indexes to tables with existing data. However, you cannot add unique con-
straints (such as PRIMARY KEY) if data exists.

If atable has no recordsin it, you can make almost any changes you like to it assuming, again, there are
no dependencies. Y ou can add and remove unique constraints, add, remove, and modify columns, even
change column datatypes at will.

However, if there are dependencies, such as stored procedure queries that reference adropped or modified
column, you may not be allowed to make the change. If there are such dependencies, it is often easier to
do drop the stored procedures before making the changes then recreate the stored procedures afterwards.

Examples

The following example uses ALTER TABLE to drop a unique constraint, add a new column, and then
recreate the constraint adding the new column.

ALTER TABLE Enpl oyee DROP CONSTRAI NT Uni queNanes;
ALTER TABLE Enpl oyee ADD COLUWN M ddl el nitial VARCHAR(1);
ALTER TABLE Enpl oyee ADD CONSTRAI NT Uni queNanes

UNI QUE (FirstNane, Mddlelnitial, LastName);

191

Supported SQL DDL Statements

ALTER TASK

ALTER TASK — Modifies an existing task schedule.

Syntax

ALTER TASK task-name [ENABLE | DISABLE]

ALTER TASK task-name ALTER ON ERROR {LOG | IGNORE | STOP}

Description

The ALTER TASK statement lets you modify an existing scheduled task. You can enable, disable, or
change the error handling for the task.

Examples

The following example changes the error handling for the task cleanup to log errors and continue, then
enables the task, in case it was previously disabled.

ALTER TASK cl eanup ALTER ON ERRCOR LOG
ALTER TASK cl eanup ENABLE;

192

Supported SQL DDL Statements

ALTER VIEW

ALTER VIEW — modifiesthe TTL settings of an existing stream view

Syntax

ALTER VIEW view-name ALTER USING TTL value [time-unitf] ON COLUMN column-name
[BATCH_SIZE number-of-rows] [MAX_FREQUENCY value]

time-unit: SECONDS | MINUTES | HOURS | DAYS

Description

The ALTER VIEW statement lets you modify the USING TTL clause of a stream view. Note that the
ALTER statement can only be used to modify a stream view (not aview on aregular database table) and
that you can only change the USING TTL clause.

What's more, although you must specify the entire USING TTL clause including the column specification,
you can only changethetime value, batch size or maximum frequency. Y ou cannot changethe TTL column
or add or remove the USING TTL clause entirely. To add aUSING TTL clause to a stream view without
one, to remove an existing USING TTL clause, or to change the TTL column, you must first drop the view
then recreate it (using the DROP VIEW and CREATE VIEW statements).

Examples

The following example creates a stream view with a USING TTL clause, then uses ALTER VIEW to
reduce the TTL value and change the batch size to 500.

CREATE VI EW | ogi ns_per _day
(userid, session_day, total count)
AS SELECT userid, TRUNCATE(DAY, start_tine), count(*)
FROM user _sessi on GROUP BY userid, TRUNCATE(DAY, start _tine)
USI NG TTL 7 DAY ON COLUMWN sessi on_day;
ALTER VI EW | ogi ns_per _day ALTER USI NG TTL 3 DAYS ON COLUWN sessi on_day
BATCH_SI ZE 500;

193

Supported SQL DDL Statements

CREATE AGGREGATE FUNCTION

CREATE AGGREGATE FUNCTION — Defines an aggregate SQL function and associatesit with aJava
class.

Syntax

CREATE AGGREGATE FUNCTION function-name FROM CLASS class-path

Description

The CREATE AGGREGATE FUNCTION statement declares a user-defined aggregate function and as-
sociatesit with a Java class. Aggregate functions process multiple values based on a query expression and
produce a single result. For example, the built-in AVG aggregate function calculates the average of the
values of a specific column or expression based on the query constraints.

The return value of a user-defined aggregate function matches the datatype of the Java method itself.
Similarly, the number and datatype of the function's arguments are defined by the arguments of the method.

User-defined aggregate functions allow you to extend the functionality of the SQL language by declaring
your own functions that can be used in SQL queries and data manipulation statements. The steps for
creating a user-defined aggregate function are:

1. Write, compile, and debug the program code for a class that performs the function's action. The class
must include the following methods:

e start() — Initializesthe function. Called once for each invocation of the function.

- assenbl e(arg, ...) — Processesthe argumentsto the function. called once for each record
matching the constraints of the query in which the function appears.

» conbi ne(cl ass-i nstance) — For partitioned queries, combinesthe results of one partition
into the results of another.

e end() — Finalizesthe function and returns the function result. Called once at the completion of
the function invocation.

2. Packagethe classin aJAR file, just as you would a stored procedure. (Classes for functions and stored
procedures can be packaged in the same JAR file.)

3. Load the JAR fileinto the database using the LOAD CLASSES statement.
4. Declare and namethe user-defined function using the CREATE AGGREGATE FUNCTION statement.

The Java methods that implement the user-defined function must follow the same rules for determinism
as user-defined stored procedures, as outlined in Section 5.1.2.1, “Avoid Introducing Non-deterministic
Vaues from External Functions’. See the chapter on "Creating Custom SQL Functions" in the VoltDB
Guide to Performance and Customization for details on designing the Java class and methods necessary
for a user-defined aggregate function.

To declare a scalar rather than an aggregate function, see the description of the CREATE FUNCTION
Statement.

194

https://docs.voltactivedata.com/v14docs/PerfGuide/ChapUDF.php
https://docs.voltactivedata.com/v14docs/PerfGuide/
https://docs.voltactivedata.com/v14docs/PerfGuide/

Supported SQL DDL Statements

Examples

The following example defines an aggregate function called longest_word from the start(), assemble(),
combine(), and end() methods in the class L ongestWord:

CREATE AGGREGATE FUNCTI ON | ongest _word FROM CLASS nyapp. functi ons. Longest Wr d;

195

Supported SQL DDL Statements

CREATE FUNCTION

CREATE FUNCTION — Defines a SQL scalar function and associates it with a Java method.

Syntax

CREATE FUNCTION function-name FROM METHOD class-path.method-name

Description

The CREATE FUNCTION statement declaresauser-defined function and associatesit with aJavamethod.
Thereturn value of the function matches the datatype of the Java method itself. Similarly, the number and
datatype of the function's arguments are defined by the arguments of the method.

User-defined functions allow you to extend the functionality of the SQL language by declaring your own
functionsthat can be used in SQL queries and data manipul ation statements. The steps for creating a user-
defined function are:

1. Write, compile, and debug the program code for the method that will perform the function's action.

2. Packagethe class and method in aJAR file, just as you would a stored procedure. (Classesfor functions
and stored procedures can be packaged in the same JAR file.)

3. Load the JAR fileinto the database using the LOAD CLASSES statement.
4. Declare and name the user-defined function using the CREATE FUNCTION statement.

For example, let's say you want to create function that decodes an HTML-encoded string. The beginning
of the Java method might look like this, declaring a method of type String and accepting two arguments:
the string to encode and an integer value for the maximum length.

package nyapp. dat at ypes;
public class HmM {

public String decode(String html, int maxlength)
t hrows Vol t Abort Exception {

After compiling and packaging this class into a JAR file, you can load the class and declare it as a SQL
function:

sql cnd
1> LOAD CLASSES nyfunctions.jar;
2> CREATE FUNCTI ON html _decode FROM METHOD nyapp. dat at ypes. Ht m . decode;

Note that the function name and method name do not have to be identical. Also, the function name is not
case sensitive. However, the Java class and method names are case sensitive. Finally, the Java methods
for user-defined functions must follow the same rules for determinism as user-defined stored procedures,
asoutlined in Section 5.1.2.1, “Avoid Introducing Non-deterministic Va ues from External Functions”.

Examples

The following example defines a function called emoticon from a Java method findEmoji Code:

196

Supported SQL DDL Statements

CREATE FUNCTI ON enoti con FROM METHOD uti |l s. Char code. fi ndEnpj i Code;

197

Supported SQL DDL Statements

CREATE INDEX

CREATE INDEX — Creates an index for faster access to atable.

Syntax

CREATE [UNIQUEJASSUMEUNIQUE] INDEX index-name
ON {table-name | view-name} (index-column [,...])
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description

Creating an index on atable or view makes read access to the data faster when using the columns of the
index as a key. Note that VoltDB creates an index automatically when you specify a constraint, such as
aprimary key, in the CREATE TABLE statement.

When you specify that the index is UNIQUE, VoltDB constrains the table to at most one row for each set
of index column values. If an INSERT or UPDATE statement attemptsto create arow where all the index
column values match an existing indexed row, the statement fails.

Because the uniqueness constraint is enforced separately within each partition, only indexes on replicated
tables or containing the partitioning column of partitioned tables can ensure global uniqueness for parti-
tioned tables and therefore support the UNIQUE keyword.

If you wish to create an index on a partitioned table that acts like a unique index but does not include the
partitioning column, use the keyword ASSUMEUNIQUE instead of UNIQUE. Assumed unique indexes
are treated like unique indexes (VoltDB verifies they are unique within the current partition). However,
it is your responsibility to ensure these indexes are actually globally unique. Otherwise, it is possible an
index will generate aconstraint violation during an operation that modifies the partitioning of the database
(such as adding nodes on the fly or restoring a snapshot to a different cluster configuration).

Theindexed items (index-column) are either columns of the specified table or expressions, including func-
tions, based on the table. For example, the following statements index a table based on the calculated area
and its distance from a set location:

CREATE | NDEX areaofplot ON plot (wi dth * height);
CREATE | NDEX di stancefromd9 ON plot (ABS(latitude - 49));

Y ou can create apartial index by including a WHERE clause in the index definition. The WHERE clause
limits the number of rows that get indexed. Thisis useful if certain columns in the index are not evenly
distributed. For example, if you are not interested in recordswhere acolumnisnull, you can useaWHERE
clause to exclude those records and optimize the size and performance of the index.

The partial index is utilized by the database when a query's WHERE clause contains the same condition
asthe partial index definition. A special caseisif theindex conditionis{col unm} 1S NOT NULL.In
this situation, the index may be applied even in the query does not contain that exact condition, aslong as
the query contains a WHERE condition that implies the column is not null, such as{ col um} > 0.

VoltDB uses tree indexes. They provide the best general performance for a wide range of operations,
including exact value matches and queries involving arange of values, such as SELECT ... WHERE
Score > 1 AND Score < 10.

198

Supported SQL DDL Statements

Examples

The following example creates two indexes on asingle table. The first is, by default, a non-unique index
based on the departure time The second is a unique index based on the columns for the airline and flight
number.

CREATE | NDEX flightTimeldx ON FLIGHT (departtine);
CREATE UNI QUE | NDEX Flight Keyldx ON FLIGHT (airline, flightlD);

You can aso use functions in the index definition. For example, the following is an index based on the
element movie within a JSON-encoded VARCHAR column named favorites and the member'sID.

CREATE | NDEX FavoriteMvie ON MEMBER (
FI ELD(favorites, 'nmovie'), menberlD
)

The following exampl e demonstrates the use of a partial index, by including a WHERE clause, to exclude
records with anull column.

CREATE | NDEX conpl et ed_t asks
ON tasks (task_id, startdate, enddate)
WHERE enddate 1S NOT NULL;

199

Supported SQL DDL Statements

CREATE PROCEDURE AS

CREATE PROCEDURE AS — Defines a stored procedure composed of one or more SQL statements.

Syntax

CREATE PROCEDURE procedure-name
[PARTITION ON TABLE table-name COLUMN column-name [PARAMETER position]]
[ALLOW role-name [,...]]
AS {sqgl-statement; | multi-statement-procedure}

CREATE DIRECTED PROCEDURE procedure-name
[ALLOW role-name [,...]]
AS {sql-statement; | multi-statement-procedure}

multi-statement-procedure:
BEGIN
sql-statement; [,...]
END;

Description

Y ou must declare stored procedures as part of the schema to make them accessible at runtime. The CRE-
ATE PROCEDURE AS statement lets you create a procedure from one or more SQL statements directly
within the DDL statement. The SQL statements can contain question marks (?) as placeholders that are
filled in at runtime with the arguments to the procedure call.

There are two ways to define a procedure as part of the CREATE PROCEDURE AS statement:

» A single statement procedure where the CREATE PROCEDURE AS statement isfollowed by one SQL
statement terminated by a semi-colon.

» A multi-statement procedure where the CREATE PROCEDURE AS statement is followed by multiple
SQL statements enclosed in aBEGIN-END clause.

For asingle statement, the stored procedure returnsthe results of the query asaVoltTable. For multi-state-
ment procedures, the results are returned as an array of VoltTable structures, one for each statement.

For all CREATE PROCEDURE AS statements, the procedure name must follow the naming conventions
for Java class names. For example, the name is case-sensitive and cannot contain any white space.

Y ou can create three types of stored procedures:

* Multi-Partition Procedures— By default, the CREATE PROCEDURE statement declares a multi-par-
tition procedure. A multi-partition procedure runs as a single transaction and has access to data from
the entire database. However, it also means that the procedure will access all of the partitions at once,
blocking the transaction queues until the procedure is done.

» Sngle-Partition Procedures— If you include the PARTITION ON clause, the procedure is partitioned
and runs on only one partition of the database. The partition it runs on is determined by the value of one
of the parameters you pass to the procedure at runtime, as described below.

 Directed Procedures — if you include the DIRECTED clause, the procedure is a directed procedure
and will run separate transactions on each of the partitions. However, the individual transactions are not

200

Supported SQL DDL Statements

coordinated. Directed procedures must be invoked as a scheduled task or using thecal | Al | Parti -
t i onPr ocedur e method. See Section 7.5, “ Directed Procedures: Distributing Transactionsto Every
Partition” and the description of the CREATE TASK statement for more information on directed pro-
cedures.

When creating single-partitioned procedures, you specify the partitioning in the PARTITION ON clause.
Partitioning astored procedure meansthat the procedure executes within aunique partition of the database.
The partition in which the procedure executesis chosen at runtime based on the table and column specified
by table-name and column-name. By default, V oltDB usesthefirst parameter to the stored procedure asthe
partitioning value. However, you can use the PARAMETER clause to specify a different parameter. The
position value specifies the parameter position, counting from zero. (In other words, position 0 isthe first
parameter, position 1 isthe second, and so on.) The specified table must be a partitioned table or stream.

If security isenabled at runtime, only those roles named in the ALLOW clause (or with the ALLPROC or
ADMIN permissions) have permission to invoke the procedure. If security is not enabled at runtime, the
ALLOW clauseisignored and all users have access to the stored procedure.

Examples

The following example defines a stored procedure, CountUsersByCountry, as a single SQL query with a
placeholder for matching the country column:

CREATE PROCEDURE Count User sByCountry AS
SELECT COUNT(*) FROM Users WHERE country=?;

The next example restricts access to the stored procedure to only users with the operator role. It also
partitions the stored procedure on the userID column of the Accounts table. Note that the PARAMETER
clauseis used since the userI D isthe second parameter to the procedure:

CREATE PROCEDURE ChangeUser Password
PARTI TI ON ON TABLE Accounts COLUWN user| D PARAMETER 1
ALLOW oper at or
AS UPDATE Accounts SET HashedPasswor d=? WHERE user | D=7?;

Thelast example usesaBEGIN-END clauseto include four SQL statementsin the procedure. In this case,
the procedure performs two INSERT INTO SELECT statements, a DELETE statement and then selects
the total count of records after the operation. The stored procedure returns four VoltTables, one for each
statement, with the last one containing the final record count since SELECT is the last statement in the
procedure.

CREATE PRCCEDURE MoveOrders
AS BEG N
| NSERT | NTO enroute SELECT * FROM Orders
VWHERE ship_date < NOAN) AND delivery_date > NON);
| NSERT | NTO hi story SELECT * FROM enroute
VWHERE del i very_date < NOW);
DELETE FROM enroute
VWHERE del i very_date < NOW);
SELECT COUNT(*) FROM enroute;
END;

201

Supported SQL DDL Statements

CREATE PROCEDURE FROM CLASS

CREATE PROCEDURE FROM CLASS — Defines a stored procedure associated with a Java class.

Syntax

CREATE PROCEDURE
[PARTITION ON TABLE table-name COLUMN column-name [PARAMETER position]]
[ALLOW role-name [,...]]
FROM CLASS class-name

CREATE DIRECTED PROCEDURE
[ALLOW role-name [,...]]
FROM CLASS class-name

CREATE COMPOUND PROCEDURE
[ALLOW role-name [,...]]
FROM CLASS class-name

Description

Y ou must declare stored procedures to make them accessible to client applications and the sglemd utility.
CREATE PROCEDURE FROM CLASS I etsyou declare stored proceduresthat are written as Javaclasses.
The class-name is the name of the Java class.

Before you declare the stored procedure, you must create, compile, and load the associated Java class. It
isusually easiest to do this by compiling all of your Java stored procedures and packaging the resulting
classfilesinto asingle JAR file that can be loaded once. For example:

$ javac -d ./obj src/procedures/*.java

$ jar cvf nyprocs.jar —-C obj

$ sql cnd

1> LOAD CLASSES nyprocs.j ar;

2> CREATE PROCEDURE FROM CLASS procedur es. AddCust ormrer ;

Y ou can create four types of stored procedures:

» Multi-Partition Procedures — By default, the CREATE PROCEDURE statement declares a multi-par-
tition procedure. A multi-partition procedure runs as a single transaction and has access to data from
the entire database. However, it also means that the procedure will access all of the partitions at once,
blocking the transaction queues until the procedure is done.

» Sngle-Partition Procedures— If you include the PARTITION ON clause, the procedure is partitioned
and runs on only one partition of the database. The partition it runs on is determined by the value of one
of the parameters you pass to the procedure at runtime, as described below.

 Directed Procedures — If you include the DIRECTED clause, the procedure is a directed procedure
and will run separate transactions on each of the partitions. However, the individual transactions are not
coordinated. Directed procedures must be invoked as a scheduled task or using thecal | Al | Parti -
t i onPr ocedur e method. See Section 7.5, “ Directed Procedures: Distributing Transactionsto Every
Partition” and the description of the CREATE TASK statement for more information on directed pro-
cedures.

202

Supported SQL DDL Statements

e Compound Procedures — If you include the COMPOUND clause, and the specified class extends the
Vol t ConpoundPr ocedur e class, the procedure is defined as a compound procedure. Compound
procedures are not transactional, but can call multiple regular stored procedures, perform analysis and
error handling, and return custom results. See the chapter on Compound Procedures in the VoltDB
Performance and Customization Guide for more information.

When creating single-partitioned procedures, you specify the partitioning in the PARTITION ON clause.
Partitioning astored procedure meansthat the procedure executes within aunique partition of the database.
The partition in which the procedure executesis chosen at runtime based on the table and column specified
by table-name and column-name. By default, VoltDB uses the first parameter to the stored procedure as
the partitioning value. However, you can use the PARAMETER clause to specify a different parameter.
The position value specifies the parameter position, counting from zero. (In other words, position O isthe
first parameter, position 1 isthe second, and so on.)

The specified table must be a partitioned table and cannot be an export stream or replicated table.

If security isenabled at runtime, only those roles named in the ALLOW clause (or with the ALLPROC or
ADMIN permissions) have permission to invoke the procedure. If security is not enabled at runtime, the
ALLOW clauseisignored and all users have access to the stored procedure.

Directed Procedures

A directed procedure is a specia type of stored procedure, declared using the DIRECTED clause. Mul-
ti-partition procedures run as a single transaction with access to al partitions. Single-partitioned proce-
dures run as a single transaction on one partition, determined by the table and column on which the pro-
cedure is partitioned. A directed procedure queues multiple transactions at once, one on each partition
without regard to any specific table or partitioning column.

By running separate transactions on each partition, directed procedures do not block the partition queues
the way multi-partition procedures do. However, there is no guarantee that the individual transactions are
executed at the sametime. Consequently, directed procedures are good for work activitiesthat need access
to all of the partitions but do not need to be coordinated as a single transaction. For example, cleanup tasks
that delete orphaned records or update non-critical columns across the database.

Directed procedures are transactional and must obey the same rules as other stored procedures. That is,
they are Java classes that extend voltProcedure, use the voltQueueSQL method to queue SQL statements,
and they must be deterministic. (See Chapter 5, Designing Stored Procedures to Access the Database for
more information about determinism and the structure of stored procedures.)

However, because of the different execution model of the directed procedure, you cannot call themwith the
cal | Procedur e method the way you call partitioned or multi-partitioned procedures. Instead, directed
proceduresareinvoked usingthecal | Al | Parti ti onProcedur e method or asascheduled task with
the ON PARTITIONS clause. See the description of the CREATE TASK statement for more information
on invoking directed procedures as an automated task.

Compound Procedures

A compound procedure is another special type of stored procedure, declared using the COMPOUND
clause. Unlike al other procedures, compound procedures themselves are not transactional. That is, the
procedure does not succeed or rollback as a unit. Instead, compound procedures let you call multiple
regular stored procedures that are transactional, analyze their results, handle errors, and perform other
program logic.

Becausethey caninvoke multipletransactions, compound proceduresare particul arly useful for processing
input from topics, where there is no client application to process the results of SQL queries. Compound

203

Supported SQL DDL Statements

procedures let you embed the processing of results and conditional programming into the procedure itself.
The drawback is that, if anything unexpected happens, it is up to the procedure to handle any exceptions.

In general, compound procedures are intended for making multiple calls to single-partitioned procedures.
However, compound procedures can call both partitioned and multi-partitioned procedures. And when it
does call partitioned procedures, it can specify different partitioning values. So the compound procedure
itself cannot be partitioned. It also runsin a separate queue from the transactional proceduresit calls. See

the chapter on Using Compound Procedures in the VoltDB Performance and Customization Guide for
more information.

Example

The following example declares a stored procedure matching the Java class MakeReservation. Note that
the class name includes its location within the current class path (in this case, as a child of flight and
procedures). However, the name itself, MakeReservation, must be unique within the schema because at
runtime stored procedures are invoked by name only.

CREATE PROCEDURE FROM CLASS flight. procedures. MakeReservati on;

204

https://docs.voltactivedata.com/v14docs/PerfGuide/ChapCompoundProcs.php
https://docs.voltactivedata.com/v14docs/PerfGuide/

Supported SQL DDL Statements

CREATE ROLE

CREATE ROLE — Defines arole and the permissions associated with that role.

Syntax

CREATE ROLE role-name [WITH permission [,...]]

Description

The CREATE ROLE statement defines a named role that can be used to assign access rights to specific
procedures and functions. When security isenabled in the database configuration, the permissions assigned
in the CREATE ROLE and CREATE PROCEDURE statements specify which users can access which
functions.

Use the CREATE PROCEDURE statement to assign permissions to named roles for accessing specific
stored procedures. The CREATE ROLE statement lets you assign certain generic permissions. The fol-
lowing table describes the permissions that can be assigned the WITH clause.

Permission Description Inherits
DEFAULTPROCREAD |Access to read-only default procedures (TABLE.se-
lect)
DEFAULTPROC Accessto all default procedures (TABLE.select, TA-| DEFAULTPROCREAD
BLE.insert, TABLE.delete, TABLE.update, and TA-
BLE.upsert)
SQLREAD Access to read-only ad hoc SQL queries (SELECT) | DEFAULTPROCREAD
SQL Accessto al ad hoc SQL queries and default proce-| SQLREAD, DEFAULT-
dures PROC
ALLPROC Access to al user-defined stored procedures
ADMIN Full accesstoall system procedures, all user-defined| ALLPROC, DEFAULT-
procedures, as well as default procedures, ad hoc| PROC, SQL
SQL, and DDL statements.
Note: For backwards compatibility, the special permissions ADHOC and SY SPROC are still recognized.
They areinterpreted as synonyms for SQL and ADMIN, respectively.

The generic permissions are denied by default. So you must explicitly enable them for those roles that
need them. For example, if users assigned to the "interactive" role need to run ad hoc queries, you must
explicitly assign that permission in the CREATE ROLE statement:

CREATE ROLE interactive WTH sql;

Also note that the permissions are additive. So if a user is assigned to one role that allows access to
defaultproc but not allproc, but that user also is assigned to ancther role that allows allproc, the user has
both permissions.

Example

The following example defines three roles — admin, developer, and batch — each with a different set
of permissions;

205

Supported SQL DDL Statements

CREATE ROLE admin W TH adm n;
CREATE RCLE devel oper WTH sql, allproc;
CREATE RCLE batch W TH def aul t pr oc;

206

Supported SQL DDL Statements

CREATE STREAM

CREATE STREAM — Creates an output stream in the database.

Syntax

CREATE STREAM stream-name
[PARTITION ON COLUMN column-name]
[export-definition | topic-definition]
(column-definition [,...]);

export-definition: EXPORT TO TARGET export-target-name

topic-definition: EXPORT TO TOPIC topic-name
[WITH [KEY (column-name [,...])] [VALUE (column-name [,...])]]

column-definition: column-name datatype [DEFAULT value] [NOT NULL]

Description

The CREATE STREAM statement defines a stream and its associated columns in the database. A stream
can be thought of as a virtua table. It has the same structure as a table, consisting of a list of columns
and supporting all the same datatypes (Table A.1, “Supported SQL Datatypes’) as tables. The columns
have the same rules in terms of naming and size. Y ou can also use the INSERT statement to insert data
into the stream once it is defined.

The three differences between streams and tables are:

* Nodatais stored in the database for a stream, it is only used as a passthrough.

» Because no datais stored, you cannot SELECT, UPDATE, or DELETE the stream contents.
» Noindexes or constraints (such as primary keys) are allowed on a stream.

Datainserted into the stream is not stored in the database. The stream is an ephemeral container used only
for analysis and/or passing data through VoltDB to other systems via the export function.

Combining streams with views lets you perform summary analysis on data passing through VoltDB with-
out having to store all of the underlying data. For example, you might want to know how many times
users access a website and their most recent visit. But you do not need to store a record for each visit.
In this case, you can create a stream, visits, to capture the event and a view, visit_by user, to capture the
cumulative data:

CREATE STREAM visits PARTI TION ON COLUWN user_id (
user _id BI G NT NOT NULL,
i p_address VARCHAR(128),
| ogi n TI MESTAWVP
)
CREATE VI EW Vi sit_by_user
(user_id, total visits, last_visit)
AS SELECT user _id, COUNT(*), MAX(I ogin)
FROM vi sits GROUP BY user _id;

207

Supported SQL DDL Statements

When creating aview on a stream, the stream must be partitioned and the partition column must appear in
the view. Another special feature of views on streams is that, because there is no underlying data stored
for the view, VoltDB lets you modify the views content manually by issuing UPDATE and DELETE
statements on the view. (This ability to manipulate the view is only available for views on streams. You
cannot UPDATE or DELETE aview on atable; you must modify the datain the underlying tableinstead.)

For example, if you only care about a daily rollup of visits, you can use DELETE with the stream name
to clear the data at midnight every night:

DELETE FROM vi sit_by_user;

Or if you need to adjust the cumulative analysis to, say, "reset" the entry for a specific user, you can use
UPDATE:

UPDATE vi sit_by_user
SET total _visits = 0, last_visit = NULL
WHERE user _id = ?;

Export Streams

Streams can be used to export data out of VoltDB into other systems, such as Kafka, CSV files, and so
on. To export data into another system, you start by declaring one or more streams defining the data that
will be sent to the external system. In the CREATE STREAM statement you specify the named target
for the export:

CREATE STREAM visits
EXPORT TO TARGET archi ve
PARTI TI ON ON COLUWN user _id (
user _id BI G NT NOT NULL,
i p_address VARCHAR(128),
| ogi n TI MESTAMP

)

As soon as you declare the EXPORT TO TARGET clause for a stream, any data inserted into the stream
is queued for export. If the export target is not defined in the database configuration, then the data waits
in the queue. Once the export target is configured, the export connector begins sending the queued data
to the configured destination. See Chapter 15, Sreaming Data: Import, Export, and Migration for more
information on configuring export targets.

Topic Streams

Alternately, you can output a stream to a VoltDB topic. Topics stream data to and from external systems,
similar to import and export, with two distinct differences. First, topics share data written into the stream
with multiple external consumers. Second, rather than pushing datato a single target the way export does,
topics alow multiple consumers to pull the data when they need it or when they are ready for it.

To identify a stream as an output source for a topic, you include the EXPORT TO TOPIC clause in the
CREATE STREAM statement, naming the topic to use:

CREATE STREAM visits PARTI TI ON ON COLUMN user_id
EXPORT TO TOPIC visitors
PARTI TI ON ON COLUWN user _id (
user_id BI G NT NOT NULL,
i p_address VARCHAR(128),
| ogi n TI MESTAMP

208

Supported SQL DDL Statements

)

The topic itself is configured in the database configuration file. If the topic is not configured before the
stream is declared, no data written to the stream is added to the queue until the topic is added to the
configuration. Similarly, if the topic is removed from the configuration, the queue for the topic and its
contents are deleted.

There are two optional clauses associated with EXPORT TO TOPIC, KEY and VALUE, which are pre-
ceded with the WITH keyword. KEY identifies one or more columns to use as a key for the topic. So, for
example, if the column user_id isdefined asthe key and you execute INSERT INTO visits (123, "1.2.3.4",
NOW()), the value 123 is used as the key for the topic message. VALUE identifies which columns (and
in which order) to include in the body of the topic message. In the following example, user_id isused as
the key and user_id and login are included in the body of the message (leaving out ip_address):

CREATE STREAM visits PARTI TI ON ON COLUMN user_id
EXPORT TO TOPIC visitors
W TH KEY (user _id) VALUE (user_id, |ogin)
PARTI TI ON ON COLUWN user _id (
user _id BIG NT NOT NULL,
i p_address VARCHAR(128),
| ogi n TI MESTAMP

)

If you do not specify a key, there is no key for the topic. If you do not specify values, al columns from
the stream are included in the order specified in the CREATE STREAM statement. See the section on
Section 15.6, “VoltDB Topics’ for more information on defining and using topics.

Multi-Purpose Streams

Finally, you can combine analysis with export by creating a stream with an export target and al so creating
aview on that stream. So in our earlier example, if we want to warehouse data about each visit but use
VoltDB to perform the real-time summary analysis, we would add an export definition, along with the
partitioning clause, to the CREATE STREAM statement for the visits stream:

CREATE STREAM visits
PARTI TI ON ON COLUWN user _id
EXPORT TO TARGET war ehouse (
user _id BI G NT NOT NULL,
i p_address VARCHAR(128),
[ogi n TI MESTAMP

)
Example

The following example defines a stream and a view on that stream. Note the use of the PARTITION ON
clause to ensure the stream is partitioned, since it isbeing used in aview.

CREATE STREAM fl i ght data
PARTI TI ON ON CCOLUWN ai rport (
flight_id BI G NI NOT NULL,
ai rport VARCHAR(3) NOT NULL,
passengers | NTEGER,
eta TI MESTAVP

)

209

Supported SQL DDL Statements

CREATE VIEWal |l _flights
(airport, flight_count, passenger_count)
AS SELECT airport, count(*), sum passengers)
FROM fli ghtdata GROUP BY airport;

210

Supported SQL DDL Statements

CREATE TABLE

CREATE TABLE — Creates atable in the database.

Syntax

CREATE TABLE table-name
[export-definition | topic-definition | migrate-target-definition | migrate-topic-definition]

column-definition [,...]
[, constraint-definition [,...]]

) [ttI-definition] ;
export-definition: EXPORT TO TARGET target-name [ON action [,...]]

topic-definition: EXPORT TO TOPIC topic-name [ON action [,...]]
[WITH [KEY (column-name [,...])] [VALUE (column-name [,...])]]

migrate-target-definition: MIGRATE TO TARGET target-name

migrate-topic-definition: MIGRATE TO TOPIC topic-name
[WITH [KEY (column-name [,...])] [VALUE (column-name [,...])]]

column-definition: column-name datatype [DEFAULT value] [NOT NULL] [index-type]
constraint-definition: [CONSTRAINT constraint-name] { index-definition }
index-definition: {index-type} (column-name [,...])

index-type: PRIMARY KEY | UNIQUE | ASSUMEUNIQUE

ttl-definition: USING TTL value [time-unit] ON COLUMN column-name
[BATCH_SIZE number-of-rows] [MAX_FREQUENCY value]

time-unit: SECONDS | MINUTES | HOURS | DAYS

Description

The CREATE TABLE statement creates atable and its associated columnsin the database. The supported
datatypes are described in Table A.1, “ Supported SQL Datatypes’.

Table A.1. Supported SQL Datatypes

SQL Datatype Equivalent Ja- Description
va Datatype

TINYINT byte 1-byte signed integer, -127 to 1272

SMALLINT short 2-byte signed integer, -32,767 to 32,767

INTEGER int 4-byte signed integer, -2,147,483,647 to
2,147,483,647

BIGINT long 8-byte signed integer, -9,223,372,036,854, 775,807
t0 9,223,372,036,854,775,807

211

Supported SQL DDL Statements

SQL Datatype Equivalent Ja- Description
va Datatype
FLOAT double 8-byte numeric, -(2-2"°2).2192 to (2-2'5%).21023

(Note that values less than or equal to -1.7E+308
areinterpreted as null.)

DECIMAL BigDecimal 16-byte fixed scale of 12 and precision of 38,
-99999999999999999999999999.999999999999
to 99999999999999999999999999.999999999999

GEOGRAPHY or GE- A geospatial region. The storage requirement for
OGRAPHY () geospatia data varies depending on the geometry.
The default maximum size in memory is 32768.
However, you can specify a different value by
specifying the maximum size (in bytes) in the dec-
laration. For example: GEOGRAPHY (80000). See
the section on entering geospatial datain the Volt-
DB Guide to Performance and Customization for

details.
GEOGRAPHY _POINT A geospatial location identified by its latitude and
longitude. Requires 16 bytes of storage.
VARCHAR() String Variable length text string, with a maximum length

specified in either characters (the default) or bytes.
To specify the length in bytes, usethe BY TES
keyword after the length value. For example:
VARCHAR(28 BYTES). Maximum allowable
length is IMB.

VARBINARY () byte array Variable length binary string (sometimes referred
to asa"blob") with a maximum length specified in
bytes. Maximum allowable length is IMB.

TIMESTAMP long, VoltDB Time- Time in microseconds
stampType

& or integer and floating-point datatypes, VoltDB reserves the largest possible negative value to denote a null value. For example
-128 isinterpreted as null for TINYINT, -32768 for SMALLINT, and so on.

The following limitations are important to note when using the CREATE TABLE statement in VoltDB:
* CHECK and FOREIGN KEY constraints are not supported.
* VoltDB does not support AUTO_INCREMENT, the automatic incrementing of column values.

A table can have up to 1024 columns. Each column has a maximum size of 1 megabyte and the total
declared size of al of the columns in a table cannot exceed 2 megabytes. For VARCHAR columns
where the length is specified in characters, the declared size is calculated as 4 bytes per character to
alow for the longest potential UTF-8 string.

* If you intend to use a column to partition a table, that column cannot contain null values. Y ou must
specify NOT NULL in the definition of the column or VoltDB issues an error when compiling the
schema

e To specify anindex — either for an individual column or as atable constraint — that is globally unique
across the database, use the standard SQL keywords UNIQUE and PRIMARY KEY. However, for
partitioned tables, VoltDB can only ensure uniqueness if the index includes the partitioning column.
Otherwise, these keywords are not allowed.

212

https://docs.voltactivedata.com/v14docs/PerfGuide/GeoWKT.php
https://docs.voltactivedata.com/v14docs/PerfGuide/
https://docs.voltactivedata.com/v14docs/PerfGuide/

Supported SQL DDL Statements

It can be a performance advantage to define indexes or constraints on non-partitioning columnsthat you,
asthe devel oper, know are going to contain unique values. Although VoltDB cannot ensure uniqueness
across the entire database, it does allow you to define indexes that are assumed to be unique by using
the ASSUMEUNIQUE keyword.

When you define an index on a partitioned table as ASSUMEUNIQUE, VolItDB verifies uniqueness
within the current partition when creating an index entry. However, it isyour responsibility asdevel oper
or administrator to ensurethat the values are actually globally unique. If the databaseis repartitioned due
to adding new nodes or restoring a snapshot to a different cluster configuration, non-unique ASSUME-
UNIQUE index entries may collide. When this occurs it results in a constraint violation error and the
database will not be able to complete its current action.

