VOLTDB
Using VoltDB

Abstract

This book explains how to use VoltDB to design, build, and run high performance
applications.

V7.9

Using VoltDB

V7.9
Copyright © 2008-2018 VoltDB, Inc.

The text and illustrations in this document are licensed under the terms of the GNU Affero General Public License Version 3 as published by the
Free Software Foundation. See the GNU Affero General Public License (http://www.gnu.org/licenses/) for more details.

Many of the core VoltDB database features described herein are part of the VoltDB Community Edition, which islicensed under the GNU Affero
Public License 3 as published by the Free Software Foundation. Other features are specific to the VoltDB Enterprise Edition and VoltDB Pro,
which are distributed by VoltDB, Inc. under acommercial license. Y our rights to access and use VoltDB features described herein are defined by
the license you received when you acquired the software.

VoltDB is atrademark of VoltDB, Inc.

VoltDB softwareis protected by U.S. Patent Nos. 9,600,514 and 9,639,571. Other patents pending.

This document was generated on January 02, 2018.

http://www.gnu.org/licenses/

Table of Contents

ADOUL THIS BOOK ...ttt e e Xiii
Lo OVEIVIBIW ettt ettt ettt ettt na s 1
1.1 WHEE IS VOIIDB? ...ttt e e e e 1

1.2. Who Should USE VOIEDBoiiiiiiiieiiiii et 1

1.3. HOW VOIIDB WOTKS .. .ceiiiieiiii ettt ettt 2
1.3.0. PartitiONING ..ceeveneeeitieeeei ettt e ettt ettt e e e e e een 2

1.3.2. Serialized (Single-Threaded) PrOCESSINGccvvveneiiiiiiieeiei e 2

1.3.3. Partitioned vs. Replicated Tablescovvviiiiiii e 3

1.3.4. Ease of Scaling to Meet Application NEeaSccouvuiiiiiiiiieiiiii e 4

1.4. Working with VOItDB EffeCtiVEYcooviiiiiiii e 4

2. INSEAING VOITDB ...t et ettt e e et e et e e e e e eee 5
2.1. Operating System and Software REQUIFEMENTSvvieviiiiiiiiie e 5
2.2.INSAlING VOIIDBcuiiiiiiii ettt et et e e 6
2.2.1. Upgrading From Older VEISIONSccouuiieiiiiiieeeiiie et 6

2.2.2. Building a New VoItDB Distribution Kitcoooviiiiiiiiiiec e, 7

2.3. Setting Up YOUr ENVIFONMENTuniiiiiiie ettt e e e e e 7

2.4. What is Included in the VOItDB Distributionccooiiiiiiiiiiii e 7

2.5. VoltDB in Action: Running the Sample AppliCationSoveiiiiiieiiiiii e 8

3. SHArting the DALADESEccevii it 9
3.1. Initializing and Starting a VOItDB Dat@haSecccuvuieiiiiiiieiiiiieeeei e 9

3.2. Initializing and Starting a VoltDB Database on a CIUSEErcccovviiiiiiiiiiiiiiieeeeiie 10

3.3. Stopping & VOIIDB Dal@hasecccuuuiiiiiiiieeiiiii et 11

34, SAVING ThE DAceeeveeieii ettt 12

3.5. Restarting a VOItDB Datahaseuuiiieiuiiiiiiiiieeee et 12

3.6. Updating Nodes 0N the CIUSIEToiiiiiiieeiiii e 12

3.7. Defining the Cluster ConfigUIationuuiiieiuiieiiii e 13
3.7.1. Determining How Many Sites per HOSEc.uuiiiiiiiiiiiiii e 14

3.7.2. Configuring Paths for RUNtime FEatUreSccooviiiiiiiiiiecii e 14

3.7.3. Verifying your Hardware Configurationcooveieeiinieiiiiinieiiiiieeeeeiieeees 15

4. Designing the Database SCNEMAccuuuuiiiiii e 16
4.1. How to Enter DDL SEABIEMENLSvvviiiiiiiiiiieiei et e e 17

4.2. Creating Tables and Primary KeYsSi oot 18

4.3. Analyzing Data Volume and Workloadooeeiiiiiiiiiiii e 19

4.4. Partitioning Database TabIESciiiiiiiiiiii e 20
4.4.1. Choosing a Column on which to Partition Table ROWSccooeviiiiiieiiiinnee, 20

4.4.2. Specifying Partitioned TableSccoouviiiiiiiiii e 21

4.4.3. Design Rules for Partitioning Tables ..o 21

4.5. Replicating Database TahlESiiiiiiiiiiei e 21
4.5.1. Choosing Replicated TableSuiiiiiiiiiiiii e 22

4.5.2. Specifying Replicated TableSviiiiiiiii e 22

4.6. Modifying the SChEMAccoiii e 22
4.6.1. Effects of Schema Changes on Data and CHentSoovevevviiiiiiinieiiiiineeeenns 23

4.6.2. Viewing the SCREMAcouuuiiiiiii e e 24

4.6.3. MOIfying TaDIEScoeiiieieii e 24

4.6.4. Adding and Dropping INAEXESccouuiiiiiiiiieiiiii e 26

4.6.5. Modifying Partitioning for Tables and Stored Procedurescooevvevevneeennnnns 27

5. Designing Stored Procedures to Access the Databasecoevvveeiiiiiiiciiii e 31
5.1. How Stored Procedures WOrKiiiiiiiiiiiiie ettt 31
5.1.1. VoltDB Stored Procedures are Transactionalocoveviieiiiiiineeiiiiieeeceiie, 31

5.1.2. VoItDB Stored Procedures are Deterministicc.vuveiiiiinieiiiiiieeeciieeeceie 31

5.2. The Anatomy of a VoItDB Stored ProCetureccuuviiiiiiiieiiiiie e 33

Using VoltDB

5.2.1. The Structure of the Stored ProCedureoooueuiieiiiiinieeiiii e 33
5.2.2. Passing Arguments to a Stored Procedurecooovvviveiiieiiiiiccieeeee e 35
5.2.3. Creating and Executing SQL Queriesin Stored Procedurescooevvvvevvnnennnnn. 36
5.2.4. Interpreting the Results of SQL QUENEScccviiiiiieiiiieiii e, 37
5.2.5. Returning Results from a Stored Procedureccoveviiiiiiiniiiiecieeceeeeiees 40
5.2.6. Rolling Back @ TranSaCtioncccuuviiuiieiiiieiiiieei e e e s e e e e e e e e eeen 41

5.3. Installing Stored Procedures into the Databasecoovvviviiiiiiiiii e 41
5.3.1. Compiling, Packaging, and Loading Stored Procedurescccccovvevineeennnnn. 42
5.3.2. Declaring Stored Procedures inthe Schema.........ccooveviviiiiiin e, 42
5.3.3. Partitioning Stored Proceduresinthe Schema..........cocccoeeviiiiiin i, 43

6. Designing VOItDB Client APPliCaHIONSoiiuniiiii i e 47
6.1. Connecting to the VOItDB DatabhaSecveiiiiiiiieiiii e 47
6.1.1. Connecting to MUItIPle SEIVEIScoviiii e 48
6.1.2. Using the Auto-Connecting Clientcccoeuiiiiiiiiiiieei e, 48

6.2. INVOKING StOred PrOCEAUIESccvuiiii e e e s 49
6.3. Invoking Stored Procedures ASynchronouSlYcocvuiiiiiiiiiiiiecieece e 49
6.4. CloSiNg the CONNECLIONuuiiiii i e e e e e e e e aaas 50
LRI o = o 1T a0 = £ PN 51
6.5.1. Interpreting EXECULION EITOrScouviiiiiiiii e e 51
6.5.2. HaNdliNg TIMEOULSuivuniiiiieiiie e e e e e e e e e e e e e e e e eaaeees 52
6.5.3. Writing a Status Listener to Interpret Other Errors..........cooevviveiiiieiiiiecineeennnn, 54

6.6. Compiling and Running Client AppliCatioNSoovvuieiiiieiii e 56
6.6.1. Starting the Client ApPliCationcouiiiiiiiii e 56
6.6.2. Running Clients from Outside the Clusterccooveiiiiiiiiiiii e, 56

7. Simplifying Application DeVEIOPMENTuiiiiiiiiiee e e e aaaas 58
7.1. Using Default ProCEAUIESccuuiiiiiiciiie e e e e e e e e e e e e e aes 58
7.2. Shorteut for Defining Simple Stored Proceduresoveviiieiiiieiii e 59
7.3. Verifying Expected QUEry RESUILSuiiiiieiii e e 60
8. Using VolItDB with Other Programming LanQUAagEScceuuieiiiieiiiieeie e e e e e 62
S IO O 1= o B 11 = = o P PPRTPP 62
8.1.1. Writing VoltDB Client Applications in CH+coiiiiiiiiiiiicii e 62
8.1.2. Creating a Connection to the Database CIUStErcocovviiiiiiiiiiiiii e 63
8.1.3. Invoking Stored ProCeAUIEScc.uiiiiinieii e e e 63
8.1.4. Invoking Stored Procedures ASynchronouslyccoveeuieiiiiieiiiieeiine e 64
8.1.5. Interpreting the RESUILSccuviiiii e e 65

8.2. JISON HTTP INLEITACE .oieeieieiieii ettt e e eeeaanns 65
8.2.1. How the JSON Interface WOIKSccovuuiiiiiiiieeeee e 65
8.2.2. Using the JSON Interface from Client AppliCationscoocvvveiiiieiiineeineennnn. 67
8.2.3. How Parameters Are INterpretedo.vuvviiiiiiiieiie e 69
8.2.4. Interpreting the JSON RESUILSociviiiiii e 70
8.2.5. Error Handling using the JSON INterfacec.ccvveviiiiiiiiiiiieccieece e 71

8.3, IDBC INEEITACE ... ettt 72
8.3.1. Using JDBC to Connect to a VoItDB Databasec.cooevvviviviieiiiiecineeiieeen, 72
8.3.2. Using JDBC to Query aVoItDB Databaseovvvvnveeiiciiiieciie e 73

9. USING VOIIDB IN @ CIUSIESiiiiiiiieiieee e e e e e e e e e e e et e e e e aaes 75
9.1. Starting a Datahase ClIUSLENociiiiiiiiiieiii e e e e e e e aaeees 75
9.2. Updating the Cluster Configurationccoeuuieiiiieiiieci e e e e e e e e eees 75
9.2.1. Adding Nodes with Elastic SCalingccoveiiiiiiiiiiei e, 76
9.2.2. Configuring How VoltDB Rebalances New NOdEScccvveviiiiiiiiiiiieecieee, 77

O N Y=] = o 1) Y PP 79
10.1. HOW K-Safety WOTKSiiiiiciieci et e e e e e e eeas 79
10.2. ENabling K-Saf@LYuuiiiiiiiii e e e e 80
10.2.1. What Happens When You Enable K-Safetyccocciveiiiiiiii i 8l
10.2.2. Calculating the Appropriate Number of Nodes for K-Safetycocceveevnnnnenn. 81

Using VoltDB

10.3. Recovering from System FaillUreScc.uieiiiiiiii e 82
10.3.1. What Happens When a Node Rejoinsthe Clustercccoovvviiiiiiiiiiinceine, 82
10.3.2. Where and When Recovery May Failccooeiiiiiiiiniiiii e, 83

10.4. Avoiding NEtWOrK Partitionsoveiuiiiiiiiciiii e e e 83
10.4.1. K-Safety and Network Partitionscccouiveiiiiiiiiiieieeci e 83
10.4.2. Using Network Fault ProteCtionooeeiuiiiiiiiiiin e 84

IR DT = o= S I o= o] o= o) o 87

11.1. How Database Replication WOIKSccouuiiiiiiiiii e 88
11.1.1. Starting Database ReEPlICAtiONcc.uviiiiiiiiii e 89
11.1.2. Database Replication, Availability, and Disaster RECOVENYcccvvvvevinneeinnnnnn. 20
11.1.3. Database Replication and Completenessc..ovvvviieiiiieiiii i 91

11.2. Using Passive Database ReEPlICatioNoeiviiiiiiiiiiiiiciie e e e 92
11.2.1. Specifying the DR Tablesinthe Schemaccoocoiviiiiiiiiin e, 92
11.2.2. Configuring the CIUSLErSoiiiiiiiii e e e e 93
11.2.3. Starting the CIUSLErSccvviiiie e e 93
11.2.4. Loading the Schema and Starting Replicationcccoovviiiiiinciiiiec e, 93
11.2.5. Updating the Schema During Replicationc.cocciiiiiiiiiiin i, 94
11.2.6. Stopping REPIICALIONcevniiii e e e 95
11.2.7. Database Replication and Read-only ClientScccoieviiiiiiiii e, 97

11.3. Using Cross Datacenter REPlICaHIONoevviiiiiiiciiii e 97
11.3.1. Designing Your Schema for Active Replicationccoocciveiiiiiiiiniiiiieeiins 98
11.3.2. Configuring the Database CIUSLErSeivviiiiiieiie e e 98
11.3.3. Starting the Databhase CIUSLESccoviiiiicii e 100
11.3.4. Loading a Matching Schema and Starting Replicationc.cccoevevineennnnn. 101
11.3.5. Updating the Schema During Active Replicationcccoeevviiiiiinieineennnn. 101
11.3.6. Stopping REPIICALIONccvuiiii e 101
11.3.7. Example XDCR Configuraionscceuuieieiiieeiieeriiieeeineeeineesieesannesaneens 102
11.3.8. Understanding Conflict RESOIULIONcovviiiiiiiciiie e, 103

11.4. Monitoring Database REPIICAIONccovuiiiiiiiiie e 109

S o U) YO 111

12.1. How Security WOrkS in VOIIDBcoouniiiiiiii e 111

12.2. Enabling Authentication and AUthOFZationcccceiiiiiiieiii e 111

12.3. Defining UsSers and ROIESuiiiiiiiii e 112

12.4. Assigning Access to Stored ProCedUIEScouuiiiiciiiiiei e e 113

12.5. Assigning Access by Function (System Procedures, SQL Queries, and Default

L 010 LU =) 113

12.6. USING BUIt-IN ROIES ... 114

12.7. Encrypting VoltDB Communication USing TLS/SSLcoviiiiiiiiiiicii e eeiis 114
12.7.1. Configuring TLS/SSL on the VOIIDB SErVErcocvvvviiiiieiiieeieecieeee e 115
12.7.2. Choosing What Ports to Encrypt with TLS/SSLccoviviiiiiiiieciecceeei 116
12.7.3. Using the VoltDB Command Line Utilitieswith TLS/SSLcccooevvvneennnn. 116
12.7.4. Implementing TLS/SSL in the Java Client Applicationsccccccvvevevnennnnn. 117
12.7.5. Configuring Database Replication (DR) With TLS/SSLccocovvviviiiiiiieennnnn. 117