Therefore, ASSUMEUNIQUE should be used with caution. Also, it is not necessary and should not
be used with replicated tables or indexes that contain the partitioning column, which can be defined
as UNIQUE.

EXPORT TO TARGET and EXPORT TO TOPIC allow you to connect atableto either an export target
or atopic, so that by default data written into the table is also sent to the topic or the export connector
for delivery to the specified target. By default, only insert operations (INSERT and UPSERT when
it inserts a new row) initiate export records. However, you can use the ON clause to specify which
actionsyou want to trigger export. For example, the following table declaration generates export records
whenever rows are created or modified.

CREATE TABLE RESERVATI ON
EXPORT TO TARGET airlines ON | NSERT, UPDATE NEW
(reserv_id I NT NOT NULL,
flight id INT NOT NULL,

’

The following table defines the actions that you can specify in the ON clause.

Keyword Description
INSERT Contents of new record from INSERT, or UPSERT that creates new record
DELETE Contents of arecord that is deleted
UP- Contents of arecord before it is updated
DATE_OLD
UP- Contents of arecord after it is updated
DATE_NEW
UPDATE Two records are exported, the contents before and after arecord isupdated (shorthand
equivalent for specifying both UPDATE_OLD and UPDATE_NEW)

EXPORT TO TOPIC (and MIGRATE TO TOPIC) aso alow you to specify which column values are
used as the topic key and which as the body of the topic message using the WITH KEY/VALUE clause.
See the description of topic streams in the description of CREATE STREAM for more information.

Thelength of VARCHAR columns can be specified in either characters (the default) or bytes. To specify
the length in bytes, include the BY TES keyword after the length value; for example VARCHAR(16
BYTES).

Specifying the VARCHAR length in charactersis recommended because UTF-8 characters can require
avariable number of bytesto store. By specifying the length in characters you can be sure the column
has sufficient space to store any string of the specified length. Specifying the length in bytesis only

213

Supported SQL DDL Statements

recommended when all values contain only single byte (ASCII) characters or when conserving spaceis
required and the strings are less than 64 bytesin length.

» The VARBINARY datatype provides variable storage for arbitrary strings of binary data and operates
similarly to VARCHAR(n BYTES) strings. You assign byte arrays to a VARBINARY column when
passinginvariables, or you can useahexidecimal string for assigning literal valuesinthe SQL statement.

» The VoltDB TIMESTAMP datatype is along integer representing the number of microseconds since
the epoch. Two important points to note about this timestamp:

e TheVoltDB TIMESTAMP s not the same as the Java Timestamp datatype or traditional Linux time
measurements, which are measured in millisecondsrather than microseconds. Appropriate conversion
is needed when casting values between aVoltDB TIMESTAMP and other timestamp datatypes.

e The VoItDB TIMESTAMP is interpreted as a Greenwich Meantime (GMT) value. Depending on
how time values are created, their value may or may not account for the local machine's default time
zone. Mixing timestamps from different time zones (for example, in WHERE clause comparisons)
can result in unexpected behavior.

» For TIMESTAMP columns, you can define a default value using the NOW or CURRENT_TIMES-
TAMP keywords in place of a specific value. For example:

CREATE TABLE Event (
Event _| d | NTEGER UNI QUE NOT NULL,
Event Ti nestanp TI MESTAMP DEFAULT NOW
Event Descri pti on VARCHAR(128)

)

The default value is evaluated at runtime as an approximation, in milliseconds, of when the transaction
begins execution.

Automatic Aging and Data Migration

When you define a database table you can also define a "time to live" (TTL) when records in the table
expireand are automatically deleted. The USING TTL clause specifiesalifetimefor each record, based on
the difference between the specified TTL value, the value of the specified column, and the current time (in
GMT microseconds). In the simplest case, you can define atimeto live based on aTIMESTAMP column
defined as DEFAULT NOW, so the record expires the specified amount of time after it is inserted. For
example, the records in the following table will be deleted five minutes after they are inserted into the
database (assuming the default value is used for the cr eat ed column):

CREATE TABLE current _alerts (

id BIG NT NOT NULL,

nessage VARCHAR(128),

created TI MESTAMP DEFAULT NOW NOT NULL,
) USING TTL 5 M NUTES ON COLUMWN cr eat ed;

Y ou specify the time to live value as an integer number of seconds, minutes, hours, or days. (The default,
if you do not specify atime unit, is seconds.) The TTL column must be declared asa TIMESTAMP and
NOT NULL.

TTL records are evaluated and deleted by a parallel process within the database. As a result, records
are deleted shortly after the specified time to live arrives, rather than at the exact time specified. But
the deletion of records is handled as a proper database transaction, guaranteeing consistency with any
user-invoked transactions. One consequence of automating the expiration of database records, is that the
evaluation and deletion of records produces additional transactionsthat may impact database performance.

214

Supported SQL DDL Statements

When you define an expiration time for database records, you can also specify an export target or a top-
ic using MIGRATE TO TARGET or MIGRATE TO TOPIC. If you specify both USING TTL and MI-
GRATE TO TARGET, bhefore the datais deleted by the TTL process, the data is migrated — through the
specified export connector or topic — to the target location. The combination of TTL and data migration
creates an automated archiving process, where aged data is moved to another repository or stream while
VoltDB continues to operate on current data. VoltDB does not delete the records until after the target
system acknowledges their receipt; that is, the export connector successfully sends the data to the remote
target or the data is inserted into the specified output topic. In this way you are assured that the data is
always present in at least one of the participating systems.

For example, thefoll owing table definition establishes an automatic archiving policy that removes sessions
with no activity for an hour, migrating old records to a historical repository:

CREATE TABLE sessi ons
M GRATE TO TARGET ol dsessi ons
(

| ogi n TI MESTAMP DEFAULT NOW
| ast _update TI MESTAMP NOT NULL,
user _id BIG NT NOT NULL
) USING TTL 1 HOURS ON COLUMN | ast _updat e;

It is also possible to migrate data manually. If you add the MIGRATE TO TARGET or MIGRATE TO
TOPIC clause by itself, without USING TTL, no data is automatically migrated. However, you can ex-
plicitly initiate migration by invoking the MIGRATE SQL statement with the WHERE clause to specify
which rows are migrated. Use of MIGRATE TO TARGET or MIGRATE TO TOPIC without USING
TTL isuseful when the application logic to select what data to migrate requires multiple or non-numeric
variables. For example, if the schedule for archiving arecord varies based on which user created it:

CREATE TABLE nessages
M GRATE TO TARCET ol dnessages
(
posted TI MESTAMP DEFAULT NOW
nessage_t ext VARCHAR(128),
user _id BIGQ NT NOT NULL,
user _type VARCHAR(5) NOT NULL

)
In this case, no datais migrated until you explicitly initiate migration with the MIGRATE statement:

M GRATE FROM nessages
VWHERE
((posted < DATEADD(DAY, -3, NOA()) AND user_type='"USER)
OR (posted < DATEADD(DAY, - 14, NON)) AND user_type=' ADM N)
) AND NOT M GRATI NG

Y ou can aso migrate data manually, even if the table declaration includes the USING TTL clause. In this
case you can use MIGRATE to preemptively migrate data before the TTL column expires. For example,
using the sessions table defined above, you might want to migrate all sessionsfor auser when their account
is deleted:

M GRATE FROM sessi ons WHERE user i d=? AND NOT M GRATI NG
Note that use of the MIGRATING function is not required to filter on rowsthat are not already migrating,

becausethe MIGRATE statement will not initiate export if rowsare aready migrating. However, explicitly
including AND NOT MIGRATING in your MIGRATE statement can improve performance.

215

Supported SQL DDL Statements

The MIGRATING function is also useful so you can avoid accidentally modifying records that are already
marked for deletion, especially since any changes to migrating records will cancel the delete operation but
not the export. For example, if you want to update the last_update column of a user's records but only if
they are not already being migrated, your UPDATE statement should include NOT MIGRATING:

UPDATE sessi ons SET | ast _updat e=NON) WHERE user i d=? AND NOT M GRATI NG,

Time to live and data migration are powerful concepts. However, there are some important details to
consider when using these features:

e There must be ausableindex on the TTL column for the table. VVoltDB uses that index to optimize the
evauation of the TTL values. If not, the USING TTL clauseis accepted, but no automated del etion will
occur at runtime until a usable index is defined.

 TheCREATETABLE... USING TTL statement isnot rejected if theindex ismissing. Thisway you can
define the index in a subsequent DDL statement. However, awarning message isissued if the USING
TTL clause has no supporting index available. A similar warning isissued if you delete the last usable
index.

* When the table definition includes both USING TTL and MIGRATE TO TARGET or MIGRATE TO
TOPIC, there must be an index including the TTL column for the USING TTL clause and a separate
index including only the TTL column and aWHERE NOT MIGRATING clause. Thisindex isrequired
to effectively find and schedul e the migration of expired records. For example, the sessionstable in the
previous example would require the following index. If the index is not present, records for the table
will neither be deleted nor migrated and awarning will be logged on the server:

CREATE | NDEX sessions_migrate_i ndex ON sessions
(last _update) WHERE NOT M GRATI NG

» TTL clauses are most effective when used on partitioned tables. Defining TTL for a replicated table,
especially alarge replicated table, can have a significant impact on database performance because the
TTL delete actions must be processed as multi-partition transactions.

 You can specify the frequency and maximum size of the TTL processing cycle.

e The BATCH_SIZE argument specifies the maximum number of records that will be deleted during
each processing cycle. Specify the batch size as a positive integer. The default is 1000 rows.

e The MAX_FREQUENCY argument specifies how often the TTL clause is evaluated. Y ou specify
the frequency in terms of the maximum number of times it is processed per second. For example
a MAX_FREQUENCY of 10 means that the table's TTL value is processed at most 10 times per
second. Specify the frequency as a positive integer. The default frequency is once per second (1).

Under extreme loads or sudden bursts of inserts, it is possible for TTL processing to fall behind. Or if
the records are extremely large, attempting to delete too many records at one time can cause the TTL
process to exceed the temporary table limit. The BATCH_SIZE and MAX_FREQUENCY clauses let
you customize the TTL processing per table to meet the specific requirements of your application. The
TTL selector forthe @t at i sti cs system procedure can help you evaluate TTL performance against
your application workload to determine what settings you need.

» Evaluation of thetimeto liveismade against the current value of the TTL column, not itsinitial value. So
if a subsequent transaction alters the column value (either increasing or decreasing it) that modification
will impact the subsequent lifetime of the record.

* When using database replication (DR), it is possible for the TTL transaction to exceed the 50MB limit
on the DR binary log. If this happens, awarning isissued and TTL processing is suspended.

216

Supported SQL DDL Statements

¢ When using MIGRATION TO TARGET or MIGRATE TO TOPIC, thereis an interval after the TTL
valueistriggered and before the record is successfully migrated and deleted from the VVoltDB database.
During thisinterval, the record is available for read access from SELECT queries. Y ou can also update
or delete the record; but modifying the record will cancel the pending delete. So if, for example, you
update the record to extend the TTL column, the record will remain in the database until the new TTL
column value is reached. However the update does not cancel the export of the original data to the
specified target or topic that had already been triggered. So two records will eventually be migrated.

» In most cases, you can ignore whether arecord is currently being migrated and scheduled for delete or
not. For example, if you delete arecord that is currently being migrated, you cancel the pending delete
but you del ete the record anyway, so the results end up the same. However, if you do want to distinguish
between currently active and currently migrating records, you can use the MIGRATING function, that
identifies records that are currently "in flight". For example, to select records for a specific user ID and
only those records that are not being migrated, you can use the following query:

SELECT user_id, |ogin FROM sessions WHERE user_id = ? AND NOT M GRATI NG

Example

The following example defines a table with five columns. The first column, Company, is not allowed
to be null, which is important since it is used as the partitioning column in the following PARTITION
TABLE statement. That columnisalso contained inthe PRIMARY KEY constraint. Again, it isimportant
to include the partitioning column in any fully unique indexes for partitioned tables.

CREATE TABLE | nventory (
Conpany VARCHAR(32) NOT NULL,
Product | D Bl G NT NOT NULL,
Price DECI VAL,
Cat egory VARCHAR(32),
Descri pti on VARCHAR(256),
PRI MARY KEY (Conpany, Product! D)
)
PARTI TI ON TABLE | nventory ON COLUMN Conpany;

217

Supported SQL DDL Statements

CREATE TASK

CREATE TASK — Schedules a procedure to run periodically.

Syntax

CREATE TASK task-name
ON SCHEDULE {CRON cron-definition | DELAY time-interval | EVERY time-interval |
FROM CLASS class-path}
PROCEDURE { procedure-name | FROM CLASS class-path } [WITH (argument [,...])]
[ON ERROR {LOG | IGNORE | STOP}]
[RUN ON {DATABASE | HOSTS | PARTITIONS}]
[AS USER user-name]
[ENABLE | DISABLE]

CREATE TASK task-name
FROM CLASS class-path [WITH (argument[,...])]
[ON ERROR {LOG | IGNORE | STOP}]
[RUN ON {DATABASE | HOSTS | PARTITIONS }]
[AS USER user-name]
[ENABLE | DISABLE]

time-interval: integer {MILLISECONDS | SECONDS | MINUTES | HOURS | DAYS}

Description

The CREATE TASK statement schedules a stored procedure to run iteratively on a set schedule. In its
simplest form, the CREATE TASK statement schedul es a specified stored procedureto berun at aregular
interval. The PROCEDURE clause specifies the stored procedure and any argumentsit requires. The ON
SCHEDULE clause specifies when the procedure will be run. You can schedule a procedure to run on
three types of schedule:

» CRON — Specifies a cron-style schedul e to run the procedure as set times per day or week.

 DELAY — Specifiesatimeinterval between each run of the stored procedure, where the time interval
starts at the end of each run.

» EVERY — Specifiesatime interval between the start of each run of the stored procedure.

The difference between DELAY and EVERY ishow theinterval is measured. For example, if you specify
EVERY 5 SECONDS, the stored procedure runs every 5 seconds, no matter how long it takes to execute
(assuming it does not take more than 5 seconds). If, on the other hand, you specify DELAY 5 SECONDS,
each run starts 5 seconds after the previous run completes. In other words, EVERY results in invocations
at a regular interval no matter how long they take, while DELAY results in a regular interval between
when one run ends and the next begins.

For DELAY and EVERY you specify theinterval asapositiveinteger and atime unit, where the supported
time units are milliseconds, seconds, minutes, hours, and days. For EVERY, if the previous run takes
longer than the interval to run, the schedule isreset at the end of the previous run. So, for example, if the
schedule specifies EVERY 2 SECONDS but the procedure takes 2.5 seconds to run, the next scheduled
interval will already be past when the previous run ends. In this case, the next invocation of the task is
reset to 2 seconds after the previous run ends.

218

Supported SQL DDL Statements

The CRON option requires a standard cron schedule, which consists of six values separated by spaces.
Cron schedules set specific times of day, week, or month, rather than an interval. The six values of the
cron string represent seconds, minutes, hours, day of the month, month, and day of the week. Asterisks
indicate all possible values. For example, the cron specification ON SCHEDULE CRON 0 0 * * *
* schedules the task on the hour, every hour of every day. More information about scheduling tasks with
cron can be found on the web.

Y ou can also specify details about how the procedureis run:
* ON ERROR specifies how errors are handled. The default is ON ERROR STOP.
¢ ON ERROR LOG — The error islogged but the procedure continues to be scheduled and run.

* ON ERROR IGNORE — The procedure continues to be scheduled and run and the error isignored
and not logged.

* ON ERROR STOP — The error is logged and the scheduling process stops. No further invocations
of the procedure will occur until the task is explicitly re-enabled (by using ALTER TASK to disable
and then enable the task) or the database restarts.

* RUN ON specifies where the procedure executes. The default is RUN ON DATABASE.

* RUN ON DATABASE — For multi-partitioned procedures, each invocation of the procedure isrun
as asingle transaction coordinated across al partitions.

* RUN ON PARTITIONS — For directed procedures, the procedure is scheduled and run indepen-
dently on all partitions in the database. Directed procedures are useful for performing distributed
tasks that are transactional on each partition but do not need to be coordinated and therefore are less
disruptive to the ongoing database workload.

» AS USER specifies the user account under which the procedure is run. When security is enabled, you
must specify avalid username and that user must have sufficient privileges to run the procedure.

Finally, you can use the ENABLE and DISABLE keywords to specify whether the task is enabled or not.
(Thetask isenabled by default.) If thetask is disabled, the procedureis not invoked. If the task is enabled,
the procedureisinvoked according to the schedule until the database shuts down or the task is disabled by
an ALTER TASK statement or an error while ON ERROR STOP is active.

Creating Custom Tasks

If the standard schedules do not meet your needs — you want to change theinterval between runs, modify
the argumentsto the procedure, or the procedure itself — you can define a custom task using Java classes
that implement one of three special interfaces:

* When you only want to dynamically control the schedule of the procedure but keep the procedure and
its parameters the same, you can usethe ON SCHEDUL E FROM CLASS clause specifying aJavaclass
that implementsthe |l nt er val Gener at or interface.

» When you want to use aregular schedule but dynamically change the procedure and/or its parameters,
you can use the PROCEDURE FROM CLASS clause specifying a Java class that implements the Ac-
ti onCener at or interface.

* When you want to dynamically control both the schedule and the procedure being invoked, you can
use the second form of the CREATE TASK syntax which replaces both the ON SCHEDULE and PRO-
CEDURE clauses with asingle FROM CLASS clause specifying a Java class that implements the Ac-
ti onSchedul er interface.

219

Supported SQL DDL Statements

Before declaring acustom task, you must |oad the specified Java class, the same way you load Java classes
before declaring a user-defined stored procedure, by packaging it in a JAR file and using the LOAD
CLASSES directive in sglemd. It is also important to note that the classes used for custom tasks are not
stored procedures and do not run in the normal transactional path for VoltDB transactions. The custom
task classes run in a separate thread to identify the characteristics of the next task invocation before the
specified stored procedureisrun. For al threetask interfaces, the task management infrastructure provides
the results from the previous run as input to the callback method, which can then use that information to
determine how to modify the next instantiation of the task's procedure, parameters, or run interval.

Many of the CREATE TASK statement's clauses— ON ERROR, ASUSER, and ENABLE|DISABLE —
operate exactly the samefor both custom tasks and the simple case of scheduling asingle stored procedure.
The two exceptions are the WITH and RUN ON clauses.

For custom tasks that alter the procedure and procedure parameters, the arguments in the WITH clause
are passed to the custom task'si ni ti al i ze() method rather than to the stored procedure that it runs.
The custom task can then decide what to do with those arguments. For example, it may use them asinitial,
maximum, and minimum values for adjusting arguments to the stored procedure.

The RUN ON clause for a custom task has one additional option beyond just DATABASE and
PARTITIONS. Custom tasks can also be RUN ON HOSTS, which means one instance of the task is run
on each server in the cluster.

Examples

The following example declares a procedure to reset the DailyStats view, and atask scheduled as a cron
event at midnight every night to run the procedure.

CREATE PROCEDURE ResetDail yStats AS
DELETE FROM Dai |l ySt at s;

CREATE TASK nightly
ON SCHEDULE CRON O 0 O * * *
PROCEDURE Reset Dai | ySt ats
RUN ON DATABASE;

The next example creates a custom task that dynamically changes the interval between invocations of the
stored procedure. The examplefirst loads the JAR file containing a custom task class that implements the
Interval Generator interface and then declares the task using PROCEDURE FROM CLASS clause.

sql cnd

1> LOAD CLASSES nyt asks.j ar;

2> CREATE TASK Dai | yNoHol i days
ON SCHEDULE FROM CLASS nyt asks. NoHol i days
PROCEDURE ResetDai |l yStats
RUN ON DATABASE;

220

Supported SQL DDL Statements

CREATE VIEW

CREATE VIEW — Creates a view into one or more tables, optimizing access to a summary of their
contents.

Syntax

CREATE VIEW view-name (view-column-name [,...])
AS SELECT { column-name | selection-expression } [AS alias] [,...]
FROM table-reference [join-clause...]
[where-clause] [group-clause]
CREATE VIEW view-name
[migrate-target-definition | migrate-topic-definition]
(view-column-name [,...])
AS SELECT { column-name | selection-expression } [AS alias] [,...]
FROM stream-reference
[where-clause] [group-clause] [ttl-definition]

table-reference: { table-name [AS alias] }

stream-reference: { view-name [AS alias] }

join-clause: , table-reference [INNER] JOIN [{table-reference}] [join-condition]
join-condition: ON conditional-expression USING (column-reference [,...])

where-clause WHERE [NOT] boolean-expression
[{AND | OR} [NOT] boolean-expression]...

group-clause GROUP BY { column-name | selection-expression } [,...]
migrate-target-definition MIGRATE TO TARGET {target-name}

migrate-topic-definition MIGRATE TO TOPIC {topic-name}
[WITH [KEY (column-name],...])] [VALUE (column-name],...])]]

ttl-definition: USING TTL value [time-unit] ON COLUMN column-name
[BATCH_SIZE number-of-rows] [MAX_FREQUENCY value]

time-unit: SECONDS | MINUTES | HOURS | DAYS

Description

The CREATE VIEW statement creates aview of atable, a stream, or joined tables with selected columns
and aggregates. VoltDB implements views as materialized views. In other words, the view is stored as a
special table in the database and is updated each time the corresponding database contents are modified.
This means there is a small, incremental performance impact for any inserts or updates to the tables, but
selects on the view will execute efficiently.

The following limitations are important to note when using the CREATE VIEW statement with VoltDB:

221

Supported SQL DDL Statements

* If the SELECT statement containsa GROUPBY clause, all of the columns and expressions|listed in the
GROUPBY must belisted in the same order at the start of the SELECT statement. Aggregate functions,
including COUNT (*), are allowed following the GROUP BY columns.

» Views are alowed on individual tables or streams, or joins of multiple tables. Joining streams is not
supported.

 Joins must be inner joins and cannot be self-joins. All other limitations for joins as described in the
SELECT statement also apply to joinsin views.

* Viewsthat join multiple tables must include a COUNT (*) field listed after all GROUP BY columns.

» To avoid performance problems when inserting datainto aview that joins multiple tables, it is strongly
recommended you define indexes on the table columns involved in the join.

Managing Stream Views

You can create views on both tables and streams. Views on tables are materialized, which means the
content of the view istied to the current contents of the table. Y ou cannot modify the records of the view
except by changing the contents of the table.

Views on streams, however, are historical. As dataisinserted into the stream, the view contents are incre-
mented. However, streams are ephemeral and have no storage associated with them, so there is no way
update or delete the view records from the stream itself. Instead, you are allowed to use the DELETE and
UPDATE statements to manage the contents of stream views.

For example, you might want to track user sessions, keeping alog of daily logins and time online per user.
You do not need to keep arecord of every session, so you can use a stream to capture each event and a
view on the stream to track the daily totals.

CREATE STREAM user _sessi on
PARTI TI ON ON COLUWN userid (
userid | NTEGER NOT NULL,
start _tinme TI MESTAWP,
session_l ength Bl G NT
)
CREATE VI EW sessi on_vi ew
(userid, session_day, total _count, total tine)
AS SELECT userid, TRUNCATE(DAY, start _tine),
count (*), SUM sessi on_| engt h)
FROM user _sessi on GROUP BY userid, TRUNCATE(DAY, start_tine);

But you do not need to keep these records forever, so you might choose to delete views for any days
more than a week old. You could do this with the following DELETE statement, deleting records from
the stream view:

DELETE FROM sessi on_vi ew WHERE sessi on_day < DATEADD(DAY, -7, NOW));

Similarly, if you knew there was an invalid session logged earlier, you might update the view to remove
the incorrect data from the view using an UPDATE statement:

UPDATE sessi on_vi ew
SET total _count = total count-1,
total _tine = total time-72
WHERE userid = 1234
AND sessi on_day = TRUNCATE(DAY, NOW\()) ;

222

Supported SQL DDL Statements

Automating Stream View Management

As mentioned in the preceding section, you can "clean up" stream views by using the DELETE statement.
However, doing this manually isusually impractical. So, VoltDB lets you use the same time-to-live (TTL)
and migration capabilities available to tables for stream views.

When you create the stream view you can define how long to keep the view data by adding the USING
TTL clause to specify when records should be deleted based on a timestamp column in the view. If the
timestamp is older than the specified value, the record will be deleted. For example, the following view
definition automates the delete operation shown earlier by specifying that records should be deleted after
the value of the session_day column is older than seven days.

CREATE VI EW sessi on_vi ew
(userid, session_day, total count, total tine)
AS SELECT userid, TRUNCATE(DAY, start _tine),
count (*), SUM sessi on_| ength)
FROM user _sessi on GROUP BY userid, TRUNCATE(DAY, start_tine)
USI NG TTL 7 DAYS ON COLUWN sessi on_day;

If you want to delete the records from the stream view but not lose them, you can use the MIGRATE
clause to specify where to send the records, then use the MIGRATE rather than DELETE statement.
Stream view records can be migrated to either export connectors or to topics, depending on whether you
specify MIGRATE TO TARGET or MIGRATE TO TOPIC. The key difference between the two is that
MIGRATE TO TARGET ensures that the record reaches the external export target system and receipt is
acknowledged before it is deleted. Whereas MIGRATE TO TOPIC deletes the record as soon as it has
been inserted into the VoltDB topic queue and made available to external consumers.

For example, thefollowing CREATE VIEW statement specifiesthat migrated records are sent to the topic
OldSessions. When migrating to a topic, you can aso specify which columns compose the topic key and
which columns to include in the message itself.

CREATE VI EW sessi on_vi ew
M GRATE TO TOPI C A dSessi ons
W TH KEY(userid) VALUES(session_day,total count,total tine)
(userid, session_day, total count, total tine)
AS SELECT userid, TRUNCATE(DAY, start _tine),
count (*), SUM session_| ength)
FROM user _sessi on GROUP BY userid, TRUNCATE(DAY, start _tine);

Finally, you can combine USING TTL and MIGRATE TO to automate the removal and transfer of old
records. Whenever the TTL valueistriggered, the records are sent to the specified target or topic and then
deleted from the view.

CREATE VI EW sessi on_vi ew
M GRATE TO TOPI C A dSessi ons
W TH KEY(userid) VALUES(session_day,total count,total tine)
(userid, session_day, total count, total tine)
AS SELECT userid, TRUNCATE(DAY, start _tine),
count (*), SUM sessi on_| ength)
FROM user _sessi on GROUP BY userid, TRUNCATE(DAY, start_tine)
USI NG TTL 7 DAYS ON COLUW sessi on_day;

It isimportant when evaluating view contentsfor TTL to be aware of the possibilities of additional stream
inserts arriving "late". That is, the timestamp value being used for the TTL evaluation may not be syn-
chronous to the system clock. So if you attempt to delete view records immediately after they expire (in

223

Supported SQL DDL Statements

the preceding example, when the session start timeis only one day old), late arriving records will create a
new record for that older time window. It is always a good idea to allow a certain leeway before deleting
or migrating records to make sure any potentially late arrivals are included before the record is archived.

Note that you cannot define TTL or migration on table views. However, a similar effect can be achieved
by defining the TTL and migration constraints on the table itself.

Examples

Thefollowing exampledefinesaview that countsthe number of recordsfor aspecific product item grouped
by itslocation (that is, the warehouse the item isin).

CREATE VI EWi nventory_count _by war ehouse (
product | D,
war ehouse,
total _i nventory
) AS SELECT
product | D,
war ehouse,
COUNT(*)
FROM i nventory GROUP BY product| D, warehouse;

The next example uses a WHERE clause but no GROUP BY to provide a count and minimum and maxi-
mum aggregates of all records that meet a certain criteria.

CREATE VI EW snal | _towns (nunber, mininum naxi num)
AS SELECT count (*), mn(popul ation), nmax(popul ation)
FROM TOMNS WHERE popul ati on < 10000;

The final example demonstrates joining two tables in a view. This definition provides a similar view to
the first example, except it uses the productID column to join two tables, Product and Inventory:

CREATE VI EWi nventory count by war ehouse (
pr oduct Nane,
war ehouse,
total _inventory
) AS SELECT
product . product Nane,
i nvent ory. war ehouse,
COUNT(*)
FROM product JO N inventory
ON product. product! D = inventory. product!| D
GROUP BY product. product Nane, inventory.warehouse;

224

Supported SQL DDL Statements

DR TABLE

DR TABLE — Identifies atable as a participant in database replication (DR)

Syntax

DR TABLE table-name [DISABLE]

Description

The DR TABLE statement identifies a table as a participant in database replication (DR). If DR is not
enabled, the DR TABLE statement has no effect on the operation of the table or the database as a whole.
However, once DR is enabled, the results of any updates to the contents of DR tables are sent to the
associated XDCR clusters.

The DR TABLE ... DISABLE statement reversesthe effect of aprevious DR TABLE statement, removing
the specified table from participation in DR. The databases must be paused when you issue the DR TA-
BLE... DISABLE command and you must apply it to all participating clusters before resuming operation.
The DR TABLE command cannot be used with dynamic schema change.

See Chapter 11, Active(N) Database Replication for more information about how database replication
works and Section 11.3.1, “ Safely Updating the Schema While the Clusters are Paused” for using DR
TABLE on arunning database.

Examples

The following example identifies the tables Employee and Department as participants in database repli-
cation.

DR TABLE Enpl oyee;
DR TABLE Departnent;

225

Supported SQL DDL Statements

DROP FUNCTION

DROP FUNCTION — Removes the definition of a SQL function.

Syntax

DROP FUNCTION function-name [IF EXISTS]

Description

The DROP FUNCTION statement deletes the definition of the specified user-defined function. Note that,
for functions declared using CREATE FUNCTION and a classfile, the statement does not del ete the class
that implements the function, it only deletes the definition. To remove the Java class that contains the
associated function method, you must first drop the function definition then use the sglcmd remove classes
directive to remove the class.

ThelF EXISTSclause allowsthe statement to succeed even if the specified function name doesnot exist. If
the function does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Examples

Thefollowing exampleremovesthe definitions of theHTML_ENCODE and HTML_DECODE functions,
then uses remove classes to remove the class containing their corresponding methods.

$ sqglcnd

1> DROP FUNCTI ON htm _encode;

1> DROP FUNCTI ON ht m _decode;

2> renove classes "*. Ht m Functions";

226

Supported SQL DDL Statements

DROP INDEX

DROP INDEX — Removes an index.

Syntax

DROP INDEX index-name [IF EXISTS]

Description

The DROP INDEX statement deletes the specified index, and any data associated with it, from the data-
base. The IF EXISTS clause allows the statement to succeed even if the specified index does not exist. If
the index does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Y ou must use the name of theindex as specified in the original DDL when dropping theindex. Y ou cannot
drop an index if it was not explicitly named in the CREATE INDEX command. This is why you should
always name indexes and other constraints wherever possible.

Examples

The following example removes the index named employee idx_by lastname:

DROP | NDEX Empl oyee_i dx_by_| ast nane;

227

Supported SQL DDL Statements

DROP PROCEDURE

DROP PROCEDURE — Removes the definition of a stored procedure.

Syntax

DROP PROCEDURE procedure-name [IF EXISTS]

Description

The DROP PROCEDURE statement del etes the definition of the named stored procedure. Note that, for
procedures declared using CREATE PROCEDURE FROM and a classfile, the statement does not delete
the class that implements the procedure, it only deletes the definition and any partitioning information
associated with the procedure. To remove the associated stored procedure class, you must first drop the
procedure definition then use the sglcmd remove classes directive to remove the class.

The IF EXISTS clause allows the statement to succeed even if the specified procedure name does not
exist. If the stored procedure does not exist and you do not include the IF EXISTS clause, the statement
will return an error.

Examples

The following example removes the definition of the FindCanceledReservations stored procedure, then
uses remove classes to remove the corresponding class.

$ sqglcnd
1> DROP PROCEDURE Fi ndCancel edReser vati ons;
2> renove cl asses "*. Fi ndCancel edReservati ons";

228

Supported SQL DDL Statements

DROP ROLE

DROP ROLE — Removesarole.

Syntax

DROP ROLE role-name [IF EXISTS]

Description
The DROP ROLE statement deletes the specified role. The IF EXISTS clause allows the statement to

succeed even if the specified role does not exist. If the role does not exist and you do not include the IF
EXISTS clause, the statement will return an error.

Examples
The following example removes the role named debug;:

DROP ROLE debug;

229

Supported SQL DDL Statements

DROP STREAM

DROP STREAM — Removes a stream and, optionally, any views associated with it.

Syntax

DROP STREAM stream-name [IF EXISTS] [CASCADE]

Description

The DROP STREAM statement deletes the specified stream from the database. The IF EXISTS clause
allowsthe statement to succeed even if the specified stream does not exist. If the stream does not exist and
you do not include the IF EXISTS clause, the statement will return an error.

If you use the CASCADE clause, VoltDB automatically drops any referencing views aswell asthe stream
itself.

If the stream is associated with an export target (that is, the stream was created with the EXPORT TO
TARGET clause), dropping the stream also del etes any pending records that were inserted into the stream
but have not been committed to the export target yet. If you want to change the stream definition without
losing any pending export data, use the ALTER STREAM statement. If you want to remove the stream
but ensure all export datais flushed before it is dropped, you can either use the voltadmin pause --wait
command (to flush all queues) or the @Statistics system procedure with the EXPORT selector to check
that the specified target has no pending records.

Example

The following example uses DROP STREAM with the IF EXISTS clause to remove the MeterReadings
stream definition.

DROP STREAM Met er Readi ngs | F EXI STS;

230

Supported SQL DDL Statements

DROP TABLE

DROP TABLE — Removes atable and any data associated with it.

Syntax

DROP TABLE table-name [IF EXISTS] [CASCADE]

Description

The DROP TABLE statement del etesthe specified table, and any dataassociated with it, from the database.
The IF EXISTS clause allows the statement to succeed even if the specified tables does not exist. If the
table does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Before dropping atable, you must first remove any stored procedures that reference the table. For exam-
ple, if the table EMPLOY EE is partitioned and the stored procedure AddEmployee is partitioned on the
EMPLOY EE table, you must drop the procedure first before dropping the table:

PARTI TI ON TABLE Enpl oyee ON COLUWN Enpl D;
CREATE PROCEDURE
PARTI TI ON ON TABLE Enpl oyee COLUWN Enpl D
FROM CLASS myapp. procedur es. AddEnpl oyee;

[. . .]

DROP PROCEDURE AddEnpl oyee;
DROP TABLE Enpl oyee;

Attempting to drop the table before dropping the procedure will result in an error. The same will normally
happen if there are any views or indexes that reference the table. However, if you use the CASCADE
clause VoltDB will automatically drop any referencing indexes and views as well as the table itself.

Examples

The following example uses DROP TABLE with the IF EXISTS clause to remove any existing MailAd-
dress table definition and data before adding a new definition.

DROP TABLE User Signin | F EXI STS;
CREATE TABLE User Signin (

user | D BIG NT NOT NULL,

| astl ogin TI MESTAMP DEFAULT NOW

)

231

Supported SQL DDL Statements

DROP TASK

DROP TASK — Removes atask and cancels any future execution.

Syntax

DROP TASK task-name [IF EXISTS]

Description
The DROP TASK statement deletes the specified task and cancels any future execution. The IF EXISTS

clause allows the statement to succeed even if the specified task does not exist. If the task does not exist
and you do not include the IF EXISTS clause, the statement will return an error.

Examples
The following example removes the task hamed cleanup:

DROP TASK cl eanup;

232

Supported SQL DDL Statements

DROP VIEW

DROP VIEW — Removes aview and any data associated with it.

Syntax

DROP VIEW view-name [IF EXISTS]

Description

The DROP VIEW statement del etes the specified view, and any data associated with it, from the database.
The IF EXISTS clause allows the statement to succeed even if the specified view does not exist. If the
view does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Dropping a view has the same constraints as dropping a table, in that you cannot drop a view that is

referenced by existing stored procedure queries. Before dropping the view, you must drop any stored
procedures that referenceit.