12.8. Integrating Kerberos Security With VOItDBccuiiiiiiiiiiiicicc e 118
12.8.1. Installing and Configuring Kerberoscooviiiiiiii i, 118
12.8.2. Installing and Configuring the Java Security EXtENSIONSccocvvvevivneeennnnns 119
12.8.3. Configuring the VoltDB Servers and CHentSccoeevviviviiiiiiin v, 120
12.8.4. Accessing the Database from the Command Line and the Web 122

13. Saving & Restoring a VoItDB DatahaSecccuuiiiiiiiiiiiciie e 123

13.1. Performing a Manual Save and Restore of a VoItDB Clustercoccevveviieiiinennnnnn. 123
13.1.1. How to Save the Contents of a VoItDB Databaseccccvvveviiiiiieeiiiinnenns 124
13.1.2. How to Restore the Contents of a VoltDB Database Manualy 124
13.1.3. Changing the Cluster Configuration Using Save and Restorecccccuveeeee. 125

13.2. Scheduling Automated SNapPShOLSuviiiiiiii e 127

Using VoltDB

13.3. Managing SNapShOLSccvuiiii e 127
13.4. Special Notes Concerning Save and RESEOIEccvvuieiiiiiiiieiii e, 128
14. Command Logging and RECOVETYciuuiiiii i e e e e e e e e e e e e et e e e eaaaees 129
14.1. How Command Logging WOTKSiiiiiiiiiiiiiii e e e 129
14.2. Controlling Command LOGOINGccuuiiiiieiiieiiii e e e e et e e e e e e et e s eaanes 130
14.3. Configuring Command Logging for Optimal Performancecc.ccceeeviiiiviiiieinnns 130
I B o o TS = PP 131
14.3.2. LOQ FIEOUENCY ..ounitiiiitiiie ittt ettt e e eas 131
14.3.3. Synchronous vs. ASynchronous LOGGiNGuuevvvneeiunieriieiiiieeeneeeineeeaneeennnns 131
14.3.4. Hardware CONSIEratioNScocvvunieriiiiiieeeiise et e e e e e et e e 132

15. Importing and EXPOrting LiVe Dalalvevuuieiiieiiii e e e e e 134
15.1. Understanding EXPOIToiiuniiiiieiiie e e e e e e e e e e e e e e e e e aaas 134
15.2. Planning your EXPOrt SLrat@QYccuuieeuueeiiieiiiieeeiieeeiieeeieeeae e et e e ste e st eeesnaesaneens 135
15.3. Identifying Export Streams inthe SChemaccociiiiiiiiiii e, 137
15.4. Configuring Export in the Configuration Filecoooiiiiiiiii i 138
15.5. HOW EXPOIrt WOTKS ...coviiiiiicii et e e e et e e e e e e aaneees 139
15.5.1. EXPOrt OVETIOW ...cvviiiiicc e e e e 140
15.5.2. Persistence Across Database SESSIONSvvvvveieeiiiiiee e e e e 140

15.6. The File EXPOrt CONNECIONcuuiiiiiieii e ee e e e e e e e e e e e eanes 141
15.7. The HTTP EXPOrt CONNECIONuuiiiiiiiiieiiiieeie et e e e e e e e e e et e s e e e e eaaeees 142
15.7.1. Understanding HTTP Properti€Scovviiiii i e e 142
15.7.2. Exporting to Hadoop Via WEBHDFSccocoiiiiiii e, 144
15.7.3. Exporting to Hadoop Using Kerberos SECUrityc.oovevviiiiiiiiiiiiciiineciees 146

15.8. The IDBC EXPOrt CONNECLONcuuuiiiineeiieeei et e e e e eei e e et e et e s et e e et e e st eeaneeenns 146
15.9. The Kafka EXPOrt CONNECLOiiiunieiieeeii e e e e e e e e e e e e e e e e e eeaens 148
15.10. The RabbitMQ EXPOrt CONNECLONcovviiiiiieiii e e e e e e e e e e e 150
15.11. The Elasticsearch EXPOrt CONNECLONccvuvuieiiiieiiieiii e ee e e e e e e e eanaeens 152
15.12. Understanding IMPOItcoouniiiiiiii e e e e et e e e e e e eens 153
15.12.1. One-Time Import Using Data Loading Utilitiescccocoeveiiiiiiinncinn, 154
15.12.2. Streaming Import Using Built-in Import Featurescooceeeeviveiineninns 154
15.13. The KafKa IMPOIErouiii e e eaa s 155
15.14. The KineSIS IMPOIEriiieiii e e e e e e e e e e e 157
15.15. The CSV/TSV IMport FOrMELENScvuuiiiiieii e eee e e e e e e e e e eeans 158
A. Supported SQL DDL SEAatEMENESuiivnieiiiieiii e e e e e e e e e e e e e e et eeaneeaes 160
ALTER TABLE ..ottt et e et s e e et n e e e et e e e e et aeaaees 161
CREATE FUNCTION ...ttt e et e e et s e e et s e e et e e e e ann s 163
CREATE INDEX ..otiiiiiiii ettt ettt e et e e et s e e e et s e e e et reeaeaaaeeeee 165
CREATE PROCEDURE AS ..ottt e e et e e e et eeeennnns 167
CREATE PROCEDURE FROM CLASS ..ottt 169
CREATE ROLE ..ottt ettt e et s e e et s e e e et n e e e et aeaeanen 170
CREATE STREAM ..ottt e e e et e e et e e e e aaees 172
CREATE TABLE ..ottt et et e et e e et e e eenans 175
CREATE VIEW ..ttt ettt e et e e e et e e e e et r e e e e et naeeeatnaeeeenes 180
DR TABLE ..ottt et a et aae 182
DROP FUNGCTION ...uiiiiiiieetiit ettt ettt e et s e e ettt s e e e et s e e e eat s e e e eatn s eeeeaenneaeees 183
DROP INDEX ..ttt e e e e e et e e et e e e e et e e e e et s 184
DROP PROCEDURE ..ottt ettt e et e e et e e e e e e eaa e 185
DROP ROLE ..ottt sttt e e et e e e et e e e et e e e e et e e e e eba s 186
DROP STREAM ..ottt ettt e et e e et et e e e e et e e e e et e e e eetaaeeeees 187
DROP TABLE ..ot e e et 188
DROP VIEW ..ottt e e et e e e et e e e et e e e e et e e e e eaa s 189
PARTITION PROCEDUREcouuiiiiiiiiieiiii et n et e e e 190
PARTITION TABLE ...t e e e e e e e s 192
B. SUPPOrted SOL StAEEMENTSiuvieiieiii e e e e e e e e e e e e e e e e et e e e e e et e e e eeanns 193

Vi

Using VoltDB

] = R 194
1S = = g RSP 196
S = = E TR 198
L2007 1 = 7Y =TI U 205
U] 57N 1 =R 206
0] S o o PR 207

LTS @ I ¥ o T PN 209
Y =35 TR PRRRR 212
APPROX_COUNT _DISTINCT() cvveveeveieieiereeieeeeeetee e eeseeee s eeeeteeeeeaesereeeeesreeareaeeas 213
AREA() .ottt ettt ettt te e 214
ARRAY _ELEMENT() «.vveveeie ittt ee ettt te e ete e e ene e anaesnneeananees 215
ARRAY _LENGTH() cvveveeie et ettt e e ete et eae e anaeere e 216
NS = I TSRS 217
VLT TR 218
2| TP 219
= S T = o TP 220
=Y S o T W 2T TR 221
=] 7 0T R 222
= N 1 | TP 223
BITOR() .vveveeeteeeee et ete ettt ettt e et e et et e et e et e et e ete et eerteeteeete e e e eneeeteeneeareaeaeas 224
=]l 0] = R 225
(0731 1 T URORRTOTRR 226
(or =T 1 N LT IR 227
CENTROID() ..ttt ettt ettt et e et e et e et e et e ete e teeeae et e eteeeeeenee e 228
(o172 10 TR 229
CHAR _LENGTH() «.veeveeeie ettt ettt ete et ete et eeae e e e eteenaeaneeseeas 230
(010 Y I =15 = | TSRS 231
(00N {07 1/ TR 232
(o0 N Y1 NS TSP 233
(001 S 234
(0 1 | PR 235
(00181 N 1 TSR 236
(025 | I 237
CURRENT_TIMESTAMP() ...oeiveieeeeee ettt een s 238
B =Y 510 TR 239
DAY (), DAYOFMONTH() ...vveevieieeeecte e et ete ettt e et e eae et araeeeaasenaeeerae e 240
DAY OFWEEK () ...vevee ittt ettt e et et e et ete e et e te et e eaaeeteeneeeneaeeas 241
DAY OFYEAR() ottt ettt ettt e ettt ete et te e 242
(] =00 5] =/ SRR 243
DEGREES() ... vveveete ettt ettt ete et e e et et e et et e et e e e etn e e ete e 244
DIy Y N2 = U 245
DWITHIN() oottt ettt et e et e e et et e e eeteeete et e ereeeeeaneeareeieeas 246
EXP() vt eeee ettt ettt ettt ettt et e e e et et e e ateares 247
= 27X U 248
=TI TP 250
N0 0] TP 252
FORMAT_CURRENCY () «..eveiveieeeiiee e eeeeeeeete e e ete et eae e anaeete e e anaeeteaaeanaesaeas 253
FROM _UNIXTIME(Q eveveeieeee ettt e et ee et ae e e e 254
HEX() vttt ettt ettt ettt ettt ettt ettt et e et et et e e et e e are e e 255
HOUR() vttt ettt ettt ettt ettt ettt e et e et e et e eteeete et e eteeeteenaeeteeseeenaeens 256
INETB_ATON() «veeeeeetee ettt ettt te e ee e ettt e et ean e et e e e tesneesae e e ans 257
= T L@ R 258
1= N] T TR 259
INET_NTOA(Q veeeeeeie ettt ettt ettt et e e e e te et e et e eteeeae e e ereeeanens 260

Vii

Using VoltDB

[SINVALIDREASON() ©.tuueiiittietiiie e ettt e et e e et e e et e e e et e e e et e e e e et e e e aaaa e eeaaes 261
LSV ALID() eiittnieeiie ettt e e e e e e e e e e e e e 262
IS VALID_TIMESTAMP) oottt et 264
LATITUDE() oeivtnieiiii e e e e e e e e e e e et e e e e e e e e aaaans 265
[I TP UUPPPPRPPPIR 266
LINQ, LOG() eittnieiiie ettt ettt e e e e e e e 267
LOGIO() wetntiiiiii ettt e e e e e a s 268
LONGITUDE() +tuieiiittiieiii ettt ettt e e e e et e e e e e e et e e e e e s 269
LOWER() ©tutiiiitii ettt ettt et e 270
MAKEVALIDPOLY GON() ..evtutiiiiiiieeeiiie e e e e e et e e et e e et eaeaaans 271
A X () ettt e ettt et e e e et e e e at s 272
MAX VALID_TIMESTAMP() ..utiiiiiieiie et e e aens 273
VI EN) ittt e e e e e e a e 274
MIN_VALID_TIMESTAMP() ..uuiiiii ittt e e e et e e 275
IVIINUTE() iiitiiei it e e e e e e et e e e e et e e e e e tt e e e e e at e e e eerba e eesrtnaaaees 276
IVEOD() ittt ittt ettt et e e e e e et et e et e ata s 277
IMIONTH() ©oneiiiiii ettt e e e e e e e et e e e e e e e e e et e e e e e baaanns 278
N (@Y PPN SUPUPPRPPPIR 279
NUMINTERIORRINGS() ..vuiiiiiiiieieie et e e e e 280
NUMPOINTS() ootniieiiiiieee et e e e e e e e e et e e e et e e e et e e e e aba e eearanes 281
OCTET _LENGTHU() citvttiiiiiie ettt et et e e e e e e e e e e et e e e e b aas 282
OV ERLAY () wtntiiiiiiii ettt et e e e e e e e e e e e et e e e et e e et aeaaan 283
Pl () et e e e e e e e e et e et a e aaaaa 284
POINTFROMTEXT() tevttuieiiiiiii ettt ettt e e e e e e e et e e e et e e e et e e eeaaans 285
POLY GONFROMTEXT() tevtuueetiitiieeiiiiiee e e e et e et e e e et e e e e e e e et e e e et e e e e b 286
POSITION() . iettteei it e ettt e e et e e e e e e e e e e e et e e e e st e e e e st e e e eaaananns 287
POWER() ..eeittieiiit e ettt e ettt e et e e et e e e et e e e e e et e e e e e et e e e e eab e e earb e aeaaes 288
QUARTER() «.ieittieiiii et ettt ettt et e e e e e e e e et e e e et e e e et e e e et e e e e b nas 289
RADIANS() .. iiitit ettt e e e e s 290
REGEXP _POSITION() +tuuettittieiiiiie ettt et e e e e e e e e e et e e e e et e e e e eaaanas 291
[AN) TP P UPPPPRRPPOt 292
REPLAGCE() ..iiittieiiiie ettt ettt et e e e e et e e e e e e e e e e e e e a e s 293
RIGH T () cetniiiii e e e e e e e e e e 294
ROUNDI() ©tueiiette ettt ettt ettt et e e e e e e e e e e e e e e e e e et e e e e et eeeeaaaaans 295
S () ittt ittt e a s 296
SECOND() wetneiiiitie ettt ettt et e e e e e e e e e et et e et a e 297
SET FIELD() oeettneiiiiii e ettt e 298
SIN() ueeieet ettt e e e e e e et a et 300
SINCE _EPOCH() iittiiiiii ittt ettt e e e e e e e e e 301
SPA CE() cevtn i et e e e e 302
0 = (IO UPPPPPRPPIRt 303
ST R() ettt ittt ettt e e e e e e e e e e e e 304
SUBSTRING() ©tuueiiitiieiiiiie ettt e e e e e e e e e e et e e e e et e e e e et eeeeraa s 305
SUM () cetn ettt e e e e e e e e e et aaaataaaaan 306
BN L PP PP PP S UPPPP 307
TO TIMESTAMP) oot e e e 308
TRIM () ittt ettt e e et e e e e e e e e et a e 309
TRUNGCATE() +tuneieiiti ettt e e e e e e e e et e e e e et e e e e et e e e e eat e eeeastnaaaees 310
UPPER() ..ieittiiiiiii ettt ettt et e e e e e e e e e e e e et e e aa e aaaan 311
VALIDPOLY GONFROMTEXT() tevvuteiiiitiieeiiiiie et e e et e e et e e e et e e et e e e v e e e eeaans 312
WEEK (), WEEKOFYEAR() ..iitttiiiiiii ittt et e et e e et e e e et e 313
WMWVEEK DAY () ittt ettt ettt et e e e e e et e e e et e e e e e e e et aaaaaas 314
Y B A R) wetniiiie e e e e e e 315
D. VOItDB CLI COMMENGS . ..uuiiuiiiiiteiieeiee et et et e et e e e e e e et e et e et et e e aae et e eteereeans 316