Examples

The following example removes the view named Votes by state:

DROP VI EW vot es_by_st at e;

233

Supported SQL DDL Statements

PARTITION TABLE

PARTITION TABLE — Specifiesthat atableis partitioned and which is the partitioning column.

Syntax

PARTITION TABLE table-name ON COLUMN column-name

Description

Partitioning a table specifies that different records are stored in different unique partitions, based on the
value of the specified column. The table table-name and column column-name must be valid, declared
elementsin the current DDL file or VoltDB generates an error when compiling the schema.

For atableto be partitioned, the partitioning column must be declared asNOT NULL. If you do not declare
a partitioning column of atablein the DDL, the table is assumed to be areplicated table.

Example
The following example partitions the table Employee on the column Employeel D.

PARTI TI ON TABLE Enpl oyee on COLUWN Enpl oyeel D

234

Appendix B. Supported SQL Statements

This appendix describes the SQL syntax that VVoltDB supports in stored procedures and ad hoc queries.

Thisisnot intended as a complete description of the SQL language and how it operates. Instead, it summa:
rizes the subset of standard SQL statements that are allowed in VoltDB and any exceptions or limitations
that application developers should be aware of .

The supported SQL statements are:

DELETE

INSERT

MIGRATE

SELECT
TRUNCATE TABLE
UPDATE

UPSERT

235

Supported SQL Statements

DELETE

DELETE — Deletes one or more records from the database.

Syntax

DELETE FROM table-name

[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
[ORDER BY {column-name [ASC | DESC 1}[,...] [LIMIT integer] [OFFSET integer]]

Description

The DELETE statement deletes rows from the specified table that meet the constraints of the WHERE
clause. The following limitations are important to note when using the DELETE statement in VVoltDB:

The DELETE statement can operate on only one table at atime. It does not support joins. However, it
does support subqueries in the WHERE expression.

The WHERE expression supports the boolean operators: equals (=), not equals (= or <>), greater than
(>), lessthan (<), greater than or equal to (>=), lessthan or equal to (<=), ISNULL, AND, OR, andNOT.
Note, however, although OR is supported syntactically, VoltDB does not optimize these operations and
use of OR may impact the performance of your queries.

Y ou can use subgueriesin the WHERE clause of the DELETE statement, with thefollowing provisions:

« Seethedescription of subqueriesinthe SELECT statement for general rules concerning the construc-
tion of subqueries.

< In a multi-partition procedure, subqueries of the DELETE statement can only reference replicated
tables.

 Insingle-partitioned procedures, the subquery can reference both partitioned and replicated tables.

e For ad hoc DELETE statements, the same rules apply except the SQL statement itself determines
whether VoltDB executes it as a single-partitoned or multi-partitioned procedure. Statements that
delete rows from a partitioned tabl e based on a specific value of the partitioning column are executed
as single-partitioned procedures. All other statements are multi-partitioned.

The ORDER BY clause lets you order the selection results and then select a subset of the ordered
records to delete. For example, you could delete only the five oldest records, chronologically, sorting
by timestamp:

DELETE FROM events ORDER BY event tine, event id ASC LIMT 5;

Similarly, you could choose to keep only the five most recent:

DELETE FROM events ORDER BY event tine, event id DESC OFFSET 5;

Y ou cannot use ORDER BY to delete rowsfrom apartitioned tablein amulti-partitioned query. In other
words, for partitioned tables DELETE... ORDER BY must be executed as part of a single-partitioned

stored procedure or as an ad hoc query with a WHERE clause that uniquely identifies the partitioning
column value.

236

Supported SQL Statements

Examples

The following example removes rows from the EMPLOY EE table where the EMPLOYEE_ID column
isequal to 145303.

DELETE FROM enpl oyee WHERE enpl oyee id = 145303;

The following example removes rows from the BID table where the BIDDERID is 12345 and the BID-
PRICE isless than 100.00.

DELETE FROM bi d WHERE bi dderi d=12345 AND bi dpri ce<100. 0O;

237

Supported SQL Statements

INSERT

INSERT — Creates new rows in the database, using the specified values for the columns.

Syntax

INSERT INTO table-name [(column-name [,...])] VALUES (value-expression [,...])

INSERT INTO table-name [(column-name [,...])] SELECT select-expression

Description

The INSERT statement creates one or more new rowsin the database. There aretwo forms of the INSERT
statement, INSERT INTO... VALUES and INSERT INTO... SELECT. The INSERT INTO... VALUES
statement lets you enter specific values for a adding a single row to the database. The INSERT INTO...
SELECT statement lets you insert multiple rows into the database, depending upon the number of rows
returned by the select expression.

The INSERT INTO... SELECT statement is often used for copying rows from one table to another. For
example, say you want to export all of the records associated with aparticular column value. Thefollowing
INSERT statement copies all of the records from the table ORDERS with a warehousel D of 25 into the
table EXPORT_ORDERS:

I NSERT | NTO Export_Orders SELECT * FROM Orders WHERE Cust omer | D=25;

However, the select expression can be more complex, including joining multiple tables. The following
limitations currently apply to the INSERT INTO... SELECT statement:

* INSERT INTO... SELECT can join partitioned tables only if they are joined on equality of the parti-
tioning columns. Also, the resulting INSERT must apply to a partitioned table and be inserted using the
same partition column value, whether the query is executed in a single-partitioned or multi-partitioned
stored procedure.

e INSERT INTO... SELECT does not support UNION statements.

In addition to the preceding limitations, there are certain instances where the sel ect expression istoo com-
plex to be processed. Cases of invalid select expressionsin INSERT INTO... SELECT include:

* A LIMIT or TOP clause applied to a partitioned table in a multi-partitioned query
* A GROUPBY of apartitioned table where the partitioning column is not in the GROUP BY clause

If you specify the column names following the table name, the values will be assigned to the columnsin
the order specified. If you do not specify the column names, values will be assigned to columns based on
the order specified in the schema definition. However, if you specify a subset of the columns, you must
specify values for any columns that are explicitly defined in the schema as NOT NULL and do not have
adefault value assigned.

Y ou can use subgueries within the VALUES clause of the INSERT statement, with the following provi-
sions:

 Seethedescription of subqueriesinthe SELECT statement for general rules concerning the construction
of subqueries.

238

Supported SQL Statements

 Inamulti-partition procedure, subqueries of the INSERT statement can only reference replicated tables.
* Insingle-partitioned procedures, the subquery can reference both partitioned and replicated tables.

» For ad hoc INSERT statements, the samerulesapply except the SQL statement itself determineswhether
VoltDB executesit asasingle-partitoned or multi-partitioned procedure. Statementsthat insert rowsinto
apartitioned table based on a specific value of the partitioning column are executed as single-partitioned
procedures. All other statements are multi-partitioned.

Examples

The following example inserts values into the columns (firsthame, mi, lastname, and emp_id) of an EM-
PLOYEE table:

| NSERT | NTO enpl oyee VALUES ('Jane', 'Q, 'Public', 145303);

The next example performs the same operation with the same results, except this INSERT statement ex-
plicitly identifies the column names and changes the order:

| NSERT | NTO enpl oyee (enp_id, |astnanme, firstnane, m)
VALUES (145303, 'Public', 'Jane', 'Q);

Thelast example assigns valuesfor the employee I D and thefirst and last names, but not the middleinitial.
This query will only succeed if the M| column is nullable or has a default value defined in the database
schema.

| NSERT | NTO enpl oyee (enp_id, |astnanme, firstnane)
VALUES (145304, 'Doe', 'John');

239

Supported SQL Statements

MIGRATE

MIGRATE — queues table rows for migration to an export target.

Syntax

MIGRATE FROM table-name
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description

The MIGRATE statement sel ects rows from the specified table for migration to an export target and marks
the rows for deletion. When rows are migrated, they are first exported to the export target defined in the
table definition (in the MIGRATE TO TARGET clause). Once the export target acknowledges receipt of
the data, the rows are deleted from the VVoltDB table.

For example, assumethe reservationstabl e containsinformation about airline reservations. Oncetheflight
is over, you want to archive the reservation records. But you do not want them to be deleted until you are
sure they reach the archive. To achieve this you can declare the table using the MIGRATE TO TARGET
clause:

CREATE TABLE Reservation
M GRATE TO TARCET ol dreserve
(Reserve |ID INT NOT NULL,
Flight I D INT NOT NULL,
Customer _I D I NT);

Then, when the flight is completed, you can migrate all associated reservations to the external system
associated with the oldreserve target, ensuring they are not deleted from the VoltDB database until they
reach the target.

M GRATE FROM Reservati on WHERE Reserve | D= ?;

The MIGRATE statement appliesto any tables declared withaMIGRATE TO TARGET clause. Y ou can
use MIGRATE to manually migrate rowsfrom tablesthat do not have an automated "timetolive" (USING
TTL) value defined or you can use it to preemptively migrate rowsin atable declared with USING TTL.

Example

The following example migrates user accounts if the account type is "trial" and the user hasn't logged in
for two weeks.

M GRATE FROM account s
WHERE acct _type="TRI AL" AND | ast | ogi n < DATEADD(DAY, - 14, NON()) ;

240

Supported SQL Statements

SELECT

SELECT — Fetches the specified rows and columns from the database.

Syntax

[common-table-expression] Select-statement [{set-operator} Select-statement] ...

Select-statement:
SELECT [TOP integer-value]
{* | [ALL | DISTINCT] { column-name | selection-expression } [AS alias] [,...] }
FROM { table-reference } [join-clause]...
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
[clause...]

table-reference:
{ table-name [AS alias] | view-name [AS alias] | sub-query AS alias }

sub-query:
(Select-statement)

join-clause:
, table-reference
[INNER | {LEFT | RIGHT | FULL } [OUTERY]] JOIN [{table-reference}] [join-condition]

join-condition:
ON conditional-expression
USING (column-reference [,...])

clause:
ORDER BY { column-name | alias } [ASC | DESC] [,...]
GROUP BY { column-name | alias } [,...]
HAVING boolean-expression
LIMIT integer-value [OFFSET row-count]

set—operator:
UNION [ALL]
INTERSECT [ALL]
EXCEPT

common-table-expression:
WITH common-table-name [(column-name [,...])] AS (Select-statement)
WITH RECURSIVE common-table-name [(column-name [,...])] AS (
Select-statement UNION ALL Select-statement

)

Description

The SELECT statement retrieves the specified rows and columns from the database, filtered and sorted
by any clauses that are included in the statement. In its simplest form, the SELECT statement retrieves
the values associated with individual columns. However, the selection expression can be a function such
as COUNT and SUM.

The following features and limitations are important to note when using the SELECT statement with
VoltDB:

241

Supported SQL Statements

See Appendix C, SQL Functionsfor afull list of the SQL functions that VoltDB supports.

VoltDB supportsthe following operatorsin expressions: addition (+), subtraction (-), multiplication (*),
division (*) and string concatenation (|]).

TOP nisasynonymforLIM T n.

The WHERE expression supports the boolean operators: equals (=), not equals (1= or <>), greater than
(>), less than (<), greater than or equal to (>=), less than or equal to (<=), LIKE, STARTS WITH,
ISNULL, ISDISTINCT, IS NOT DISTINCT, AND, OR, and NOT. Note, however, although OR is
supported syntactically, VoltDB does not optimize these operations and use of OR may impact the
performance of your queries.

The boolean expression LIKE provides text pattern matching in a VARCHAR column. The syntax of
the LIKE expression is{stri ng- expressi on} LIKE '{pattern}' where the pattern can
contain text and wildcards, including the underscore (_) for matching asingle character and the percent
sign (%) for matching zero or more characters. The string comparison is case sensitive.

Where an index exists on the column being scanned and the pattern starts with atext prefix (rather than
starting with awildcard), VoltDB will attempt to use the index to maximize performance, For example, a
query limiting the resultsto rows from the EMPL OY EE table where the primary index, the JOB_CODE
column, begins with the characters "Temp" looks like this:

SELECT * from EMPLOYEE where JOB _CODE |i ke ' Tenp% ;

The STARTS WITH clause is useful in stored procedures because it uses indexed scans where the
LIKE clause cannot. The expression STARTS W TH ' {stri ng- expressi on}'issyntactically
identical toLl KE ' {stri ng-expressi on} % inthat it matches any string value that starts with
string-expression. The differenceisthat in a stored procedure, use of the STARTS WITH clause with a
placeholder (that is, "START WITH ?") utilizes avail ableindexes, whereas L IKE ?requires a sequential
scan, since the compiler cannot tell if the replacement text ends in a percent sign or not and must plan
for any possible string value. For example, if KEY WORD isthe primary key for the ENTRY table, then
VoltDB can use the primary key index to optimize the following stored procedure:

CREATE PROCEDURE Si npl eSearch AS
SELECT keyword FROM entry WHERE keyword STARTS WTH ?;

The boolean expression IN determines if a given value is found within alist of alternatives. For exam-
ple, in the following code fragment the IN expression looks to seeif arecord is part of Hispaniola by
evaluating whether the column COUNTRY isequal to either "Dominican Republic” or "Haiti":

VWHERE Country IN (' Dom nican Republic', '"Haiti")

Note that the list of alternatives must be enclosed in parentheses. The result of an IN expression is
equivalent to a sequence of equality conditions separated by OR. So the preceding code fragment pro-
duces the same boolean result as:

WHERE Country='Dom ni can Republic' OR Country='Haiti'

The advantages are that the IN syntax provides more compact and readable code and can provide im-
proved performance by using an index on theinitial expression where available.

The boolean expression BETWEEN determinesif avalue falls within a given range. The evaluation is
inclusive of the end points. In this way BETWEEN is a convenient alias for two boolean expressions
determining if a value is greater than or equal to (>=) the starting value and less than or equal to (<=)
the end value. For example, the following two WHERE clauses are equivalent:

242

Supported SQL Statements

VWHERE sal ary BETWEEN ? AND ?
WHERE sal ary >= ? AND salary <= ?

e Theboolean expressions ISDISTINCT FROM and ISNOT DISTINCT FROM are similar to the equals
("=") and not equals ("<>") operators respectively, except when evaluating null operands. If either or
both operands are null, the equals and not equals operators return a boolean null value, or false. IS
DISTINCT FROM and ISNOT DISTINCT FROM consider null avalid operand. Soif only one operand
isnull ISDISTINCT FROM returnstrue and ISNOT DISTINCT FROM returnsfalse. If both operands
arenull ISDISTINCT FROM returns false and ISNOT DISTINCT FROM returns true.

» When using placeholdersin SQL statementsinvolving the IN list expression, you can either do replace-
ment of individual values within the list or replace the list as a whole. For example, consider the fol-
lowing statements:

SELECT * from EMPLOYEE where STATUS IN (?, ?,7?);
SELECT * from EMPLOYEE where STATUS IN ?;

In the first statement, there are three parameters that replace individual valuesin the IN list, alowing
you to specify exactly three selection values. In the second statement the placeholder replacesthe entire
list, including the parentheses. In this case the parameter to the procedure call must be an array and
allows you to change not only the values of the alternatives but the number of criteria considered.

Thefollowing Javacode fragment demonstrates how these two queriescan be used in astored procedure,
resulting in equivalent SQL statements being executed:

String argl = "Sal ary";
String arg2 = "Hourly";
String arg3 = "Parttime";

vol t QueueSQL(queryl, argl, arg2, arg3);

String listargs[] = new String[3];

listargs[0] = argl;
listargs[1l] = arg2?;
listargs[2] = arg3;

vol t QueueSQL(query2, (Object) listargs);

Note that when passing arrays as parameters in Java, it is a good practice to explicitly cast them as an
object to avoid the array being implicitly expanded into individual call parameters.

» VoltDB supports the use of CASE-WHEN-THEN-ELSE-END for conditional operations. For exam-
ple, the following SELECT expression uses a CASE statement to return different values based on the
contents of the price column;

SELECT Prod_nane,
CASE WHEN price > 100.00
THEN ' Expensi ve'
ELSE ' Cheap’
END
FROM products ORDER BY Prod_nane;

For more complex conditional operations with multiple alternatives, use of the DECODE() function is
recommended.

 VoltDB supports both inner and outer joins.

243

Supported SQL Statements

e The SELECT statement supports subqueries as atable reference in the FROM clause. Subqueries must
be enclosed in parentheses and must be assigned atable alias.

* You can only join two or more partitioned tables if those tables are partitioned on the same value and
joined on equality of the partitioning column. Joining two partitioned tables on non-partitioned columns
or on arange of valuesisnot supported. However, there are no limitations on joining to replicated tables.

» Extremely large result sets (greater than 50 megabytes in size) are not supported. If you execute a
SELECT statement that generates aresult set of more than 50 megabytes, VoltDB will return an error.

Window Functions

Window functions, which can appear in the selection list, allow you to perform more selective cal cul ations
on the statement results than you can do with plain aggregation functions such as COUNT() or SUM().
Window functions execute the specified operation on a subset of the total selection results, controlled by
the PARTITION BY and ORDER BY clauses. The overall syntax for awindow function is as follows:

function-name([expression])
OVER ([PARTITION BY {expression [,...]}] [ORDER BY { expression [,...]}])

Where:

« The PARTITION BY clause defines how the selection results are grouped.

» The ORDER BY clause defines the order in which the rows are evaluated within each group.

An example may help explain the behavior of the two clauses. Say you have a database table that lists
the population of individual cities and includes columns for country and state. Y ou can use the window
function COUNT(city) OVER (PARTITION BY state) toinclude acount of al of the cities
within each state as part of each city record. Y ou can also control the order the records are evaluated using
the ORDER BY clause. Note, however, when you use the ORDER BY clause the window function results
are calculated sequentially. So rather than show the count of all cities in the state each time, the window
function will return the count of cities incrementally up to the current record in the group. So rather than
use COUNT() you can use RANK() to more accurately indicate the values being returned. For example,
RANK() OVER (PARTI TI ON BY state, ORDER BY city_popul ati on) liststhecitiesfor
each state with arank value showing their ranking in order of their population.

Please be aware of the following limitations when using the window functions:

* There can be only one window function per SELECT statement.

* You cannot use awindow function and GROUP BY in the same SELECT statement.

» The argument(s) to the ORDER BY clause can be either integer or TIMESTAMP expressions only.
The following list describes the operation and constraints for each window function separately.

RANK() OVER ([PARTITION BY {expression[,...]}] ORDER BY {expression[,...]})

The RANK() window function generates a BIGINT value (starting at 1) representing the ranking of
the current result within the group defined by the PARTITION BY expression(s) or of the entire result

lUse of the keyword PARTITION is for compatibility with SQL syntax from other databases and is unrelated to the columns used to partition
single-partitioned tables. Y ou can use the RANK() functions with either partitioned or replicated tables and the ranking column does not need to
be the same as the partitioning column for VoltDB partitioned tables.

244

Supported SQL Statements

set if PARTITION BY isnot specified. No function argument is allowed and the ORDER BY clause
isrequired.

For example, if you rank a column (say, city_population) and use the country column as the parti-
tioning column for the ranking, the cities of each country will be ranked separately. If you use both
state and country as partitioning columns, then the cities for each state in each country will be ranked

separately.
DENSE_RANK() OVER ([PARTITION BY {expression[,...]}] ORDER BY {expression[,...]})

The DENSE_RANK() window function generates a BIGINT value (starting at 1) representing the
ranking of the current result, in the same way the RANK() window function does. The difference
between RANK () and DENSE_RANK() is how they handle ranking when there is more than one row
with the same ORDER BY value.

If more than one row has the same ORDER BY value, those rows receive the same rank value in
both cases. However, with the RANK() function, the next rank value is incremented by the number
of preceding rows. For example, if the ORDER BY values of four rows are 100, 98, 98, and 73 the
respective rank values using RANK() will be 1, 2, 2, and 4. Whereas, with the DENSE_RANK()
function, the next rank value is always only incremented by one. So, if the ORDER BY values are
100, 98, 98, and 73, the respective rank values using DENSE_RANK() will be 1, 2, 2, and 3.

As with the RANK() window function, no function argument is allowed for the DENSE_RANK()
function and the ORDER BY clause isrequired.

ROW_NUMBER() OVER ([PARTITION BY {expression[,..]}] [ORDER BY {expression[,..]}])

The ROW_NUMBER() window function generates a BIGINT value representing the ordinal order
of the current result within the group defined by the PARTITION BY expression(s) or of the entire
result set if PARTITION BY isnot specified. No function argument is allowed.

For example, if you order acolumn (say, animal) and use the class column as the partitioning column,
the animalsin each class will be ordered separately. So "angelfish" might receive row number 1inthe
type "finned fish" while "aardvark" is row number 1 in the type "mammal". But if you do not specify
PARTITION BY, "angelfish" would be numbered after "aardvark".

COUNT({expression}) OVER ([PARTITION BY {expression[,...]}] [ORDER BY {expression[,...]}])

The COUNT () window function generates a sub-count of the number of rowswithin the current result
set, where the PARTITION BY clause defines how the rows are grouped. The function argument is
required.

LAG({expression} [, {offset} [, {default-value}]]) OVER ([PARTITION BY {expression [,...]}] [OR-
DERBY {expression|[,..]} 1)

The LAG() window function takes the result set generated by the ORDER BY and PARTITION BY
clauses and returns the column value of a preceding row, as specified by the offset. The offset can be
any integer value between 0 and 16384, with the default being 1. If the offset resultsin avalue outside
the bounds of the window, the result is NULL, or a default value specified in the third parameter to
the function.

MAX ({expression}) OVER ([PARTITION BY {expression[,...]}] [ORDER BY {expression[,...]}])

The MAX() window function reports the maximum value of a column within the current result set,
where the PARTITION BY clause defines how the rows are grouped. If the ORDER BY clause is
specified, the maximum value is calculated incrementally over the rows in the order specified. The
function argument is required.

245

Supported SQL Statements

MIN({expression}) OVER ([PARTITION BY {expression [,...]}] [ORDER BY {expression|,...]}])

The MIN() window function reports the minimum value of a column within the current result set,
where the PARTITION BY clause defines how the rows are grouped. If the ORDER BY clause is
specified, the minimum value is calculated incrementally over the rows in the order specified. The
function argument is required.

SUM ({expression}) OVER ([PARTITION BY {expression[,...]}] [ORDER BY {expression[,...]} 1)

The SUM() window function generates a sub-total of the specified column within the current result
set, where the PARTITION BY clause defines how the rows are grouped. The function argument is
required.

Subqueries

The SELECT statement can include subqueries. Subqueries are separate SELECT statements, enclosed in
parentheses, where the results of the subquery are used as values, expressions, or arguments within the
surrounding SELECT statement.

Subqueries, likeany SELECT statement, are extremely flexible and can return awide array of information.
A subquery might return:

» A single row with a single column — this is sometimes known as a scalar subquery and represents a
single value

* A single row with multiple columns — this is aso known as a row value expression
» Multiple rows with one or more columns

In general, VoltDB supports subqueries in the FROM clause, in the selection expression, and in boolean
expressionsin the WHERE clause or in CASE-WHEN-THEN-EL SE-END operations. However, different
types of subqueries are alowed in different situations, depending on the type of data returned.

 Inthe FROM clause, the SELECT statement supports all types of subquery as a table reference. The
subquery must be enclosed in parentheses and must be assigned atable alias.

* Inthe selection expression, scalar subqueries can be used in place of a single column reference.

* Inthe WHERE clause and CA SE operations, both scalar and non-scalar subqueries can be used as part
of boolean expressions. Scalar subqueries can be used in place of any single-valued expression. Non-
scalar subqueries can be used in the following situations:

« Row value comparisons — Boolean expressions that compare one row value expression to another
can use subqueries that resolve to one row with multiple columns. For example:

select * fromtl
where (a,c) > (select a, ¢ fromt2 where b=tl.h);

¢ IN and EXISTS — Subqueries that return multiple rows can be used as an argument to the IN or
EXISTS predicate to determine if a value (or set of values) exists within the rows returned by the
subquery. For example:

select * fromtl

where a in (select a fromt2);
select * fromtl

where (a,c) in (select a, ¢ fromt2 where b=t1l. b);
select * fromtl where ¢ > 3 and

246

Supported SQL Statements

exists (select a, b fromt2 where a=t1l.a);

¢ ANY and ALL — Multi-row subqueriescan also beused asthetarget of an ANY or ALL comparison,
using either a scalar or row expression comparison. For example:

select * fromtl
where a > ALL (select a fromt2);
select * fromtl
where (a,c) = ANY (select a, ¢ fromt2 where b=t1.b);

Note that VVoltDB does not support subgueries in the HAVING, ORDER BY, or GROUP BY clauses.
Subqueries are a so not supported for any of the data manipulation language (DML) statements: DELETE,
INSERT, UPDATE, and UPSERT.

For the initial release of subqueries in selection and boolean expressions, only replicated tables can be
used in the subquery. Both replicated and partitioned tables can be used in subqueries in place of table
references in the FROM clause.

Set Operations

VoltDB also supports the set operations UNION, INTERSECT, and EXCEPT. These keywords let you
perform set operations on two or more SELECT statements. UNION includes the combined results sets
from the two SELECT statements, INTERSECT includes only those rows that appear in both SELECT
statement result sets, and EXCEPT includes only those rows that appear in one result set but not the other.

Normally, UNION and INTERSECT provide a set including unique rows. That is, if a row appears in
both SELECT results, it only appears once in the combined result set. However, if you include the ALL
modifier, all matching rows are included. For example, UNION ALL will result in single entries for the
rows that appear in only one of the SELECT results, but two copies of any rows that appear in both.

The UNION, INTERSECT, and EXCEPT operations obey the same rules that apply to joins:
» You cannot perform set operations on SELECT statements that reference the sametable.

» All tablesin the SELECT statements must either be replicated tables or partitioned tables partitioned
on the same column value, using equality of the partitioning column in the WHERE clause.

Common Table Expressions

Common table expressions let you declare a named subquery that can be used in the main query the same
way regular tables and columns are used. Common expressions are useful for simplifying queries that use
an expression multiple times or for separating out two distinct aspects of a larger query. You declare a
common table expression by placing the WITH clause before the main SELECT query. The WITH clause:

« Defines the name of the common table expression

» Optionally, renames the resulting columns

» Declaresthe expression itself using standard SELECT statement syntax

VoltDB supports two forms of common table expressions:

» Basic common expressions, with a name, optional column names, and the expression itself

* Recursive expressions, using the WITH RECURSIVE keywords and merging two expressions with a
UNION ALL set operation

247

Supported SQL Statements

Y ou can use the results of the common table expression in the subsequent SELECT statement the sameway
you would reference regular tables in the database. For example, the following common table expression
determines how many members live in each city, then uses that information to return a list of members
who live in a city with fewer than the specified number of members:

WTH city _count (city, menbercount) AS (

SELECT citynanme, count(*) FROM nenbers
GROUP BY citynane

)

SELECT m ful |l nane, mcityname FROM nenbers AS m
JONcity count AS cc ONmcity = cc.city
VWHERE nenbercount < ?

ORDER BY m citynane, m ful | naneg;

Recursive common expressions are like regular table expressions, except they are self-referencing, so you
caniterate over theresultsin arecursive fashion. Recursive common expressions are particul arly useful for
evaluating tree or graph structures that cannot be natively represented in flat database records or queries.

Y ou declare arecursive expression with the WITH RECURSIVE keywords followed by:
» Thetable name and, optionally, alias names for the columns

* A base query that defines the starting condition

e A UNION ALL set operator

» A second, recursive query that iterates over the common table expression results

For example, assume you wanted to know all the employeesin a specific branch of the company’s organi-
zational structure. However, organizational chartsare hierarchical. Each employee record may only record
that employee's direct manager. Recursive common expressions let you start at the top of a branch of the
organizational "tree" and iteratively look for any employee reporting to that manager, then employees re-
porting to that person, and so on. The common table expression might look like this.

W TH RECURSI VE org (id) AS (
SELECT ngr _id AS ngr FROM depart ment
WHERE dept nane=?
UNI ON ALL
SELECT enp_id FROM enpl oyee, org
WHERE enpl oyee.nmgr _id = org.id
)
SELECT e.enp_id, e.enp_nane, e.enp_address
FROM enpl oyee AS e, org
WHERE e.enp_id = org.id;

Warning

Aswith any recursive programming, you are responsible for ensuring the common table expres-
sion does not result in an infinite loop. VoltDB cannot determine at compile time whether the
expression is sufficiently bounded. The preceding example succeeds because the application en-
sures all employee/manager relationships are hierarchical — no manager reports to a employee
lower in thetree. If evaluation of acommon table expression resultsin aloop, VoltDB will even-
tually exceed some limit (such as the query timeout or maximum temporary table space) and fail
the transaction. In certain cases, an infinite loop could use up so much memory it exceeds the
resource limit and pauses the database.

248

Supported SQL Statements

Common table expressions in VoltDB have the following limitations:
» There can be only one common table expression per query.
* In multi-partition transactions, the common expression can reference replicated tables only.

* In single-partition transactions, the common expression can reference both replicated and partitioned
table, with the caveat that as in any partitioned transaction partitioned tables have access to only that
datain the current partition.

* For basic (non-recursive) common tabl e expressi ons, the common expression cannot be sel f-referencing.
That is, the SELECT statement within the WITH clause can reference actual database table and view
names only, it cannot reference the common expression name itself.

Examples
The following example retrieves all of the columns from the EMPLOY EE table where the last name is
"Smith":
SELECT * FROM enpl oyee WHERE | astnane = 'Smith';

Thefollowing example retrieves selected columns for two tables at once, joined by the employee id using
an implicit inner join and sorted by last name:

SELECT | astnane, firstname, salary
FROM enpl oyee AS e, conpensation AS c
WHERE e. enpl oyee_id = c.enpl oyee_id
ORDER BY | ast nane DESC;

249

Supported SQL Statements

TRUNCATE TABLE

TRUNCATE TABLE — Deletes all records from the specified table.

Syntax

TRUNCATE TABLE table-name

Description

The TRUNCATE TABLE statement deletes all of the records from the specified table. TRUNCATE TA-
BLE is the same as the statement DELETE FROM {t abl e- nane} with no selection clause. These
statements contain optimizations to increase performance and reduce memory usage over an equivalent
DELETE statement containing a WHERE selection clause.

The goal of the TRUNCATE TABLE statement is to remove all records from a table. Since this is not
possiblein a partitioned stored procedure, VoltDB does not allow TRUNCATE TABLE statementswithin
partitioned stored procedures. Y ou can perform TRUNCATE TABLE statements in ad hoc or multi-par-
tition procedures only.

Examples

The following example removes all datafrom the CURRENT_STANDINGS table:

TRUNCATE TABLE Current _st andi ngs;

250

Supported SQL Statements

UPDATE

UPDATE — Updates the values within the specified columns and rows of the database.

Syntax

UPDATE table-name SET column-name = value-expression [, ...]
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description

The UPDATE statement changes the values of columns within the specified records. The following limi-
tations are important to note when using the UPDATE statement with VVoltDB:

 VoltDB supports the following arithmetic operators in expressions. addition (+), subtraction (-), multi-
plication (*), and division (*).

» The WHERE expression supports the boolean operators: equals (=), not equals (!= or <>), greater than
(>), lessthan (<), greater than or equal to (>=), lessthan or equal to (<=), ISNULL, AND, OR, andNOT.
Note, however, although OR is supported syntactically, VoltDB does not optimize these operations and
use of OR may impact the performance of your queries.

* You can use subqueries in place of value expressions within the SET and WHERE clauses of the UP-
DATE statement, with the following provisions:

« Seethedescription of subqueriesinthe SELECT statement for general rules concerning the construc-
tion of subqueries.

¢ In a multi-partition procedure, subqueries of the UPDATE statement can only reference replicated
tables.

 Insingle-partitioned procedures, the subquery can reference both partitioned and replicated tables.

« For ad hoc UPDATE statements, the same rules apply except the SQL statement itself determines
whether VoltDB executes it as a single-partitoned or multi-partitioned procedure. Statements that
modify a partitioned table based on a specific value of the partitioning column are executed as sin-
gle-partitioned procedures. All other statements are multi-partitioned.

Examples

The following example changes the ADDRESS column of the EMPLOY EE record with an employee ID
of 145303:

UPDATE enpl oyee
SET address = '49 Lavender Sweep'
WHERE enpl oyee_id = 145303;

The following example increases the starting price by 25% for all ITEM records with a category ID of 7:

UPDATE item SET startprice = startprice * 1.25 WHERE categoryid = 7;

251

Supported SQL Statements

UPSERT

UPSERT — Either inserts new rows or updates existing rows depending on the primary key value.

Syntax

UPSERT INTO table-name [(column-name [,...])] VALUES (value-expression [,...])

UPSERT INTO table-name [(column-name [,...])] SELECT select-expression

Description

The UPSERT statement hasthe same syntax asthe INSERT statement and will perform the same function,
assuming arecord with amatching primary key does not already exist in the database. If such arecord does
exist, UPSERT updates the existing record with the new column values. Note that the UPSERT statement
can only be executed on tables that have aprimary key.

UPSERT has the same two forms as the INSERT statement: UPSERT INTO... VALUES and UPSERT
INTO... SELECT. The UPSERT statement also has similar constraints and limitations as the INSERT
statement with regards to joining partitioned tables and overly complex SELECT clauses. (See the de-
scription of the INSERT statement for details.)

However, UPSERT INTO... SELECT has an additional limitation: the SELECT statement must produce
deterministically ordered results. That is, the query must not only produce the same rows, they must bein
the same order to ensure the subsequent inserts and updates produce identical results.

Y ou can use subqueries within the VALUES clause of the UPSERT statement, with the following provi-

sions:

 Seethedescription of subqueriesinthe SELECT statement for general rules concerning the construction
of subqueries.

* Inamulti-partition procedure, subqueriesof the UPSERT statement can only referencereplicated tables.

* Insingle-partitioned procedures, the subquery can reference both partitioned and replicated tables.

» For ad hoc UPSERT statements, the same rules apply except the SQL statement itself determines
whether VoltDB executes it as a single-partitoned or multi-partitioned procedure. Statements that mod-
ify a partitioned table based on a specific value of the partitioning column are executed as single-parti-
tioned procedures. All other statements are multi-partitioned.

Examples

Thefollowing examples use two tables, Employee and Manager, both of which define the column emp_id
asaprimary key. In the first example, the UPSERT statement either creates a new row with the specified
values or updates an existing row with the primary key 145303.

UPSERT | NTO enpl oyee (enp_id, lastnane, firstnane, title, departnent)
VALUES (145303, 'Public', 'Jane', 'Manager', 'HR);

The next example copies records from the Employee table to the Manager table, if the employee's title
is"Manager". Again, new records will be created or existing records updated depending on whether the
employee already has arecord in the Manager table.

252

Supported SQL Statements

UPSERT | NTO Manager (enp_id, lastnane, firstnane, title, departnent)
SELECT * from Enpl oyee WHERE titl e=' Manager' ORDER BY enp_i d;

253

Appendix C. SQL Functions

Functions let you aggregate column values and perform other calculations and transformations on data
within your SQL queries. This appendix liststhe functions al phabetically, describing for each their syntax
and purpose. The functions can also be grouped by the type of data they produce or operate on, as listed
below.

Bitwise Functions

« BIT_SHIFT_LEFT()
« BIT_SHIFT_RIGHT()
« BITAND()

« BITNOT()

- BITOR()

« BITXOR()

Column Aggregation Functions

« APPROX_COUNT _DISTINCT()
. AVG()

« COUNT()

. MAX()

« MIN()

« SUM()

Date and Time Functions

« CURRENT_TIMESTAMP()
« DATEADD()

- DATEDIFF()

« DAY(), DAYOFMONTH()
« DAYOFWEEK()

« DAYOFYEAR()

« EXTRACT()

« FORMAT_TIMESTAMP()
« FROM_UNIXTIME()

« HOUR()

« IS VALID_TIMESTAMP()
« MAX_VALID_TIMESTAMP()
MIN_VALID_TIMESTAMP()
MINUTE()

MONTH()

NOW()

« QUARTER()

« SECOND()

« SINCE_EPOCH()

« TIME_WINDOW()

« TO_TIMESTAMP()
 TRUNCATE()

- WEEK(), WEEKOFYEAR()
« WEEKDAY/()

. YEAR()

254

SQL Functions

Geogspatial Functions

AREA()

ASTEXT()

CENTROID()
CONTAINS()
DISTANCE()

DWITHIN()
ISINVALIDREASON()
ISVALID()

LATITUDE()
LONGITUDE()
MAKEVALIDPOLY GON()
NUMINTERIORRINGS()
NUMPOINTS()
POINTFROMTEXT()
POLY GONFROMTEXT/()
VALIDPOLYGONFROMTEXT()

JSON Functions

« ARRAY_ELEMENT()
« ARRAY_LENGTH()
« FIELD()

. SET_FIELD()

I nter net Functions

INET6_ATON()
INET6_NTOA()
INET_ATON()
INET_NTOA()

Logic and Conversion Functions

. CAST()

« COALESCE()
- DECODE()

« FORMAT()

Math Functions

ABY()
CEILING()
EXP()
FLOOR()
LN(), LOG()
LOG10()
MOD()
POWER()
ROUND()
SIGN()

SQRT()

255

SQL Functions

String Functions

BIN()

CHAR()
CHAR_LENGTH()
CONCAT()
FORMAT_CURRENCY ()
HEX()

LEFT()

LOWER()
OCTET_LENGTH()
OVERLAY()
POSITION()
REGEXP_POSITION()
REPEAT()
REPLACE()

RIGHT()

SPACE()

STR()

SUBSTRING()

TRIM()

UPPER()

Trigonometric Functions

COS()
COT()

CSC()
DEGREES()
PI()
RADIANS()
SEC()

SIN()
TAN()

Miscellaneous Functions

MIGRATING()

256

SQL Functions

ABS()

ABS() — Returns the absolute value of a numeric expression.

Syntax

ABS(numeric-expression)

Description

The ABS() function returns the absolute value of the specified numeric expression.

Example

The following example sorts the results of a SELECT expression by its proximity to atarget value (spec-

ified by a placeholder), using the ABS() function to normalize values both above and below the intended
target.

SELECT price, product nanme FROM product |i st
ORDER BY ABS(price - ?) ASC

257

SQL Functions

APPROX_COUNT_DISTINCT()

APPROX_COUNT_DISTINCT() — Returns an approximate count of the number of distinct values for
the specified column expression.

Syntax

APPROX_COUNT_DISTINCT(column-expression)

Description

The APPROX_COUNT_DISTINCT() function returns an approximation of the number of distinct values
for the specified column expression. APPROX_COUNT_DISTINCT (column-expression) isan alternative
to the SQL expression "COUNT(DI STI NCT col utm- expr essi on) ™.

The reason for using APPROX_COUNT_DISTINCT() is because it can be significantly faster and use
less temporary memory than performing a precise COUNT DISTINCT operation. Thisis particularly true
when calculating a distinct count of a partitioned table across al of the partitions. The approximation
usually falls within £1% of the actual count.

Y ou can usethe APPROX_COUNT _DISTINCT() function on column expressions of decimal, timestamp,

or any size integer datatype. Y ou cannot use the function on floating point (FLOAT) or variable length
(VARCHAR and VARBINARY) columns.

Example

Thefollowing example returns an approximation of the number of distinct products availablein each store.

SELECT store, APPROX COUNT_ DI STI NCT(product i d) FROM cat al og
CGROUP BY store ORDER BY store,

258

SQL Functions

AREA()

AREA() — Returnsthe area of a polygon in square meters.

Syntax

AREA(polygon)

Description
The AREA () function returnsthe area of a GEOGRAPHY valuein square meters. The areaisthetotal area

of the outer ring minus the area of any inner rings within the polygon. The areais returned as a FLOAT
value.

Example

The following exampl e cal cul ates the sum of the areas of multiple polygons representing fields on afarm.

SELECT farner, SUM AREA(field)) FROM farm
VWHERE farner = 'A d MacDonal d° GROUP BY farner;

259

SQL Functions

ARRAY_ELEMENT()

ARRAY_ELEMENT() — Returns the element at the specified location in a JSON array.

Syntax

ARRAY_ELEMENT(JSON-array, element-position)

Description

The ARRAY_ELEMENTY() function extracts a single element from a JSON array. The array position is
zero-based. In other words, thefirst element inthearray isin position "0". The function returnsthe element
as astring. For example, the following function invocation returns the string "two":

ARRAY_ELEMENT('["zero", "one","two", "three"]", 2)

Note that the array element isalwaysreturned asa string. So in the following example, the function returns
"2" asastring rather than an integer:

ARRAY_ELEMENT('[0,1,2,3]",2)

Finally, the element may itself be a valid JSON-encoded object. For example, the following function
returns the string "[0,1,2,3]":

ARRAY ELEMENT('[[O0,1,2,3],["zero","one","tw","three"]]"', 0)

The ARRAY_ELEMENT() function can be combined with other functions, such as FIELD(), to traverse
more complex JSON structures. The function returns a NULL value if any of the following conditions
aretrue:

» The position argument is less than zero
» The position argument is greater than or equal to the length of the array
» The JSON string does not represent an array (that is, the string isavalid JSON scalar value or object)

The function returns an error if the first argument is not avalid JSON string.

Example

The following example uses the ARRAY_ELEMENT() function along with FIELD() to extract specific
array elements from onefield in a JSON-encoded VARCHAR column:

SELECT | anguage,
ARRAY_ELEMENT(FI ELD(wor ds, ' colors'), 1) AS col or,
ARRAY_ELEMENT(FI ELD(wor ds, ' nunbers'), 2) AS nunber
FROM wor | d_I| anguages WHERE | anguage = ' French';

Assuming the column words has the following structure, the query returns the strings "French’, "vert",

and "trois".

{"colors":["rouge","vert","bleu"],
“nunbers":["un","deux","trois"]}

260

SQL Functions

ARRAY_LENGTH()

ARRAY _L ENGTH() — Returns the number of elementsin a JSON array.

Syntax

ARRAY_LENGTH(JSON-array)

Description

The ARRAY_LENGTH() returns the length of a JSON array; that is, the number of elements the array
contains. The length is returned as an integer.

The ARRAY _LENGTH)() function can be combined with other functions, such as FIELD(), to traverse
more complex JSON structures.

The function returns NULL if the argument is a valid JSON string but does not represent an array. The
function returns an error if the argument is not avalid JSON string.

Example

Thefollowing example usesthe ARRAY _LENGTH(), ARRAY_ELEMENTY(), and FIELD() functionsto
return the last element of an array in alarger JSON string. The functions perform the following actions:

* Innermost, the FIEL D() function extractsthe JSON field "alerts’, which isassumed to be an array, from
the column messages.

* ARRAY_LENGTH() determines the number of elementsin the array.

* ARRAY_ELEMENT() returns the last element based on the value of ARRAY _LENGTH() minus one
(because the array positions are zero-based).

SELECT ARRAY_ELEMENT(FI ELD(messages, 'al erts'),
ARRAY_ LENGTH(FI ELD(nessages, 'alerts'))-1) AS last_alert,
station FROM report! og
WHERE st ati on=7?;

261

SQL Functions

ASTEXT()

ASTEXT() — Returns the Well Known Text (WKT) representation of a GEOGRAPHY or GEOGRA-
PHY_POINT value.

Syntax

ASTEXT(polygon | point)

Description

The ASTEXT() function returns a text string containing a Well Known Text (WKT) representation of a
GEOGRAPHY or GEOGRAPHY _POINT vaue. ASTEXT(value) produces the same results as calling
CAST(value ASVARCHAR).

Notethat ASTEXT() doesnot return theidentical text string that was originally input using POINTFROM-
TEXT() or POLY GONFROMTEXT(). When geospatial datais converted from WKT toitsinternal repre-
sentation, the string representations of longitude and latitude are converted to double floating point val ues.
Rounding and differing levels of precision may result in small differences in the stored values. The use
of spaces and capitalization may also vary between the original input strings and the computed output of
the ASTEXT() function.

Examples

The following SELECT statement uses the ASTEXT() function to return the WKT representation of a
GEOGRAPHY _POINT vauein the column location.

SELECT nane, ASTEXT(!ocation) FROMcity
WHERE state = 'NY' ORDER BY nane;

262

SQL Functions

AVG()

AVG() — Returns the average of arange of numeric column values.

Syntax

AVG(column-expression)

Description

The AV G() function returns the average of arange of numeric column values. The values being averaged
depend on the constraints defined by the WHERE and GROUP BY clauses.

Example

The following example returns the average price for each product category.

SELECT AVQE price), category FROM product |i st
GROUP BY cat egory ORDER BY category;

263

SQL Functions

BIN()

BIN() — Returns the binary representation of aBIGINT value as a string.

Syntax

BIN(value)

Description

The BIN() function returns the binary representation of a BIGINT value as a string. The function will
return the shortest valid string representation, truncating any preceding zeros (except in the case of the
value zero, which is returned as the string "0").

Example

The following example use the BIN and BITAND functions to return the binary representations of two
BIGINT values and their binary intersection.

$ sqglcmd

1> create table bits (a bigint, b bigint);

2> insert into bits val ues(55,99);

3> select bin(a) as intl, bin(b) as int2,

4> bi n(bitand(a, b)) as intersection frombits;
I NT1 | NT2 | NTERSECTI ON

110111 1100011 100011

264

SQL Functions

BIT_SHIFT_LEFT()

BIT_SHIFT_LEFT() — Shiftsthe bits of a BIGINT value to the |eft a specified number of places.

Syntax

BIT_SHIFT_LEFT(value, offset)

Description

TheBIT_SHIFT_LEFT() function shiftsthe bit values of aBIGINT value to the left the number of places
specified by offset. The offset must be a positiveinteger value. The unspecified bitsto the right are padded
with zeros. So, for example, if the offset is 5, theleft-most 5 bits are dropped, the remaining bits are shifted
5 places to the left, and the right-most 5 bits are set to zero. Theresult is returned asanew BIGINT value
— the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example shiftsthe bitsin aBIGINT value three places to the left and displays the hexadec-
imal representation of both the initial value and the resulting value.

$ sqglcnd

1> create table bits (a bigint);

2> insert into bits values (112);

3> select hex(a), hex(bit_shift_left(a,3)) frombits;
Cl c2

265

SQL Functions

BIT_SHIFT_RIGHTY()

BIT_SHIFT_RIGHT() — Shiftsthe bits of aBIGINT value to the right a specified number of places.

Syntax

BIT_SHIFT_RIGHT(value, offset)

Description

The BIT_SHIFT_RIGHT() function shifts the bit values of a BIGINT value to the right the number of
places specified by offset. The offset must be a positive integer value. The unspecified bitsto the left are
padded with zeros. So, for example, if the offset is 5, the right-most 5 bits are dropped, the remaining bits
are shifted 5 places to the right, and the left-most 5 bits are set to zero. The result is returned as a new
BIGINT value — the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example shifts the bitsin a BIGINT value three places to the right and displays the hexa
decimal representation of both the initial value and the resulting value.

$ sqglcnd

1> create table bits (a bigint);

2> insert into bits values (112);

3> select hex(a), hex(bit_shift_right(a,3)) frombits;
Cl c2

266

SQL Functions

BITAND()

BITAND() — Returns the mask of bits set in both of two BIGINT values

Syntax

BITAND(value, value)

Description

The BITAND() function returns the mask of bits set in both of two BIGINT integers. In other words, it
performs a bitwise AND operation on the two arguments. The result is returned as a new BIGINT value
— the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example writes values into two BIGINT columns of the table bits and then returns the
bitwise AND of the columns:

$ sqglcnd

1> create table bits (a bigint, b bigint);
2> insert into bits (a,b) values (7,13);
3> select bitand(a,b) frombits;

Cc1

5

267

SQL Functions

BITNOTY()

BITNOT() — Returns the mask reversing every bit of aBIGINT value.

Syntax

BITNOT(value)

Description

TheBITNOT() function returnsthemask reversing every bitinaBIGINT value. In other words, it performs
a bitwise NOT operation, returning the complement of the argument. The result is returned as a new
BIGINT value — the argument to the function is not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example writesavalueinto aBIGINT column of the table bits and then returns the bitwise
NOT of the column:

$ sqglcnd

1> create table bits (a bigint);

2> insert into bits (a) values (1234567890);
3> select bitnot(a) frombits;

Cc1

-1234567891

268

SQL Functions

BITOR()

BITOR() — Returns the mask of bits set in either of two BIGINT values

Syntax

BITOR(value, value)

Description

The BITOR) function returns the mask of bits set in either of two BIGINT integers. In other words, it
performs a bitwise OR operation on the two arguments. The result is returned asanew BIGINT value —
the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example writes values into two BIGINT columns of the table bits and then returns the
bitwise OR of the columns:

$ sqglcnd

1> create table bits (a bigint, b bigint);
2> insert into bits (a,b) values (7,13);
3> select bitor(a,b) frombits;

Cl

15

269

SQL Functions

BITXOR()

BITXOR() — Returns the mask of bits set in one but not both of two BIGINT values

Syntax

BITXOR(value, value)

Description

The BITXOR() function returns the mask of bits set in one but not both of two BIGINT integers. In other
words, it performs abitwise XOR operation on the two arguments. Theresult isreturned asanew BIGINT
value — the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example writes values into two BIGINT columns of the table bits and then returns the
bitwise XOR of the columns:

$ sqglcnd

1> create table bits (a bigint, b bigint);
2> insert into bits (a,b) values (7,13);
3> select bitxor(a,b) frombits;

Cc1

10

270

SQL Functions

CAST()

CAST() — Explicitly converts an expression to the specified datatype.

Syntax

CAST(expression AS datatype)

Description

The CAST() function converts an expression to a specified datatype. Cases where casting is beneficial
include when converting between numeric types (such as integer and float) or when converting a numeric
value to astring.

All numeric datatypes can be used as the source and numeric or string datatypes can be the target. When
converting from decimal values to integers, values are truncated. Y ou can also cast from a TIMESTAMP
toaVARCHAR or fromaVARCHAR to aTIMESTAMP, assuming thetext string isformatted as YYYY-
MM-DD or YYYY-MM-DD HH:MM:SS.nnnnnnn. Where the runtime value cannot be converted (for ex-
ample, the value exceeds the maximum allowable value of the target datatype) an error isthrown.

Y ou cannot use VARBINARY aseither thetarget or the source datatype. To convert between numeric and
TIMESTAMP values, use the TO_TIMESTAMP(), FROM_UNIXTIME(), and EXTRACT() functions.

Theresult of the CAST() function of anull value is the corresponding null in the target datatype.

Example

The following example uses the CAST() function to ensure the result of an expression is also afloating
point number and does not truncate the decimal portion.

SELECT contestant, CAST((votes * 100) as FLOAT) / ? as percentage
FROM cont est ORDER BY votes, contestant;

271

SQL Functions

CEILING()

CEILING() — Returnsthe smallest integer value greater than or equal to a numeric expression.

Syntax

CEILING(numeric-expression)

Description

The CEILING() function returnsthe next integer greater than or equal to the specified numeric expression.
In other words, the CEILING() function "rounds up" numeric values. For example:

CEl LI N&(3. 1415) = 4
CEILING(2.0) = 2
CEI LING(-5.32) = -5

Example

The following example uses the CEILING function to cal culate the shipping costs for a product based on
its weight in the next whole number of pounds.

SELECT shi ppi ng. cost _per _I b * CEI LI N product. wei ght),
product. prod_i d FROM pr oduct
JA N shi ppi ng ON product. prod_i d=shi ppi ng. prod_i d
ORDER BY product . prod_i d;

272

SQL Functions

CENTROID()

CENTROID() — Returns the central point of a polygon.

Syntax

CENTROID(polygon)

Description

The CENTROID() returns the central point of a GEOGRAPHY polygon. The centroid is the point where
any line passing through the centroid dividesthe polygon into two segments of equal area. Thereturn value
of the CENTROID() function isa GEOGRAPHY _POINT value.

Note that the centroid may fall outside of the polygon itself. For example, if the polygonisaring (that is,
acirclewith an inner circle removed) or a horseshoe shape.

Example

The following example uses the CENTROID() and LATITUDE() functions to return alist of countries
where the majority of the land mass falls above the equator.

SELECT nane, capital FROM country
WHERE LATI TUDE(CENTRO D(outline)) > 0
ORDER BY nane, capital;

273

SQL Functions

CHAR()

CHAR() — Returns a string with asingle UTF-8 character associated with the specified character code.

Syntax

CHAR(integer)

Description
The CHAR() function returns a string containing a single UTF-8 character that matches the specified

UNICODE character code. One use of the CHAR() function is to insert non-printing and other hard to
enter characters into string expressions.

Example

The following example uses CHAR() to add a copyright symbol into aVARCHAR field.

UPDATE book SET copyright _notice= CHAR(169) || CAST(? AS VARCHAR)
VWHERE i sbhn=7?;

274

SQL Functions

CHAR_LENGTH()

CHAR_LENGTH() — Returns the number of charactersin astring.

Syntax

CHAR_LENGTH(string-expression)

Description
The CHAR_LENGTH() function returns the number of text charactersin a string.

Note that the number of characters and the amount of physical space required to store those characters can
differ. To measure the length of the string, in bytes, use the OCTET_LENGTH() function.

Example

The following example returns the string in the column LastName as well as the number of characters and
length in bytes of that string.

SELECT Last Name, CHAR LENGTH(Last Nane), OCTET_LENGTH(Last Nane)
FROM Cust omer s ORDER BY Last Nane, First Nane;

275

SQL Functions

COALESCE()

COALESCE() — Returns the first non-null argument, or null.

Syntax

COALESCE(expression [, ...])

Description

The COALESCE() function takes multiple arguments and returns the value of the first argument that is
not null, or — if all arguments are null — the function returns null.

Examples

The following example uses COALESCE to perform two functions:
* Replace possibly null column values with placehol der text
* Return one of severa column values

In the second usage, the SELECT statement returns the value of the column State, Province, or Territory
depending on the first that contains a non-null value. Or the function returns a null value if none of the
columns are non-null.

SELECT | ast nane, firstnane,
COALESCE(addr ess, ' [address unkown] '),
COALESCE(state, province, territory),
country FROM users ORDER BY | ast nane;

276

SQL Functions

CONCAT()

CONCAT() — Concatenates two or more strings and returns the result.

Syntax

CONCAT(string-expression {, ... })

Description

The CONCAT() function concatenates two or more strings and returns the resulting string. The string
concatenation operator || performs the same function as CONCAT().

Example

The following example concatenates the contents of two columns as part of a SELECT expression.

SELECT price, CONCAT(category, part_nane) AS full _part_nane
FROM product |ist ORDER BY pri ce;

The next exampl e does something similar but usesthe || operator asashorthand to concatenate three strings,
two columns and a string constant, as part of a SELECT expression.

SELECT lastnanme || ', ' || firstname AS full _nane
FROM cust oners ORDER BY | ast nane, firstname;

277

SQL Functions

CONTAINS()

CONTAINS() — Returnstrue or false depending if a point falls within the specified polygon.

Syntax

CONTAINS(polygon, point)

Description

The CONTAINS() function determines if agiven point falls within the specified GEOGRAPHY polygon.
If so, the function returns a boolean value of true. If not, it returns false.

Example

The following example uses the CONTAINS function to see if a specific user is with the boundaries of a
city or not by evaluating if the user.location GEOGRAPHY _POINT column valuefallswithin the polygon
defined by the city.boundary GEOGRAPHY column.

SELECT user. nane, user.id, city.name FROM user, city
VWHERE user.id = ? AND CONTAI NS(city. boundary, user.|ocation);

278

SQL Functions

COSl)

COS() — Returns the cosine of an angle specified in radians.

Syntax

COS({numeric-expression})

Description

The COS() function returns the cosine of a specified angleasaFLOAT value. The angle must be specified
in radians as a numeric expression.

Example

The following example returns the sine, cosine, and tangent of angles from 0 to 90 degrees (where the
angleis specified in radians).

SELECT SI N(radi ans), COS(radians), TAN(radi ans)
FROM tri angl es WHERE radi ans >= 0 AND radi ans <= Pl ()/2;

279

SQL Functions

COT()

COT() — Returns the cotangent of an angle specified in radians.

Syntax

COT({numeric-expression})

Description

The COT() function returns the cotangent of a specified angle as a FLOAT value. The angle must be
specified in radians as a numeric expression.

Examples

The following example returns the secant, cosecant, and cotangent of angles from 0 to 90 degrees (where
the angleis specified in radians).

SELECT SEC(radi ans), CSC(radians), COT(radi ans)
FROM tri angl es WHERE radi ans >= 0 AND radi ans <= Pl ()/2;

280

SQL Functions

COUNT()

COUNT() — Returns the number of rows selected containing the specified column.

Syntax

COUNT(column-expression)

Description

The COUNT() function returns the number of rows selected for the specified column. Since the actual
value of the column is not used to calculate the count, you can use the asterisk (*) as awildcard for any
column. For example the query SELECT COUNT(*) FROM wi dget s returns the number of rowsin
thetablewi dget s, without needing to know what columns the table contains.

The one case where the column name is significant is if you use the DISTINCT clause to constrain the
selection expression. For example, SELECT COUNT(DI STI NCT | ast _nane) FROM cust oner
returns the count of unique last namesin the customer table.

Examples

The following example returns the number of rowswhere the product name starts with the captial letter A.

SELECT COUNT(*) FROM product _|i st
VWHERE pr oduct _nane LIKE 'A% ;

The next example returns the total number of unique product categories in the product list.

SELECT CQOUNT(DI STI NCT cat egory) FROM product list;

281

SQL Functions

CSC()

CSC() — Returns the cosecant of an angle specified in radians.

Syntax

CSC({numeric-expression})

Description

The CSC() function returns the cosecant of a specified angle asa FLOAT value. The angle must be spec-
ified in radians as a numeric expression.

Examples

The following example returns the secant, cosecant, and cotangent of angles from 0 to 90 degrees (where
the angleis specified in radians).

SELECT SEC(radi ans), CSC(radians), COT(radi ans)
FROM tri angl es WHERE radi ans >= 0 AND radi ans <= Pl ()/2;

282

SQL Functions

CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP() — Returns the current time as a timestamp value.

Syntax

CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP

Description

The CURRENT_TIMESTAMP() function returns the current time as a VoltDB timestamp. The value of
the timestamp is determined when the query or stored procedure isinvoked. Since there are no arguments
to the function, the parentheses following the function name are optional.

Several important aspects of how the CURRENT_TIMESTAMP() function operates are:

The value returned is guaranteed to be identical for all partitions that execute the query.
Thevaluereturned ismeasured in millisecondsthen padded to create atimestamp valuein microseconds.

During command logging, the returned value is stored as part of the log, so when the command log is
replayed, the same value is used during the replay of the query.

Similarly, for database replication (DR) the value returned is passed and reused by the replica database
when replaying the query.

You can specify CURRENT_TIMESTAMP() as a default value in the CREATE TABLE statement
when defining the schema of aVoltDB database.

The CURRENT_TIMESTAMP() function cannot be used in the CREATE INDEX or CREATE VIEW
statements.

The NOW() and CURRENT_TIMESTAMP() functions are synonyms and perform an identical function.

Example

Thefollowing example uses CURRENT_TIMESTAMP() in the WHERE clause to delete alert eventsthat
occurred in the past:

DELETE FROM Al ert _event WHERE event tinestanp < CURRENT Tl MESTAMP;

283

SQL Functions

DATEADD()

DATEADD() — Returns a new timestamp value by adding a specified time interval to an existing time-
stamp value.

Syntax

DATEADD(time-unit, interval, timestamp)

Description

The DATEADD() function creates anew TIMESTAMP value by adding (or subtracting for negative val-
ues) the specified time interval from another TIMESTAMP value. The first argument specifies the time
unit of the interval. The valid time unit keywords are:

« MICROSECOND (or MICROS)
« MILLISECOND (or MILLIS)
« SECOND

« MINUTE

« HOUR

« DAY

« MONTH

« QUARTER

. YEAR

The second argument is an integer value specifying the interval to add to the TIMESTAMP value. A
positive interval moves the time ahead. A negative interval moves the time value backwards. The third
argument specifies the TIMESTAMP value to which theinterval is applied.

The DATEADD function takesinto account leap years and the variable number of daysin amonth. There-
fore, if the year of either the specified timestamp or the resulting timestamp is aleap year, the day is ad-
justed to its correct value. For example, DATEADD(YEAR, 1, *2008-02-29) returns * 2009-02-28'. Sim-
ilarly, if the original timestamp isthe last day of a month, then the resulting timestamp will be adjusted as
necessary. For example, DATEADD(MONTH, 1, ‘2008-03-31") returns * 2008-04-30’.

Example

Thefollowing example usesthe DATEADD() functiontofind all recordswherethe TIMESTAMP column,
incident, occurs within one day before a specified timestamp (entered as a POSIX time value).

SELECT incident, description FROM securitylLog
VWHERE DATEADD(DAY, 1, incident) > FROM UNI XTI ME(?)
AND i nci dent < FROM UNI XTI ME(?)
ORDER BY incident, description;

284

SQL Functions

DATEDIFF()

DATEDIFF() — Returns the difference between two timestamps as an integer.

Syntax

DATEDIFF(time-unit, timestamp, timestamp)

Description

The DATEDIFF() function returns an integer value representing the difference between two timestamps
for the specified time unit. Specifically, the second timestamp minus the first timestamp, measured in the
specified unit. Note that both timestamps are converted to the specified time unit before the subtraction
occurs. So, for example, the difference between Dec-31-1999 11:59 and Jan-01-2000 01:01 measured in
days would be 1 day, but in hoursit would be 2 hours, and in minutes 62 minutes.

The valid time unit keywords are;

« MICROSECOND (or MICROS)
« MILLISECOND (or MILLIS)
« SECOND

« MINUTE

« HOUR

« DAY

« MONTH

« QUARTER

.« YEAR

Example

The following example uses the DATEDIFF() function to return the number of whole minutes between
the start and end of an event.

I NSERT | NTO billing
(account _id, when, |ength)
SELECT user, start_tine,
DATEDI FF(M NUTE, start _tinme, end_tine)
FROM event ;

285

SQL Functions

DAY(), DAYOFMONTH()

DAY (), DAY OFMONTH() — Returns the day of the month as an integer value.

Syntax

DAY(timestamp-value)

DAYOFMONTH(timestamp-value)

Description

The DAY () function returns an integer value between 1 and 31 representing the timestamp's day of the
month. The DAY () and DAY OFMONTH() functions are synonyms. These functions produce the same
result as using the DAY or DAY_OF MONTH keywords with the EXTRACT() function.

Examples

Thefollowing example uses the DAY (), MONTH(), and Y EAR() functions to return atimestamp column
as aformatted date string.

SELECT CAST(MONTH(starttine) AS VARCHAR) ||
CAST(DAY(starttine) AS VARCHAR) | |
CAST(YEAR(starttinme) AS VARCHAR), title
FROM event ORDER BY starttine;

|/||
|/||

I
I
description

286

SQL Functions

DAYOFWEEK()

DAY OFWEEK () — Returns the day of the week as an integer between 1 and 7.

Syntax

DAYOFWEEK(timestamp-value)

Description

The DAY OFWEEK () function returns an integer value between 1 and 7 representing the day of the week
in atimestamp value. For the DAY OFTHEWEEK() function, the week starts (1) on Sunday and ends (7)
on Saturday.

This function produces the same result as using the DAY_OF WEEK keyword with the EXTRACT()
function.

Examples

The following example uses DAY OFWEEK () and the DECODE() function to return astring value repre-
senting the day of the week for the specified TIMESTAMP value.

SELECT eventti ne,
DECODE(DAY(]=V\EEK(eventtine),

' Sunday"'
' Monday'
' Tuesday' ,
' Wednesday'
" Thur sday' ,
"Friday',
' Saturday') AS eventday
FROM event ORDER BY eventti ne;

NoghkrwnE

287

SQL Functions

DAYOFYEAR()

DAY OFYEAR() — Returns the day of the year as an integer between 1 and 366.

Syntax

DAYOFYEAR(timestamp-value)

Description

The DAY OFY EAR() function returns an integer val ue between 1 and 366 representing the day of the year
of atimestamp value. Thisfunction produces the same result asusing the DAY _OF_Y EAR keyword with
the EXTRACT() function.

Examples

Thefollowing example uses the DAY OFY EAR() function to determine the number of days until an event
occurs.

SELECT DECODE(YEAR(NOW, YEAR(starttine),
CAST(DAYOFYEAR(starttine) - DAYOFYEAR(NOW AS VARCHAR)
|| ' days remaining',
CAST(YEAR(starttine) - YEAR(NOWN AS VARCHAR)
|| ' years remaining'),
event nane FROM event ;

288

SQL Functions

DECODE()

DECODE() — Evaluates an expression against one or more alternatives and returnsthe matching response.

Syntax

DECODE(expression, { comparison-value, result } [,...] [,default-result])

Description

The DECODE() function compares an expression against one or more possible comparison values. If the
expression matches the comparison-value, the associated result is returned. If the expression does not
match any of the comparison values, the default-result is returned. If the expression does not match any
comparison value and no default result is specified, the function returns NULL.

The DECODE() function operates the same way an IF-THEN-EL SE, or CASE statement does in other
languages.

Example

The following example uses the DECODE() function to interpret a coded data column and replace it with
the appropriate meaning for each code.

SELECT title, industry, DECODE(sal ary_range,

"A, 'under $25,000',

"B, '$25,000 - $34,999',

"C, '$35,000 - $49,999',

"D, '$50,000 - $74,999',

"E', '$75,000 - $99, 000",

"F', '$100, 000 and over',
"unspecified') fromsurvey_results

order by industry, title;

The next exampl e tests a value against three columns and returns the name of the column when a match
isfound, or a message indicating no match if noneis found.

SELECT product _nane, DECODE(?, product nane, ' PRODUCT NAME' ,
part _nanme, ' PART NAME' ,
category, ' CATEGORY',

" NO MATCH FOUND)
FROM product _|ist ORDER BY product nane;

289

SQL Functions

DEGREES()

DEGREES() — Converts an angle in radians to degrees

Syntax

DEGREES(angle-in-radians)

Description

The DEGREES() function converts a floating-point value representing an angle measured in radians to
the equivalent angle measured in degrees.

Example

The following SELECT statement converts a column value stored in radians to degrees before returning
it to the user.

SELECT test _nunber, distance, DEGREES(angle) as angle_in_degrees
FROM t est s ORDER BY test_nunber;

290

SQL Functions

DISTANCE()

DISTANCE() — Returns the distance between two points or a point and a polygon.

Syntax

DISTANCE(point-or-polygon, point-or-polygon)

Description

The DISTANCE() function returns the distance, measured in meters, between two points or apoint and a
polygon. The arguments to the function can be either two GEOGRAPHY _POINT values or a GEOGRA -
PHY_POINT and GEOGRAPHY value.

The DISTANCE() function accepts multiple datatypes for its two arguments, but there are constraints
on which combination of datatypes are alowed. For example, the two arguments cannot both be of type
GEOGRAPHY . Consequently, the VoltDB planner must know the datatype of the arguments when the
statement is compiled. So using generic, untyped placehol dersfor these argumentsisnot valid. Thismeans
you cannot use syntax such as DISTANCE(?,?) in astored procedure. However, you can use placeholders
aslong asthey are cast to specific types. For example:

DI STANCE(POl NTFROMIEXT(?) , POLYGONFROMIEXT(?))

Examples

Thefollowing examplefinds the closest city to aspecified user, using the GEOGRAPHY _POINT column
user.location and the GEOGRAPHY column city.boundary.

SELECT TOP 1 user.nane, city.nane,
DI STANCE(user .l ocation, city.boundary)
FROM user, city WHERE user.id = ?
ORDER BY DI STANCE(user. |l ocation, city.boundary) ASC;

The next example finds the distance in kilometers from atruck to stores, listed in order with closest first,
using the two GEOGRAPHY_POINT columns truck.loc and store.loc.

SELECT st ore. addr ess,
DI STANCE(store. loc, truck.loc) / 1000 AS distance
FROM store, truck WHERE truck.id = ?
ORDER BY DI STANCE(store.loc,truck.|oc)/1000 ASC,

291

SQL Functions

DWITHIN()

DWITHIN() — Returns true or false depending whether two geospatial entities are within a specified
distance of each other.

Syntax

DWITHIN(polygon-or-point, polygon-or-point, distance)

Description

The DWITHIN() function determines if two geospatia values are within the specified distance of each
other. The values can be two points (GEOGRAPHY _POINT) or a point and a polygon (GEOGRAPHY).
The maximum distance is specified as a numeric value measured in meters. If the distance between the
two geospatial values is less than or equal to the specified distance, the function returns true. If not, it
returns false.

The DWITHIN() function accepts multiple datatypes for its first two arguments, but there are constraints
on which combination of datatypes are allowed. For example, the two arguments cannot both be of type
GEOGRAPHY . Consequently, the VoltDB planner must know the datatype of the arguments when the
statement is compiled. So using generic, untyped placehol dersfor these argumentsisnot valid. Thismeans
you cannot use syntax such as DWITHIN(?,?,?) in astored procedure. However, you can use placeholders
aslong asthey are cast to specific types. For example:

DW THI N(POl NTFROMIEXT(?) , POLYGONFROMIEXT(?), ?)

Examples

Thefollowing examplefindsall the citieswithin five kilometers of agiven user, by evaluating the distance
between the GEOGRAPHY _POINT column user.loc and the GEOGRAPHY column city.boundary.

SELECT user. nane, city.nane, DI STANCE(user.loc, city.boundary)
FROM user, city WHERE user.id=?
AND DW THI N(user .l oc, city. boundary, 5000)
ORDER BY DI STANCE(user.loc, city.boundary) ASC,

The next is a more generalized example, where the query returns all delivery trucks within a specified
distance of a store, where both the distance and the store ID are parameterized and can beinput at runtime.

SELECT store. address, truck.license nunber,
DI STANCE(store.loc, truck.loc)/ 1000 AS di stance_i n_km
FROM store, truck
VWHERE DW THI N(store.loc, truck.loc, ?) and store.id=?
ORDER BY DI STANCE(store.loc,truck.|oc)/1000 ASC,

292

SQL Functions

EXP()

EXP() — Returns the exponential of the specified numeric expression.

Syntax

EXP(numeric-expression)

Description

The EXP() function returns the exponential of the specified numeric expression. In other words, EXP(x)
isthe equivalent of the mathematical expression €.

Example

The following example uses the EXP function to calculate the potential population of certain species of
animal projecting out ten years.

SELECT species, population AS current,
(popul ation/2.0) * EXP(10*(gestation/365.0)*litter) AS future
FROM ani mal s
WHERE species = 'rabbit’
ORDER BY popul ati on;

293

SQL Functions

EXTRACTY()

EXTRACT() — Returns the value of a selected portion of atimestamp.

Syntax

EXTRACT(selection-keyword FROM timestamp-expression)

EXTRACT(selection-keyword, timestamp-expression)

Description

The EXTRACT() function returns the value of the selected portion of atimestamp. Table C.1, “ Selectable
Vaues for the EXTRACT Function” lists the supported keywords, the datatype of the value returned by
the function, and a description of its contents.

Table C.1. Selectable Valuesfor the EXTRACT Function

Keyword Datatype Description

YEAR INTEGER The year as anumeric value.

QUARTER TINYINT The quarter of the year as a single numeric value between 1
and 4.

MONTH TINYINT The month of the year as a numeric value between 1 and 12.

DAY TINYINT The day of the month as a numeric value between 1 and 31.

DAY_OF MONTH|TINYINT The day of the month as a numeric value between 1 and 31
(same as DAY).

DAY_OF WEEK |TINYINT The day of the week asanumeric value between 1 and 7, start-
ing with Sunday.

DAY_OF YEAR |SMALLINT The day of the year as a numeric value between 1 and 366.

WEEK TINYINT The week of the year as a numeric value between 1 and 52.

WEEK_OF YEAR|TINYINT The week of the year as a numeric value between 1 and 52
(same as WEEK).

WEEKDAY TINYINT The day of the week as a numeric value between 0 and 6, start-
ing with Monday.

HOUR TINYINT The hour of the day as a numeric value between 0 and 23.

MINUTE TINYINT The minute of the hour as a numeric value between 0 and 59.