Using VoltDB

(oY o= o = S PP 317
o o 1ox o= o = P 321
3 16 0 = o L= (N 324
S o | 1.1 N 328
170] = | 0 1T PN 332
17 o [TS 337
E. Configuration File (deployment.Xml)cooiiiiii i e 344
E.1 Understanding XIML SYNEXcccvniiiiiieiiieeiii e e ee e e e e e e e e et e e eaneeeaas 344
E.2. The Structure of the Configuration Fileccooiiiiiiiiii e, 344
F. VoItDB Datatype Compatibilityccouuiiiiiiiiiici e 350
F.1. Java and VoltDB Datatype Compatibilityccccoeiiiiiiiiiiii e 350
LTS Y= (= e (01010] =N 353
@ATHOC ... 354
L@ (L= T P 355
@EXPIAINPIOC ...viiii e e 356
(@ (o = T A A= 357
@GEPArtItIONKEYSiiiiieii e e e e e 359
(@] U = PSPPSR 361
(@] 0] 1010 (< 362
(VL N 1= o= N 363
@RS 0 364
L@ V100 [0, o TN 365
@SNAPSNOIDEIELE ... iivecei e e 366
@SNAPSNOIRESIONE . ..vu it e e e e e e e e et e et e e e e e aaaes 368
@ SNAPSNOLSAVE ...vuieei et e et e e e e e e e e e aaaa 370
(IS0 g0 o o 374
(@S 1 [377
(@S (o] o) N Lo [TSP 396
SNz I o === 398
(S Y (=410 = o o P 400
S YA (=101 1o 17 1 o o RN 405
@UpdateAppliCatioNCatalogcvvunieiii e e e e e 407
(U001 O = S = P 409
(@B T0 e = (I 0T o 1 oo T 411

List of Figures

1.1 Partitioning TaIEScoeiiieiei et 2
1.2, SEri@liZEU PrOCESSING ..oevtueiiettn ettt e et e e ettt e e ettt e e et et e e e ettt e et ettaeeeent e e eeentnaaaees 3
1.3. REPIICAING TADIES ...ttt 4
4.1. Components of a Database SCREMAuuiiiiiii e 16
4.2. Partitions Distribute Table Data and Stored Procedure ProCeSSiNgovevevvunrererineerernnnnns. 17
4.3. Diagram Representing the Flight Reservation Systemcooovviiiiiiiiiin e 19
5.1. Array of VOITEDIE SIIUCIUIESoovviieiiiii e 37
5.2. One VoltTable Structure is returned for each Queued SQL Statementccovvvevivieineiinnnnns 38
5.3. Stored Procedures Execute in the Appropriate Partition Based on the Partitioned Parameter

VAU Lttt eaaas 44
8.1. The Structure of the VOItDB JSON RESPONSEcccvutuiieiiiiiieeeiii et eeit e e eeni e 70
10.1. K-SAfELY 1N ACHON ..oeitiiieiii e ettt e et e e et e e e e e eees 80
10.2. NEWOIK Partitioneiieiiieiiiiie ettt et e et e e e e e 84
10.3. Network Fault ProteCtion in ACHONcoouuuuiiiiiii e e 85
11.1. Passive Database REPHCALIONocieiiiieiiiii et e 87
11.2. Cross Datacenter REPIICAIIONc.uuuiiiiiiie i 88
11.3. Replicating an EXisting Databaseoeieiiiieiiiiiee e 20
11.4. Promoting the REPIICAcoeutiieiiiii e 91
11.5. Read-Only AcCesS t0 the REPIICAuiiiiiii e 97
11.6. Standard XDCR CONFIQUIELIONuuiiiiiiieeieiiie et e ettt e e e e e e eenanns 102
11.7. XDCR Configuration with Read-Only RePliCaSoviviiiiiiiiiiiiiieiiii e 103
11.8. Transaction Order and Conflict RESOIULIONcocuveiiiiiiiiieiii e 103
14.1. Command Logging iN ACHIONoeiiiriieiiiiie et 129
14.2. RECOVENY IN ACHON .ottt et e e et e e e 130
15.1. Overview Of the EXPOrt PrOCESSuuuiiiiiiieieei ettt e 135
15.2. Flight Schema with EXPOrt SIrEamMScoeeiiiiiiiiii e 136
E.1. Configuration XIML SEUCTUIieeii ittt et e e 346

List of Tables

2.1. Operating System and Software REQUIFEMENTSoeiiuiiieiiiieeeei e 5
2.2. Components Installed Dy VOITDBcooiiiiiiieiiiiie et 7
4.1. Example Application WOrKIOadccouuiiiiiiiiiii e 19
5.1. Methods of the VOITTabIE ClaSSeSc.uuiiiiiiiieee e 39
8.1. Datatypes in the JISON INLEITACEuuniiiiiii e 69
11.1. Structure of the XDCR CONFIICE LOGS ... ceverrnieeiiiiieeeii ettt 108
12.1. Named Security PErMISSIONSuuiiieiieiiiii ettt e e e e 113
15.1. File EXPOIt PrOPEITIES ... ettt et e e e 141
15.2. HTTP EXPOrt PrOPEItIES ...ttt ettt e e et e eee e e eees 144
15.3. IDBC EXPOIT PrOPEITIES ..ottt sttt e e et e e e e b s 147
15.4. Kafka EXPOIT PrOPEITIES .. .ceveieiieii ettt ettt e et e e e ae s 149
15.5. RabbitMQ EXPOIt PrOPEITIES .. .cceveiiiiiiii ettt et e e 151
15.6. Elasticsearch EXPOrt ProOPErtiESiiieiieiiii ettt e 153
15.7. Kafka IMpOrt PrOPEITIES .. .coeuiiiieiii ettt e e 156
15.8. KineSiS IMPOIt PrOPEITIES ... coeeieieiiiii e e eer e 158
15.9. CSV and TSV FOrmatter PrOPErtieSceeeuuneieiiiiee ettt e et e e e eeai e 158
A.L SUPPOrted SQL DELBLYPES .. .ceeeruieeiiti ettt et e ettt e e et e ettt e et et e e e et e e eaa e eene 175
C.1. Selectable Values for the EXTRACT FUNCLONcc.uuiiiiiiiiieeiiii e 248
E.1. Configuration File Elements and AMIHDULESiiiiiiiiiii e 347
F.1. Java and VolItDB Datatype Compatibilityccoouuiiiiiiiiiieiiiie e 350
G.1. @SNAPSNOLSAVE OPLIONSceeetieeeetii ettt e et e et et e et e e e e ab e e enea s 371

Xi

List of Examples

4.1. DDL Example of a Reservation SChemacovuuiiiiiiiiii e
5.1. Components of a VoItDB Java Stored ProCEAUNeiieieiiiiiiii e
5.2. Cycles of Queue and Execute in @ Stored ProCeaUreuviviiiiiieiiiiie e
5.3. Displaying the Contents of VOITTabIE AITAYSooeiiiiieiiiie e

Xii

About This Book

This book is a complete guide to VolItDB. It describes what VolItDB is, how it works, and — more
importantly — how to use it to build high performance, data intensive applications. The book is divided
into five parts:

Part 1: Getting Started Explains what VolItDB is, how it works, how to install it, and how to
start using VoltDB. The chapters in this section are:

e Chapter 1, Overview
» Chapter 2, Installing VoltDB

» Chapter 3, Starting the Database

Part 2. Developing VoltDB|Describeshow to design and develop applicationsusing VoltDB. The
Database Applications chaptersin this section are:

Chapter 4, Designing the Database Schema

Chapter 5, Designing Stored Procedures to Access the Database

L]

Chapter 6, Designing VoltDB Client Applications

Chapter 7, Smplifying Application Devel opment

» Chapter 8, Using VoltDB with Other Programming Languages

Part 3: Running VoltDB in a|Describesadditional featuresuseful for running adatabaseinacluster.
Cluster The chaptersin this section are:

e Chapter 9, Using VoItDB in a Cluster
e Chapter 10, Availability
¢ Chapter 11, Database Replication

e Chapter 12, Security

Part 4: Managing the Data Provides techniques for ensuring data durability and integrity. The
chaptersin this section are:

e Chapter 13, Saving & Restoring a VoltDB Database
¢ Chapter 14, Command Logging and Recovery

e Chapter 15, Importing and Exporting Live Data

Part 5: Reference Material Provides reference information about the languages and interfaces
used by VoltDB, including:

« Appendix A, Supported SQL DDL Satements

* Appendix B, Supported SQL Satements

Appendix C, SQL Functions

» Appendix D, VoltDB CLI Commands

Xiii

About This Book

« Appendix E, Configuration File (deployment.xml)
e Appendix F, VoltDB Datatype Compatibility

* Appendix G, System Procedures

This book provides the most complete description of the VoltDB product. It includes features from both
the open source Community Edition and the commercial products VoltDB Enterprise Edition and VoltDB
Pro. In general, the features described in Parts 1 and 2 are available in all versions of the product. Severa
featuresin Parts 3 and 4 are unique to the commercial products.

If you are new to VoltDB, the VoltDB Tutorial provides an introduction to the product and its features.
Thetutorial, and other books, are available on the web from http://docs.voltdb.com/.

Xiv

http://docs.voltdb.com/tutorial/
http://docs.voltdb.com/

Chapter 1. Overview
1.1. What is VoltDB?

VoltDB is arevolutionary new database product. Designed from the ground up to be the best solution for
high performance business-critical applications, the VoltDB architectureisable to achieve 45 times higher
throughput than current database products. The architecture also allows VoltDB databases to scale easily
by adding processors to the cluster as the data volume and transaction requirements grow.

Current commercial database products are designed as general-purpose data management solutions.
They can be tweaked for specific application requirements. However, the one-size-fits-all architecture of
traditional databases limits the extent to which they can be optimized.

Although the basic architecture of databases has not changed significantly in 30 years, computing has. As
have the demands and expectations of business applications and the corporations that depend on them.

VoltDB is designed to take full advantage of the modern computing environment:
» VoItDB uses in-memory storage to maximize throughput, avoiding costly disk access.

» Further performance gains are achieved by serializing al data access, avoiding many of the time-
consuming functions of traditional databases such aslocking, latching, and maintaining transaction logs.

 Scalability, reliability, and high availability are achieved through clustering and replication across
multiple servers and server farms.

VoltDB isafully ACID-compliant transactional database, relieving the application developer from having
to develop code to perform transactions and manage rollbacks within their own application. By using
ANSI standard SQL for the schema definition and data access, VoltDB also reduces the learning curve
for experienced database designers.

1.2. Who Should Use VoltDB

VoltDB is not intended to solve all database problems. It is targeted at a specific segment of business
computing.

VoltDB focuses specifically on fast data. That is, applications that must process large streams of data
quickly. This includes financia applications, social media applications, and the burgeoning field of the
Internet of Things. The key requirementsfor these applications are scalability, reliability, high availability,
and outstanding throughput.

VoltDB is used today for traditional high performance applications such as capital markets data feeds,
financial trade, telco record streams and sensor-based distribution systems. It's also used in emerging
applications like wireless, online gaming, fraud detection, digital ad exchanges and micro transaction
systems. Any application requiring high database throughput, linear scaling and uncompromising data
accuracy will benefit immediately from VoltDB.

However, VoltDB is not optimized for all types of queries. For example, VoltDB is not the optimal choice
for collecting and collating extremely large historical data sets which must be queried across multiple
tables. This sort of activity is commonly found in business intelligence and data warehousing solutions,
for which other database products are better suited.

Overview

To aid businesses that require both exceptional transaction performance and ad hoc reporting, VoltDB
includes integration functions so that historical data can be exported to an analytic database for larger
scale data mining.

1.3. How VoltDB Works

VoltDB is not like traditional database products. Each VoltDB database is optimized for a specific
application by partitioning the database tables and the stored procedures that access those tables across
multiple"sites" or partitions on one or more host machinesto create the distributed database. Because both
the data and the work is partitioned, multiple queries can be run in parallel. At the same time, because
each site operates independently, each transaction can run to completion without the overhead of locking
individual records that consumes much of the processing time of traditional databases. Finally, VoltDB
balances the requirements of maximum performance with the flexibility to accommodate less intense but
equally important queries that cross partitions. The following sections describe these concepts in more
detail.

1.3.1. Partitioning

In VoltDB, each stored procedure is defined as a transaction. The stored procedure (i.e. transaction)
succeeds or rolls back as awhole, ensuring database consistency.

By analyzing and precompiling the data access logic in the stored procedures, VVoltDB can distribute both
the data and the processing associated with it to the individual partitions on the cluster. In this way, each
partition containsaunique "dlice" of the data and the data processing. Each node in the cluster can support
multiple partitions.

Figure 1.1. Partitioning Tables

Table

B Database
Table Table Schema
A C
A B' CI A" | B" cll A g™ Cm Ru n.—-.ri rn.e
Partitioning
Partition Partition Partition
X Y z

1.3.2. Serialized (Single-Threaded) Processing

At run-time, cals to the stored procedures are passed to the appropriate partition. When procedures are
"single-partitioned” (meaning they operate on data within a single partition) the server process executes
the procedure by itself, freeing the rest of the cluster to handle other requestsin parallel.

Overview

By using serialized processing, VoltDB ensurestransactional consistency without the overhead of locking,
latching, and transaction logs, while partitioning lets the database handle multiple requests at a time.
As a general rule of thumb, the more processors (and therefore the more partitions) in the cluster, the
more transactions VoltDB completes per second, providing an easy, amost linear path for scaling an
application's capacity and performance.

When a procedure does require data from multiple partitions, one node acts as a coordinator and hands out
the necessary work to the other nodes, collectsthe results and completes the task. This coordination makes
multi-partitioned transactions slightly slower than single-partitioned transactions. However, transactional

integrity is maintained and the architecture of multiple parallel partitions ensures throughput is kept at a
maximum.

Figure 1.2. Serialized Processing

Stored Proc.

Stored Proc. Workload
Stored Proc. Queue
Stored Proc.
| |
i =)
=
Stored Proc. Stored Proc. Stored Proc.
Stored Proc. Stored Proc. Stored Proc.
Stored Proc. Stored Proc. Stored Proc. P D|St_”h_'UTEd,
Serialized
Processing

Partition
Y

Partition
X

Partition
Fd

It isimportant to note that the V oltDB architecture is optimized for total throughput. Each transaction runs
uninterrupted in its own thread, minimizing the individual latency per transaction (the time from when the
transaction begins until processing ends). This also eliminates the overhead needed for locking, latching,
and other administrativetasks, reducing the amount of timerequestssit in the queue waiting to be executed.
Theresult isthat for a suitably partitioned schema, the number of transactions that can be completed in a
second (i.e. throughput) is orders of magnitude higher than traditional databases.

1.3.3. Partitioned vs. Replicated Tables

Tablesare partitioned in VoltDB based on acolumn that you, the devel oper or designer, specify. Whenyou
choose partitioning columns that match the way the datais accessed by the stored procedures, it optimizes
execution at runtime.

To further optimize performance, VoltDB allows certain database tables to be replicated to all partitions
of the cluster. For small tables that are largely read-only, this allows stored procedures to create joins
between this table and another larger table while remaining a single-partitioned transaction. For example,
aretail merchandising database that uses product codes as the primary key may have one table that simply
correlates the product code with the product's category and full name, Since thistable is relatively small
and does not change frequently (unlikeinventory and orders) it can bereplicated to all partitions. Thisway
stored procedures can retrieve and return user-friendly product information when searching by product
code without impacting the performance of order and inventory updates and searches.

Overview

Figure 1.3. Replicating Tables

Tagle Database Schema
Table Table
A C
Table
D

AlB | Al Run-Time
Partitioning &
D D Replication
X z

1.3.4. Ease of Scaling to Meet Application Needs

The VoltDB architecture is designed to simplify the process of scaling the database to meet the changing
needs of your application. Increasing the number of nodesin aVoltDB cluster both increases throughput
(by increasing the number of simultaneous queues in operation) and increases the data capacity (by
increasing the number of partitions used for each table).

Scaling up a VoltDB database is a simple process that doesn't require any changes to the database schema
or application code. Y ou can either:

» Save the database (using a snapshot), then restart the database specifying the new number of nodes for
the resized cluster and using restore to rel oad the schema and data.

» Add nodes "on the fly" while the database is running.

1.4. Working with VoltDB Effectively

It is possible to use VoltDB like any other SQL database, creating tables and performing ad hoc SQL
gueries using standard SQL statements. However, to take full advantage of VoltDB's capabilities, it is best
to design your schemaand your stored proceduresto maximizethe use of partitioned tablesand procedures.
There are also additional features of VoltDB to increase the availability and durability of your data. The
following sections explain how to work effectively with VoltDB, including:

» Chapters 2 and 3 explain how to install VoltDB and create a new database.

» Chapters 4 through 8 explain how to design your database, stored procedures, and client applications
to maximize performance.

e Chapters 9 through 12 explain how to create and use VoltDB clusters to increase scalability and
availability.

» Chapters 13 through 15 explain how VoltDB ensures the durability of your data and how you can
integrate VoltDB with other data sources using export for complete business solutions

Chapter 2. Installing VoltDB

VoltDB isavailablein both open source and commercia editions. The open source, or community, edition
provides all the transactional performance benefits of VoltDB, plus basic durability and availability.
The commercia editions provide additional features needed to support production environments, such as
complete durability, dynamic scaling, and WAN replication.

Depending on which version you choose, the VoltDB software comes as either pre-built distributions or
as source code. This chapter explains the system requirements for running VoltDB, how to install and
upgrade the software, and what resources are provided in the kit.

2.1. Operating System and Software Requirements

The following are the requirements for developing and running VoltDB applications.

Table 2.1. Operating System and Softwar e Requirements

Operating System

VoltDB requires a 64-bit Linux-based operating system. Kits are built and
qualified on the following platforms:

» CentOS version 6.6 or later, including 7.0 and later
» Red Hat (RHEL) version 6.6 or later, including 7.0 and later
* Ubuntu versions 14.04 and 16.04

Development builds are also available for Macintosh OS X 10.9 and |atert.

CPU « Dual core? x86_64 processor
e 64 hit
e 1.6 GHz

Memory 4 Gbyt%3

Java’ VoltDB Server: Java8

Javaand JDBC Client: Java7 or 8

Required Software

NTP®

Python 2.6 or later release of 2.x

Recommended Software

Eclipse 3.x (or other Java IDE)

Footnotes:

optimal performance.

1. CentOS 6.6, CentOS 7.0, RHEL 6.6, RHEL 7.0, and Ubuntu 14.04 and 16.04 are the only officially
supported operating systems for VoltDB. However, VoItDB is tested on several other POSIX-
compliant and Linux-based 64-bit operating systems, including Macintosh OS X 10.9.

2. Dual core processors are a minimum requirement. Four or eight physical cores are recommended for
3. Memory requirementsare very specific to the storage needs of the application and the number of nodes
in the cluster. However, 4 Gigabytes should be considered a minimum configuration.

4. VoltDB supports JDKs from OpenJDK or Oracle/Sun.

Installing VoltDB

5. NTP minimizes time differences between nodes in a database cluster, which is critical for VoltDB.
All nodes of the cluster should be configured to synchronize against the same NTP server. Using a
single local NTP server is recommended, but not required.

2.2. Installing VoltDB

VoltDB is distributed as a compressed tar archive. The file name identifies the edition (community or
enterprise) and the version number. The best way to install VoltDB is to unpack the distribution kit as a
folder in the home directory of your personal account, like so:

$ tar -zxvf voltdb-ent-7.0.tar.gz -C $HOW/

Installing into your personal directory gives you full access to the software and is most useful for
development.

If you are installing VoltDB on a production server where the database will be run, you may want to
install the software into a standard system location so that the database cluster can be started with the
same commands on all nodes. The following shell commands install the VoltDB software in the folder
/opt/vol tdb:

$ sudo tar -zxvf voltdb-ent-7.0.tar.gz -C /opt
$ cd /opt
$ sudo nv voltdb-ent-7.0 vol tdb

Note that installing as root using the sudo command makes the installation folders read-only for non-
privileged accounts. Which is why installing in $HOME is recommended for running the sample
applications and other development activities.

2.2.1. Upgrading From Older Versions

When upgrading an existing database from a recent version of VoltDB, the easiest way to upgrade is as
follows:

1. Perform an orderly shutdown of the database, saving afinal snapshot (voltadmin shutdown --save)
2. Upgrade the VoltDB software
3. Restart the database (voltdb start)

Using this process VoltDB automatically restoresthe final snapshot taken before the upgrade. To upgrade
VoltDB on clusters running database replication (DR), see the instructions specific to DR in the VoltDB
Administrator's Guide.

If you are upgrading from a version before V6.8, you need to save and restore the snapshot manually. In
which case, the recommended steps for upgrading an existing database are:

1. Place the database in admin mode (voltadmin pause --wait).

2. Perform amanual snapshot of the database (voltadmin save --blocking).
3. Shutdown the database (voltadmin shutdown).

4. Upgrade VoltDB.

5. Initialize a new database root directory (voltdb init)

https://docs.voltdb.com/AdminGuide/MaintainUpgradeVoltdb.php
https://docs.voltdb.com/AdminGuide/
https://docs.voltdb.com/AdminGuide/

Installing VoltDB

2.2.2.

6. Start the new database in admin mode (voltdb start --pause).
7. Restore the snapshot created in Step #2 (voltadmin restore).

8. Return the database to normal operations (voltadmin resume).

Building a New VoltDB Distribution Kit

If you want to build the open source VoltDB software from source (for example, if you want to test recent
development changes), you must first fetch the VoltDB source files. The VoltDB sources are stored in a
GitHub repository.

The VoltDB sources are designed to build and run on 64-bit Linux-based or 64-bit Macintosh platforms.
However, the build process has not been tested on all possible configurations. Attemptsto build the sources
on other operating systems may require changes to the build files and possibly to the sources as well.

Once you obtain the sources, use Ant 1.7 or later to build anew distribution kit for the current platform:
$ ant dist

The resulting distribution kit is created as obj / rel ease/ vol t-n. n.nn.tar. gz where n.n.nn
identifiesthe current version and build numbers. Usethisfiletoinstall VoltDB according to theinstructions
in Section 2.2, “Installing VoltDB”.

2.3. Setting Up Your Environment

VoltDB comes with shell command scripts that simplify the process of devel oping and deploying VoltDB
applications. These scripts are in the /bin folder under the installation root and define short-cut commands
for executing many VoltDB actions. To make the commands available to your session, you must include
the /bin directory as part your PATH environment variable.

You can add the/ bi n directory to your PATH variable by redefining PATH. For example, the following
shell command adds / bi n to the end of the environment PATH, assuming you installed the VoltDB
Enterprise Edition as/ vol t db- ent - n. n in your SHOME directory:

$ export PATH="$PATH: $HOVE/ vol t db- ent - n. n/ bi n"

To avoid having to redefine PATH every time you create a new session, you can add the preceding
command to your shell login script. For example, if you are using the bash shell, you would add the
preceding command to the $HOVE/ . bashr c file.

2.4. What is Included in the VoltDB Distribution

Table 2.2 lists the components that are provided as part of the VoltDB distribution.

Table 2.2. Components|nstalled by VoltDB

Component Description

VoltDB Software & Runtime The VoltDB software comes as Javaarchives ((JAR
files) and a callable library that can be found in the
/ vol t db subfolder. Other software libraries that
VolItDB dependson areincludedin aseparate/ | i b
subfolder.

https://github.com/VoltDB/voltdb

Installing VoltDB

Component Description

Example Applications VoltDB comes with several example applications
that demonstrate VoltDB capabilities and
performance. They can be found in the /
exanpl es subfolder.

VoltDB Management Center VoltDB Management Center is a browser-based
management tool for monitoring, examining,
and querying a running VoltDB database. The
Management Center is bundled with the VoltDB
server software. You can start the Management
Center by connecting to the HTTP port of arunning
VoltDB database server. For example, http://
vol t svr: 8080/ . Note that the httpd server and
JSON interface must be enabled on the server to be
able to access the Management Center.

Shell Commands The/ bi n subfolder contains executable scripts to
perform common VoltDB tasks, such as starting the
VoltDB server process and issuing database queries
from the command line using sglcmd, Add the /
bi n subfolder to your PATH environment variable
to use the following shell commands:

csvloader
jdbcloader
kafkal oader
sglemd
voltadmin
voltdb

Documentation Online documentation, including the full manuals
and javadoc describing the Java programming
interface, isavailablein the/ doc subfolder.

2.5. VoltDB in Action: Running the Sample
Applications

Once you install VoltDB, you can use the sample applications to see VoltDB in action and get a better
understanding of how it works. The easiest way to do this is to set directory to the / exanpl es folder
where VoltDB isinstalled. Each sample application hasits own subdirectory and arun.sh script to simplify
building and running the application. Seethe README fileinthe/ exanpl es subfolder for acomplete
list of the applications and further instructions.

Once you get ataste for what VVoltDB can do, we recommend following the VoltDB tutorial to understand
how to create your own applications using VoltDB.

http://docs.voltdb.com/tutorial/

Chapter 3. Starting the Database

This chapter describes the procedures for starting and stopping a VoltDB database and includes details
about configuring the database. The chapter contains the following sections:

* Section 3.1, “Initializing and Starting a VoltDB Database”

» Section 3.2, “Initializing and Starting a VoltDB Database on a Cluster”
» Section 3.3, “Stopping a VoltDB Database’

 Section 3.5, “Restarting a VoltDB Database”

» Section 3.6, “Updating Nodes on the Cluster”

» Section 3.7, “ Defining the Cluster Configuration”

3.1. Initializing and Starting a VoltDB Database

Before you start a VoltDB database, you must initialize the root directory where VoltDB stores its
configuration data, logs, and other disk-based information. Once you initialize the root directory, you
can start the database. For example, you can accept the defaults for the voltdb init and start commands
to initialize and start a new, single-node database suitable for developing and testing a database and
application.

$ voltdb init
$ voltdb start

ThiscreatesaVVoltDB root directory as asubfolder of your current working directory and starts a database
with all default options. Y ou only need to initialize the root directory once and can then start and stop the
database as often asyou like.

$ vol tadm n shut down
$ voltdb start

If you are using command logging, which is enabled by default in the VoltDB Enterprise Edition, VoltDB
automatically saves and recovers your database between any stoppage and a restart. If you are not using
command logging, you will want to save a snapshot before shutting down. The easiest way to do thisis
by adding the --save argument to the shutdown command.

The snapshot is automatically restored when the database restarts:

$ vol tadm n shutdown --save
$ voltdb start

If you want to create a new database, you can reinitialize the root directory. However, you must use the --
force flag if the database has already been used; VoltDB will not clear the root directory of existing data
unless you explicitly "force" it to.

$ voltdb init --force
$ voltdb start

Also, you can specify an alternate location for the root directory using the - - di r or - Dflag. Of course,
you must specify the same location for the root directory when both initializing and starting the database.
Y ou cannot start a database in adirectory that has not been initialized.