SECOND DECIMAL Thewhole and fractional part of the number of secondswithin
the minute as a floating point value between 0 and 60.

The timestamp expression isinterpreted as a VoltDB timestamp; That is, time measured in microseconds.

Example

The following example lists all the contacts by hame and birthday, listing the birthday as three separate
fields for month, day, and year.

SELECT Last_nane, first_name, EXTRACT(MONTH FROM dat eof birth),

294

SQL Functions

EXTRACT(DAY FROM dat eof bi rt h), EXTRACT(YEAR FROM dat eof bi rt h)
FROM contact _|i st
ORDER BY | ast _nane, first_nane;

295

SQL Functions

FIELD()

FIELD() — Extracts afield value from a JSON-encoded string column.

Syntax

FIELD(column, field-name-path)

Description

The FIELD() function extracts afield value from a JSON-encoded string. For example, assume the VAR-
CHAR column Profile contains the following JSON string:

{"first":"Charles","last":"Dickens","birth": 1812,
"description":{"genre":"fiction",
"period":"Victorian",
"output":"prolific",
"children":["Charl es","Mary","Kate", "Wal ter", "Francis",
"Al fred", "Sydney", "Henry", "Dora", " Edwar d"]

}

It is possible to extract individual field values using the FIELD() function, as in the following SELECT
statement:

SELECT FIELD(profile,"'first') AS firstnaneg,
FI ELD(profile,'last') AS |astnane FROM Aut hors;

It is also possible to find records based on individual JSON fields by using the FIELD() function in the
WHERE clause. For example, the following query retrieves all records from the Authors table where the
JSON field birthis 1812. Note that the FIEL D() function always returns a string, even if the JSON typeis
numeric. The comparison must match the string datatype, so the constant' 1812" isin quotation marks:

SELECT * FROM Aut hors WHERE FI ELD(profile, ' birth') = '1812";

The second argument to the FIELD() function can be a simple field name, as in the previous examples.
In which case the function returns a first-level field matching the specified name. Alternately, you can
specify a path representing a hierarchy of names separated by periods. For example, you can specify the
genre element of the description field by specifying "description.genre” as the second argument, like so

SELECT * FROM Aut hors WHERE
FI ELD(profil e, ' description.genre') = 'fiction';

Y ou can also use array notation — with square brackets and an integer value — to identify array elements
by their position. So, for example, the function can return "Kate", the third child, by using the path spec-
ifier "description.children[2]", where "[2]" identifies the third array element because JSON arrays are ze-
ro-based.

Two important points to note concerning input to the FIELD() function:
* If the requested field name does not exist, the function returns a null value.

» Thefirst argument to the FIELD() function must be avalid JSON-encoded string. However, the content
isnot evaluated until thefunctionisinvoked at runtime. Therefore, it istheresponsibility of the database

296

SQL Functions

application to ensure the validity of the content. If the FIELD() function encounters invalid content,
the query will fail.

Example

Thefollowing example usesthe FIEL D() function to both return specific JSON fieldswithinaVARCHAR
column and filter the results based on the value of athird JSON field:

SELECT product _nane, sku,
FI ELD(speci fication,'color') AS col or,
FI ELD(speci fication, ' weight') AS weight FROM I nventory
WHERE FI ELD(speci fication, 'category') = 'housewares'
ORDER BY product _nane, sku;

297

SQL Functions

FLOOR()

FLOOR() — Returnsthe largest integer value less than or equal to a numeric expression.

Syntax

FLOOR(numeric-expression)

Description

The FLOOR() function returns the largest integer less then or equal to the specified numeric expression.
In other words, the FLOOR() function truncates fractional numeric values. For example:

FLOOR(3. 1415) = 3
FLOOR(2.0) = 2
FLOOR(-5.32) = -6

Example

The following example uses the FLOOR function to calculate the whole number of stocks owned by a
specific shareholder.

SELECT custoner, conpany,
FLOOR(num of _st ocks) AS stocks_avail able_for_sale
FROM shar ehol ders WHERE custoner _id = ?
CORDER BY company;

298

SQL Functions

FORMAT()

FORMAT() — Returns a formatted text string with values inserted as defined by placeholders in the
template.

Syntax

FORMAT(format-string [, expression...])

Description

The FORMAT() function returns aformatted text string based on the template in the first argument, where
placeholders in the template are replaced with values from the subsequent arguments. This function is
equivalent to the format function found in Java or the sprintf functionin C.

Placeholders in the format string consist of a percent sign (%) followed by a single character, such as %s
for a string value or %d for a numeric value. These placeholders can be further modified by additional
syntactic expressions. See the Boost documentation for a complete description of the format string syntax.

Note that, because the intended datatype of the inserted value is not known at compile time, there is no
datatype conversion performed on the arguments to the FORMAT() function. Therefore it is important
you use CAST() or other techniques to convert datatypes as necessary. For example, you must explicitly
cast DECIMAL datatypesto FLOAT when providing values for afloating point placeholder such as %f .

Example

Thefollowing example uses the FORMAT() function to return the query results as ameaningful sentence.

SELECT FORNMAT(' % peopl e voted during the contest.', COUNT(phone_nunber))
AS summary
FROM vot es;

299

https://www.boost.org/doc/libs/1_85_0/libs/format/doc/format.html#printf_directives

SQL Functions

FORMAT_CURRENCY()

FORMAT_CURRENCY () — Convertsa DECIMAL to atext string as a monetary value.

Syntax

FORMAT_CURRENCY(decimal-value, rounding-position)

Description

The FORMAT_CURRENCY () function convertsaDECIMAL valueto its string representation, rounding
to the specified position. The resulting string is formatted with commas separating every three digits of
the whole portion of the number (indicating thousands, millions, and so on) and a decimal point before
the fractional portion, as needed.

Therounding-position argument must be an integer between 12 and -25 and indicatesthe placeto which the
numeric value should be rounded. Positive valuesindicate adecimal place; for example 2 means round to
2 decimal places. Negative valuesindicate rounding to awhole number position; for example, -2 indicates
the number should be rounded to the nearest hundred. A zero indicates that the value should be rounded
to the nearest whole number.

Rounding is performed using "banker's rounding”, in that any fractional half isrounded to the nearest even
number. So, for example, if the rounding-position is 2, the value 22.225 isrounded to 22.22, but the value
33.335 isrounded to 33.34. The following list demonstrates some sample results.

FORMAT_CURRENCY (.123456789, 4) = 0.1235
FORMAT_CURRENCY (123456789.123, 2) = 123,456,789.12
FORMAT_CURRENCY (123456789.123, 0) = 123,456,789
FORMAT_CURRENCY (123456789.123, -2) = 123,456,800
FORMAT_CURRENCY (123456789.123, -6) = 123,000,000
FORMAT_CURRENCY (123456789.123, 6) = 123,456,789.123000

Example

The following example uses the FORMAT_CURRENCY () function to return a DECIMAL column as a
string representation of its monetary value, rounding to two decimal places and appending the appropriate
currency symbol from aVARCHAR column.

SELECT country,
currency_synbol || format_currency(budget, 2) AS annual budget
FROM wor | d_economy ORDER BY country;

300

SQL Functions

FORMAT_TIMESTAMP()

FORMAT_TIMESTAMP() — Takes atimestamp as input and returns a formatted string in the specified
timezone.

Syntax

FORMAT_TIMESTAMP(timestamp-value, timezone-or-offset)

Description

The FORMAT_TIMESTAMP() returns the timestamp input value as a formatted string in the speci-
fied timezone. VoltDB stores timestamps as a time value in Greenwich Mean Time (GMT). The FOR-
MAT_TIMESTAMP() function letsyou return that value as adate and time string in a different timezone.
You can specify the timezone as a either an offset of GMT or as a region as described by the Internet
Assigned Numbers Authority (IANA) time zone database (tz). Y ou can find alist of the IANA time zones
on the Wikipediatz page.

Time zone names are case sensitive. Time offsets are specified as atime value preceded by a plus or minus
sign. The offset time value can be specified in hours (one or two digits); hours and minutes (four digits);
or hours, minutes, and seconds (six digits). Y ou can optionally use colons to separate the time units. For
example, all of the following offsets specify the same amount of time — a positive offset of five hours:

+5

+05

+0500
+05: 00
+050000
+05: 00: 00

Examples

The following example uses the FORMAT_TIMESTAMP() function to return a timestamp column as an
Eastern United States timezone date and time:

SELECT FORMAT Tl MESTAMP(e_tine,"' Anerica/ New York'), e | og FROM event;
The next example uses an offset to go back 15 minutes:
SELECT FORVAT_TI MESTAMP(al arm expires,'-00:15") AS warning FROM al arm

The last example uses the FORMAT_TIMESTAMP() function to return timestamp values in the cus-
tomer's chosen timezone.

CREATE PROCEDURE get reservation AS
SELECT r.id,
FORMAT _TI MESTAMP(r . departure,c.tinezone) AS departure,
FORMAT _TI MESTAMP(r. arrival,c.tinezone) AS arrival
FROM reservation AS r, custoner AS c
WHERE r.id = ?;

301

https://www.iana.org/time-zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

SQL Functions

FROM_UNIXTIME()

FROM_UNIXTIME() — Convertsa UNIX time value to a VoltDB timestamp.

Syntax

FROM_UNIXTIME(integer-expression)

Description

The FROM_UNIXTIME() function converts an integer expression to a VVoltDB timestamp, interpreting
the integer value as a POSIX time value; that is the number of seconds since the epoch (00:00.00 on
January 1, 1970 Consolidated Universal Time). Thisfunctionisasynonymfor TO_TIMESTAM P(second,
integer-expression).

Example

Thefollowing exampleinserts arecord using FROM_UNIXTIME to convert the first argument, a POSI X
time value, into a VoltDB timestamp:

| NSERT | NTO event (e_when, e what, e where)
VALUES (FROM UNI XTI ME(?), 2, ?);

302

SQL Functions

HEXI)

HEX() — Returns the hexadecimal representation of aBIGINT value as a string.

Syntax

HEX(value)

Description

The HEX() function returns the hexadecimal representation of a BIGINT value as a string. The function
will return the shortest valid string representation, truncating any preceding zeros (except in the case of
the value zero, which is returned as the string "0").

Examples

The following example use the HEX and BITAND functions to return the hexadecimal representations of
two BIGINT values and their binary intersection.

$ sqglcmd

1> create table bits (a bigint, b bigint);
2> insert into bits val ues(555, 999);

3> select hex(a) as intl, hex(b) as int2,

4> hex(bitand(a, b)) as intersection frombits;
I NT1 | NT2 | NTERSECTI ON
22B 3E7 223

303

SQL Functions

HOUR()

HOUR() — Returns the hour of the day as an integer value.

Syntax

HOUR(timestamp-value)

Description

The HOUR() function returns an integer val ue between 0 and 23 representing the hour of theday in atime-
stamp value. This function produces the same result as using the HOUR keyword with the EXTRACT()
function.

Examples

Thefollowing example usesthe HOUR(), MINUTE(), and SECOND() functionsto return thetime portion
of aTIMESTAMP value in aformatted string.

SELECT event nane,
CAST(HOUR(starttine) AS VARCHAR) || ' hours, ' ||
CAST(M NUTE(starttime) AS VARCHAR) || m nutes, and ' ||
CAST(SECOND(starttine) AS VARCHAR) || ' seconds.'
AS tinestring FROM event;

304

SQL Functions

INET6_ATON()

INET6_ATON() — Converts an IPv6 internet address from a string to aVVARBINARY (16) value

Syntax

INET6_ATON({string})

Description

The INET6_ATON() function converts aVARCHAR value representing an | Pv6 internet address in hex-
idecimal notation to a 16-byte VARBINARY value in network byte order. The VARCHAR value must
consist of up to eight hexidecimal values separated by colons, such as "2600:141b:4:290::2add", or anull
value. Note that in IPv6 addresses, two colons together ("::") can and should be used in place of two or
more consecutive zero values in the sequence.

You can usethe INET6_NTOA () function to reverse the conversion or you can usethe INET_ATON and
INET_NTOA functions to perform similar conversions on | Pv4 addresses.

Example

Thefollowing example converts a string representation of an IPv6 internet addressto aVARBINARY (16)
value before storing it in the Address table

| NSERT | NTO Address (v6ip, owner, date) VALUES (I NET6_ATON(?),?,7?);

305

SQL Functions

INET6_NTOA()

INET6_NTOA() — Converts an IPv6 internet address from aVARBINARY (16) value to a string

Syntax

INET_NTOA({binary-value})

Description

The INET6_NTOA() function converts a 16-byte VARBINARY value representing an 1Pv6 internet ad-
dress to its corresponding string representation as a VARCHAR value. Or, if the argument is null, the
function returns anull VARCHAR as the result.

You can use the INET6_ATON() function to perform the reverse operation, from a VARCHAR |Pv6
address to a VARBINARY (16) value, or you can use the INET_ATON and INET_NTOA functions to
perform similar operations on |Pv4 addresses.

Examples

The following example converts a VARBINARY (16) representation of an IPv6 internet address into its
string representation for output.

SELECT | NET6_NTOA(Vv6i p), owner FROM Address
VWHERE owner =? ORDER BY v6i p;

306

SQL Functions

INET_ATON()

INET_ATON() — Converts an IPv4 internet address from a string to a numeric value

Syntax

INET_ATON({string})

Description

The INET_ATON() function converts a VARCHAR value representing an |Pv4 internet address in dot
notation to a single BIGINT value. The VARCHAR value must consist of four integer values separated
by dots, such as"104.112.152.119", or anull value. The string representations of the integer values must
be between 0 and 256 and cannot contain any spaces or leading zeros. For example, string values of "0"
and "12" arevalid but "012" is not.

You can usethe INET_NTOA() function to reverse the conversion or you can usethe INET6_ATON and
INET6_NTOA functionsto perform similar conversions on |Pv6 addresses.

Example

The following example converts a string representation of an internet addressto a BIGINT value before
storing it in the Address table

I NSERT | NTO Address (ip, owner, date) VALUES (I NET_ATON(?),?,7?);

307

SQL Functions

INET_NTOA()

INET_NTOA() — Converts an IPv4 internet address from a numeric value to a string

Syntax

INET_NTOA({numeric-value})

Description

The INET_NTOA() function converts a BIGINT value representing an |Pv4 internet address to its corre-
sponding dot representation asa VARCHAR value. Or, if the argument is null, the function returns anull
VARCHAR astheresult.

You can use the INET_ATON() function to perform the reverse operation, from aVARCHAR [Pv4 ad-
dressin dot notation to aBIGINT value, or you can use the INET6_ATON and INET6_NTOA functions
to perform similar operations on 1Pv6 addresses.

Examples

The following example converts a BIGINT representation of an internet address into its string represen-
tation for output.

SELECT | NET_NTQA(i p), owner FROM Address
WHERE owner =? ORDER BY i p;

308

SQL Functions

ISINVALIDREASON()

ISINVALIDREASON() — Explains why a GEOGRAPHY polygonisinvalid

Syntax

ISINVALIDREASON(polygon)

Description

ThelSINVALIDREASON() function returns atext string explaining if the specified GEOGRAPHY value
isvalid or not and, if not, why not. The argument to the ISINVALIDREASON() function must be a GE-
OGRAPHY value describing apolygon. Thisfunction isespecially useful when validating geospatial data.

Example

Thefollowing exampleusesthe | SVALID() and ISINVALIDREASON() functionsto report onany invalid
polygonsin the border column of the country table.

SELECT country_name, | SI NVALI DREASON(bor der)
FROM Country WHERE NOT | SVALI D(bor der);

309

SQL Functions

ISVALID()

ISVALID() — Determinesiif the specified GEOGRAPHY vaueisavalid polygon.

Syntax

ISVALID(polygon)

Description

The ISVALID() function returns true or false depending on whether the specified GEOGRAPHY value
isavalid polygon or not. Polygons must follow rules defined by the Open Geospatial Consortium (OGC)
standard for Well Known Text (WKT). Specifically:

» A GEOGRAPHY polygon consists of one or more rings, where aring is a closed boundary described
by a sequence of vertices and the lines, or edges, between those vertices.

» Thefirst ring must be the outer ring and the vertices must be listed in counter clockwise order.

¢ All subsequent ringsrepresent "holes' in the outer ring. Theinner rings must be wholly contained within
the outer ring and their vertices must be listed in clockwise order.

» Rings cannot intersect or have adjacent edges.

» Theedges of an individual ring cannot cross (for example, afigure"8" isinvalid).

 For eachring, the first vertex is listed twice: as both the first and last vertex.

If the specified GEOGRAPHY valueisavalid polygon, the function returns true. If not, it returns false.

To maximize performance, VoltDB does not validate the GEOGRAPHY values when they are inserted.
However, if you are not sure the WKT strings are valid, you can use ISVALID() to validate the resulting
GEOGRAPHY values before inserting them or after they are inserted into the database.

Examples

Thefirst example shows an UPDATE statement that uses the ISVALID() function to remove the contents
of aGEOGRAPHY column (by setting it to NULL), if the current contents are invalid.

UPDATE REG ON SET border = NULL WHERE NOT | SVALI D(bor der);

The next example shows part of astored procedure that uses ISVALID() to conditionally set the value of a
column, mustbevalid, that is defined as NOT NULL. By setting the column valid to NULL, the procedure
ensures that the INSERT statement fails and the stored procedure rolls back if the WKT border column
isinvalid.

public class ValidateBorders extends VoltProcedure {

public final SQStm insertrec = new SQ.St nt (
"I NSERT | NTO REG ON (nane, border, nustbevalid)" +
" SELECT nane, border," +
" CASE WHEN | SVALI D(border) THEN 1 ELSE NULL END' +
" FROM anot hertabl e WHERE nane = ? LIMT 1;"

310

http://www.opengeospatial.org

SQL Functions

)

public VoltTable[] run(String nane)
t hrows Vol t Abort Excepti on
{ voltQueueSQ(insertrec, nanme); return voltExecuteSQ.(); }

311

SQL Functions

IS_VALID_TIMESTAMP()

IS VALID_TIMESTAMP() — Identifies whether a given valueis avalid timestamp.

Syntax

IS_VALID_TIMESTAMP(value)

Description

ThelS VALID_TIMESTAMP() function returns either true or false depending on whether the specified
valueisavalid timestamp or not. The minimum valid timestamp equatesto the beginning of the year 1583.
That is, the first microsecond of that year. The maximum valid timestamp equates to the last microsecond
of the year 9999.

Because TIMESTAMP values are stored and can be entered as an eight byte integer, it is possible to
enter anumeric valuethat is not actually avalid timestamp. ThefunctionsMIN_VALID TIMESTAMP()
and MAX_VALID_TIMESTAMP() give you access to the valid minimum and maximum values. The
function 1S VALID_TIMESTAMP() comparesa TIMESTAMP value and returns true or false depending
on whether the value falls within the valid range or not.

Example

The following example uses the TIMESTAMP functions to return an informational string for any event
records that contain an invalid timestamp value.

SELECT ' Tl MESTAMP nust be between ' ||
CAST(M N_VALI D_TI MESTAMP() as VARCHAR) ||
"and ' ||
CAST(MAX_VALI D_TI MESTAMP() as VARCHAR),
log_tine,
| og_event
FROM events WHERE NOT | S VALID Tl MESTAMP(| og_ti ne);

312

SQL Functions

LATITUDE()

LATITUDE() — Returns the latitude of a GEOGRAPHY _POINT value.

Syntax

LATITUDE(point)

Description

The LATITUDE() function returns the latitude, as a floating point value, from a GEOGRAPHY _POINT
expression.

Example

The following example returns all ships that are located in the northern hemisphere by examining the
latitude of their current location.

SELECT shi p. nunber, ship.country FROM ship
VWHERE LATI TUDE(shi p. | ocation) > O;

313

SQL Functions

LEFT()

LEFT() — Returns a substring from the beginning of a string.

Syntax

LEFT(string-expression, numeric-expression)

Description

The LEFT() function returnsthefirst n charactersfrom astring expression, where nisthe second argument
to the function.

Example

The following example uses the LEFT function to return an abbreviation (the first three characters) of the
product category as part of the SELECT expression.

SELECT LEFT(category, 3), product_nane, price FROM product i st
ORDER BY cat egory, product_naneg;

314

SQL Functions

LN(), LOGI)

LN(), LOG() — Returns the natural logarithm of a numeric value.

Syntax

LN(numeric-value)

LOG(numeric-value)

Description

The LN() function returns the natural logarithm of the specified input value. The log is returned as a
floating point (FLOAT) value. LN() and LOG() are synonyms and perform the same function.

Example

The following example uses the LN() function to cal cul ate the rate of population growth from census data.

SELECT «city, current_popul ation,
((LN(current_popul ation) - LN(base_popul ation))
/ (current_year - base_year)
) * 100.0 AS percent_growth
FROM census ORDER BY city;

315

SQL Functions

LOG10()

LOG10() — Returns the base-10 logarithm of a numeric value.

Syntax

LOG10(numeric-value)

Description

The LOG10() function returns the base-10, or decimal, logarithm of the specified input value. Thelog is
returned as a floating point (FLOAT) value.

Example

The following example uses the LOG10() function to calculate the magnitude of difference between two
values.

SELECT LOGLO(YR2.profit/YRL.profit) AS Magnitude of growth
FROM account AS YR1, account AS YR2
VWHERE YRL. fiscal year=? AND YR2.fi scal year=7?;

316

SQL Functions

LONGITUDE()

LONGITUDE() — Returns the longitude of a GEOGRAPHY _POINT value.

Syntax

LONGITUDE(point)

Description

The LONGITUDE() function returns the longitude, as a floating point value, from a GEOGRA-
PHY_POINT expression.

Example

The following example returns al ships that are located in the western hemisphere by examining the
longitude of their current location.

SELECT shi p. nunber, ship.country FROM ship
WHERE LONG TUDE(ship.location) < 0
AND LONd TUDE(shi p. | ocation) > -180;

317

SQL Functions

LOWER()

LOWER() — Returns a string converted to all lowercase characters.

Syntax

LOWER(string-expression)

Description

The LOWER() function returns a copy of the input string converted to all lowercase characters.

Example

The following example uses the LOWER function to perform a case-insensitive search of aVARCHAR
field.

SELECT product _nane, product_id FROM product |i st
VWHERE LOWER(product _namne) LIKE 'acme%
ORDER BY product _nane, product id;

318

SQL Functions

MAKEVALIDPOLYGON()

MAKEVALIDPOLY GON() — Attempts to return a valid GEOGRAPHY value from a GEOGRAPHY
polygon

Syntax

MAKEVALIDPOLYGON(polygon)

Description

A common problem when generating polygons from Well Known Text (WKT) is listing the rings within
the polygon in the correct orientation. The vertices of the outer ring must be listed counter-clockwise,
while the vertices of the inner rings must be listed in a clockwise direction.

If you use the POLY GONFROMTEXT() function to create GEOGRAPHY vauesfrom WKT strings, the
rings can beindividually correct but, if they are not oriented properly, the resulting polygon will not match
your intended geographic region. As a consequence, using the polygon in VoltDB geospatial functions,
such as CONTAINS() and DISTANCE(), will produce unexpected answers. You can use ISVALID() to
test if the polygon is valid, but ISVALID() simply tests correctness, it does not fix simple errors, such
asring orientation.

MAKEVALIDPOLY GON() both tests the polygon and corrects any errorsin ring orientation. The argu-
ment to the MAKEVALIDPOLY GONY() function isa GEOGRAPHY object representing a polygon. The
output is another GEOGRAPHY object, identical to the input if the input isvalid, or with the orientation
of therings corrected if they arelisted in the wrong direction. If there are any other issueswith the polygon
that cannot be corrected (such as an incomplete ring or crossed lines), the function throws an error.

Example

Thefollowing example usesthe MAKEVALIDPOLY GON() function to correct any potential orientation
issues with the location column in the country table.

UPDATE country SET boundaries = MAKEVALI DPOLYGON(boundari es) ;

319

SQL Functions

MAX()

MAX() — Returns the maximum value from arange of column values.

Syntax

MAX(column-expression)

Description

The MAX() function returnsthe highest value from arange of column values. The range of values depends
on the constraints defined by the WHERE and GROUP BY clauses.

Example
The following example returns the highest price in the product list.
SELECT MAX(price) FROM product |ist;
The next example returns the highest price for each product category.

SELECT category, MAX(price) FROM product |i st
GROUP BY cat egory
ORDER BY cat egory;

320

SQL Functions

MAX_VALID_TIMESTAMP()

MAX_VALID_TIMESTAMP() — Returns the maximum valid timestamp.

Syntax

MAX_VALID_TIMESTAMP()

MAX_VALID_TIMESTAMP

Description

The MAX_VALID_TIMESTAMP() function returns the maximum valid value for the VoltDB TIMES-
TAMP datatype. The minimum valid timestamp equatesto the beginning of theyear 1583. That is, thefirst
microsecond of that year. The maximum valid timestamp equatesto the last microsecond of the year 9999.

Because TIMESTAMP vaues are stored and can be entered as an eight byte integer, it is possible to
enter anumeric valuethat isnot actually avalid timestamp. ThefunctionsMIN_VALID_TIMESTAMP()
and MAX_VALID_TIMESTAMP() give you access to the valid minimum and maximum values. The
function|S_VALID_TIMESTAMP() comparesa TIMESTAMP value and returnstrue or false depending
on whether the value falls within the valid range or not.

Since there are no arguments to the function, the parentheses following the function name are optional.

Example

The following example uses the TIMESTAMP functions to return an informational string for any event
records that contain an invalid timestamp value.

SELECT ' TI MESTAMP nust be between ' ||
CAST(M N_VALI D_TI MESTAMP() as VARCHAR) ||
"and ' ||
CAST(MAX_VALI D_TI MESTAMP() as VARCHAR),
log tine,
| og_event
FROM events WHERE NOT |'S VALI D TI MESTAMP(| og_ti me);

321

SQL Functions

MIGRATING()

MIGRATING() — Identifies table rows currently migrating to an export target.

Syntax

MIGRATING()

MIGRATING

Description

The MIGRATING function identifies rows of atable that are currently being migrated to an export target.

If atable declaration includesthe MIGRATE TO TARGET clause, when the migration istriggered (either
by the USING TTL clause or an explicit MIGRATE statement), the row's contents are queued for export
to the specified export target. Until the export is completed and acknowledged, the row remains in the
database but marked for deletion. Once the export is acknowledged, the row isdeleted. The MIGRATING
function lets you identify rows that have expired but not completed the export action.

The MIGRATING function can only be used in the WHERE clause under the following conditions:
» The selection expression selects from only one table.

* Thetablein question is declared with MIGRATE TO TARGET.

Examples

The following example selects records for a particular customer where the records are currently being
migrated to an export target.

SELECT * FROM Requests WHERE custoner=? AND M GRATI NG

The next example performs the opposite operation — selecting only those records that are not currently
being migrated.

SELECT * FROM Requests WHERE custoner=? AND NOT M GRATI NG

322

SQL Functions

MIN()

MIN() — Returns the minimum value from arange of column values.

Syntax

MIN(column-expression)

Description

The MIN() function returns the lowest value from arange of column values. The range of values depends
on the constraints defined by the WHERE and GROUP BY clauses.

Example

The following example returns the lowest price in the product list.
SELECT M N(price) FROM product |ist;
The next example returns the lowest price for each product category.

SELECT category, M N(price) FROM product |i st
GROUP BY cat egory
ORDER BY cat egory;

323

SQL Functions

MIN_VALID_TIMESTAMP()

MIN_VALID_TIMESTAMP() — Returns the minimum valid timestamp.

Syntax

MIN_VALID_TIMESTAMP()

MIN_VALID_TIMESTAMP

Description

The MIN_VALID_TIMESTAMP() function returns the minimum valid value for the VoltDB TIMES-
TAMP datatype. The minimum valid timestamp equatesto the beginning of theyear 1583. That is, thefirst
microsecond of that year. The maximum valid timestamp equatesto the last microsecond of the year 9999.

Because TIMESTAMP vaues are stored and can be entered as an eight byte integer, it is possible to
enter anumeric valuethat isnot actually avalid timestamp. ThefunctionsMIN_VALID_TIMESTAMP()
and MAX_VALID_TIMESTAMP() give you access to the valid minimum and maximum values. The
function|S_VALID_TIMESTAMP() comparesa TIMESTAMP value and returnstrue or false depending
on whether the value falls within the valid range or not.

Since there are no arguments to the function, the parentheses following the function name are optional.

Example

The following example uses the TIMESTAMP functions to return an informational string for any event
records that contain an invalid timestamp value.

SELECT ' TI MESTAMP nust be between ' ||
CAST(M N_VALI D_TI MESTAMP() as VARCHAR) ||
"and ' ||
CAST(MAX_VALI D_TI MESTAMP() as VARCHAR),
log tine,
| og_event
FROM events WHERE NOT |'S VALI D TI MESTAMP(| og_ti me);

324

SQL Functions

MINUTE()

MINUTE() — Returns the minute of the hour as an integer value.

Syntax

MINUTE(timestamp-value)

Description

The MINUTE() function returns an integer value between 0 and 59 representing the minute of the hour
in a timestamp value. This function produces the same result as using the MINUTE keyword with the
EXTRACT() function.

Examples

Thefollowing example usesthe HOUR(), MINUTE(), and SECOND() functionsto return thetime portion
of aTIMESTAMP value in aformatted string.

SELECT event nane,
CAST(HOUR(starttine) AS VARCHAR) || ' hours, ' ||
CAST(M NUTE(starttime) AS VARCHAR) || m nutes, and ' ||
CAST(SECOND(starttine) AS VARCHAR) || ' seconds.'
AS tinestring FROM event;

325

SQL Functions

MOD()

MOD() — Returns the result of a modulo operation.

Syntax

MOD(dividend, divisor)

Description

The MOD() function performs a modulo operation. That is, it divides one value, the dividend, by another
value, the divisor, and returns the remainder of the division operation as a new integer value. The sign of
the result, whether positive or negative, matches the sign of the first argument, the dividend.

Both the dividend and the divisor must either both be integer values or both be DECIMAL values and the
divisor must not be zero. Use of mixed input datatypes or a divisor of zero will result in a runtime error.
When using DECIMAL input values, the result isthe integer portion of the remainder. In other words, the
decimal result is truncated and returned as an integer using the following formula:

MOD(a,b) = a- INT(a/b) * b

Example

The following example uses the HOUR() and MOD() functions to return the hour of a timestamp in 12
hour format

SELECT event,
MOD(HOUR(event ti me) +11, 12)+1,
CASE WHEN HOUR(eventtine)/12 < 1
THEN ' AM
ELSE ' PM
END
FROM schedul e ORDER BY 3, 2;

326

SQL Functions

MONTHi()

MONTH() — Returns the month of the year as an integer value.

Syntax

MONTH(timestamp-value)

Description

The MONTHY() function returns an integer value between 1 and 12 representing the timestamp's month
of the year. The MONTH() function produces the same result as using the MONTH keyword with the
EXTRACT() function.

Examples

The following example uses the DAY (), MONTH(), and Y EAR() functions to return atimestamp column
as aformatted date string.

SELECT CAST(MONTH(starttine) AS VARCHAR) || |
CAST(DAY(starttine) AS VARCHAR) | | |
CAST(YEAR(starttinme) AS VARCHAR), title, description
FROM event ORDER BY starttine;

N
N

327

SQL Functions

NOW()

NOW() — Returns the current time as a timestamp value.

Syntax

NOW()

NOW

Description

The NOW() function returns the current time as a VoltDB timestamp. The value of the timestamp is
determined when the query or stored procedure is invoked. Since there are no arguments to the function,
the parentheses following the function name are optional.

Severa important aspects of how the NOW() function operates are:

The value returned is guaranteed to be identical for all partitions that execute the query.
Thevaluereturned ismeasured in millisecondsthen padded to create atimestamp valuein microseconds.

During command logging, the returned value is stored as part of the log, so when the command log is
replayed, the same value is used during the replay of the query.

Similarly, for database replication (DR) the value returned is passed and reused by the replica database
when replaying the query.

Y ou can specify NOW() asadefault valuein the CREATE TABLE statement when defining the schema
of aVoltDB database.

The NOW() function cannot be used in the CREATE INDEX or CREATE VIEW statements.

The NOW() and CURRENT_TIMESTAMP() functions are synonyms and perform an identical function.

Example

Thefollowing example uses NOW(0 in the WHERE clause to delete alert eventsthat occurred in the past:

DELETE FROM Al ert_event WHERE event timestanmp < NOW

328

SQL Functions

NUMINTERIORRINGS()

NUMINTERIORRINGS() — Returnsthe number of interior ringswithin apolygon GEOGRAPHY value.

Syntax

NUMINTERIORRINGS(polygon)

Description

The NUMINTERIORRINGS() function returns the number of interior rings within a polygon GEOGRA-
PHY value. Polygon GEOGRAPHY values can contain multiple polygons: one and only one outer polygon
and one or more optional inner polygons that define "holes" in the outer polygon. The NUMINTERIOR-
RINGS() function counts the number of inner polygons and returns the result as an integer value.

Example

The following example lists the countries of the world based on the number of interior polygons within
the outline GEOGRAPHY column.

SELECT NUM NTERI ORRI NGS(outline), name, capital FROM country
ORDER BY NUM NTERI ORRI NGS(out |i ne);

329

SQL Functions

NUMPOINTS()

NUMPOINTS() — Returns the number of points within a polygon GEOGRAPHY value.

Syntax

NUMPOINTS(polygon)

Description

The NUMPOINTS() function returns the total number of points that comprise a polygon GEOGRAPHY
value. The number of points includes the points from both the outer polygon and any inner polygons. It
also includes all of the points defining the polygon. Which means the starting point for each polygon is

counted twice — once as the starting point and once and the ending point — because thisis required in
the WKT representation of a polygon.

Example

The following example lists the countries of the world based on the number of pointsin their outlines.

SELECT NUMPO NTS(outline), name, capital FROM country
ORDER BY NUMPO NTS(outl i ne);

330

SQL Functions

OCTET_LENGTH()

OCTET_LENGTH() — Returns the number of bytesin a string.

Syntax

OCTET_LENGTH(string-expression)

Description
The OCTET_LENGTH() function returns the number of bytes of datain a string.

Note that the number of bytes required to store a string and the actual characters that make up the string
can differ. To count the number of charactersin the string use the CHAR_LENGTH() function.

Example

The following example returns the string in the column LastName as well as the number of characters and
length in bytes of that string.

SELECT Last Name, CHAR LENGTH(Last Nane), OCTET_LENGTH(Last Nane)
FROM Cust omer s ORDER BY Last Nane, First Nane;

331

SQL Functions

OVERLAY()

OVERLAY () — Returnsastring overwriting aportion of the original string with the specified replacement.

Syntax

OVERLAY(string PLACING replacement-string FROM position [FOR length])

Description

The OVERLAY/() function overwrites a portion of the origina string with the replacement string and
returns the result. The replacement starts at the specified position in the original string and either replaces
the characters one-for-one for the length of the replacement string or, if aFOR length is specified, replaces
the specified number of characters.

For example, if the original stringis 12 charactersin length, the replacement string is 3 charactersin length
and starts at position 4, and the FOR clauseis left off, the resulting string consists of the first 3 characters
of the origina string, the replacement string, and the last 6 characters of the original string:

OVERLAY (‘abcdefghijkl’ PLACING 'XYZ' FROM 4) = abcXY ZghijKI'

If the FOR clause is included specifying that the replacement string replaces 6 characters, the result isthe
first 3 charactersof theoriginal string, the replacement string, and thelast 3 charactersof theoriginal string:

OVERLAY (‘abcdefghijkl' PLACING 'XYZ' FROM 4 FOR 6) = 'abcX Y ZjkI'

If the combination of the starting position and the replacement length exceed the length of the original
string, the resulting output is extended as necessary to include all of the replacement string:

OVERLAY (‘abcdef' PLACING 'XYZ' FROM 5) = "abcdXY Z'

If the starting position is greater than the length of the original string, the replacement string is appended
to the origina string:

OVERLAY (‘abcdef' PLACING 'XYZ' FROM 20) = 'abcdefXYZ'

Similarly, if the combination of the starting position and the FOR length is greater than the length of the
original string, the replacement string simply overwrites the remainder of the original string:

OVERLAY (‘abcdef' PLACING 'XYZ' FROM 2 FOR 20) = 'aXY Z'

The starting position and length must be specified as non-negative integers. The starting position must be
greater than zero and the length can be zero or greater.

Example

The following example uses the OVERLAY function to redact part of a name.

SELECT OVERLAY(fullname PLACING '****' FROM 2
FOR CHAR_LENGTH(f ul I nane) - 2
) FROM users ORDER BY ful |l nane;

332

SQL Functions

PI()

PI() — Returns the value of the mathematical constant pi (;) asaFLOAT value.

Syntax

PI()
Pl

Description
The PI() function returnsthe value of the mathematical constant pi (;;) asadoublefloating point (FLOAT)

value. Since there are no arguments to the function, the parentheses following the function name are op-
tional.

Example
The following example uses the PI() function to return the surface area of a sphere.

SELECT radi us, 4*Pl*PONER(radi us, 2) FROM Sphere ORDER BY radi us;

333

SQL Functions

POINTFROMTEXT()

POINTFROMTEXT() — Returns a GEOGRAPHY _POINT value from the corresponding WKT

Syntax

POINTFROMTEXT(string)

Description

The POINTFROMTEXT() function generates a GEOGRAPHY _POINT value from a string containing
a well known text (WKT) representation of a geographic point. The WKT string must be in the form
'POINT(longitude latitude)' where longitude and latitude are floating point values.

if the argument is not avalid WKT representation of a point, the function generates an error.

Example

The following example uses the POINTFROMTEXT() function to update a record containing a GEOG-
RAPHY _POINT column using two floating point input values (representing longitude and latitude).

UPDATE user SET | ocation =
PO NTFROMTEXT(
CONCAT("' PO NT(', CAST(? AS VARCHAR),' ', CAST(? AS VARCHAR),')")

)
WHERE id = ?;

334

SQL Functions

POLYGONFROMTEXT()

POLY GONFROMTEXT() — Returns a GEOGRAPHY value from the corresponding WKT

Syntax

POLYGONFROMTEXT(text)

Description

The POLY GONFROMTEXT() function generatesa GEOGRAPHY value from astring containing awell
known text (WKT) representation of ageographic polygon. The WKT string must be avalid representation
of apolygon with only one outer polygon and, optionally, one or more inner polygons.

if the argument is not avalid WKT representation of a polygon, the function generates an error.

Example

The following example uses the POLY GONFROMTEXT () function to insert a record containing a GE-
OGRAPHY column using atext input value containing the WKT representation of a geographic polygon.

INSERT INTO city (nane, state, boundary) VALUES(?, ?, POLYGONFROMIEXT(?));

335

SQL Functions

POSITION()

POSITION() — Returns the starting position of a substring in another string.

Syntax

POSITION(substring-expression IN string-expression)

Description

The POSITION() function returns the starting position of a substring in another string. The position, if a
match isfound, is an integer number between one and the length of the string being searched. If no match
isfound, the function returns zero.

Example

Thefollowing example selects all books where the title contains the word "poodl€" and returns the book's
title and the position of the substring "poodl€e” in the title.

SELECT Title, POSITION(' poodle' IN Title) FROM Books
WHERE Title LIKE ' %oodl e% ORDER BY Title;

336

SQL Functions

POWER()

POWER() — Returns the value of the first argument raised to the power of the second argument.

Syntax

POWER(numeric-expression, humeric-expression)

Description

The POWER() function takes two numeric expressions and returns the val ue of thefirst raised to the power
of the second. In other words, POWER(x,y) is the equivalent of the mathematical expression x”.

Example
The following example uses the POWER function to return the surface area and volume of a cube.

SELECT length, 6 * PONER(| ength, 2) AS surface,
POAER(| engt h, 3) AS vol une FROM Cube
ORDER BY | engt h;

337

SQL Functions

QUARTER()

QUARTER() — Returns the quarter of the year as an integer value

Syntax

QUARTER(timestamp-value)

Description

The QUARTER() function returns an integer value between 1 and 4 representing the quarter of the year
ina TIMESTAMP value. The QUARTER() function produces the same result as using the QUARTER
keyword with the EXTRACT() function.

Examples

Thefollowing example uses the QUARTER() and Y EAR() functionsto group and sort records containing
atimestamp.

SELECT year(starttinme), quarter(starttine),
count (*) as eventsperquarter
FROM event
GROUP BY year(starttine), quarter(starttine)
ORDER BY year(starttine), quarter(starttine);

338

SQL Functions

RADIANS()

RADIANS() — Converts an angle in degrees to radians

Syntax

RADIANS(angle-in-degrees)

Description

The RADIANS() function converts a floating-point value representing an angle measured in degrees to
the equivalent angle measured in radians.

Example

Thefollowing INSERT statement converts input entered in degrees to radians before inserting the record
into the database.

I NSERT | NTO tests (test _nunber, distance, angle)
VALUES (?, ?, RADI ANS(?));

339

SQL Functions

REGEXP_POSITION()

REGEXP_POSITION() — Returns the starting position of aregular expression within atext string.

Syntax

REGEXP_POSITION(string, pattern [, flag])

Description

The REGEXP_POSITION() function returns the starting position of the first instance of the specified
regular expression within atext string. The position value starts at one (1) for thefirst position in the string
and the functions returns zero (0) if the regular expression is not found.

Thefirst argument to the function isthe VARCHAR character string to be searched. The second argument
isthe regular expression pattern to look for. The third argument is an optional flag that specifies whether
the search is case sensitive or not. The flag must be single character VARCHAR with one of the following

values:
Flag Description
c Case-sensitive matching (default)

i Case-insensitive matching

There are severa different formats for regular expressions. The REGEXP_POSITION() uses the revised
Perl compatible regular expression (PCRE2) syntax, which is described in detail on the PCRE website.

Examples

Thefollowing example uses the REGEXP_POSITION() to filter all records where the column description
matches a specific pattern. The examples uses the optional flag argument to make the pattern match text
regardless of case.

SELECT incident, description FROM securitylLog
WHERE REGEXP_PQCSI TI ON(descri pti on,
"host:\s*10\.186\.[0-9]+\.[0-9]+",
"i')y >0
ORDER BY i nci dent;

http://www.pcre.org/current/doc/html/pcre2syntax.html

SQL Functions

REPEAT()

REPEAT() — Returns a string composed of a substring repeated the specified number of times.

Syntax

REPEAT(string-expression, numeric-expression)

Description

The REPEAT() function returns a string composed of the substring string-expression repeated n times
where n is defined by the second argument to the function.

Example

Thefollowing example usesthe REPEAT and the CHAR_LENGTH functionsto replace acolumn's actual
contents with a mask composed of the letter "X" the same length as the origina column value.

SELECT usernanme, REPEAT(' X', CHAR LENGTH(password)) as Password
FROM account s ORDER BY user nane;

341

SQL Functions

REPLACE()

REPLACE() — Returns a string replacing the specified substring of the original string with new text.

Syntax

REPLACE(string, substring, replacement-string)

Description

The REPLACE() function returns a copy of the first argument, replacing all instances of the substring
identified by the second argument with the third argument. If the substring is not found, no changes are
made and a copy of the original string is returned.

Example

The following example uses the REPLACE function to update the Address column, replacing the string
"Ceylon" with "Sri Lanka".

UPDATE Custoners SET address=REPLACE(address,' Ceylon', 'Sri Lanka')
WHERE address LIKE ' %Ceyl on% ;

342

SQL Functions

RIGHTY()

RIGHT() — Returns a substring from the end of a string.

Syntax

RIGHT(string-expression, humeric-expression)

Description

TheRIGHT() function returnsthelast n charactersfrom astring expression, where nisthe second argument
to the function.

Example

The following example uses the LEFT() and RIGHT() functions to return an abbreviated summary of the
Description column, ensuring the result fits within 20 characters.

SELECT product _nane,
LEFT(description,10) || '..." || R GHT(description,7)
FROM product |ist ORDER BY product nane;

SQL Functions

ROUND()

ROUND() — Returns a numeric value rounded to the specified decimal place

Syntax

ROUND(numeric-value, rounding-position)

Description

The ROUND() functions returns the input value rounded to the specific decimal place. The result is re-
turned asa DECIMAL value.

The numeric-value argument must be a FLOAT or DECIMAL vaue. The rounding-position argument
must be an integer between 12 and -25 and indicates the place to which the numeric value should be
rounded. Positive valuesindicateadecimal place; for example 2 meansround to 2 decimal places. Negative
values indicate rounding to a whole number position; for example, -2 indicates the number should be
rounded to the nearest hundred. A zero indicates that the value should be rounded to the nearest whole
number.

Rounding is performed using "banker's rounding”, in that any fractional half isrounded to the nearest even
number. So, for example, if the rounding-position is 2, the value 22.225 isrounded to 22.22, but the value
33.335 isrounded to 33.34. The following list demonstrates some sample results.

ROUND (.123456789, 4) = 0.123500000000

ROUND(123456789.123, 2) = 123456789.120000000000
ROUND(123456789.123, 0) = 123456789.000000000000
ROUND(123456789.123, -2) = 123456800.000000000000
ROUND(123456789.123, -6) = 123000000.000000000000
ROUND(123456789.123, 6) = 123456789.123000000000

Examples

The following example uses the ROUND() function to return a DECIMAL value, rounding the value of
the budget column to two decimal places.

SELECT country, ROUND(budget, 2) AS annual _budget
FROM wor | d_economy ORDER BY country;

SQL Functions

SEC()

SEC() — Returns the secant of an angle specified in radians.

Syntax

SEC({numeric-expression})

Description

The SEC() function returns the secant of a specified angleasaFLOAT value. The angle must be specified
in radians as a numeric expression.

Examples

The following example returns the secant, cosecant, and cotangent of angles from 0 to 90 degrees (where
the angleis specified in radians).

SELECT SEC(radi ans), CSC(radians), COT(radi ans)
FROM tri angl es WHERE radi ans >= 0 AND radi ans <= Pl ()/2;

SQL Functions

SECOND()

SECOND() — Returns the seconds of the minute as a floating point value.

Syntax

SECOND(timestamp-value)

Description

The SECOND() function returns an floating point value between 0 and 60 representing the whole and
fractional part of the number of seconds in the minute of a timestamp value. This function produces the
same result as using the SECOND keyword with the EXTRACT() function.

Examples

Thefollowing example usesthe HOUR(), MINUTE(), and SECOND() functionsto return thetime portion
of aTIMESTAMP value in aformatted string.

SELECT event nane,
CAST(HOUR(starttine) AS VARCHAR) || ' hours, ' ||
CAST(M NUTE(starttime) AS VARCHAR) || m nutes, and ' ||
CAST(SECOND(starttine) AS VARCHAR) || ' seconds.'
AS tinestring FROM event;

346

SQL Functions

SET_FIELD()

SET_FIELD() — Returns a copy of a JSON-encoded string, replacing the specified field value.

Syntax

SET_FIELD(column, field-name-path, string-value)

Description

The SET_FIELD() function finds the specified field within a JSON-encoded string and returns a copy of
the string with the new value replacing that field's previous value. Note that the SET_FIELD() function
returns an atered copy of the JSON-encoded string — it does not change any column valuesin place. So
to change existing database columns, you must use SET_FIELD() with an UPDATE statement.

For example, assume the Product table contains a VARCHAR column Productinfo which for one row
contains the following JSON string:

{"product”:"Acne wi dget",
"availability":"plenty",
"info": { "description": "A fancy widget.",
"sku": " ABCXYZ",
"part _nunber": 1234},
"war ehouse": [{"location":"Dallas","units": 25},
{"location":"Chicago", "units": 14},
{"location":"Troy","units":67}]

}
It is possible to change the value of the avai | abi | i ty field using the SET_FIELD function, like so:

UPDATE Product SET Productinfo =
SET _FIELD(Productinfo, availability',""limted"")
WHERE FI ELD(Pr oducti nfo, ' product’') = 'Acne w dget';

The second argument tothe SET_FIEL D() function can beasimplefield name, asin the previous example,
In which case the function replaces the value of the top field matching the specified name. Alternately, you
can specify a path representing a hierarchy of names separated by periods. For example, you can replace
the SKU number by specifying "info.sku" as the second argument, or you can replace the number of units
in the second warehouse by specifying the field path "warehouse[1].units'. For example, the following
UPDATE statement does both by nesting SET_FIELD commands:

UPDATE Product SET Productinfo =

SET_FI ELIX
SET _FI ELD(Productinfo,'info.sku','"DEFGH ""),
"war ehouse[1] .units', '128")

WHERE FI ELD(Pr oducti nfo, ' product') = 'Acne w dget';

Note that the third argument isthe string value that will be inserted into the JSON-encoded string. To insert
anumeric value, you enclose the value in single quotation marks, asin the preceding example where '128'
isused asthe replacement valuefor thewar ehouse[1] . uni t s field. Toinsert astring value, you must
include the string quotation marks within the replacement string itself. For example, the preceding code
uses the SQL string constant ""'DEFGHI"" to specify the replacement value for the text field i nf 0. sku.

347

SQL Functions

Finally, thereplacement string value can be any valid JSON value, including another JSON-encoded object
or array. It does not have to be a scalar string or numeric value.

Example

Thefollowing example usesthe SET_FIEL D() function to add anew array element to the warehouse field.

UPDATE Product SET Productinfo =
SET_FI ELD(Product i nf o, ' war ehouse',
"[{"l ocation":"Dallas","units": 25},
{"1 ocation":"Chicago", "units": 14},
{"location":"Troy","units": 67},
{"1 ocation":"Phoeni x","units":23}]")
WHERE FI ELD(Pr oducti nfo, ' product') = 'Acnme w dget';

SQL Functions

SIGN()

SIGN() — Indicates whether a numeric valueis positive, negative, or zero.

Syntax

SIGN(numeric-expression)

Description

The SIGN() function evaluates anumeric expression and returns +1 if it ispositive, -1if it is negative, and
Oor NULL if it iszero or null, respectively. For example:

SIG\(3.1415) =1

SIGN(5 - 12) = -1

SIGN0) =0
Example

The following example uses the SIGN() and DECODE() functions to select a graphical representation of
the difference between two fields. In this case, up and down arrows based on the difference between the
purchase price and current price of stocks.

SELECT nane, current_price,
DECODE(SI GN(Current _price - Purchase_price),

+1, CHAR(11014), -- Up arrow
-1, CHAR(11015), -- Down arrow
0, CHAR(8212)) -- Mdash
FROM St ocks

ORDER BY name ASC,

349

SQL Functions

SIN()

SIN() — Returns the sine of an angle specified in radians.

Syntax

SIN({numeric-expression})

Description

The SIN() function returns the sine of a specified angle as a FLOAT value. The angle must be specified
in radians as a numeric expression.

Example

The following example returns the sine, cosine, and tangent of angles from 0 to 90 degrees (where the
angleis specified in radians).

SELECT SI N(radi ans), COS(radians), TAN(radi ans)
FROM tri angl es WHERE radi ans >= 0 AND radi ans <= Pl ()/2;

350

SQL Functions

SINCE_EPOCH()

SINCE_EPOCH() — Converts a VoltDB timestamp to an integer number of time units since the POSIX
epoch.

Syntax

SINCE_EPOCH(time-unit, timestamp-expression)

Description

The SINCE_EPOCH() function converts aVoltDB timestamp into an 64-bit integer value (BIGINT) rep-
resenting the equivalent number since the POSIX epoch in a specified time unit. POSIX time is usually
represented as the number of seconds since the epoch; that is, since 00:00.00 on January 1, 1970 Consoli-
dated Universal Time (UTC). So thefunction SINCE_EPOCH(SECONDS, timestamp) returnsthe POSI X
time equivalent for the value of timestamp. However, you can also request the number of milliseconds or
microseconds since the epoch. The valid keywords for specifying the time units are:

» SECOND — Seconds since the epoch
* MILLISECOND, MILLIS— Milliseconds since the epoch
* MICROSECOND, MICROS — Microseconds since the epoch

You cannot perform arithmetic on timestamps directly. So SINCE_EPOCH() is useful for performing
calculations on timestamp valuesin SQL expressions. For exampl e, thefollowing SQL statement looksfor
eventsthat arelessthan aminutein length, based on thetimestamp columns STARTTIME and ENDTIME:

SELECT * FROM Event
WHERE (SI NCE_EPOCH(Second, endti nme)
- SI NCE_EPOCH(Second, starttinme)) < 60;

The TO_TIMESTAMP() function performs the inverse of SINCE_EPOCH(), by converting an integer
value to a VoltDB timestamp based on the specified time units.

Example

The following example returns atimestamp column as the equivalent POSIX time value.

SELECT event _id, event_nane,
SI NCE_EPCCH(Second, starttinme) as posix_tinme FROM Event
ORDER BY event _i d;

The next example uses SINCE_EPOCH() to return the length of an event, in microseconds, by calculating
the difference between two timestamp columns.

SELECT event _id, event_type,
SI NCE_EPCCH(M cr osecond, endtine)
- SI NCE_EPOCH(M crosecond, starttine) AS delta
FROM Event ORDER BY event i d;

351

SQL Functions

SPACE()

SPACE() — Returns a string of spaces of the specified length.

Syntax

SPACE(humeric-expression)

Description

The SPACE() function returns a string composed of n spaces where the string length n is specified by the
function's argument. SPACE(n) isa synonym for REPEAT(* ', n).

Example

The following example uses the SPACE and CHAR_LENGTH functions to ensure the result is a fixed
length, padded with blank spaces.

SELECT product_nane || SPACE(80 - CHAR LENGTH(product nane))
FROM product |ist ORDER BY product nane;

352

SQL Functions

SQRT()

SQRT() — Returns the square root of a numeric expression.

Syntax

SQRT(numeric-expression)

Description

The SQRT() function returns the square root of the specified numeric expression.

Example

Thefollowing example uses the SQRT and POWER functions to return the distance of agraph point from
the origin.

SELECT | ocation, X, v,
SQRT(POVER(x, 2) + PONER(Y, 2)) AS distance
FROM poi nts ORDER BY | ocati on;

353

SQL Functions

STR)

STR() — Returns the string representation of a numeric value.

Syntax

STR(numeric-value [string-length [decimal-precision]])

Description

The STR() function returns a string representation of the numeric input. The first argument can be either
aFLOAT or DECIMAL value.

The optional second argument specifies the maximum size of the output string and must be an integer be-
tween 0 and 38. If the maximum string length islessthan the number of charactersrequired to represent the
numeric value, the resulting string isfilled with asterisk (*) characters. The default length is 10 characters.

The optional third argument specifies the number of decimal placesincluded in the output, which is spec-
ified as an integer between 0 and 12. If the numeric value requires more decimal places than specified, the
value is rounded using "banker's rounding”. (See the description of the FORMAT_CURRENCY () func-
tion for adescription of banker's rounding.) If the decimal precision is not specified, the value is rounded
and only the integer portion is returned.

Example

The following example uses STR() to return a percentage, rounded to two decimal places and including
the percent sign.

SELECT STR(100.0 * c.population / total _pop) || '%
FROM countries AS c,
(SELECT SUM popul ation) AS total pop FROM countries) as w
WHERE c. nanme=?;

354

SQL Functions

SUBSTRING()

SUBSTRING() — Returns the specified portion of a string expression.

Syntax

SUBSTRING(string-expression FROM position [FOR length])

SUBSTRING(string-expression, position [, length])

Description

The SUBSTRING() function returns a specified portion of the string expression, where position specifies
the starting position of the substring (starting at position 1) and length specifies the maximum length of
the substring. The length of the returned substring is the lower of the remaining characters in the string
expression or the value specified by length.

For example, if the string expression is"ABCDEF" and position is specified as 3, the substring startswith
the character "C". If length is also specified as 3, the return value is "CDE". If, however, the length is
specified as 5, only the remaining four characters "CDEF" are returned.

If length is not specified, the remainder of the string, starting from the specified by position, is returned.
For example, SUBSTRING("ABCDEF",3) and SUBSTRING("ABCDEF"3,4) return the same value.

Example

The following example uses the SUBSTRING function to return the month of the year, whichisaVAR-
CHAR column, as athree |etter abbreviation.

SELECT event, SUBSTRI NG nonth, 1, 3), day, year FROM cal endar
ORDER BY event ASC;

355

SQL Functions

SUM()

SUM() — Returns the sum of arange of numeric column values.

Syntax

SUM(column-expression)

Description

The SUM() function returnsthe sum of arange of numeric column values. The values being added together
depend on the constraints defined by the WHERE and GROUP BY clauses.

Example

Thefollowing example uses the SUM () function to determine how much inventory existsfor each product
type in the catalog.

SELECT category, SUMquantity) AS inventory FROM product |i st
GROUP BY cat egory ORDER BY category;

356

SQL Functions

TAN()

TAN() — Returns the tangent of an angle specified in radians.

Syntax

TAN({numeric-expression})

Description

The TAN() function returnsthe tangent of aspecified angleasaFLOAT value. The angle must be specified
in radians as a numeric expression.

Example

The following example returns the sine, cosine, and tangent of angles from 0 to 90 degrees (where the
angleis specified in radians).

SELECT SI N(radi ans), COS(radians), TAN(radi ans)
FROM tri angl es WHERE radi ans >= 0 AND radi ans <= Pl ()/2;

357

SQL Functions

TIME_WINDOW()

TIME_WINDOW() — Returns the time "window" into which the specified timestamp value falls.

Syntax

TIME_WINDOW(time-unit, window-length, timestamp [, START|END])

Description

The TIME_WINDOW() function defines time "dlices" or "windows" of the requested size and returns a
valueidentifying which window the specified timestamp argument fallsin. This can help you group events
or records by time. The size of the window is defined by the first two arguments: the unit of measurement
(second, minute, hour, and so on) and the length, which must be an integer. The function returnsa TIMES-
TAMP value identifying the beginning or end of the window, depending on the optional fourth argument.
(The default is START, the beginning of the window.)

The valid time unit keywords are;

« MILLISECOND (or MILLIS)
« SECOND

« MINUTE

« HOUR

« DAY

« WEEK

« MONTH

« QUARTER

.« YEAR

The TIME_WINDOW function is particularly useful when aggregating data into views based on time.
For example, the following view definition uses the TIME_WINDOW() function to count the number of
logins grouped into half hour (30 minute) segments:

CREATE VI EW active_users (users, w ndow)
AS SELECT count(*), TIME_W NDON M NUTE, 30, | ogin)
FROM user _| ogi n
GROUP BY TI ME_W NDOW M NUTE, 30, 1ogin);

The time windows themselves are all relative to the standard UNIX start time, midnight January 1, 1970,
with the exception of weeks. Weeks are assumed to begin on Monday so any time windows measured in
weeks are relative to midnight Monday, December 29, 1969.

Example

The following example uses the TIME_WINDOW() function to group temperature measurements into 2
hour windows, recording the minimum, maximum, and averagetemperature for each window and location.

CREATE VIEWtenp view (|l ocation, wi ndow, nmnimm maxi num average)
AS SELECT | ocation, TIME WNDONHOUR, 2, neasure_tinestanp),
M N(tenperature), MAX(tenperature), AVGEtenperature)
FROM t enp_record
GROUP BY | ocation, TIME WNDONHOUR, 2, neasure_timestanp)

358

SQL Functions

TO_TIMESTAMP()

TO_TIMESTAMP() — Convertsan integer valueto aVoltDB timestamp based on the time unit specified.

Syntax

TO_TIMESTAMP(time-unit, integer-expression)

Description

The TO_TIMESTAMP() function converts an integer expression to aVoltDB timestamp, interpreting the
integer value as the number of specified time units since the POSIX epoch. POSIX timeis usualy repre-
sented as the number of seconds since the epoch; that is, since 00:00.00 on January 1, 1970 Consolidat-
ed Universal Time (UTC). So the function TO_TIMESTAMP(Second, timeinsecs) returns the VoltDB
TIMESTAMP equivalent of timeinsecs asa POSIX time value. However, you can a so request the integer
value be interpreted as milliseconds or microseconds since the epoch. The valid keywords for specifying
the time units are;

» SECOND — Seconds since the epoch
* MILLISECOND. MILLIS— Milliseconds since the epoch
* MICROSECOND, MICROS — Microseconds since the epoch

Y ou cannot perform arithmetic on timestampsdirectly. SoTO_TIMESTAMP() isuseful for converting the
results of arithmetic expressionsto VoltDB TIMESTAMP values. For example, the following SQL state-
ment uses TO_TIMESTAMP to convert a POSIX time value before inserting it into a VoltDB TIMES-
TAMP column:

I NSERT | NTO Event
(event _id, event _nane, event type, starttinme)
VALUES(?, ?, ?, TO_TI MESTAMP(Second, ?));

The SINCE_EPOCH() function performs the inverse of TO_TIMESTAMP(), by converting a VoltDB
TIMESTAMP to an integer value based on the specified time units.

Example

Thefollowing example updatesa TIMESTAMP column, adding one hour (in seconds) to the current value
using SINCE_EPOCH() and TO_TIMESTAMP() to perform the conversion and arithmetic:

UPDATE Cont est
SET deadl i ne=TO_TI MESTAMP(Second, SI NCE_EPOCH(Second, deadl i ne) + 3600)
WHERE expi red=1;

359

SQL Functions

TRIM()

TRIM() — Returns a string with leading and/or training spaces removed.

Syntax

TRIM([[LEADING | TRAILING | BOTH] [character] FROM] string-expression)

Description

The TRIM() function returns a string with leading and/or trailing spaces removed. By default, the TRIM
function removes spaces from both the beginning and end of the string. If you specify the LEADING or
TRAILING clause, spaces are removed from either the beginning or end of the string only.

Y ou can also specify an aternate character to remove. By default only spaces (UTF-8 character code 32)
are removed. If you specify a different character, only that character will be removed. For example, the
following INSERT statement uses the TRIM function to remove any TAB characters from the beginning
of the string input for the ADDRESS column:

I NSERT | NTO Custoners (first, |last, address)
VALUES(?, 2,
TRIM LEADI NG CHAR(9) FROM CAST(? AS VARCHAR))
);

Example

Thefollowing example uses TRIM() to remove extraneous leading and trailing spaces from the output for
three VARCHAR columns:

SELECT TRIMfirst), TRIMIlast), TRI Maddress) FROM Custoner
ORDER BY | ast, first;

360

SQL Functions

TRUNCATE()

TRUNCATE() — Truncates a VoltDB timestamp to the specified time unit.

Syntax

TRUNCATE(time-unit, timestamp)

Description

The TRUNCATE() function truncates a timestamp value to the specified time unit. For example, if the
timestamp column Apollo has the value July 20, 1969 4:17:40 P.M, then using the function TRUN-
CATE(hour,apollo) would return the value July 20, 1969 4:00:00 P.M. Allowabletime unitsfor truncation
include the following:

- YEAR

« QUARTER

« MONTH

. DAY

« HOUR

« MINUTE

« SECOND

« MILLISECOND, MILLIS

Example

The following example uses the TRUNCATE function to find records where the timestamp column, inci-
dent, fallswithin a specific day, entered asa POSIX time value.

SELECT incident, description FROM securityl og
VWHERE TRUNCATE(DAY, incident) = TRUNCATE(DAY, FROM UNI XTI ME(?))
ORDER BY incident, description;

361

SQL Functions

UPPER()

UPPER() — Returns a string converted to all uppercase characters.

Syntax

UPPER(string-expression)

Description

The UPPER() function returns a copy of the input string converted to all uppercase characters.

Example

The following example uses the UPPER function to return results al phabetically regardless of case.

SELECT UPPER(product nane), product_id FROM product i st
ORDER BY UPPER(product nane) ;

362

SQL Functions

VALIDPOLYGONFROMTEXT()

VALIDPOLY GONFROMTEXT() — Returns a validated GEOGRAPHY value from the corresponding
WKT

Syntax

VALIDPOLYGONFROMTEXT(text)

Description

TheVALIDPOLY GONFROMTEXT() function generatesavalid GEOGRAPHY valuefrom astring con-
taining awell known text (WKT) representation of a geographic polygon. If the GEOGRAPHY valuere-
sulting from the WKT string cannot be made into a valid representation of a polygon, the function returns
an error. The error message includes an explanation of why the WKT is not valid. If the polygon is valid
except the rings are drawn in the wrong direction (that is, the outer ring is clockwise or the inner rings
are counterclockwise), the VALIDPOLY GONFROMTEXT() function will correct the rings and generate
avalid polygon.

The difference between the POLY GONFROMTEXT() function and the VALIDPOLY GONFROM-
TEXT() function is that the VALIDPOLY GONFROMTEXT() verifies that the resulting polygon meets
all of the requirements for use by VoltDB. If a valid polygon cannot be generated, the VALIDPOLY -
GONFROMTEXT() function returnsan error. The POLY GONFROM TEX T () function, on the other hand,
simply constructs a GEOGRAPHY value without validating all of the requirements of aVoltDB polygon
and may need separate validation (using the ISVALID() or MAKEVALIDPOLY GON() function) before
it can be used effectively with other geospatial functions. See the description of the ISVALID() function
for a description of the requirements for avalid polygon.

Example

The following example uses the VALIDPOLY GONFROMTEXT() function to insert arecord containing
a GEOGRAPHY column using a text input value containing the WKT representation of a geographic
polygon. Note that if

INSERT INTO city (nane, state, boundary)
VALUES(?, ?, VALI DPOLYGONFROMITEXT(?));

363

SQL Functions

WEEK(), WEEKOFYEAR()

WEEK(), WEEKOFY EAR() — Returns the week of the year as an integer value.

Syntax

WEEK(timestamp-value)

WEEKOFYEAR(timestamp-value)

Description
The WEEK () and WEEKOFY EAR() functions are synonyms and return an integer value between 1 and

52 representing the timestamp's week of the year. These functions produce the same result as using the
WEEK_OF_YEAR keyword with the EXTRACT() fucntion.

Examples

The following example uses the WEEK () function to group and sort records containing a timestamp.

SELECT week(starttime), count(*) as eventsperweek
FROM event GROUP BY week(starttine) ORDER BY week(starttinmne);

364

SQL Functions

WEEKDAY()

WEEKDAY () — Returns the day of the week as an integer between 0 and 6.

Syntax

WEEKDAY (timestamp-value)

Description

The WEEKDAY () function returns an integer value between 0 and 6 representing the day of theweek ina
timestamp value. For the WEEK DAY () function, the week starts (0) on Monday and ends (6) on Sunday.

Thisfunction isprovided for compatibility with MySQL and produces the same result as using the WEEK -
DAY keyword with the EXTRACT() function.

Examples

The following example uses WEEK DAY () and the DECODE() function to return astring val ue represent-
ing the day of the week for the specified TIMESTAMP value.

SELECT eventti ne,
DECODE(WEEKDAY(event ti me),
' Monday'
' Tuesday' ,
' Wednesday'
" Thur sday' ,
" Friday',
' Sat ur day'
, ''Sunday') AS eventday
FROM event ORDER BY eventti ne;

ook wNEO

365

SQL Functions

YEAR()

Y EAR() — Returns the year as an integer value.

Syntax

YEAR(timestamp-value)

Description

TheY EAR() function returnsan integer value representing theyear of aTIMESTAMPvalue. The Y EAR()
function produces the same result as using the Y EAR keyword with the EXTRACT() function.

Examples

The following example uses the DAY (), MONTH(), and Y EAR() functions to return atimestamp column
as aformatted date string.

SELECT CAST(MONTH(starttine) AS VARCHAR) || |
CAST(DAY(starttine) AS VARCHAR) | | |
CAST(YEAR(starttinme) AS VARCHAR), title, description
FROM event ORDER BY starttine;

N
N

366

Appendix D. VoltDB CLI Commands

VolItDB provides shell or CLI (command line interpreter) commands to perform common functions for
developing, starting, and managing VoltDB applications and databases. This appendix describes those
shell commands in detail.

The commands are listed in al phabetical order.

» csvloader
* jdbcloader
» kafkaloader
* sglemd
 voltadmin
» voltdb

Using CLI Commands with TLS/SSL

When TL S (Transport Layer Security) encryption isenabled for the cluster external ports (that is, the client
and admin ports, not just the httpd port), you must explicitly tell VoltDB CLI commandsthat interact with
arunning cluster to use TLS. The simplest way to do this, if you are using a certificate from an external
certificate authority, isto include the --ssl flag on the command line. For example:

$ sglcnd --ssl

Alternately, if you are using alocally generated certificate, you must specify an Java properties file that
points to the trust store as an argument to the flag, like so:

$ sqlcmd --ssl=nytruststore. conf

The propertiesfile verifiesthat the database server is passing credentialsthat you trust. That is, credentials
that match thetrust store you reference. Theformat of fileisaJavapropertiesfilesdeclaring two properties,
one per line, that identify the trust store and trust store password:

trustStore={ path-to-trust-store}
trustStorePassword={ trust-store password}

See Section 12.7, “Encrypting VoltDB Communication Using TLS/SSL” for moreinformation on config-
uring TL S encryption on the external ports.

367

VoltDB CLI Commands

csvioader

csvloader — Imports the contents of a CSV fileand insertsit into aVoltDB table.

Syntax

csvloader table-name [arguments]

csvloader -p procedure-name [arguments]

Description

The csvloader command reads comma-separated values and inserts each valid line of datainto the specified
tablein aVoltDB database. The most common way to use csvloader is to specify the database table to be
loaded and a CSV file containing the data, like so:

$ csvl oader enpl oyees -f acne_enpl oyees. csv
Alternately, you can use standard input as the source of the data:
$ csvl oader enpl oyees < acne_enpl oyees. csv

In addition to inserting all valid content into the specified database table, csvlioader creates three output
files:

» Error log— Theerror log provides details concerning any errors that occur while processing the input
file. Thisincludes errorsin the format of theinput as well as errorsthat occur attempting the insert into
VoltDB. For example, if two rows contain the same value for a column that is declared as unique, the
error log indicates that the second insert fails due to a constraint violation.

» Failed input — A separate file contains the contents of each line that failed to load. Thisfileis useful
becauseit allowsyou to correct any formatting issues and retry just the failed content, rather than having
to restart and reload the entire table.

e Summary report — Once al input lines are processed, csvloader generates a summary report listing
how many lines were read, how many were successfully loaded and how long the operation took.

All three files are created, by default, in the current working directory using "csvloader" and the table
name as prefixes. For example, using csvloader to insert contestants into the sample voter database creates
the following files:

csvloader_contestants _insert_log.log
csvloader_contestants_invalidrows.csv
csvloader_contestants _insert_report.log

It is possible to use csvloader to load text files other than CSV files, using the - - separ at or, - -

guot echar , and - - escape flags. Note that csvloader uses Python to process the command line argu-
ments. So to enter certain non-al phanumeric characters, you must use the appropriate escaping mechanism
for Python command lines. For example, to use atab-delimited file asinput, you need to use the - - sep-

ar at or flag, escaping the tab character like so:

$ csvl oader --separator=$\t' \

368

VoltDB CLI Commands

-f enpl oyees.tab enpl oyees

It is also important to note that, unlike VoltDB native clients, when interpreting string values for TIMES-
TAMP columns, csvloader interprets the values according to the local time zone. That is, the time zone
set by thelocal system. To have string values interpreted as Greenwich Mean Time, you can either usethe
qualifier - -t i mezone=" GVIT" or set the system variable TZ to "GMT" prior to invoking the csvloader.
For example, the following commands are equivalent:

$ csvl oader enpl oyees --tinezone="GMI" -f enpl oyees. csv
$ export TZ=QWI; csvl oader enpl oyees -f enpl oyees. csv

Arguments
--batch={integer}

Specifies the number of rows to submit in a batch. If you do not specify an insert procedure, rows of
input are sent in batches to maximize overall throughput. Y ou can specify how many rows are sent
in each batch using the - - bat ch flag. The default batch sizeis 200. If you usethe - - pr ocedur e
flag, no batching occurs and each row is sent separately.