Starting the Database

$ voltdb init --dir=~/nydb
$ voltdb start --dir=~/nmydb

In most cases, you will want to use additional argumentsto configure the server and database options. But
the preceding commands are sufficient to get you started in a test environment. The rest of this chapter
explains how to use other arguments and how to start, stop, and recover a database when using a cluster.

Finally, when using the VoltDB Enterprise Edition, you must provide a license file when starting the
database. VoltDB looks for the license asafilenamed | i cense. xmi in three possible locations, in the
following order:

1. The current working directory

2. The directory where the VoltDB image files are installed (usually in the / vol t db subfolder of the
installation directory)

3. The current user's home directory

If the license fileis not in any of these locations, you must explicitly identify it when you run the voltdb
start command using the- - | i cense or - | flag. For example, the command might be;

$ voltdb start -1 /usr/share/voltdb-1icense. xm

The examples in this manual assume that the license file is in one of the default locations and therefore
do not show the - - | i cense flag for simplicity's sake.

3.2. Initializing and Starting a VoltDB Database on
a Cluster

You initialize and start a cluster the same way you start a single node: with the voltdb init and start
commands. The only difference is that when starting the cluster, you must tell the cluster nodes how big
the cluster is and which nodes to use as potential hosts for the startup.

You initialize aroot directory on each server using the voltdb init command. Y ou can accept the default
configuration as shown in the previous section. However, when setting up acluster you often want to make
some configuration adjustments (for example, enabling K-safety). So it isagood ideato get into the habit
of specifying a configuration file.

Y ou specify the configuration file with the - - conf i g or - Cflag when you initialize the root directory.
All nodes must use the same configuration file. For example:

$ voltdb init -D ~/nmydb --config=nmyconfig.xm

Once the nodes are initialized, you start the cluster by issuing the voltdb start command on all nodes
specifying the following information:

* Number of nodesin the cluster: When you start the cluster, you specify how many servers will make
up the cluster using the - - count flag.

* Host names: Y ou specify the hostnames or |P addresses of one or more servers from the cluster that
are potential "hosts" for coordinating the formation of the cluster. Y ou specify the list of hosts with the
--host or - Hflag. You must specify at least one node as a host.

For each node of the cluster, log in and start the server process using the same voltdb start command. For
example, the following example starts a five-node database cluster specifying voltsvrl as the host node.

10

Starting the Database

Be sure the number of nodes on which you run the command match the number of nodes specified in the
- - count argument.

$ voltdb start --count=5 --host=voltsvrl
Or you can also use shortened forms for the argument flags:
$ voltdb start -¢c 5 -H voltsvrl

Although you only need to specify one potential host, it isagood ideato specify multiple hosts. Thisway,
you can use the exact same command for both starting and rejoining nodes in a highly-available cluster.
Even if the rejoining node isin the host list another, running node can be chosen to facilitate the rejoin.

To simplify even further, you can specify all of the serversin the - - host argument. If you do this, you
can skip the - - count argument. If - - count ismissing, VoltDB assumes the number of serversin the
- - host list is complete and sets the server count to match. For example, the following command —
issued on al three servers — starts a three node cluster:

$ voltdb start --host=svrA svrB,svrC
When starting a VoltDB database on a cluster, the VoltDB server process performs the following actions:

1. If you are starting the database process on the node selected as the host node, it waits for initialization
messages from the remaining nodes. The host is selected from the list of hosts on the command line
and plays aspecial role during startup by managing the cluster initiation process. It isimportant that all
nodesin the cluster can resolve the hostnames or | P addresses of the host nodes you specify.

2. If you are starting the database on a non-host node, it sends an initialization message to the host
indicating that it isready. The databaseis not operational until the correct number of nodes (as specified
on the command line) have connected.

3. Onceadll the nodes have sent initialization messages, the host sends out amessage to the other nodes that
the cluster is complete. Once the startup procedure is complete, the host'sroleis over and it becomes a
peer like every other nodein the cluster. It performs no further special functions.

Manually logging on to each node of the cluster every time you want to start the database can be tedious.
Instead, you can use secure shell (ssh) to execute shell commands remotely. By creating an ssh script (with
the appropriate permissions) you can copy files and/or start the database on each node in the cluster from
asingle script. Or you can use the VoltDB Deployment Manager to start clusters from a single web-based
interface. See the chapter on "Deploying Clusters with the VoltDB Deployment Manager" in the VoltDB
Administrator's Guide for more information

3.3. Stopping a VoltDB Database

OncetheVoltDB databaseisup and running, you can shut it down by stopping the V oltDB server processes
on each cluster node. However, it is easier to stop the database as a whole with a single command. You
do this with the voltadmin shutdown command, which pauses database activity, completes al current
transactions, and empties any queued data (such as export or database replication) before shutting down.
For example, entering the following command without specifying a host server will perform an orderly
shut down the database cluster the current systemis part of.

$ vol tadm n shut down

If you are not using command |ogging, which automatically saves all progress, be sure to add the --save
argument to save afinal snapshot before shutting down:

11

https://docs.voltdb.com/AdminGuide/DeployChap.php
http://docs.voltdb.com/AdminGuide/
http://docs.voltdb.com/AdminGuide/

Starting the Database

$ vol tadm n shutdown --save

To shutdown a database running on another system, use the - - host argument to access the remote
database. For example, the following command shuts down the VoltDB database that includes the server
Zeus:

$ voltadnm n shutdown --host=zeus

You can pause the database using the voltadmin pause command to restrict clients from accessing it
whileyou perform changesin administration mode. Y ou resume the database using the voltadmin resume
command. See the VoltDB Administrator's Guide for more about modes of operation.

3.4. Saving the Data

Because VolItDB is an in-memory database, once the database server process stops, the database schema
and the dataitself are removed from memory. However, VoltDB can save thisinformation to disk through
the use of command logs and snapshots, so use of these featuresis strongly encouraged.

» Command logging provides the most complete data durability for VoltDB and is enabled by default
in the VoltDB Enterprise Edition. Command logging works automatically by saving arecord of every
transaction. These logs can then be replayed if the database stops for any reason.

» Snapshots, on the other hand, provide a point-in-time copy of the database contentswritten to disk. You
can create snapshots manually with the voltadmin save command, you can enable periodic (al so known
as automatic) snapshots, or you can save a fina snapshot when you shutdown the database using the
voltadmin shutdown --save command. Snapshots are restored when the database restarts, but only take
you back to the state of the database at the time the last snapshot was saved.

To learn more about using command logging see Chapter 14, Command Logging and Recovery. To learn
more about how to save and restore snapshots of the database, see Chapter 13, Saving & Restoring a
VoltDB Database.

3.5. Restarting a VoltDB Database

Once adatabase stops, you canrestart it using the samevoltdb start command used to start the databasethe
first time. Once the database starts, any command logs or snapshots are restored. Inthe VoltDB Enterprise
Edition, command logs automatically restore the last state of the database. If no command log exist but a
snapshot does, the databaseisrestored to its state when that snapshot wastaken. For example, thefollowing
command restarts a single-node database:

$ voltdb start

Torestart adatabase on acluster, issue the same voltdb start command used to start that cluster, including
the server count and list of host nodes. For example:

$ voltdb start --count=5 -—host=voltsvril

3.6. Updating Nodes on the Cluster

A cluster is a dynamic system in which nodes might be stopped either deliberately or by unforeseen
circumstances, or nodes might be added to the cluster on-the-fly to scale the database for improved
performance. The voltdb start command provides the following additional functions, described later in
this book, for rejoining and adding nodes to arunning VoltDB database:

12

http://docs.voltdb.com/AdminGuide/

Starting the Database

¢ Section 10.3, “Recovering from System Failures” — Use the same voltdb start command to start the
cluster or rejoin afailed node.

e Section 9.2.1, “Adding Nodes with Elastic Scaling” — Use voltdb start with the --add flag to add a
new node to the running database cluster.

3.7. Defining the Cluster Configuration

Two important aspects of a VoltDB database are the physical layout of the cluster that runs the database
and the database features you choose to use. Y ou define the physical cluster layout on the voltdb start
command using the- - count and- - host arguments. Y ou enable and disabl e specific database features
in the configuration file when you initialize the database root directory with the voltdb init command.

The configuration fileisan XML file, which you specify when you initialize the root directory. The basic
syntax of the configuration fileisasfollows:

<?xm version="1.0"?7>
<depl oynent >
<cl uster kfactor="n" />

<feature option... >
</feature>

</ depl oynent >

The attributes of the <cl ust er > tag define the layout of the database partitions. The attributes of the
<cl ust er > tag are:

e diteperhost — specifies the number of partitions created on each server in the cluster. The
si t esper host value times the number of servers gives you the total number of partitions in the
cluster. See Section 3.7.1, “ Determining How Many Sites per Host” for moreinformation about partition
count.

» kfactor — specifies the K-safety value to use for durability when creating the database. The K-safety
value controls the duplication of database partitions. See Chapter 10, Availability for more information
about K-safety.

In the smplest case — when running on a single node with no special options enabled — you can skip
the configuration file on the voltdb init command and the server count and host list on the voltdb start
command. If you do not specify a configuration file, VoltDB defaults to eight execution sites per host,
and a K-safety value of zero.

The configuration file is also used to enable and configure many other runtime options related to the
database, which are described later in this book. For example, the configuration file can specify:

» Whether security is enabled and what users and passwords are needed to authenticate clients at runtime.
See Chapter 12, Security for more information.

A schedule for saving automatic snapshots of the database. See Section 13.2, “ Scheduling Automated
Snapshots”’.

 Properties for exporting and importing data to other data sources. See Chapter 15, Importing and
Exporting Live Data.

13

Starting the Database

3.7.1.

For the complete configuration file syntax, see Appendix E, Configuration File (deployment.xml).

Determining How Many Sites per Host

There is very little penalty for allocating more sites than needed for the partitions the database will use
(except for incremental memory usage). Consequently, VoltDB defaults to eight sites per node to provide
reasonable performance on most modern system configurations. This default does not normally need to be
changed. However, for systemswith alarge number of available processors (16 or more) or older machines
with fewer than 8 processors and limited memory, you may wish to tunethe si t esper host attribute.

The number of sites needed per node is related to the number of processor cores each system has, the
optimal number being approximately 3/4 of the number of CPUs reported by the operating system. For
example, if you are using a cluster of dual quad-core processors (in other words, 8 cores per node), the
optimal number of partitionsis likely to be 6 or 7 sites per node.

<?xm version="1.0"?>
<depl oynent >
<cl uster
sit esperhost =" 6"
/>
</ depl oynent >

For systems that support hyperthreading (where the number of physical cores support twice as many
threads), the operating system reports twice the number of physical cores. In other words, a dual quad-
core system would report 16 virtual CPUs. However, each partition is not quite as efficient as on non-
hyperthreading systems. So the optimal number of sitesis more likely to be between 10 and 12 per node
in this situation.

Because there are no hard and set rules, the optimal number of sites per node is best calculated by
actually benchmarking the application to see what combination of cores and sites producesthe best results.
However, it is important to remember that al nodes in the cluster will use the same number of sites. So
the best performance is achieved by using a cluster with all nodes having the same physical architecture
(i.e. cores).

3.7.2. Configuring Paths for Runtime Features

An important aspect of some runtime featuresisthat they make use of disk resourcesfor persistent storage
across sessions. For example, automatic snapshots need a directory for storing snapshots of the database
contents. Similarly, export uses disk storage for writing overflow dataif the export connector cannot keep
up with the export queue.

Y ou can specify individual pathsfor each featureintheconfigurationfile. If not, VoltDB creates subfol ders
for each feature in the database root directory as needed, which can be useful for testing. However, in
production, it isuseful to direct certain high volumefeatures, such ascommand logging, to separate devices
to avoid disk 1/0 affecting database performance.

Y ou can identify specific path locations, within the <pat hs> element, for the following features:
» <conmandl og>

» <conmandl ogsnapshot >

e <exportoverfl ow>

e <snapshot s>

14

Starting the Database

If you name a specific feature path and it does not exist, VoltDB attemptsto createit for you. For example,
the<expor t over f | ow> path containstemporary datawhich can be deleted periodically. Thefollowing
excerpt from a configuration file specifies/ opt / over f | owasthe directory for export overflow.

<pat hs>
<exportoverfl ow path="/opt/overflow' />
</ pat hs>

3.7.3. Verifying your Hardware Configuration

The configuration file and start command options define the desired configuration of your database cluster.
However, there are several important aspects of the physical hardware and operating system configuration
that you should be aware of before running VoltDB:

» VoltDB can operate on heterogeneous clusters. However, best performance is achieved by running the
cluster on similar hardware with the same type of processors, number of processors, and amount of
memory on each node.

 All nodes must be able to resolve the | P addresses and host names of the other nodesin the cluster. That
means they must all have valid DNS entries or have the appropriate entries in their local hostsfile.

* You must run the Network Time Protocol (NTP) on all of the cluster nodes, preferably synchronizing
against the same local time server. If the time skew between nodes in the cluster is greater than 200
milliseconds, VoltDB cannot start the database.

* Itisstrongly recommended that you run NTP with the - x argument. Using nt pd - x stops the server
from adjusting time backwards for all but very large increments. If the server time moves backward,
VoltDB must pause and wait for time to catch up.

15

Chapter 4. Designing the Database
Schema

VoltDB is a relational database product. Relational databases consist of tables and columns, with
constraints, indexes, and views. VoltDB uses standard SQL database definition language (DDL) statements
to specify the database schema. So designing the schemafor a VoltDB database uses the same skills and
knowledge as designing a database for Oracle, MySQL, or any other relational database product.

This guide describes the stages of application design by dividing the work into three chapters:
» Design the schema in DDL to define the database structure. Schema design is covered in this chapter.

» Design stored procedur esto access datain the database. Stored procedures provide client applications
an application programming interface (API) to the database. Stored procedures are covered in Chapter 5,
Designing Stored Procedures to Access the Database.

» Design clients to provide business logic and also connect to the database to access data. Client
application design is covered in Chapter 6, Designing VoltDB Client Applications.

The database schema is a specification that describes the structure of the VVoltDB database such as tables
and indexes, identifies the stored procedures that access data in the database, and defines the way tables
and stored procedures are partitioned for fast data access. When designing client applications to use the
database, the schema specifies the details needed about data types, tables, columns, and so on.