--blank={ error | null | empty }

Specifies what to do with missing values in the input. By default, if aline contains a missing value,
it is interpreted as a null value in the appropriate datatype. If you do not want missing values to
be interpreted as nulls, you can use the --blank argument to specify other behaviors. Specifying - -

bl ank error resultsin an error if aline contains any missing values and the line is not inserted.
Specifying - - bl ank enpt y returns the corresponding "empty" value in the appropriate datatype.
An empty value isinterpreted as the following:

» Zerofor al numeric columns

» Zero, or the Unix epoch value, for timestamp columns

* Anempty or zero-length string for VARCHAR and VARBINARY columns
-C, --charset={ character-set}

Specifies the character set of the input file. The default character set isUTF-8.
--columnsizelimit={integer}

Specifies the maximum size of quoted column input, in bytes. Mismatched quotation marks in the
input can cause csvloader to read all subsequent input — including line breaks— as part of the column.
To avoid excessive memory use in thissituation, the flag setsalimit on the maximum number of bytes
that will be accepted as input for a column that is enclosed in quotation marks and spans multiple
lines. The default is 16777216 (that is, 16MB).

--credentials={properties-file}

Specifies a file that lists the username and password of the account to use when connecting to a
database with security enabled. This is useful when writing shell scripts because it avoids having to
hardcode the password as plain text in the script. The credentialsfileisinterpreted asa Javaproperties
file defining the properties user nane and passwor d. For example:

user name: j ohndoe
password: 4t Un8

369

VoltDB CLI Commands

Because it is a Java properties file, you must escape certain special characters in the username or
password, including the colon or equals sign.

--escape={character}

Specifies the escape character that must precede a separator or quotation character that is supposed
to be interpreted as aliteral character in the CSV input. The default escape character is the backslash
(\). This character escapes the next character both inside and outside of quoted strings except when
using the default quote character, the double quotation (). When using the default quote character,
the escape character only operates outside quoted strings; inside quoted strings, al characters are
interpreted as literal characters except two double quotation marksin arow, which are interpreted as
asingle double quote.

-, --file={fil e-specification}

Specifies the location of a CSV file to read as input. If you do not specify an input file, csvlioader
reads input from standard input.

--header

Specifiesthat thefirst line of the CSV file is a header row, containing the names of the columns. The
column names must match columns in the VoltDB table. However, by using --header, the columns
can appear in a different order in the CSV file from the order in the database schema. Note that you
must specify al of the table column names in the header. The arguments --header and --procedure
are mutually exclusive.

--kerberos={ service-name}

Specifies the use of kerberos authentication when connecting to the database server(s). The service
name identifies the Kerberos client service module, as defined by the JAAS login configuration file.

--limitrows={integer}

Specifies the maximum number of rows to be read from the input stream. This argument (along with
--skip) lets you load a subset of alarger CSV file.

-m, --maxerrors={integer}

Specifiesthetarget number of errors before csvloader stops processing input. Once csvloader encoun-
ters the specified number of errors while trying to insert rows, it will stop reading input and end the
process. Note that, since csvloader performs inserts asynchronously, it often attempts more inserts
before the target number of exceptions are returned from the database. So it is possible more errors
could be returned after the target is met. This argument lets you conditionally stop a large loading
process if more than an acceptable number of errors occur.

--noquotechar

Disablesthe interpretation of quotation charactersin the CSV input. All input other than the separator
character and line break will be treated as literal input characters.

--nowhitespace

Specifiesthat the CSV input must not contain any whitespace between data values and separators. By
default, csvloader ignores extra space between values, quotation marks, and the value separators. If
you use thisargument, any input lines containing whitespace will generate an error and not beinserted
into the database.

370

VoltDB CLI Commands

--password={text}

Specifies the password to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument
but not the --password argument, VoltDB prompts for the password. Thisis useful when writing shell
scripts because it avoids having to hardcode passwords as plain text in the script.

--port={ port-number}

Specifies the network port to use when connecting to the database. If you do not specify a port,
csvloader uses the default client port 21212.

-p, --procedure={ procedure-name}

Specifies a stored procedure to use for loading each record from the data file. The named procedure
must exist in the database schema and must accept the fields of the data record as input parameters.
By default, csvloader uses a custom procedure to batch multiple rows into a single insert operation.
If you explicitly name a procedure, batching does not occur.

--guotechar={character}

Specifies the quotation character that is used to enclose values. By default, the quotation character is
the double quotation mark (*).

-1, --reportdir={directory}

Specifies the directory where csvlioader writes the three output files. By default, csvlioader writes
output files to the current working directory. This argument lets you redirect output to an alternative
location.

--s, --servers={server-id}[,...]

Specifies the network address of one or more nodes of a database cluster. When specifying an 1Pv6
address, enclose the address in square brackets. By default, csvloader attempts to insert the CSV data
into a database on the local system (localhost). To load data into a remote database, use the --servers
argument to specify the database nodes the loader should connect to.

--separator={character}

Specifies the character used to separate individual valuesin the input. By default, the separator char-
acter isthe comma(,).

--skip={integer}

Specifies the number of lines from the input stream to skip before inserting rows into the database.
This argument (along with --limitrows) lets you load a subset of alarger CSV file.

--s9l={sdl-config-file}

Specifiesthe use of TLS encryption when communicating with the server. Only necessary if the clus-
ter isconfigured to use TL S encryption for the external ports. See the section called “Using CLI Com-
mands with TLS/SSL” for more information.

--stopondisconnect

Specifies that if connectionsto all of the VoltDB servers are broken, the loader will stop. Normally,
if the connection to the database is lost, csvloader periodically attempts to reconnect until the servers

371

VoltDB CLI Commands

come back online and it can complete the loading process. However, you can use this argument to
have the loader process stop if the VoltDB cluster becomes unavailable.

--strictquotes

Specifies that al values in the CSV input must be enclosed in quotation marks. If you use this argu-
ment, any input lines containing unquoted values will generate an error and not be inserted into the
database.

--update

Specifiesthat existing recordswith amatching primary key are updated, rather than being rejected. By
default, csvlioader attempts to create new records. The --update flag lets you load updates to existing
records — and create new records where the primary key does not already exist. To use --update, the
table must have aprimary key.

--user={text}

Specifies the username to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database.

-z, --timezone={text}

Specifies the timezone to use when interpreting input for a TIMESTAMP column Y ou specify the
timezone asaJava TimeZone identifier. For example, you can specify acontinent and region ("Amer-
ica/lNew_Y ork") or atime zone acronym ("EST"). The --timezone qualifier is only valid when spec-
ifying atable name as the target; not when specifying a stored procedure.

Examples

Thefollowing exampleloadsthe datafromaCSV file, | anguages. csv, into the helloworld table from
the Hello World example database and redirects the output files to the ./logs subfolder.

$ csvloader helloworld -f | anguages.csv -r ./l ogs
The following example performs the same function, providing the input interactively.

$ csvloader helloworld -r ./l ogs
“"Hell 0", "World", "English"

"Bonjour", "Mnde", "French"
"Hol a", "Miundo", "Spanish"
"Hej", "Verden", "Danish"
"Ciao", "Mndo", "Italian"
CTRL-D

372

VoltDB CLI Commands

jdbcloader

jdbcloader — Extracts a table from another database via JDBC and insertsit into a VoltDB table.

Syntax

jdbcloader table-name [arguments]

jdbcloader -p procedure-name [arguments]

Description

The jdbcloader command uses the JDBC interface to fetch all records from the specified table in aremote
database and then insert those records into a matching table in VoltDB. The most common way to use
jdbcloader isto copy matching tables from another database to VoltDB. In this case, you specify the name
of the table, plus any JDBC-specific arguments that are needed. Usualy, the required arguments are the
JDBC connection URL, the source table, the username, password, and local JDBC driver. For example:

$ j dbcl oader enpl oyees \
--jdbcurl =j dbc: post gresql : //renot esvr/ cor phr \
--j dbct abl e=enpl oyees \
--j dbcuser =char | esdi ckens \
- - j dbcpasswor d=bl eakhouse \
--jdbcdriver=org. postgresql.Driver

In addition to inserting all valid content into the specified database table, jdbcloader creates three output
files:

e Error log— Theerror log provides details concerning any errors that occur while processing the input
file. Thisincludes errorsthat occur attempting the insert into VoltDB. For example, if two rows contain
the same value for a column that is declared as unique, the error log indicates that the second insert fails
dueto aconstraint violation.

» Failed input — A separate file contains the contents of each record that failed to load. The records are
stored in CSV (comma-separated value) format. Thisfileis useful because it allows you to correct any
formatting issues and retry just the failed content using the csvloader.

* Summary report — Onceall input records are processed, jdbcl oader generatesasummary report listing
how many records were read, how many were successfully loaded and how long the operation took.

All three files are created, by default, in the current working directory using "jdbcloader” and the table
name as prefixes. For example, using jdbcl oader to insert contestantsinto the sample voter database creates
the following files:

jdbcloader_contestants insert_log.log
jdbcloader_contestants insert_invalidrows.csv
jdbcloader_contestants insert_report.log

It is possible to use jdbcloader to perform other input operations. For example, if the source table does
not have the same structure as the target table, you can use a custom stored procedure to perform the
necessary trandation from one to the other by specifying the procedure name on the command line with
the --procedure flag:

$ j dbcl oader --procedure transl ateEnpRecords \

373

VoltDB CLI Commands

--jdbcurl =j dbc: post gresql : //renot esvr/ corphr \
- -j dbct abl e=enpl oyees \
- -j dbcuser =charl esdi ckens \
- - j dbcpasswor d=bl eakhouse \
--jdbcdriver=org. postgresql.Driver

Arguments
--batch={integer}

Specifiesthe number of rowsto submit in abatch to thetarget VoltDB database. If you do not specify
an insert procedure, rows of input are sent in batches to maximize overall throughput. Y ou can specify
how many rows are sent in each batch using the - - bat ch flag. The default batch size is 200. If you
usethe - - pr ocedur e flag, no batching occurs and each row is sent separately.

--credential s={ properties-file}

Specifies a file that lists the username and password of the account to use when connecting to a
database with security enabled. Thisis useful when writing shell scripts because it avoids having to
hardcode the password as plain text in the script. The credentialsfileisinterpreted as a Javaproperties
file defining the propertiesuser name and passwor d. For example:

user nanme: johndoe
password: 4t Un8

Because it is a Java properties file, you must escape certain special characters in the username or
password, including the colon or equals sign.

--fetchsize={integer}

Specifies the number of records to fetch in each JDBC call to the source database. The default fetch
size is 100 records,

--jdbcdriver={class-name}

Specifiesthe class name of the IDBC driver to invoke. The driver must exist locally and be accessible
either from the CLASSPATH environment variable or in the | i b/ ext ensi on directory where
VoltDB isinstalled.

--jdbcpassword={text}

Specifies the password to use when connecting to the source database via JDBC. Y ou must specify a
username and password if security is enabled on the source database.

--jdbctable={table-name}

Specifies the name of source table on the remote database. By default, jdbcl oader assumes the source
table has the same name as the target VVoltDB table.

--jdbcurl={ connection-URL}
Specifies the JDBC connection URL for the source database. This argument is required.
--jdbcuser={text}

Specifies the username to use when connecting to the source database via JDBC. Y ou must specify a
username and password if security is enabled on the source database.

374

VoltDB CLI Commands

--limitrows={integer}

Specifies the maximum number of rowsto be read from the input stream. This argument lets you load
asubset of aremote database table.

-m, --maxerrors={integer}

Specifies the target number of errors before jdbcloader stops processing input. Once jdbcloader en-
counters the specified number of errors while trying to insert rows, it will stop reading input and end
theprocess. Notethat, sincejdbcloader performsinsertsasynchronoudly, it often attempts moreinserts
before the target number of exceptions are returned from the database. So it is possible more errors
could be returned after the target is met. This argument lets you conditionally stop a large loading
process if more than an acceptable number of errors occur.

--password={text}

Specifies the password to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument
but not the --password argument, VoltDB prompts for the password. Thisis useful when writing shell
scripts because it avoids having to hardcode passwords as plain text in the script.

--port={ port-number}

Specifies the network port to use when connecting to the VoltDB database. If you do not specify a
port, jdbcloader uses the default client port 21212.

-p, --procedure={ procedure-name}

Specifiesastored procedureto usefor loading each record from theinput source. The named procedure
must exist in the VoltDB database schema and must accept the fields of the data record as input
parameters. By default, jdbcloader uses a custom procedure to batch multiple rowsinto asingle insert
operation. If you explicitly name a procedure, batching does not occur.

-r, --reportdir={directory}

Specifies the directory where jdbcloader writes the three output files. By default, jdbcloader writes
output files to the current working directory. This argument lets you redirect output to an alternative
location.

--S, --servers={server-id}[,...]

Specifies the network address of one or more nodes of a VoltDB cluster. When specifying an |Pv6
address, enclose the address in square brackets. By default, jdbcloader attemptsto insert the datainto
a VoltDB database on the local system (localhost). To load data into a remote database, use the --
servers argument to specify the VoltDB database nodes the loader should connect to.

--s9l={sgl-config-file}

Specifiesthe use of TLS encryption when communicating with the server. Only necessary if the clus-
ter isconfigured to use TL S encryption for the external ports. See the section called “Using CLI Com-
mands with TLS/SSL” for more information.

--stopondisconnect

Specifiesthat if connectionsto all of the VoltDB servers are broken, the loader will stop. Normally, if
the connection to the database is lost, jdbcloader periodically attempts to reconnect until the servers

375

VoltDB CLI Commands

come back online and it can complete the loading process. However, you can use this argument to
have the loader process stop if the VoltDB cluster becomes unavailable.

--user={text}

Specifiesthe username to use when connecting to the VoltDB database. Y ou must specify ausername
and password if security isenabled on the target database.

Example

Thefollowing example loads records from the Products tabl e of the Warehouse database on server hg.my-
company.com and writes the recordsinto the Productstable of the VoltDB database on servers svrA, svrB,
and svrC, using the MySQL JDBC driver to access to source database. Note that the --jdbctable flag is not
needed since the source and target tables have the same name.

$ jdbcl oader Products --servers="svrA svrB,svrC' \
--jdbcurl ="jdbc: mysql : // hqg. nyconpany. cont war ehouse" \
--jdbcdriver="commnysqgl .jdbc.Driver" \
--jdbcuser="ceo" \
- - j dbcpasswor d="headhoncho"

376

VoltDB CLI Commands

kafkaloader

kafkal oader — Imports data from a Kafka message queue into the specified database table.

Syntax

kafkaloader table-name [arguments]

Description

The kafkaloader utility loads data from a Kafka message queue and inserts each message as a separate
record into the specified database table. Apache Kafkais a distributed messaging service that lets you set
up message queues which are written to and read from by "producers' and "consumers’, respectively. In
the Apache Kafka model, the kafkal oader acts as a"consumer".

When you start the kafkal oader, you must specify at least three arguments:

* The database table

» The Kafka server to read messages from, specified using the --brokers flag

» The Kafka"topic" where the messages are stored, specified using the --topic flag

For example:

$ kaf kal oader --brokers=quesvr: 2181 --topic=voltdb_customer customner
Note that Kafka does not impose any specific format on the messages it manages. The format of the
messages are application specific. In the case of kafkal oader, VoltDB assumes the messages are encoded
as standard comma-separated value (CSV) strings, with the values representing the columns of the table
in the order listed in the schema definition. Each Kafka message contains a single row to be inserted into
the database table.

It is aso important to note that, unlike the csvloader which reads a stetic file, the kafkal oader is reading
from a queue where messages can be written at any time, on an ongoing basis. Therefore, the kafkal oader
process does not stop when it reads the last message on the queue; instead it continues to monitor the queue
and process any new messages it receives. The kafkaloader process will continue to read from the queue
until one of the following events occur:

* The maximum number of errors (specified by - - maxer r or s) isreached.

» Theuser explicitly stops the process.

» If--stopondi sconnect isspecified and connection to all of the VoltDB serversisbroken (that is,
kafkaloader can no longer access the VoltDB database).

The kafkaloader will not terminate if it losesits connection to the Kafka zookeeper. Therefore, it isimpor-
tant to monitor the Kafka service and restart the kafkal oader if and when the Kafka service isinterrupted.
Similarly, the kafkaloader will not stop if it loses connection to the VoltDB database, unless you include
the - - st opondi sconnect argument on the command line.

377

http://kafka.apache.org/

VoltDB CLI Commands

Arguments

Note

Thearguments- - server s and - - port are deprecated in favor of the new, more flexible ar-
gument - - host . Also, the argument - - zookeeper is deprecated in favor of the new argu-
ment - - br oker s. The deprecated arguments continue to work but may be removed in afuture
major release.

--batch={integer}

Specifies the number of rows to submit in a batch. By default, rows of input are sent in batches to
maximize overall throughput. Y ou can specify how many rows are sent in each batch using the - -
bat ch flag. The default batch sizeis 200.

Note that --batch and --flush work together. Whichever limit is reached first triggers an insert to the
database.

-b, -brokers={kafka-broker[:port]}[,...]

Specifies one or more Kafka brokers to connect to. Specify multiple brokers as a comma-separated
list. The Kafka service must be running Kafka 0.10.2 or later (including 1.0.0).

-c, --config={file}

SpecifiesaKafkaconfiguration file that lets you set Kafka consumer properties, such asgroup.id. The
file should contain the names of the properties you want to set, one per line, followed by an equals
sign and the desired value. For example:

group. i d=nydb
client.id=nyappnane

--commitpolicy={interval}

Because the loader performs two distinct tasks — retrieving records from Kafka and then inserting
them into VoltDB — Kafka's automated tracking of the current offset may not match what records
are successfully inserted into the database. Therefore, by default, the importer uses a manual commit
policy to ensure the Kafka offset matches the completed inserts.

Use of the default commit policy is recommended. However, you can, if you choose, use Kafka's
automated commit policy by specifying acommit interval, in milliseconds, using this property.

--credentials={properties-file}

Specifies a file that lists the username and password of the account to use when connecting to a
database with security enabled. Thisis useful when writing shell scripts because it avoids having to
hardcode the password as plain text in the script. The credentialsfileisinterpreted as a Javaproperties
file defining the propertiesuser nanme and passwor d. For example:

user name: johndoe
password: 4t Un8

Because it is a Java properties file, you must escape certain special characters in the username or
password, including the colon or equals sign.

378

VoltDB CLI Commands

-f, --flush={integer}

Specifies the maximum number of seconds before pending datais written to the database. The default
flush period is 10 seconds.

If dataisinserted into the kafka queue intermittently, there could be along delay between when data
is read from the queue and when enough records have been read to meet the - - bat ch limit. The
flush value avoids unnecessary delaysin this situation by periodically writing all pending data. If the
flush limit is reached, all pending records are written to the database, even if the - - bat ch limit has
not been satisfied.

--formatter={file}

Specifiesaconfiguration fileidentifying propertiesfor acustom formatter. The file must set the prop-
erty f or mat t er to the class for the custom implementation of the Formatter interface. (Note, this
is different than the attribute set when declaring a formatter for a built-in import connector. For the
kaflaloader utility you specify the Formatter class, not the Formatter Factory.) Y ou can aso declare
additional custom properties used by the formatter itself. For example:

formatter=nyformatter. MyFor matter
col um_wi dt h=12

Before running kafkaloader with a custom formatter, you must define two environment variables:
ZK_LIB pointing to the location of the Apache Zookeeper librariesand FORMATTER_LIB pointing
to the location of your custom formatter JAR file. See the chapter on "Custom Importers,Exporters,
and Formatters' in the VoltDB Guide to Performance and Customization for more information about
using custom formatters.

-H, --host={server[:port]}[,...]

Specifies one or more nodes of the database cluster where the records are to be inserted. You can
specify servers as a network address or hostname, plus an optional port number. When specifying an
I Pv6 address, enclose the address (exclusive of the optional colon and port number) in square brackets.
By default, kafkaloader attempts to connect to the default client port on the local system (localhost).
Toload datainto aremote database, use the --host argument to specify one or more VoltDB serversthe
loader should connect to. Once kafkal oader connectsto at least one cluster node, it will automatically
connect to the other serversin the cluster.

-m, --maxerrors={integer}

Specifies the target number of input errors before kafkaloader stops processing input. Once
kafkal oader encounters the specified number of errorswhile trying to insert rows, it will stop reading
input and end the process.

The default maximum error count is 100. Since kafka import can be an persistent process, you can
avoid having input errors cancel ongoing import by setting the maximum error count to zero, which
means that the loader will continue to run no matter how many input errors are generated.

--maxpollinterval={integer}

Specifies the maximum time (in milliseconds) allowed between polls of the Kafka brokers before
Kafka assumes the kafkal oader client has failed and drops it from the client group. The default poll
interval is 300 seconds (5 minutes).

--maxpollrecords={integer}

Specifies the maximum number of records fetched in each batch from the kafka brokers. The default
maximum is 500 records.

379

VoltDB CLI Commands

--maxrequesttimeout={integer}

Specifies the maximum length of time (in milliseconds) VoltDB waits for a response from the Kafka
brokers before retrying the request or timing out the session. The default time out is 305 seconds (just
over 5 minutes).

--maxsessi ontimeout={integer}

Specifies the maximum interval between heart beats from the consumer (kafkaloader) and the Kafka
brokers before Kafka drops the kafkal oader from the client group identified by group.id. The default
time out is 20 seconds.

-n, --consumercount={integer}

Specifies the number of concurrent Kafka consumers kafakloader uses to pull data from the brokers.
The default is one consumer.

--password={text}

Specifies the password to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument
but not the --password argument, VoltDB promptsfor the password. Thisis useful when writing shell
scripts because it avoids having to hardcode passwords as plain text in the script.

-p, --procedure={ procedure-name}

Specifies a stored procedure to use for loading each record from the data file. The named procedure
must exist in the database schema and must accept the fields of the data record as input parameters.
By default, kafkal oader uses a custom procedure to batch multiple rows into asingle insert operation.
If you explicitly name a procedure, batching does not occur.

--s9l={sgl-config-file}

Specifiesthe use of TLS encryption when communicating with the server. Only necessary if the clus-
ter isconfigured to use TL S encryption for the external ports. See the section called “Using CLI Com-
mands with TLS/SSL” for more information.

--stopondisconnect

Specifiesthat if connectionsto all of the VoltDB serversare broken, the kafkal oader processwill stop.
The kafkal oader connectsto servers automatically asthe topology of the cluster changes. Normally, if
all connections are broken, kafkaloader will periodically attempt to reconnect until the servers come
back online. However, you can use this argument to have the loader process stop when the VoltDB
cluster becomes unavailable.

-t, --topi c={ kafka-topic}
Specifies the Kafka topic to read from the Kafka queue.

--update
Specifies that existing records with a matching primary key are updated, rather than being rejected.
By default, kafkaloader attempts to create new records. The --update flag lets you load updates to

existing records — and create new records where the primary key does not already exist. To use --
update, the table must have a primary key.

380

VoltDB CLI Commands

--user={text}

Specifies the username to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database.

Examples

The following example starts the kafkaloader to read messages from the voltdb_customer topic on the
Kafkabroker quebkr:9092, inserting the resulting recordsinto the CUSTOMER tablein the VoltDB cluster
that includes the servers dbsvrl, dbsvr2, and dbsvr3. The process will continue, regardless of errors, until
the user explicitly ends the process.

$ kaf kal oader --maxerrors=0 custoner \
- - br oker s=quebkr: 2181 --topi c=vol tdb_custoner \
--host =dbsvr 1, dbsvr 2, dbsvr 3

381

VoltDB CLI Commands

sqlemd

sglemd — Starts an interactive command prompt for issuing SQL queriesto arunning VoltDB database

Syntax

sglcmd [args...]

Description

The sglemd command lets you query a VoltDB database interactively. Y ou can execute SQL statements,
invoke stored procedures, or use directives to examine the structure of the database. When sglcmd starts
it provides its own command line prompt until you exit the session. When you start the session, you can
optionally specify one or more database servers to access. By default, sglcmd accesses the database on
the local system vialocalhost.

At the sglemd prompt, you have several options:

e SQL queries— You can enter ad hoc SQL queries that are run against the database and the results
displayed. Y ou must terminate the query with a semi-colon and carriage return.

» Procedure calls — You can have sglcmd execute a stored procedure. Y ou identify a procedure call
with the exec directive, followed by the procedure class name, the procedure parameters, and a closing
semi-colon. For example, the following sglemd directive executes the @SystemCatal og system proce-
dure requesting information about the stored procedures.

$

sql cnd

1> exec @bystentCatal og procedures;

Note that string values can be entered as plain text or enclosed in single quotation marks. Also, the exec
directive must be terminated by a semi-colon.

» Echodirectives— The echo and echoerror directiveslet you add comments or informational messages
to the sglemd output. Any text following the directive up to and including the line break or carriage
return is repeated verbatim:

ECHO [text] — Writes the specified text, asis, to standard output (stdout).

ECHOERROR [text] — Writes the specified text, asis, to standard error (stderr).

» Show, Describe, and Explain directives— The show, describe, and explain directives let you exam-
ine the structure of the schema and user-defined stored procedures. Valid directives are:

SHOW CLASSES — Lists the user-defined classes in the database. Classes are grouped into proce-
dures classes (those that can be invoked as a stored procedure) and non-procedure classes (shared
classes that cannot themselves be called as stored procedures but can be invoked from within stored
procedures).

SHOW PROCEDURES — Lists the user-defined, default, and system procedures for the current
database, including the type and number of arguments for each.

SHOW TABLES — Lists the tables in the schema.

DESCRIBE {table-name} — Lists the columns of atable, stream, or view.

382

VoltDB CLI Commands

« EXPLAIN {sqgl-query} — Displays the execution plan for the specified SQL statement.

« EXPLAINPROC {procedure-name} — Displays the execution plans for the specified stored proce-
dure.

o EXPLAINVIEW {view-name} — Displays the execution plans for the components of the specified
view.

Query statistics directive — The querystats directive lets you select and format the output of the
@Statistics system procedure using SQL -like syntax. In the directive you specify a SELECT statement
identifying the columns you want returned, using FROM STATISTICS(selector, delta-flag) in place of
the table name. Y ou can also usethe WHERE, ORDER BY, and GROUPBY clausesto filter theresults
as desired. For example, the following directive returns the total number of rowsin each table:

$ sqgl cnd
1> querystats select table_name, sum(tuple_count) fromstatistics(table, 0) group

Known Limitations

¢ Column aliases are not supported.

¢ Query must be on asingleline.

» Errorsarereported on the console but not returned to the user.

Class management directives — The load classes and remove classes directives let you add and
remove Java classes from the database:

e LOAD CLASSES—L oadsany classesor resourcefilesinthe specified JARfile. If aclassor resource
aready existsin the database, it is replaced by the new definition from the JAR file.

« REMOVE CLASSES — Removes any classes that match the specified class name string. The class
specification can include wildcards.

Command recall — You can recall previous commands using the up and down arrow keys. Or you
can recall a specific command by line number (the command prompt shows the line number) using the
recall command. For example:

$ sqgl cnd

1> select * fromvotes;
2> show procedur es;

3> recall 1

select * fromvotes;

Once recalled, you can edit the command before reissuing it using typical editing keys, such as the | eft
and right arrow keys and backspace and delete.

Script files— You can run multiple queries or stored procedures in a single command using the file
directive. The file directive takes one or more text files as an argument and executes all of the SQL
queries and exec directives in the file(s) as if they were entered interactively. (Do not use control di-
rectives such as recall and exit in script files.) Separate multiple script files with spaces. Enclose file
names that contain spaces with single quotation marks. For example, the first command in the following
example processes all of the SQL queries and procedure invocationsin thefilemyscri pt. sql . The
second command processes the SQL queries from two files:

$ sqgl cnd
1> file nyscript.sql;
2> file yourscript.sql '"their script.sql’';

383

VoltDB CLI Commands

If the file(s) contain only data definition language (DDL) statements, you can also have the files
processed as a single batch by including the - bat ch argument:

$ sqgl cnd
1> file -batch nyscript.sql;

If afile or set of statements includes both DDL and DML statements, you can still batch process a
group of DDL statements by enclosing the statementsinafil e -inli nebat ch directive and the
specified end marker. For example, in the following code the three CREATE PROCEDURE statements
are processed as a batch:

| oad cl asses myprocs.jar;

file -inlinebatch END O BATCH

CREATE PROCEDURE FROM CLASS procs. AddEnpl oyee;
CREATE PROCEDURE FROM CLASS procs. ChangeDept ;
CREATE PROCEDURE FROM CLASS procs. Pronot eEnpl oyee;
END_OF_BATCH

Batch processing the DDL statements has two effects:

« Batch processing can significantly improve performance since all of the schema changes are
processed and distributed to the cluster nodes at onetime, rather than individually for each statement.

« The batch operates as a transaction, succeeding or failing as a unit. If any statement fails, all of the
schema changes are rolled back.

» Exit — When you are done with your interactive session, enter the exit directive to end the session and
return to the shell prompt.

To run a sglemd command without starting the interactive prompt, you can pipe the command through
standard input to the sglcmd command. For example:

$ echo "select * fromcontestants;" | sqlcnd

In general, the sglcmd commands are not case sensitive and must be terminated by a semi-colon. However,
the semi-colon is optiona for the exit, file, and recall directives. Also, list and quit are supported as
synonyms for the show and exit directives, respectively.

Textual Data and Character Sets

All text datain Volt is processed and stored as UTF-8 encoded strings. However, it is possible to enter
and display datain other character setsif desired.

For interactive sessions, the sqlcmd utility automatically transates between the localized character set for
the user'sinteractive session and UTF-8 used by Volt internally. For example, when executing an INSERT
statement into aVARCHAR column, the text being inserted is converted from the localized character set
into UTF-8 before being inserted. Similarly, when displaying resultsfrom aSELECT statement, text fields
are converted from UTF-8 into the user's session character set before being sent to the terminal. The web-
based V olt Management Console (VMC) provides asimilar service automatically converting to and from
the user's session character set to UTF-8 on input and output.

When processing data from a file, sqlcmd provides the --char set qualifier that lets you specify the char-
acter set used both for processing files for input (either with the --file qualifier or the FILE directive)
and writing files for output (with the --output qualifier). You can also use the --charset qualifier with
the csvloader utility to specify the character set of the CSV input file. Finally, the file export connector

384

VoltDB CLI Commands

supportsachar set property for specifying what character set to use when exporting datato afile. (See
Table 15.1, “File Export Properties’ for more information on the file export connector properties.)

Which character sets are supported depends on which Java virtual machine (JVM) release you are using
on your servers (for export) or client machines (for sqlcmd and csvloader). For established character sets,
such as Shift_JIS or 1SO-8859-1, all supported VM releases provide support. For newer character sets,
you may heed a more recent release of the VM. For example, the recent Simplified Chinese character
set GB18030-2022 requires a VM released in 2023 or later. For OpendDK this includes the following
releases:

» Java 8 — release 8u32-b05
e Javall —release 11.0.20+8

e Javal7 —release 17.0.8+7

Arguments
--batch

When used with the - - f i | e qualifier, processes the data definition language (DDL) statementsin
the file as a single batch (rather than one at atime) and returns to the shell prompt. Batch processing
of DDL statementsis orders of magnitude faster than processing each statement separately. However,
the file must contain DDL statements only, no data manipulation language (DML) queries such as
SELECT or INSERT. If the file contains both DDL and DML, usethefile --inlinebatch
directive in the file to delineate batches of DDL statements then process the file with the - -fi |l e
qualifier only.

--charset={ character-set-name}

Specifies the character encoding to use when interpreting file input (using the - - f i | e qualifier or
FILE directive) and when writing file output (using the - - out put - f i | e quaifier). If no character
set isspecified, sqlemd usesUTF-8for fileinput and output. Notethat the- - char set qualifier does
not affect text entered at the sqlcmd prompt, which is always interpreted using the session's default
character set, asis also true of output displayed on the terminal.

--credential s={ properties-file}

Specifies a file that lists the username and password of the account to use when connecting to a
database with security enabled. This is useful when writing shell scripts because it avoids having to
hardcode the password as plain text in the script. The credentialsfileisinterpreted as a Javaproperties
file defining the properties user nane and passwor d. For example:

user name: j ohndoe
password: 4t Un8

Because it is a Java properties file, you must escape certain specia characters in the username or
password, including the colon or equals sign.

--file={file-spec}
Executes the SQL statements in the specified file and then returns to the shell prompt.
--help

Displays the sglcmd help text then returns to the shell prompt.

385

VoltDB CLI Commands

--kerberos={ service-name}

Specifies the use of kerberos authentication when connecting to the database server(s). The service
name identifies the Kerberos client service module, as defined by the JAAS login configuration file.

--output-file={file-spec}

Write the output from sglecmd commands and statements to the specified file. Note that only the out
of the commands are written to the file, errors and informational messages (such as how many rows
were affected) are still written to the terminal. By default all output is written to the terminal .

--output-format={ csv | fixed | tab}

Specifiestheformat of the output of query results. Output can be formatted as comma-separated values
(csv), fixed monospaced text (fixed), or tab-separated text fields (tab). By default, the output is in
fixed monospaced text.

--output-skip-metadata

Specifiesthat the column headings and other metadata associated with query results are not displayed.
By default, the output includes such metadata. However, you can use this argument, along with the
- - out put - f or mat argument, to write just the dataitself to an output file.

--port={ port-num}

Specifies the port number to use when connecting to the database servers. All servers must be using
the same port number. By default, sglcmd connects to the standard client port (21212).

--query={text}

Submits the specified text as an SQL query to the database, displays the results and returns to the
shell prompt.

--query-timeout={time-limit}

Specifies a time limit for read-only queries. Any read-only queries that exceed the time limit are
canceled and control returned to the user. Specify the time out as an integer number of milliseconds.
The default timeout is set in the cluster configuration (or set to 10 seconds by default). Only users
with ADMIN privileges can set a sglcmd timeout longer than the cluster-wide setting.

--servers={server-id}[,...]

Specifies the network address of one or more nodes in the database cluster. When specifying an | Pv6
address, enclose the address in square brackets. By default, sglcmd attempts to connect to a database
on locahost.

--ssl[=sdl-config-file]

Specifiesthe use of TLS encryption when communicating with the server. Only necessary if the clus-
ter isconfigured to use TL S encryption for the external ports. See the section called “Using CLI Com-
mands with TLS/SSL” for more information.

--stop-on-error={truelfal se}
When processing file input (withthe - - fi | e qualifier or thef i | e directive) stops any further ex-

ecution when an error occurs, if set to true. If false, the statement causing the error is ignored and
processing continues to the next statement in the file. The default istrue.

386

VoltDB CLI Commands

--user={user-id}

Specifies the username to use for authenticating to the database. The username is required if the
database has security enabled.

--password={text}

Specifies the password to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument
but not the --password argument, VVoltDB prompts for the password.

Example

The following example demonstrates an sqlcmd session, accessing the voter sample database running on
node zeus.

$ sqglcnd --servers=zeus

SQ Command :: zeus: 21212

1> select * fromcontestants;
Edwi na Bur nam

Tabat ha Gehling

Kelly d auss

Jessie Al oway

Al ana Br egman

Jessi e Ei chman

OO WNPRE

(6 row(s) affected)

2> sel ect sun(numyvotes) as total, contestant_number from
v_votes_by contestant _nunber_ State group by contestant_nunber
order by total desc;

TOTAL CONTESTANT_NUMBER

757240 1

630429 6

442962 5

390353 4

384743 2

375260 3

(6 row(s) affected)
3> exit
$

387

VoltDB CLI Commands

voltadmin

voltadmin — Performs administrative functions on aVoltDB database.

Syntax

voltadmin defrag [--full | --maxcount={block-count}] [--tables={table-name][,..]}]
voltadmin dr drop

voltadmin dr protocol [--update]

voltadmin dr reset [--all | --cluster={cluster-id} [--force]]

voltadmin export release --source={source-table} --target={export-target}
voltadmin get [configuration-property [...]]

voltadmin help [command]

voltadmin inspect

voltadmin jstack [server-id]

voltadmin license {license-file}

voltadmin log4j {log4j-configuration-file}

voltadmin log4j {component}={level}

voltadmin note {text}

voltadmin pause [--wait [--timeout={seconds}]]

voltadmin resize [--ignore=disabled_export] [--delay={minutes}] [--restart | --status | --test | --up-
date]

voltadmin restore [--skiptables={table-name[,..]}] [--tables={table-name],..]}]
voltadmin resume

voltadmin save [{directory} {unique-id}] [--format={csv|native}] [--blocking}]
[--skiptables={table-name],..]}] [--tables={table-name],..]}]

voltadmin set [--file=configuration-file] [configuration-property=value [...]]
voltadmin show [license|snapshots]

voltadmin shutdown [--cancel|--force|--save] [--timeout={seconds}]
voltadmin ssl reload

voltadmin status [--continuous] [--dr] [--json]

voltadmin stop {server-id} [--force]

voltadmin update {configuration-file}

388

VoltDB CLI Commands

global qualifiers:
--credentials={properties-file}
--help
--host={server-id}
--kerberos
--password={text}
--ssl={ssl-config-file}
--user={user-id}

Description

The voltadmin command allows you to perform administrative tasks on a VoltDB database. Y ou specify
the database server to access and, optionally, authentication credentials using arguments to the voltadmin
command. Individual administrative commands may have they own unique arguments as well.