Figure 4.1. Components of a Database Schema

Schema

Stored
Procedures

Tables,
views,
indexes,
etc.

Partitioning
information

Along with designing your database tables, an important aspect of VoltDB database design is partitioning,
which provides much more efficient access to data and processing. Partitioning distributes the rows of a
table and the processing to access the table across several, independent partitions instead of one. Your
design requires coordinating the partitioning of both database tables and the stored procedures that access
the tables. At design time you choose a column on which to partition a tabl€e's rows. You aso partition
stored procedures on the same column if they use the column to identify which rows to operate on in the
table.

At runtime, VoltDB decides which cluster nodes and partitions to use for the table partitions and
consistently allocates rows to the appropriate partition. Figure 4.2, “Partitions Distribute Table Data
and Stored Procedure Processing” shows how when data is inserted into a partitioned table, VoltDB
automatically allocates the data to the correct partition. Also, when a partitioned stored procedure is
invoked, VoltDB automatically executes the stored procedure in the single partition that has the data
requested.

16

Designing the Database Schema

Figure 4.2. Partitions Distribute Table Data and Stored Procedur e Processing

Physical

Logical

Partition 1 Schema

Server 1

Pariion 2 - Procedure

-
- - . T
invocation

Partition 3

Partition 4

Server 2
information I

)
@
o
o
D
n
®

I Partitioning I

— — Ad hoc
Partition 5 L - SQL query

Server 3

Partition 6

The following sections of this chapter provide guidelines for designing VoltDB database schemas.
Although gathering business requirementsisatypical first step in database application design, it isoutside
the scope of this guide.

4.1. How to Enter DDL Statements

Y ou use standard SQL DDL statements to design your schema. For afull list of valid VoltDB DDL, see
Appendix A, Supported SQL DDL Satements. The easiest way to enter your DDL statements is using
VoltDB's command line utility, sglcmd. Using sglcmd you can input DDL statementsin several ways.

* Redirect standard input from afile when you start sglemd:
$ sqlcmd < nyschema. sql
 Import from afile using the sglcmd file directive:

$ sqgl cnd
1> fil e nyschena. sql ;

» Enter DDL directly at the sglcmd prompt:

$ sqgl cnd

1>

2> CREATE TABLE Customer (

3> Custoner| D | NTEGER UNI QUE NOT NULL,
4> FirstName VARCHAR(15),

5> LastNane VARCHAR (15),

6> PRI MARY KEY(Cust oner | D)

7>);

» Copy DDL from another application and paste it into the sglcmd prompt:

$ sqgl cnd

1> CREATE TABLE Flight (

2> Flight1 D | NTEGER UNI QUE NOT NULL,
3> Depart Ti me Tl MESTAMP NOT NULL,

4> Origin VARCHAR(3) NOT NULL,

5> Destinati on VARCHAR(3) NOT NULL,
6> Nunber Of Seat s | NTEGER NOT NULL,

17

Designing the Database Schema

7> PRI MARY KEY(Flightl D)
8>);

The following sections show how to design and create schema objects. DDL statements and techniques
for changing a schema are described later in Section 4.6, “Modifying the Schema’.

4.2. Creating Tables and Primary Keys

The schema in this section is referred to throughout the design chapters of this guide. Let's assume you
are designing a flight reservation system. At its simplest, the application requires database tables for the
flights, the customers, and the reservations. Example 4.1, “DDL Example of aReservation Schema” shows
how the schemalooks as defined in standard SQL DDL. For the V oltDB-specific detailsfor creating tables,
see CREATE TABLE. When defining the data types for table columns, refer to Table A.1, “ Supported
SQL Datatypes’.

Example4.1. DDL Example of a Reservation Schema

CREATE TABLE Fl i ght (
Flight!I D | NTEGER UNI QUE NOT NULL,
Depart Ti ne Tl MESTAMP NOT NULL,
Oigin VARCHAR(3) NOT NULL,
Destinati on VARCHAR(3) NOT NULL,
Nunmber Of Seat s | NTEGER NOT NULL,
PRI MARY KEY(FI i ghtl D)

)

CREATE TABLE Reservation (
Reservel D | NTEGER NOT NULL,
Flight!I D | NTEGER NOT NULL,
Custoner| D | NTEGER NOT NULL,
Seat VARCHAR(5) DEFAULT NULL,
Confirmed TINYI NT DEFAULT 'O’

)

CREATE TABLE Customer (
Custoner | D | NTEGER UNI QUE NOT NULL,
Fi rst Nanme VARCHAR(15),
Last Name VARCHAR (15),
PRI MARY KEY(Cust orer | D)

)

To satisfy entity integrity you can specify atable's primary key by providing the usual PRIMARY KEY
constraint on one or more of the table’'s columns. To create a ssimple key, apply the PRIMARY KEY
constraint to one of the table's existing columns whose values are unique and not null, as shown in
Example 4.1, “DDL Example of a Reservation Schema’.

To create a composite primary key from a combination of columnsin atable, apply the PRIMARY KEY
constraint to multiple columns with typical DDL such as the following:

$ sql cnd

1> CREATE TABLE Customer (

2> FirstName VARCHAR(15),

3> LastName VARCHAR (15),

4> CONSTRAI NT pkey PRI MARY KEY (FirstNanme, LastNane)
5>);

18

Designing the Database Schema

4.3. Analyzing Data Volume and Workload

A schemaisnot all you need to define the database effectively. Y ou al so need to know the expected volume
and workload on the database. For our example, let's assume that we expect the following volume of data
at any giventime:

» Flights: 2,000
» Reservations: 200,000
e Customers: 1,000,000

This additional information about the volume and workload affects the design of both the database and
the client application, because it impacts what SQL queries need to be written for accessing the data and
what attributes (columns) to share between tables. Table 4.1, “ Example Application Workload” definesa
set of procedures the application must perform. The table also shows the estimated workload as expected
frequency of each procedure. Proceduresin bold modify the database.

Table4.1. Example Application Workload

Use Case Frequency
Look up aflight (by origin and destination) 10,000/sec
Seeif aflight isavailable 5,000/sec
Make areservation 1,000/sec
Cancel areservation 200/sec
Look up areservation (by reservation 1D) 200/sec
Look up areservation (by customer ID) 100/sec
Updateflight info LVsec
Take off (close reservations and ar chive associated recor ds) l/sec

Y ou can make your procedures that access the database transactional by defining them as VoltDB stored
procedures. This means each stored procedure call completes or rolls back if necessary, thus maintaining
data integrity. Stored procedures are described in detail in Chapter 5, Designing Stored Procedures to
Access the Database.

In our analysis we a so need to consider referential integrity, where relationships are maintained between
tables with shared columns that link tables together. For example, Figure 4.3, “ Diagram Representing the
Flight Reservation System” shows that the Flight table links to the Reservation table where FlightID is
the shared column. Similarly, the Customer table links to the Reservation table where CustomerID is the
common column.

Figure 4.3. Diagram Representing the Flight Reservation System

Flight [Reservation | Customer
FlightlD .—m ReservelD CustomerlD
< FlightlD on
CustomerlD >
A flight can have many A customer can have many
reservations but a reservation reservations but a reservation
is for only one flight. is for only one customer.

19

Designing the Database Schema

Since VoltDB stored procedures are transactional, you can use stored procedures to maintain referential
integrity between tablesas dataisadded or removed. For example, if acustomer record isremoved fromthe
Customer table, all reservations for that customer need to be removed from the Reservations table as well.

With VoltDB, you use all thisadditional information about volume and workload to configure the database
and optimize performance. Specifically, you want to partition the individual tables to ensure efficiency.
Partitioning is described next.

4.4. Partitioning Database Tables

This section discusses how to partition a database to maximize throughput, using the flight reservation case
study as an example. To partition atable, you choose a column of thetablethat VoltDB can useto uniquely
identify and distribute the rows into partitions. The goal of partitioning a database table is to ensure that
the most frequent transactions on the table execute in the same partition asthe data accessed. Wecall thisa
single-partitioned transaction. Thus the stored procedure must uniquely identify arow by the partitioning
columnvalue. Thisis particularly important for queries that modify the data, such as INSERT, UPDATE,
and DEL ETE statements.

Looking at the workload for the reservation system in the previous section, the important transactions to
focus on are:

* Look up aflight

» Seeif aflightisavailable
» Look up areservation

* Makeareservation

Of these transactions, only the last modifies the database.

4.4.1. Choosing a Column on which to Partition Table Rows

We will discuss the Flight table later, but first let's look at the Reservation table. Looking at the schema
alone (Example4.1), Reservel D might look like agood attribute to useto partition the table rows. However,
looking at the workload, there are only two transactions that are keyed to the ReservelD (“Cancel a
reservation” and “Look up a reservation (by reservation 1D)"), each of which occur only 200 times a
second. Wheresas, “See if aflight is available” , which requires looking up reservations by the FlightID,
occurs 5,000 times a second, or 25 times as frequently. Therefore, the Reservation table is best partitioned
on the FlightID column.

. 5000/sec See if a flight is available (FlightID)
~ Reservation 1000/sec Make a reservation (FlightID, CustomeriD)
Eﬁsﬁ%em 200/sec Look up a reservation (ReservelD)
CugstomerID 200/sec Cancel a reservation (ReservelD)
100/sec

Look up a reservation (CustomerID)

Moving to the Customer table, CustomerID is used for most data access. Although customers might need
to look up their record by name, the first and last names are not guaranteed to be unique. Therefore,
CustomerID isthe best column to use for partitioning the Customer table.

CREATE TABLE Customer (
Custoner| D | NTEGER UNI QUE NOT NULL,
Fi rst Name VARCHAR(15),
Last Namre VARCHAR (15),

20

Designing the Database Schema

PRI MARY KEY(Cust oner | D)
)

4.4.2. Specifying Partitioned Tables

Once you choose the column to use for partitioning a database table, you define your partitioning choices
in the database schema. Specifying the partitioning along with the schema DDL helps keep al of the
database structural information in one place.

You define the partitioning scheme using VoltDB's PARTITION TABLE statement, specifying the
partitioning column for each table. For example, to specify FlightlD and CustomerID as the partitioning
columns for the Reservation and Customer tables, respectively, your database schema must include the
following statements:

$ sqlcnd
1> PARTI TI ON TABLE Reservati on ON COLUWN FlightlD;
2> PARTI TI ON TABLE Cust onmer ON COLUWN Custoner | D,

4.4.3. Design Rules for Partitioning Tables

The following are the rules to keep in mind when choosing a column by which to partition table rows:

» There can be only one partition column per table. If you need to partition a table on two columns
(for examplefirst and last name), add an additional column (fullname) that combines the values of the
two columns and use this new column to partition the table.

» If thetablehasa primary key, the partitioning column must beincluded in the primary key.

e Any integer or string column can identify the partition. VoltDB can partition rows on any column
that is an integer (TINYINT, SMALLINT, INTEGER, or BIGINT) or string (VARCHAR) datatype.
(Seeadso Table A.1, “Supported SQL Datatypes’.)

 Partition column values cannot be null. The partition columns do not need to have unique values, but
you must specify NOT NULL in the schema for the partition column. Numeric fields can be zero and
string or character fields can be empty, but the column cannot contain a null value.

The following are some additional recommendations:
 Choose acolumn with areasonabl e distribution of values so that rows of datawill be evenly partitioned.

» Choose a column that maximizes use of single-partitioned stored procedures. If one procedure uses
column A to lookup data and two procedures use column B to lookup data, partition on column B. The
goal of partitioning isto make the most frequent transactions single-partitioned.

« If you partition more than one table on the same column attribute, VoltDB will partition them together.

4.5. Replicating Database Tables

With VolItDB, tables are either partitioned or replicated across all nodes and sites of a VoltDB database.
Smaller, mostly read-only tables are good candidates for replication. Note also that if a table needsto be
accessed frequently by columns other than the partitioning column, the table should be replicated instead
because there is no guarantee that a particular partition includes the data that the query seeks.

The previous section describes how to partition the Reservation and Customer tabl es as exampl es, but what
about the Flight table? It is possible to partition the Flight table (for example, on the FlightID column).
However, not all tables benefit from partitioning.

21

Designing the Database Schema

4.5.1. Choosing Replicated Tables

Looking at the workload of the flight reservation example, the Flight table has the most frequent accesses
(at 10,000 asecond). However, these transactions are read-only and may involve any combination of three
columns: the departure time, the point of origin, and the destination. This makes it hard to partition the
table in away that would make the transaction single-partitioned because the lookup is not restricted to
one table column.

Flight 10000isec | 5ok up a flight (DepartTime, Origin, Destination)
FlightlD < lisec ypdate flight info (FlightID, DepartTime, Origin,
Destination, NumberOfSeats)

2000 records |=—2LSEC———Take off (FlightID)

Fortunately, the number of flights available for booking at any given timeis limited (estimated at 2,000)
and so the size of thetableisrelatively small (approximately 36 megabytes). In addition, the vast majority
of the transactions involving the Flight table are read-only except when new flights are added and at take-
off (when the records are deleted). Therefore, Flight is a good candidate for replication.

Note that the Customer table is also largely read-only. However, because of the volume of data in the
Customer table (amillion records), it is not agood candidate for replication, which iswhy it is partitioned.

4.5.2. Specifying Replicated Tables

In VoltDB, you do not explicitly state that atableisreplicated. If you do not specify a partitioning column
in the database schema, the table will by default be replicated.

So, in our flight reservation example, there is no explicit action required to replicate the Flight table.
However, it is very important to specify partitioning information for tables that you want to partition.
If not, they will be replicated by default, significantly changing the performance characteristics of your
application.

4.6. Modifying the Schema

You can use DDL to add, modify, or remove schema objects as the database is running. For alist of all
valid DDL you can use, see Appendix A, Supported SQL DDL Satements. Y ou can do the following types
of schema changes:

* Modifying Tables— Y ou can add, modify (alter), and remove (drop) table columns. Y ou can aso add
and drop table constraints. Finally, you can drop entire tables.

» Adding and Dropping Indexes — Y ou can add and remove (drop) named indexes.

* Modifying Partitioning for Tables and Stored Procedures — Y ou can un-partition stored procedures
and re-partition stored procedures on a different column, For tables you can change a table between
partitioned and replicated, and repartition a table on a different column,

» Modify roles and users— To learn about modifying roles and users, see Chapter 12, Security.

VoltDB safely handles sglcmd DDL entered by different users on different nodes of the cluster because
it manages sglcmd commands as transactions, just like stored procedures. To demonstrate the DDL
statements to modify the schema, the following sections use a new table, Airport, added to the fight
reservation as shown below:

22

Designing the Database Schema

4.6.1.

CREATE TABLE Airport (
Airportl D integer NOT NULL,
Nane varchar (15) NOT NULL,
City varchar(25),

Country varchar (15),
PRI MARY KEY (AirportlD)

)
Effects of Schema Changes on Data and Clients

You can make many schema changes on empty tables with few restrictions. However, be aware that if
a table has data, some schema changes are not allowed and other schema changes may modify or even
remove data. When working with test data in your database, you can use TRUNCATE TABLE to empty
the data from atable you are working on. Note that all DDL examples in this chapter assume the tables
are empty.

We can think of the effects of schema changes on datain three severity levels:
 Schema change compl etes without damage to data

» Schema change fails to complete to avoid damage to data

» Schema change destroys data

VoltDB error messages and the documentation can help you avoid schema change attempts that fail to
complete. For example, you cannot drop atable that has referencing procedures or views.

Obviously you need to be most aware of which schema changes cause data to be destroyed. In particular,
removing objects from the schemawill also remove the datathey contain. Note that schema objects cannot
be renamed with DDL, but objects can be replaced by performing a DROP and then ADD. However, itis
important to realize that as aresult of a DROP operation, such as DROP TABLE, the data associated with
that table will be deleted before the new definition is added.

Plan and coordinate changes with client development. Stored procedures and ad hoc queries provide an
AP that clients use to access the database correctly. Changesto the schema can break the stored procedure
calls client applications have developed, so use well-planned schedules to communicate database schema
changesto others. Client applications depend on many schemadefinition featuresincluding (but not limited
to):

» Table names

» Column names

» Column datatypes

» Primary key definitions

» Table partitions

« Stored procedure names

* Stored procedure partitioning

Plan and test carefully before making schema changesto a production database. Be aware that clients may
experience connection issues during schema changes, especially for changes that take longer to compl ete,
such as view or index changes.

23

Designing the Database Schema

Schema changes not only affect data, but the existence of data in the database affects the time it takes to
process schema changes. For example, when there are large amounts of data, some DDL statements can
block processing, resulting in a noticeable delay for other pending transactions. Examples include adding
indexes, creating new table columns, and modifying views.

4.6.2. Viewing the Schema

The VoltDB Management Center provides a web browser view of database information, including the
DDL schema source. Use aweb browser to view the VoltDB Management Center on port 8080 of one of
the cluster hosts (http://host-name:8080).

Y ou can aso use the sglcmd show directive to see alist of the current database tables and all procedures.
For additional details about the schema, execute the @SystemCatal og system procedure. Use any of the
following arguments to @SystemCatal og to obtain details about a component of the database schema:

* TABLES

+ COLUMNS

* INDEXINFO

* PRIMARYKEYS

* PROCEDURES

* PROCEDURECOLUMNS

For example:

$ sql cnd

1> SHOW TABLES;

2> SHOW PROCEDURES;
3> EXEC @byst entCat al og COLUWNS;

4.6.3. Modifying Tables

After creating a table in a database with CREATE TABLE, you can use ALTER TABLE to make the
following types of table changes:

 Altering a Table Column's Data Definition
» Adding and Dropping Table Columns
» Adding and Dropping Table Constraints

To drop an entire table, use the DROP TABLE DDL statement.

4.6.3.1. Altering a Table Column's Data Definition

Y ou can make the following types of aterations to a table column's data definition:

$ sql cnd
1> ALTER TABLE Airport ALTER COLUWN Nanme VARCHAR(25); (1]
2> ALTER TABLE Airport ALTER COLUWN Country SET DEFAULT ' USA'; (2]

24

Designing the Database Schema

3> ALTER TABLE Ai rport ALTER COLUWN Nanme SET NOT NULL; (3]

The examples are described as follows:

Change a column's data type. In our example we decided we needed more than 15 charactersfor the
Airport Name so we changed it to 25 characters.

If the table has no existing data, you can make any data type changes. However, if the table already
contains data, the new type must be larger than the old one. This restriction prevents corrupting
existing data values that might be larger than the size of the new data type (See also Table A.1,
“Supported SQL Datatypes’.)

Set or drop the column's DEFAULT value. In our example we assume the application is to be used
mostly for US domestic travel so we can set a default value for the Airport Country of "USA".

To remove a default, redefine the column data definition, for example:

ALTER TABLE Ai rport ALTER COLUWN Country VARCHAR(15);
Change whether the column isNULL or NOT NULL. In our example we set the Airportl D to be not
null because thisisarequired field.

If the table has existing data, you cannot change a column to not null.

4.6.3.2. Adding and Dropping Table Columns

$ sqglcnmd

1> ALTER TABLE Airport ADD COLUWN Air port Code VARCHAR(3) (1}
2> BEFORE AirportlD;

3> ALTER TABLE Airport DROP COLUWN AirportlD; (2]

The examples are described as follows:

Add table columns. In our example, we have decided not to use the integer AirportID for airport
identification but to instead add an AirportCode, which uses auniquethree-letter codefor any airport
as defined by the International Air Transport Association's airport codes.

Y ou cannot rename or overwrite acolumn but you can drop and add columns. When adding acolumn,
you must include the new column name and the data type. Options you may include are:

« DEFAULT vaue— If atable contains data, the values for the new column will be automatically
filled in with the default value.

¢ NOT NULL — If the table contains data, you must include a default value if you specify a NOT
NULL column.

¢ One of the following index type constraints including PRIMARY KEY, UNIQUE, or
ASSUMEUNIQUE.

Note, werecommend that you not definethe UNIQUE or ASSUMEUNIQUE constraint directly on
acolumn definition when adding acolumn or creating atable. If you do, the constraint has no name
so you cannot drop the constraint without dropping the entire column. Instead, we recommend
you apply UNIQUE or ASSUMEUNIQUE by adding the constraint (see Section 4.6.3.3, “Adding
and Dropping Table Constraints’) or by adding an index with the constraint (see Section 4.6.4,
“ Adding and Dropping Indexes’). Defining these constraints thisway names the constraint, which
makes it easier to drop later if necessary.

¢ BEFORE column-name — Table columns cannot be reordered but the BEFORE clause allows
you to place anew column in a specific position with respect to the existing columns of the table.

25

Designing the Database Schema

Drop table columns. In our example we drop the AirportID column because we are replacing it with
the AirportCode column.

Y ou cannot remove a column that has a reference to it. You have to remove al references to the
column first. References to a column may include:

A stored procedure
¢ Anindex

* Aview

4.6.3.3. Adding and Dropping Table Constraints

Y ou cannot alter atable constraint but you can add and drop table constraints. If the table contains existing
data, you cannot add UNIQUE, ASSUMEUNIQUE, or PRIMARY KEY constraints.

$ sqglcmd
1> ALTER TABLE Airport ADD CONSTRAI NT (1]

2>

uni quecode UNI QUE (Airportcode);

3> ALTER TABLE Airport ADD PRI MARY KEY (Air port Code); 2}

The examples are described as follows:

Add named constraints UNIQUE or ASSUMEUNIQUE. In our example, we add the UNIQUE
constraint to the AirportCode column. To drop anamed constraint, include the name using the format
in the following example:

ALTER TABLE Ai rport DROP CONSTRAI NT uni quecode;

Add unnamed constraints PRIMARY KEY or LIMIT PARTITION ROWS, each of which can apply
to atable only once. In our example, we add the PRIMARY KEY constraint to the new AirportCode
column.

When adding atable constraint, it must not conflict with the other columns of the table. For example,
only one primary key is alowed for a table so you cannot add the PRIMARY KEY constraint to
an additional column.

Todropthe PRIMARY KEY or LIMIT PARTITION ROWS constraint, include thetype of constraint
using the format in the following example:

ALTER TABLE Airport DROP PRI MARY KEY;

4.6.4. Adding and Dropping Indexes

Use CREATE INDEX to create an index on one or more columns of atable. Use DROP INDEX to remove
an index from the schema. The following example modifies the flight reservation schema by adding an
index to the Flight table to improve performance when looking up flights.

$ sqlcnd
1> CREATE I NDEX flightTinmeldx ON Flight (departtine);

The CREATE INDEX statement explicitly creates an index. VoltDB creates an index implicitly when
you specify the table constraints UNIQUE, PRIMARY KEY, or ASSUMEUNIQUE. Use the ALTER
TABLE statement to add or drop these table constraints along with their associated indexes, as shown in
Section 4.6.3, “Modifying Tables’.

26

Designing the Database Schema

4.6.5. Modifying Partitioning for Tables and Stored
Procedures

Any changes to the schema must be carefully coordinated with the design and development of stored
procedures. This not only applies to column names, data types, and so on, but also to the partition plan.

How to partition tables and stored procedures using the PARTITION TABLE and CREATE
PROCEDURE PARTITION ON statements is explained in Section 4.4, “ Partitioning Database Tables’
and Section 5.3.3, “Partitioning Stored Procedures in the Schema’.

Y ou can change the partitioning of stored procedures, and you can change atable to a replicated table or
repartition it on a different column. However, because of the intricate dependencies of partitioned tables
and stored procedures, this can only be done by dropping and re-adding the tables and procedures. Also,
you must pay close attention to the order in which objects are dropped and added.

The following DDL examples demonstrate some partitioning modifications to a table and stored
procedures.

 Un-partitioning a Stored Procedure
» Changing a Partitioned Table to a Replicated Table

» Re-partitioning a Table to a Different Column

Updating a Stored Procedure
» Removing a Stored Procedure from the Database

The following DDL is added to the Flight reservation schema to help demonstrate the DDL partition
changes described in this section.

$ sqglcmd

1> PARTI TI ON TABLE Airport ON COLUWN Nang;

2> CREATE PROCEDURE Fi ndAi r port CodeByNane

3> PARTI TI ON ON TABLE Ai rport COLUWN Nane

4> AS SELECT TOP 1 AirportCode FROM Ai rport WHERE Nanme=?;
5>

6> CREATE PROCEDURE Fi ndAi r port CodeByCity AS

7> SELECT TOP 1 AirportCode FROM Ai rport WHERE City=?;

The stored procedures are tested with the following sglcmd directives:

$ sqglcmd
1> exec Fi ndAirport CodeByNane ' Logan Airport';
2> exec FindAirportCodeByCity 'Boston';

4.6.5.1. Un-partitioning a Stored Procedure

In the simplest case, you can un-partition a single-partitioned stored procedure by dropping and re-
creating that procedure without including the PARTITION ON clause. In this example we drop the single-
partitioned FindAirportCodeByName procedure and re-create it as multi-partitioned because it needs to
search all partitions to find an airport code by name.

$ sql cnd
1> DROP PROCEDURE Fi ndAi r port CodeByNane;
2> CREATE PROCEDURE Fi ndAi r port CodeByNane AS

27

Designing the Database Schema

3> SELECT TOP 1 AirportCode FROM Ai rport WHERE Nane=?;

4.6.5.2. Changing a Partitioned Table to a Replicated Table

I mportant

Y ou cannot change the partitioning of atablethat hasdatain it. To change a partitioned tableto a
replicated one, you drop and re-create the table, which deletes any datathat might be in the table.

Before executing the following steps, save the existing schema so you can easily re-create the table. The
VoltDB Management Center provides a view of the existing database schema DDL source, which you
can download and save.

$ sql cnd

1> DROP PRCCEDURE Fi ndAi r port CodeByNare; (1]
2> DROP PROCEDURE Fi ndAi r port CodeByGCity;

3> DROP TABLE Airport |IF EXI STS CASCADE; (2]
4> CREATE TABLE Al RPORT ((3]

5> Al RPORTCODE var char (3) NOT NULL,

6> NAME var char (25),

7> CI TY varchar (25),

8> COUNTRY var char (15) DEFAULT ' USA',

9> CONSTRAI NT UNI QUECODE UNI QUE (Al RPORTCODE) ,

10> PRI MARY KEY (Al RPORTCCDE)

11>);

12> CREATE PROCEDURE Fi ndAi r port CodeByNane AS o
13> SELECT TOP 1 AirportCode FROM Ai rport WHERE Nane=?;
14> CREATE PROCEDURE Fi ndAi r port CodeByCity AS

15> SELECT TOP 1 AirportCode FROM Ai rport WHERE City=?;

The example is described as follows:

© Drop al stored procedures that reference the table. You cannot drop a table if stored procedures
referenceit.
® Drop thetable. Options you may include are:

e |IF EXISTS — Use the IF EXISTS option to avoid command errors if the named table is already
removed.

* CASCADE — A tahle cannot be removed if it has index or view references. You can remove
the references explicitly first or use the CASCADE option to have VoltDB remove the references
along with the table.

©® Re-createthetable. By default, a newly created table is areplicated table.
O Re-create the stored procedures that access the table. If the stored procedure is implemented with

Java and changes are required, modify and reload the code before re-creating the stored procedures.

For more, see Section 5.3, “Installing Stored Procedures into the Database”.

4.6.5.3. Re-partitioning a Table to a Different Column

I mportant

Y ou cannot change the partitioning of atable that has data in it. In order to re-partition a table
you have to drop and re-create the table, which deletes any data that might bein the table.

Follow these steps to re-partition atable:

28

Designing the Database Schema

1. Un-partition the table by following the instructions in Section 4.6.5.2, “Changing a Partitioned Table
to a Replicated Table”. The sub-steps are summarized as follows:

a. Drop all stored procedures that reference the table.
b. Drop thetable.

C. Re-createthetable.

d. Re-create the stored procedures that access the table.

2. Partition the table on the new column. In our example, it makes sense to partition the Airport table on
the AirportCode column, where each row must be unique and non null.

$ sql cnd
1> PARTI TI ON TABLE Airport ON COLUWN Air port Code;

3. Re-partition stored proceduresthat should be single-partitioned. See Section 4.6.5.4, “ Updating a Stored
Procedure”.

4.6.5.4. Updating a Stored Procedure

This section describes how to update a stored procedure that has already been declared in the database with
the CREATE PROCEDURE statement. The stepsto update astored procedure are summarized asfollows:

1. If the procedure isimplemented in Java, update the procedure's code, recompile, and repackage the jar
file. For details, see Section 5.3, “Installing Stored Procedures into the Database”.