Arguments

The following global arguments are available for all voltadmin commands.
--credentials={properties-file}

Specifies a file that lists the username and password of the account to use when connecting to a
database with security enabled. This is useful when writing shell scripts because it avoids having to
hardcode the password as plain text in the script. The credentialsfileisinterpreted as aJavaproperties
file defining the properties user nane and passwor d. For example:

user name: johndoe
password: 4t Un8

Because it is a Java properties file, you must escape certain specia characters in the username or
password, including the colon or equals sign.

-h, —-help

Displays information about how to use a command. The --help flag and the help command perform
the same function.

-H, --host={server-id}[: port]

Specifies which database server to connect to. You can specify the server as a network address or
hostname. When specifying an | Pv6 address, enclose the address (exclusive of the optional colon and
port number) in square brackets. By default, voltadmin attempts to connect to adatabase on local host.
Y ou can optionally specify the port number. If you do not specify a port, voltadmin uses the default
admin port.

--kerberos

Specifiesthe use of Kerberos authentication when connecting to the database. Y ou must login to your
Kerberos account using kinit before issuing the voltadmin with this argument.

-p, --password={text}

Specifies the password to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument

389

VoltDB CLI Commands

but not the --password argument, VoltDB prompts for the password. Thisis useful when writing shell
scripts because it avoids having to hardcode passwords as plain text in the script.

--ssl={sd-config-file}

Specifiesthe use of TLS encryption when communicating with the server. Only necessary if the clus-
ter isconfigured to use TL S encryption for the external ports. See the section called “Using CLI Com-
mands with TLS/SSL” for more information.

-u, --user={user-id}

Specifies the username to use for authenticating to the database. The username is required if the
database has security enabled.

-v, -verbose

Displays additional information about the specific commands being executed.

Commands

The following are the administrative functions that you can invoke using voltadmin.
defrag

Performs a defragmentation operation on the memory used to store database records. By default, one
iteration of memory compaction is performed using the standard settings for memory management.
However, you can use optional arguments to the command to control how much compaction is done
and which tables are affected. See the chapter on "Understanding Memory Usage" in the Volt Guide
to Performance and Customization for more information about how memory compaction is done and
the minimum requirements and controls available for managing the defragmentation process.

-f, --full

Compacts all available spaces, assuming the partition's table data meets the minimum require-
ments for defragmentation.

--maxcount={ block-count}

Specifies the maximum number of blocks worth of tuples that will be moved for each table and
partition. For example, if the table schema allows 500 tuples per block and you specify a count
of 2, at most 1,000 tuples will be moved per table and partition during the compaction event.

--tables={table-name} [,...]
Specifies which tables to defragment.
The --full and --maxcount options are mutually exclusive. If you specify both, --maxcount isignored.
help [command]

Displays information about the usage of individual commands or, if you do not specify a command,
summarizes usage information for all commands. The help command and --help qualifier are syn-
onymous.

dr drop

Removes the current cluster from an XDCR environment. Performing a drop breaks existing DR
connections, deletes pending binary logs and stops the queuing of DR data on the current cluster. It

390

https://docs.voltactivedata.com/v14docs/PerfGuide/ChapMemoryUsage.php
https://docs.voltactivedata.com/v14docs/PerfGuide/
https://docs.voltactivedata.com/v14docs/PerfGuide/

VoltDB CLI Commands

also tells all other clustersin the XDCR relationship to drop their connection to the current cluster
and remove any associated binary logs for that cluster.

This command will wait until all other clusters respond before returning to the shell prompt. If one
(or more) of the clusters are unreachable, the command will periodically report which clustersit is
waiting for. Be aware that if you CTRL-C out of the command before it returns to the shell prompt,
one or more of the remote clusters will not have received the appropriate message and will not have
cleared their logs for the targeted cluster. In that case, you need to clear that cluster's queues manually
after it comes back online using the dr reset --cluster command.

The dr drop command lets you effectively remove a single cluster — the cluster on which the the
command is executed — from a multi-cluster XDCR environment in a single command.

dr protocol [--update]

Reports the current DR protocol that is in use and that is supported by each of the clusters with a
DR connection to the current cluster. Thisinformation is useful when upgrading XDCR clusters and
determining if they are capable of using dynamic schema change or not.

If all of the clusters support a higher protocol version than the current cluster is using, you can use the
--update argument to have the cluster move to the higher protocol version.

dr reset

Resetsthe database replication (DR) connection(s) for the database. Performing areset breaks existing
DR connections, deletes pending binary logs and stops the queuing of DR data on the current cluster.

After areset, DR must start over from scratch; it cannot be restarted where it left off. Similarly, if
there are two clusters in an XDCR environment, you can use dr reset for one cluster to drop the
connection to the other cluster.

If you are using multiple XDCR clusters, the dr drop command isthe recommended way to remove a
running cluster from the environment. Otherwise, if you use the dr reset command you must choose
between removing the connectionsto all other clustersor just one cluster using the following options.
Y ou must issue the appropriate command on al applicable clusters:

--dl

Resets DR connections and queuesto all other clusters on the current cluster. Choose this option
if you want the current cluster to survive and then restart DR from scratch on the other remaining
clusters.

--cluster={remote-cluster-1D}

Drops the connection to just one cluster. Specify the ID of the remote cluster you wish to drop
from the XDCR environment as an argument to the --cluster option. For example, if one cluster
has stopped and you want to removeit from the X DCR environment, you can reset the connections
to that cluster by issuing the dr reset --cluster={id} command on al the remaining clusters. Y ou
must also specify --force when you specify --cluster.

--force

Verifies that you want to drop one cluster from a multi-cluster XDCR environment. Thereis a
risk, when a cluster fails, that it has not sent the same binary logs to al other clusters. In this
situation, if you drop the one cluster from the XDCR environment, the remaining clusters can
diverge. Which is why you must confirm that you really want to drop just one cluster.

391

VoltDB CLI Commands

Stopping the remote cluster with an orderly shutdown (voltadmin shutdown) ensures that all
binary logs are delivered. So it isthen safeto do adr reset with --cluster and --force. Otherwise,
the recommended approach is to choose one cluster as the source, stop all DR connections from
that cluster, then restart DR from scratch on the remaining clusters. However, you can, if you
choose, use --force to drop the one cluster if you are sure no divergence has occurred.

The --all and --cluster options are mutually exclusive.
export release --source={ source-table} --target={export-target}

Resets any blocked export queues, resuming export at the next available export record. You must
specify both of the export release qualifiers:

-s, --source={ sour ce-table}
Specifies the source stream of the table whose queue you want to reset.
-t, --target={ export-target}
Specifies the export target you want to reset.
get [configuration-property [...]]
Displaysinformation about the configuration of the database. If you specify a specific property (such
asdepl oyment . cl ust er. kf act or), it displays the value of that property. If you specify the
name of a parent in the property hierarchy (such as depl oynent . export), it displays al of the
configuration values under that branch. If you do not specify aproperty or specify the top-most parent,
depl oynent , al of the configuration properties are displayed.
inspect

Displays information about the software, license, and cluster operating environment. Primarily used
when communicating with customer support.

jstack [{server-id}{:port]]

Saves the current state of all Java threads on one or more of the cluster nodes. If you specify a server
on the command line, Jstacks are taken for that node only. If you do not specify a server, Jstacks are
saved on all nodes of the cluster. The Jstack files are saved in thet hr ead_dunps subfolder under
the database root directory. This command is primarily for use when working with VoltDB support
to debug application or database issues.

license {license-file}

Updates the software license for the database. After validating the license matches the current config-
uration, the license is saved to the database root directory for each node in the cluster.

log4j {configuration-file}

Updates the logging configuration for the cluster. Y ou specify the new configuration asalL og4j XML
configuration file.

log4j {component}={level}

Changes the logging level of a Volt component. Enter the argument, component=level, as a single
text string with no spaces.

392

VoltDB CLI Commands

note {text}

Writes the specified text messageto the VoltDB log file. When security is enabled, the user must have
admin permissionsto write to the log file.

pause [--wait [--timeout={seconds}]]

Pauses the database, stopping any additional activity on the client port. Normally, pause returns im-
mediately. However, you can use the --wait flag to have the command wait until al pending transac-
tions are processed and all database replication (DR) and export queues are flushed. Use of --wait is
recommended if you are shutting down the database and do not intend to restart with recover, since
--wait ensures all associated DR or export datais delivered prior to shutdown.

Since it is possible that lost connections to external systems or other abnormal conditions can cause
gueuesto hang, the pause --wait command waitsfor up to two minutesif transactions are pending but
not being cleared. After two minutes of inactivity, the command times out and stops waiting, leaving
the database in a paused state. Y ou can change the timeout period by using the --timeout (or -t) flag
and specifying a different timeout period in seconds.

If the pause --wait command times out, review any error messages to determine the cause of the
delay. Once you correct the problem, you can either reissue the pause --wait command or check the
@Statistics system procedure results to make sure all pending transactions and queues are clear.

resize

Reducesthe size of acluster by removing one or more nodes. The number of nodes removed depends
on the K-safety factor. See Section 9.3.2, “Removing Nodes with Elastic Scaling” for more informa-
tion on resizing clusters. Without any action qualifiers, the voltadmin r esize command teststo ensure
aresizeis possible, reports which nodes will be removed, and starts the resize process There are two
options that affect how the resizing is performed:

--delay={ minutes}

Specifies the number of minutes to wait before shutting down each node. Setting a delay of at
least 1 minute is recommended when there are topics active in the database. The default value
is-1, or no delay.

--ignore=disabled_export

Ignores any pending datafor export targets that are disabled when performing the resize process.
Normally, resize waitsfor all export queuesto drain before starting the resize process, eveniif the
target is currently disabled in the database configuration.

There are four action qualifiers that ater what resize operation is performed. These quaifiers are
mutually exclusive:

--restart

Restarts the resize process after an unexpected failure.
--status

Reports on the current status of the resize operation.
--test

Tests to see if the cluster has enough nodes to perform a resize operation while retaining its K-
safety factor. If so, it reports which nodes will be removed during resizing.

393

VoltDB CLI Commands

--update
Updates the options, such as --ignore and --delay, during a resize operation.
resume
Resumes normal database operation after a pause.
save [{directory} {unique-1D}]

Creates a snapshot containing the current database contents. Snapshot files are saved to each server
in the cluster, depending on the format used. (Native format snapshots save snapshot files on every
server. CSV format snapshots are deduplicated, so only one copy of the data is saved. On K-safe
clusters, this means only certain servers may be used to save the resulting files.)

If you use save without any arguments, the snapshot is saved into the database's snapshots directory
where it can automatically be restored the next time the database starts. If you specify an alternate
directory and ID, the snapshot files are saved to the specified path using the unique ID as afile prefix.

When saving into the default snapshots directory, VoltDB automatically performs a full snapshot
in native mode. The following are additional arguments you can specify when saving to a specific
location and uniqueID. (Only the--blocking argument is all owed when saving to the default snapshots
directory.)

--format={ csv | native }

Specifies the format of the snapshot files. The alowable formats are CSV (comma-separated
value) and native, with native being the default. Native format snapshots can be used for restoring
the database. CSV files can be used by other utilities (such as spreadshests or the VoltDB CSV
loader) but cannot be restored using the voltadmin restor e command.

--blocking

Specifies that the snapshot will block all other transactions until the snapshot is complete. The
advantage of blocking snapshots is that once the command completes you know the snapshot is
finished. The disadvantage is that the snapshot blocks ongoing use of the database.

By default, voltadmin performs non-blocking snapshots so as not to interfere with ongoing data-
base operation. However, note that the non-blocking save command only startsthe snapshot. Y ou
must use show snapshotsto determine when the snapshot processisfinished if you want to know
when it is safe, for example, to shutdown the database.

--skiptables={table-name} [,...]

Specifies one or more tables to leave out of the snapshot. Separate multiple table names with
commeas.

--tables={table-name} [,...]

Specifies what table(s) to include in the snapshot. Only the specified tables will be included.
Separate multiple table names with commas.

restore {directory} {unique-ID}

Restores the data from a snapshot to the database. The datais read from a snapshot using the same
unique ID and directory path that were used when the snapshot was created. If no tables exist in the

394

VoltDB CLI Commands

database (that is, no schema has been defined) the restore command will also restore the original
schema, including stored procedure classes, before restoring the data.

The following arguments let you selectively include or exclude data from certain tables during the
restore operation.

--skiptables={table-name} [,...]

Data for the specified tablesis not restored. All other tables are restored. Separate multiple table
names with commas.

--tables={table-name} [,...]

Only datafor the specified tablesisrestored. Datafor all other tablesisignored. Separate multiple
table names with commas.

Note that if the database is empty (that is, has no existing schema), the full schema from the snapshot
isalwaysloaded even if you choose not to load the datafor certain tables. Also, you can specify either
--skiptables or --tables but not both on the same command.

set [--file=configuration-file] [configuration-property={value} [...]]

Updates or adds the configuration option with the specified value. Y ou can include multiple config-
uration options separated by spaces. The properties are specified in dot notation. You can also set
multiple properties using --file to specify a Y AML file of configuration properties.

The set command is cumulative. Values for existing properties are replaced and new properties
are added to the existing configuration. For example, specifying a value for deployment.systemset-
tings.query.timeout setsthe value for query timeout but does not alter other system settings. Similarly,
if you specify anew export configuration it is added to the existing configurations. Seethe voltadmin
update command for instructions on replacing the existing configuration.

Not all configuration settings can be updated while the database is running. See Section E.2, “YAML
Properties for Configuring Volt Databases on Bare Metal” for information on which options can and
cannot be updated on the fly.

show license
Displays information about the cluster's current license.
show snapshots

Displaysinformation about up to ten previous snapshots. This command is useful for determining the
success or failure of snapshots started with the save command.

ssl reload

Allows the update or replacement of the TLS/SSL certificate keystore and truststore files. Place new
filesin the same location (using the identical file name and directory) specified in the depl oymen-
t.ssl. keystore. pat handdepl oynent. ssl . trust store. pat h configuration proper-
ties. Then usethe sdl reload command to update the server. Thiscommand also rel cads any certificate
revocation lists (CRLs) inthedepl oynent . ssl . crl s. pat h directory.

status

Displaysinformation on the state of the cluster, such as the number of nodes and uptime. Y ou can use
the following options to customize the content and presentation of the status information:

395

VoltDB CLI Commands

--dr

Adds information about the current status of data replication to the display.
-j, --json

Outputs the information in JSON format.
--continuous

Specifies that the information be continuously updated until you interrupt the command (with
CTRL-C, for example).

update {configuration-file}

Updatesthe configuration on arunning database with the valuesin the configuration file. The specified
configuration replaces the current configuration. That is, values specified in the configuration file
replace the current values. Configuration options not specified in the configuration file are reset to
their default values, even if they were set explicitly in the previous configuration. Alternately, you
can use the voltadmin set command to change or add individual properties.

There are limitations on what changes can be made to the configuration of arunning database cluster.
See Section E.2, “YAML Properties for Configuring Volt Databases on Bare Metal” for information
on the alowable changes. The update either succeeds or fails as a whole. If any of the requested
changes are for properties that cannot be set on a running database, no changes are made to the con-
figuration.

stop [--force] {server-id}

Stops an individual node in the cluster. The voltadmin stop command can only be used on a K-safe
cluster and will not intentionally shutdown the database. That is, the command will only stop a node
if there are enough nodes | eft for the cluster to remain viable.

By default, the stop command waits for all partition and export leadership on the specified node to
be redistributed to other nodes in the cluster in an orderly fashion before stopping the node. Y ou
can use the --for ce argument to stop the node immediately. However, if you force the node to stop,
the remainder of the cluster must negotiate leadership after the node stops, which can have several
negative effects. The advantages of using the default, orderly stop command are:

« In-flight transactions queued to the stopped node are completed and returned to the client. A forced
stop interrupts these transactions resulting in lost connection and other errors being returned to the
clients.

» Stopping the node has reduced impact on the ongoing transactions and workload for the database.
A forced stop disrupts ongoing transactions while the cluster negotiates the migration of partition
|eadership.

» Export queues are transitioned correctly, avoiding gaps and potentially lost export data that can
result if nodes are interrupted and restarted in quick succession.

shutdown [--force | --save | --cancel] [--timeout={seconds}]

Shuts down the database process on all nodes of the cluster. By default, voltadmin shutdown per-
formsan orderly shutdown, pausing the database, completing all pending transactions and writing any
gueued export, import, or DR data to disk before shutting down the database. Y ou can also use one
of the following arguments to modify the behavior of shutdown:

396

VoltDB CLI Commands

--force

Stops the database immediately. If you do not need to save any in-process work, you can use the
- - f or ce argument to stop the database immediately.

--Save

Specifies that not only will al data be made durable, all pending DR and export data will be
sent to the corresponding external systems and a final snapshot will be taken before the cluster
is shutdown. The resulting snapshot will be used, in place of command logs, the next time the
database is started with the voltdb start command. Using the final snapshot on startup permits
changes not normally allowed by command logs, such as upgrading the VoltDB software.

--cancel

Cancels a pending shutdown. The shutdown --save command can be blocked if the targets for
pending DR or export are currently unavailable. If this happens, you can doaCTRL-C tointerrupt
the shutdown --save command, but that does not cancel the shutdown itself and your database
isnot operational. The shutdown --cancel command cancels the shutdown operation and returns
the database to an operational state.

Since it is possible that lost connections to external systems or other abnormal conditions can cause
gueues to hang, the shutdown command (without the --for ce flag) waits for up to two minutes if
transactions are pending but not being cleared. After two minutes of inactivity, the command times
out, leaving the database in a paused state but not shutdown. Y ou can change the timeout period by
using the --timeout (or -t) flag and specifying a different timeout period in seconds.

If the shutdown command times out, review any error messages to determine the cause of the delay.
Y ou can:

» Do ashutdown --cancel to cancel the shutdown, correct the problem, then reissue the shutdown
command

» Do ashutdown --cancel to cancel the shutdown and resume normal database operations
» Do ashutdown --for ce to initiate an immediate shutdown

Notethat if you do a shutdown --for ce after a shutdown --save command, the system will not have
created afinal snapshot.

Examples

The following example performs an orderly shutdown.
$ vol tadni n shut down

The next example uses pause and save to create a snapshot of the database contents as a backup before
shutting down.

$ vol tadm n pause --wait
$ voltadmi n save --blocking ./ mydb
$ vol tadmi n shut down

Thelast exampl e usesthe shutdown --save command to create a snapshot of the database contents, similar
to the previous example. However, in this case, the snapshot that is created will be used automatically to
restore the database on the next start command.

397

VoltDB CLI Commands

$ vol tadm n shutdown --save

398

VoltDB CLI Commands

voltdb

VO

Syntax

Itdb — Performs management tasks on the current server, such as starting and recovering the database.

VO

VO

VO

\'{¢)

VO

\'{¢)

VO

Itdb collect [args]

ltdb get classes [args]

ltdb get deployment [args]

ltdb get schema [args]

ltdb mask [args] source-configuration-file [new-configuration-file]
[tdb init [args]

ltdb start [args]

Description

The voltdb command performs local management functions on the current system, including:

Initializing the database root directory and setting configuration options
Starting the database process

Collecting log files into a single compressed file

Retrieving the classes, deployment, or schema from a database root directory

Hiding passwords in the configuration file

The action that is performed depends on which start action you specify to the voltdb command:

collect — the collect option collects system and process logs related to the VoltDB database process
on the current system and compresses them into a single file. This command is hel pful when reporting
problemsto VoltDB support.

get — the get option retrievesthe current configuration, procedure classes, or schemafrom the database
root directory. The requested item is then written to a file. This command can be used whether the
database is running or not. Y ou can use optionsto specify either or both the parent of the root directory
(- - di r) or the name and location of the output file (- - out put). Note that the get option can only be
used on databases created using init and start.

mask — the mask option disguises the passwords associated with user accounts in the security section
of the configuration file. The output of the voltdb mask command is either anew configuration filewith
hashed passwords or, if you do not specify an output file, the original input fileis modified in place.

init — the init option initializes the root directory VoltDB uses for storing the configuration, logs, and
other disk-based information (such as snapshots and command logs) for the database process. Y ou only

399

VoltDB CLI Commands

need to initialize the root directory once. After that, VoltDB manages the content and selecting the
appropriate start actions to maintain the database state. If you choose to re-initialize an existing root
directory, you can use the --force argument to delete any previous data!

» start — the starts option starts the database process after the root directory has been initialized. The
actual action that VVoltDB takes depends on the current state of the database cluster:

« If thisisthefirst time the database has started, it creates a new database.

« If the database has run before and is configured to use command logs or there is at |east one snapshot
in the snapshots directory, the database is restarted and previous data recovered.

« If the cluster is aready running and a server is missing (assuming the use of K-safety) the current
node will regjoin the running cluster.

« If the cluster isaready running with all servers present, the current node will be added to expand the
size of the cluster — aslong as you use the --add argument on the start command.

The voltdb start command uses Java to instantiate the process. It is possible to customize the Java envi-
ronment, if necessary, by passing command line arguments to Java through the following environment
variables:

e LOG4J CONFIG_PATH — Specifies an alternate Log4J configuration file.

« VOLTDB_GC_OPTS— Lets you specify which Java garbage collector to use and other GC-related
options. Specify the options using standard Java -XX format. For example:

export VOLTDB_GC OPTS="- XX+useGlGC - XX+UseSt ri ngDedupl i cati on”

* VOLTDB_HEAPMAX — Specifies the maximum heap size for the Java process. Specify the value
as an integer number of megabytes. By default, the maximum heap sizeis set to 2048.

* VOLTDB_OPTS — Specifies al other Java command line arguments. You must include both the
command line flag and argument. For example, this environment variable can be used to specify system
properties using the -D flag:

export VOLTDB_OPTS="- DnyApp. DebugFl ag=t r ue"

Log Collection (voltdb collect) Arguments
The following arguments apply specifically to the collect action.
-D --dir={directory}

Specifies the parent location for the database root directory from which to collect information. The
default, if you do not specify adirectory, isthe current working directory.

--days={integer}

Specifies the number of days of log filesto collect. For example, using - - days=1 will collect data
from the last 24 hours. By default, VoltDB collects 14 days (2 weeks) worth of logs.

The init --force command deletes command logs and overflow subfolders within the database root directory. However, to avoid accidentally
deleting backups, the snapshots subfolder is renamed rather than deleted. Thisway, it is possible to restore a snapshot in case of an unintended re-
initialization. On the other hand, this means you should periodically check your database root directories and purge any archived snapshots folders
(named snapshot s. nn) that are no longer needed.

400

VoltDB CLI Commands

--dry-run

Lists the actions that will be taken, including the files that will be collected, but does not actually
perform the collection or upload.

--no-prompt

Specifies that the process will not prompt for input, such as whether to delete the output file after
uploading is complete. This argument is useful when starting the collect action from within a script.

--output={file}

Specifies the name and location of the resulting output file. The default output file name starts with
"voltdb_collect " and includesthe current server 1P or hostname, with afile extension of ".zip" saved
to the current working directory.

--skip-heap-dump

Specifiesthat the heap dump not beincluded in the collection. The heap dump isusually significantly
larger than the other log files and can be excluded to save space.

Get Resource (voltdb get) Arguments

The following arguments apply specifically to the get classes, get deployment, and get schema actions.
-D --dir={directory}

Specifies the parent location for the database root directory. The default, if you do not specify a
directory, is the current working directory.

-f, --force

Allows the command to overwrite an existing file. By default, the get actions will not overwrite ex-
isting files.

-0 --output={file-path}

Specifies the name and, optionally, location for the resulting output file. The default location is the
current working directory. The default file depends on the resource being requested:

» procedures. | ar forget classes

» depl oynent . yan for get deployment

» schema. sql for get schema

In addition, the following arguments are specific to get deployment and are mutually exclusive:
--xml

Specifies that the output bein XML format.
--yaml

Specifies that the output bein YAML format.

If neither the- - xm or - - yam argument is specified, the default output format is YAML. However,
if the format is not specified but the output file is and the specified file has ".xml" as its file type, the
output is generated as XML.

401

VoltDB CLI Commands

Initialization (voltdb init) Arguments

The following arguments apply to the voltdb init command.
-C, --config={configuration-file}[,...]

Specifies the location of one or more database configuration files. The configuration filesare YAML
files that define the logical structure of the database , including which options to enable when the
database starts. See Appendix E, YAML Configuration Properties for a complete description of the
syntax of the configuration file. Use of Y AML propertiesisrecommended. However, you can specify
asingle XML file as an aternative method for specifying the configuration.

If you do not specify a configuration file, default is a configuration that includes command logging
(where available), no K-safety, and eight sites per host.

-D --dir={directory}

Specifies the parent location for the database root directory. The root directory is named vol t db-
r oot andiscreated if it doesnot already exist in the specified location. If avol t dbr oot directory
does already exist, you must use the --force argument to override any existing data. The default, if
you do not specify a directory, is the current working directory.

-f, --force

Initializes the database root directory, even if files (such as command logs or snapshots) already exist
in the specified directory. Initializing the root directory after previously running a database could
overwrite and therefore erase old command logs. Therefore, VoltDB will not, by default, initialize the
database if such files exist. If you do not need the files from the previous session, you can use the --
force argument to overwrite these files.

-j, --classes={JAR-file} [, ...]

Specifies the location of one or more JAR files containing classes used to declare user-defined stored
procedures. The JAR files (and any schema definitions included with the --schema argument) are
loaded automatically when the database starts. Separate multiple file names with commas. Y ou can
also use asterisk (*) asawildcard character in the file specification. If durability is enabled (through
command logs or a shutdown snapshot) the classes specified on the init command are loaded only the
first time the database starts and the command logs are used for subsequent starts. If no durability is
provided, the initialized classes are |oaded on every start.

-l, --license={license-file}

Specifies the location of the license file, which is required. If no license is specified, Volt looks for
afilenamed | i cense. xm in the current working directory, the / vol t db subfolder where the
VoltDB software isinstalled, or the current user's home directory.

-r, --retain={integer}

Specifies the maximum number of snapshot directories to save when performingavol t db i ni t
- - f or ce. Wheninitializing aroot directory with - - f or ce, VoltDB deletesal previousfilesin the
directory except the snapshot subfolder, which is renamed snapshots.1, snapshots.2, and so on. By
default, VoltDB saves only two older snapshot folders. The - - r et ai n argument lets you specify a
different maximum number of foldersto save.

-s, --schema={schema-file} [, ...]

Specifiesthe location of one or more files containing database definition language (DDL) statements.
The DDL statements (and any classes included with the --classes argument) are loaded automatically

402

VoltDB CLI Commands

when the database starts. Separate multiple file names with commas. You can also use asterisk (*)
as a wildcard character in the file specification. If durability is enabled (through command logs or
a shutdown snapshot) the schema specified on the init command is loaded only the first time the
database starts and the command logs are used for subsequent starts. If no durability is provided, the
initialized schemais |oaded on every start.

Database Startup (voltdb start) Arguments

The following arguments apply to the voltdb start command.
-D --dir={directory}

Specifies the parent location for the database root directory. This is the same directory specified on
the voltdb init command. (You must initialize the root directory before you can start the database.)
The default, if you do not specify a directory, isthe current working directory.

-H, --host={host-id} [,...]

Specifies the network address of one or more nodes in the database cluster. VoltDB selects one of
these nodes to coordinate the start of the database or the adding or rejoining of servers. When starting
a database, all nodes must specify the same list of host addresses. Note that once the database starts
and the cluster is complete, the role of the host node is complete and all nodes become peers.

When rgjoining or adding a server to arunning cluster, you can specify any node(s) still in the cluster.
The host for an add or rejoin operation does not have to be the same node specified when the database
started.

The default if you do not specify a host when creating or recovering the database is| ocal host .
In other words, a single node cluster running on the current system. Y ou must specify a host on the
command line when adding or rejoining a node or when starting a cluster.

If the host node is using an internal port other than the default (3021), you must specify the port as
part of the host string, in the format host:port.

When used in conjunction with the --missing flag, the first host in the list must be one of the current
hosts, not one of the missing nodes.

-, --count={ humber-of-nodes}
Specifies the number of nodesin the database cluster.
--add

When joining arunning cluster, specifies that the new node can be "added", elastically expanding the
size of the cluster. The --add flag only takes affect when anode isjoining acomplete, running cluster.
If the cluster is starting or if a node is missing from a K-safe cluster, the current node will join the
cluster as normal. But if the cluster is already running and has its full complement of members, you
must specify --add if you want to increase the size of the cluster.

-B, --background
Starts the server process in the background (as a daemon process).
-g, --placement-group={group-name}

Specifies the location of the server. When the K-safety value is greater than zero, VoltDB uses this
argument to assist in rack-aware partitioning. The cluster will attempt to place multiple copies of each

403

VoltDB CLI Commands

partition on different nodes to keep them physically as far apart as possible. The physical location is
specified by the group-name, which is an alphanumeric name. The names might represent physical
servers, racks, switches, or anything meaningful to the user to avoid multiple copies failing at the
same time.

To be effective, placement groups must adhere to the following rules:

» There must be more than one placement group specified for the cluster.

» The number of hodes must be a multiple of the number of placement groups.

» The number of placement groups must be amultiple of K+1.

Otherwise, there are no guarantees the partitions will be evenly distributed.
--ignore=thp

For Linux systems, alows the database to start even if the server is configured to use Transparent
Huge Pages (THP). THP is aknown problem for memory-intense applications like VoltDB. So under
normal conditions VoltDB will not start if the use of THP is enabled. This flag alows you to ignore
that restriction for test purposes. Do not use this flag on production systems.

--missing={ number -of-nodes}

Allows a K-safe cluster to start without the full complement of nodes. This argument specifies how
many nodes are missing from the cluster at startup. For example, if the arguments are - - count =5
and - - m ssi ng=2, then the database will start once three nodes join the cluster, assuming those
nodes can support at least one copy of each partition. Note that use of the- - m ssi ng option means
that the cluster isnot fully K-safe until the specified number of missing nodesrejoin the cluster after the
database starts. Also, the - - host s flag should list currently available hosts, not the missing nodes.

--pause

For the create and recover operations only, starts the database in admin mode. Admin mode stops
applications from performing write operations to the database through the client interface. This is
useful when performing administrative functions such as restoring a snapshot before allowing client
access. Once all administrative operations are complete, you can usethe voltadmin r esume command
to resume normal operation for the database. If any nodes in the cluster start with the - - pause
switch, the entire cluster starts paused.

--safemode

When using command logs to recover an existing database that cannot recover under normal circum-
stances, the- - saf enbde argument recoversthe database to thelast valid transaction. Thisargument
should only be used when troubleshooting afailed recovery. Seethe description of safe mode recovery
in the VoltDB Administrator's Guide for details.

Network Configuration Arguments

In addition to the arguments listed above for the voltdb start command, there are additional arguments
that specify the network configuration for server ports and interfaces when starting a VoltDB database.
In most cases, the default values can and should be accepted for these settings. The exceptions are the
external and internal interfaces that should be specified whenever there are multiple network interfaces
on asingle machine.

404

https://docs.voltactivedata.com/v14docs/AdminGuide/Troubleshootrecovery.php#Troubleshootsafemode
https://docs.voltactivedata.com/v14docs/AdminGuide/

VoltDB CLI Commands

Y ou can choose to set network ports and interfaces either using individual arguments for each port or as
aYAML fileidentified by the - - net wor k qualifier. When specifying network settingsin YAML, you
identify the type of port followed by individual properties for the port number and the network interface,
either of which can be defaulted. For example, the following YAML network configuration file shows
all of the possible settings. Of course, normally you only need to specify those settings that are different
from the defaullt.

net wor k:
externalinterface: 192.168.0.100
publicinterface: 192.168.0. 200

adm n:
address: 192.168.0. 100
port: 21211

client:
address: 192.168.0. 100
port: 21212

dr public:
address: 192.168.0. 100
port: 5555

i nt er nal
address: 192.168.0. 100
port: 3021

nmetrics:
address: 192.168.0. 100
port: 11781

replication:
address: 192.168.0. 100

port: 5555

t opi cs:
address: 192.168. 0. 100
port: 9092

t opi cspublic:
address: 192.168. 0. 100
port: 9092

zookeeper:
address: 127.0.0.1
port: 7181

When specifying network ports using individual command line arguments, you can optionally specify a
unique network interface by preceding the port number with the interface's | P address (or hostname) fol-
lowed by a colon. Specifying the port and/or network interface for an individual port setting overrides the
default interface for that port, theinterfacesetby - - ext ernal i nterfaceor--internalinter-
f ace, and any properties defined in a'Y AML file specified using the - - net wor k qualifier.

The network configuration arguments to the voltdb start command are listed below. See the appendix
on server configuration optionsin the VoltDB Administrator's Guide for more information about network
configuration options.

--network={ YAML-file}

Specifies a YAML file that defines the interfaces and port humbers of one or more network ports
and interfaces.

--externalinterface={ip-address}

Specifies the default network interface to use for external ports, such as the admin and client ports.

405

https://docs.voltactivedata.com/v14docs/AdminGuide/

VoltDB CLI Commands

--internalinterface ={ip-address}
Specifies the default network interface to use for internal communication, such as the internal port.
--publicinterface={ip-address}

Specifies the public network interface. This argument is useful for hosted systems where the internal
and external interfaces may not be generally reachable from the Internet. In which case, specifying the
public interface helps the Volt Management Center provide publicly accessible links for the cluster
nodes.

--drpublic={ip-address}[: port-number]

Specifies the publicly advertised network interface and, optionally, port number for database replica-
tion (DR) communication. Thisisthe addressthat is sent from the producer cluster to consumers. This
argument is useful for hosted systems where the internal interfaces are not reachable from outside the
hosted environment and the producer cluster must return an externally mapped port as the public DR
interface to remote consumers.

--admin=[ip-address.]{ port-number}
Specifies the admin port.

--client=[ip-address.]{port-number}
Specifies the client port.

--http=[ip-address:]{port-number}

Specifies the http port. The --http flag both sets the port number (and optionaly the interface) and
enables the http port, overriding the http setting, if any, in the configuration file.

--internal=[ip-address.]{ port-number}

Specifies the internal port used to communicate between cluster nodes.
--metrics=[ip-address:]{port-number}

Specifies the metrics port used for distributing Prometheus-compliant metrics data.
--replication=[ip-address:]{port-number}

Specifies the replication port used for database replication. The --replication flag overrides the repli-
cation port setting in the configuration.

--topicsport=[ip-address:] { port-number}
Specifies the port used for receiving and sending topics data.
--topicspublic={ip-address}| : port-number]

Specifies the network address advertised as the public topics port. For cases where the server'sinter-
faces are not accessible to external systems, the --topicspublic flag identifies a publicly accessible
interface and, optionally, an alternative port number.

--zookeeper=[ip-address:]{port-number}

Specifies the zookeeper port. By default, the zookeeper port isbound to the server'sinterna interface
(127.0.0.2).

406

VoltDB CLI Commands

Examples

The first example shows the commands for initializing and starting a three-node database cluster using
three custom configuration files, comron. yam , bost on. yam , and user s. yam — and the node
zeus as the host. This example demonstrates how multiple XDCR clusters could share a common set of
configuration options, then have unique settingsfor, say, the XDCR settings (including the cluster-specific
ID) and the user accounts for the cluster.

$ voltdb init --dir=~/nydb --config=configuration.yam,