2. Ensure all tables and columns the procedure accesses are in the database schema.
3. Update the procedure in the database.

« If the procedure is implemented in Java, use the sglcmd load classes directive to update the class
in the database. For example:

$ sqgl cnd
1> | oad classes GetAirport.jar;

« |If the procedureisimplemented with SQL, use the CREATE PROCEDURE AS command to update
the SQL.

4. If required, re-partition the stored procedure. You partition procedures using the PARTITION ON
clause in the CREATE PROCEDURE statement. If you need to re-partition the procedure, either
changing the partitioning column or switching from replicated to partitioned or vice versa, perform the
following steps:

a. Use DROP PROCEDURE to remove the stored procedure.

b. Use CREATE PROCEDURE to re-declare the stored procedure, including the new partitioning
scheme.

In our example so far, we have three stored procedures that are adequate to access the Airport table, so
no additional procedures need to be partitioned:

e VoltDB automatically defined a default select stored procedure, which is partitioned on the
AirportCode column. It takes an AirportCode as input and returns a table structure containing the
AirportCode, Name, City, and Country.

29

Designing the Database Schema

» TheFindAirportCodeByName stored procedure should remain multi-partitioned because it needsto
search in all partitions.

» The FindAirportCodeByCity stored procedure should al so remain multi-partitioned because it needs
to searchin all partitions.

4.6.5.5. Removing a Stored Procedure from the Database

If you've decided a stored procedure is no longer needed, use the following steps to remove it from the
database:

1. Drop the stored procedure from the database.

$ sqglcnmd
1> DROP PROCEDURE Get Airport;

2. Removethe code from the database. If the procedure isimplemented with Java, use the sglcmd remove
classes directive to remove the procedure's class from the database.

2> renpve cl asses myapp. procedures. Get Ai rport;

30

Chapter 5. Designing Stored Procedures
to Access the Database

As you can see from Chapter 4, Designing the Database Schema, defining the database schema and
the partitioning plan go hand in hand with understanding how the data is accessed. The two must be
coordinated to ensure optimum performance. Your stored procedures must use the same attribute for
partitioning asthe table being accessed. Proper partitioning ensuresthat the table rowsthe stored procedure
requests arein the same partition in which the procedure executes, thereby ensuring maximum efficiency.

It doesn't matter whether you design the partitioning first or the data access first, as long as in the end
they work together. However, for the sake of example, we will use the schema and partitioning outlined
in Chapter 4, Designing the Database Schema when discussing how to design the data access.

5.1. How Stored Procedures Work

The key to designing the data access for VoltDB applications is that complex or performance sensitive
access to the database should be done through stored procedures. It is possible to perform ad hoc queries
onaVoltDB database. However, ad hoc queries do not benefit asfully from the performance optimizations
VoltDB specializesin and therefore should not be used for frequent, repetitive, or complex transactions.

Within the stored procedure, you access the database using standard SQL syntax, with statements such
as SELECT, UPDATE, INSERT, and DELETE. You can also include your own code within the stored
procedure to perform cal culations on the returned values, to evaluate and execute conditional statements,
or to perform many other functions your applications may need.

5.1.1. VoltDB Stored Procedures are Transactional

In VoItDB, a stored procedure and a transaction are one and the same. Thus when you define a stored
procedure, VoltDB automatically provides ACID transaction guarantees for the stored procedure. This
means that stored procedures fully succeed or automatically roll back as a whole if an error occurs
(atomic). When stored procedures change the data, the database is guaranteed to remain consistent. Stored
procedures execute and access the database completely isolated from each other, including when they
execute concurrently. Finally, stored procedure changes to the database are guaranteed to be saved and
available for subsequent database access (durable).

Because the transaction is defined in advance as a stored procedure, there is no need for your application
to manage transactions using specific transaction commands such as BEGIN, ROLLBACK, COMMIT
or END.?

5.1.2. VoltDB Stored Procedures are Deterministic

To ensuredataconsistency and durability, VoltDB procedures must bedeterministic. That is, given specific
input values, the outcome of the procedureis consistent and predictable. Determinismiscritical becauseit
allows the same stored procedure to run in multiple locations and give the same results. It is determinism
that makes it possible to run redundant copies of the database partitions without impacting performance.
(See Chapter 10, Availability for more information on redundancy and availability.)

One side effect of transactions bei ng precompiled as stored procedures is that external transaction management frameworks, such as Spring or
JEE, are not supported by VoltDB.

31

Designing Stored Procedures
to Access the Database

5.1.2.1. Use Sorted SQL Queries

One key to deterministic behavior is avoiding ambiguous SQL queriesin stored procedures. Specifically,
performing unsorted queries can result in a nondeterministic outcome. VoltDB does not guarantee a
consistent order of results unless you use atree index to scan the records in a specific order or you specify
an ORDER BY clausein the query itself. In the worst case, alimiting query, such as SELECT TOP 10
Enmp | D FROM Enpl oyees without an index or ORDER BY clause, can result in a different set of
rows being returned. However, even asimple query such as SELECT * fr om Enpl oyees can return
the same rowsin a different order.

The problem isthat even if anon-deterministic query is read-only, its results might be used as input to an
INSERT, UPDATE, or DELETE statement elsewherein the stored procedure. For clusterswith aK-safety
value greater than zero, this means unsorted query results returned by two copies of the same partition,
which may not match, could be used for separate update queries. If this happens, VoltDB detects the
mismatch, reportsit as potential datacorruption, and shutsdown the cluster to protect the database contents.

This is why VoltDB issues a warning for any non-deterministic queries in read-write stored procedures.
This is aso why use of an ORDER BY clause or a tree index in the WHERE constraint is strongly
recommended for all SELECT statements that return multiple rows.

5.1.2.2. Avoid Introducing Non-deterministic Values from External
Functions

Another key to deterministic behavior isavoiding callswithin your stored procedures to external functions
or procedures that can introduce arbitrary data. External functions include file and network 1/0 (which
should be avoided any way because they can impact latency), as well as many common system-specific
procedures such as Date and Time.

However, this limitation does not mean you cannot use arbitrary datain VoltDB stored procedures. It just
means you must either generate the arbitrary data before the stored procedure call and pass it in as input
parameters or generate it in adeterministic way. For example, if you need to load a set of records from a
file, you can open the filein your application and pass each row of datato a stored procedure that loadsthe
datainto the VoltDB database. Thisis the best method when retrieving arbitrary data from sources (such
asfiles or network resources) that would impact latency.

The other alternative is to use data that can be generated deterministically. For two of the most common
cases, timestamps and random values, VoltDB provides methods for this:

» Vol t Procedur e. get Transacti onTi nme() returnsatimestamp that can be used in place of the
Java Date or Time classes.

* Vol t Procedur e. get SeededRandom\unber Gener at or () returns a pseudo random number
that can be used in place of the Java Util.Random class.

These procedures use the current transaction 1D to generate a deterministic value for the timestamp and
the random number. See the VoltDB Java Stored Procedure API for more.

5.1.2.3. Stored Procedures have no Persistence

Finally, even seemingly harmless programming techniques, such as static variables can introduce
nondeterministic behavior. VoltDB provides no guarantees concerning the state of the stored procedure
class instance across invocations. Any information that you want to persist across invocations must either
be stored in the database itself or passed into the stored procedure as a parameter.

32

http://docs.voltdb.com/javadoc/procedure-api/

Designing Stored Procedures
to Access the Database

5.2. The Anatomy of a VoltDB Stored Procedure

Y ou can write VoltDB stored procedures as Java classes. The following code sampleillustrates the basic
structure of aVoltDB java stored procedure.

i mport org.voltdb. *;
public class Procedure-nanme extends VoltProcedure {
/!l Declare SQ statenents ...
public datatype run (argunents) throws Volt Abort Exception {

/1 Body of the Stored Procedure ...

}

The key points to remember areto:

1. Import the VoltDB classesfrom or g. vol t db. *

2. Include the class definition, which extends the abstract class Vol t Pr ocedur e

3. Definethemethod r un(') , which performsthe SQL queriesand processing that make up thetransaction

Itisimportant to understand the details of how to design and devel op stored proceduresfor your application

as described in the following sections. However, for simple data access, the following techniques may

suffice for some of your stored procedures:

» VoItDB defines default stored procedures to perform the most common table access such as inserting,
selecting, updating, and deleting records based on a specific key value. See Section 7.1, “Using Default
Procedures’ for more.

» You can create stored procedures without writing any Java code by using the DDL statement CREATE
PROCEDURE AS, where you define a single SQL query as a stored procedure. See Section 7.2,
“Shortcut for Defining Simple Stored Procedures”.

The following sections describe the components of a stored procedure in more detail.

5.2.1. The Structure of the Stored Procedure

The stored procedures themselves are written as Java classes, each procedure being a separate class.
Example 5.1, “ Components of a VoltDB Java Stored Procedure” shows the stored procedure that looks
up aflight to see if there are any available seats. The callouts identify the key components of a VoltDB
stored procedure.

33

Designing Stored Procedures
to Access the Database

Example 5.1. Components of a VoltDB Java Stored Procedure

package fadvi sor. procedures;

i mport org.voltdb. *; o
public class HowManySeats extends VoltProcedure { (2]
public final SQStnt GetSeatCount = new SQLSt nt ((3]

"SELECT Nunber Of Seats, COUNT(ReservelD) " +
"FROM Flight AS F, Reservation AS R" +

"WHERE F.Flight I D=R Flight!D AND R FlightID=? " +
"GROUP BY Nunber Of Seats; ") ;

public long run(int flightid) o
t hrows Vol t Abort Exception {

| ong nunof seat s;
| ong seat si nuse;
Vol t Tabl e[] queryresults;

vol t QueueSQL(Get Seat Count, flightid); (5]
qgueryresults = vol t Execut eSQL(); (6]
Vol t Tabl e result = queryresults[0]; (7]
if (result.getRowCount() < 1) { return -1; }

nunof seats = result.fetchRow 0).get Long(0); (8]
seatsinuse = result.fetchRow(0).getlLong(1l);

nunof seats = nunofseats - seatsinuse;

return nunofseats; // Return avail able seats (9]

O Stored procedures are written as Java classes. To access the VoltDB classes and methods, be sure
toi mport org.vol tdb. *.

Although VoltDB stored procedures must be written in Java and the primary client interface is
Java (as described in Chapter 6, Designing VoltDB Client Applications), it is possible to write
client applications using other programming languages. See Chapter 8, Using VoltDB with Other
Programming Languages for more information on alternate client interfaces.

® Each stored procedure extends the generic class Vol t Pr ocedur e.

©® Within the stored procedure you access the database using ANSI-standard SQL statements. To do
this, you declare the statement as a special Java type called SQLSt nt , which must be declared as
final.

In the SQL statement, you insert a question mark (?) everywhere you want to replace a value by a
variable at runtime. In this example, the query GetSeatCount has one input variable, FlightID. (See
Appendix B, Supported SQL Statements for details on the supported SQL statements.)

To ensure the stored procedure code is single partitioned, queries must filter on the partitioning
columnfor asinglevaue (using equal, =). Filtering for arange of valueswill not be single-partitioned
because the code will haveto look up in all the partitions to ensure the entire range is found.

Designing Stored Procedures
to Access the Database

5.2.2.

O Thebulk of the stored procedureisther un() method, whoseinput specifiesthe input argumentsfor
the stored procedure. See Section 5.2.2, “ Passing Arguments to a Stored Procedure” next for details.

Note that the run() method throws the exception Vol t Abort Except i on if any exceptions
are not caught. Vol t Abor t Except i on causes the stored procedure transaction to rollback. (See
Section 5.2.6, “Rolling Back a Transaction” for more information about rollback.)

© To perform database queries, you queue SQL statements, specifying both the SQL statement and
the variables it requires, using the vol t QueueSQ.() method. More details are described in
Section 5.2.3, “Creating and Executing SQL Queriesin Stored Procedures’.

O After you queue al of the SQL statements you want to perform, use vol t Execut eSQL() to
execute the statements in the queue.

@ Eachstatement returnsitsresultsinaVol t Tabl e structure. Because the queue can contain multiple
queries, vol t Execut eSQL() returns an array of Vol t Tabl e structures, one array element for
each query. More details are described in Section 5.2.4, “Interpreting the Results of SQL Queries’.

® |nadditionto queueing and executing queries, stored procedures can contain custom code. However,
you should limit the amount of custom code in stored procedures to only that processing that is
necessary to complete the transaction, so as not to delay subsequent transactions.

© Stored procedures can return along integer, a Vol t Tabl e structure, or an array of Vol t Tabl e
structures. For more details, see Section 5.2.5, “ Returning Results from a Stored Procedure”.

Passing Arguments to a Stored Procedure

Y ou specify the number and type of the argumentsthat the stored procedure acceptsinther un() method.
For example, the following is the declaration of the run() method for an I nitialize() stored
procedure from the voter sample application. This procedure accepts two arguments. an integer and a
string.

public long run(int maxContestants, String contestants) {

VoltDB stored procedures can accept parameters of any of the following Java and VVoltDB datatypes:

Integer types byte, short, int, long, Byte, Short, Integer, and Long

Floating point types float, double, Float, Double

Fixed decimal types BigDecimal

String and binary types | String and byte]]

Timestamp types org.voltdb.types. TimestampType
javautil.Date, java.sgl.Date, java.sgl.Timestamp
VoltDB type VoltTable

The arguments can be scalar objects or arrays of any of the preceding types. For example, the following
run() method defines three arguments: a scalar long and two arrays, one array of timestamps and one
array of Strings:

i mport org.voltdb. *;
public class LogMessagesByEvent extends Vol tProcedure {

public long run (
| ong event Type,
org.vol tdb. types. Ti mest anpType[] event Ti meSt anps,
String[] event Messages
) throws Vol t Abort Exception {

35

Designing Stored Procedures
to Access the Database

The calling client application can use any of the preceding datatypes when invoking the
cal | Procedur e() method and, where necessary, VoltDB makes the appropriate type conversions (for
example, from int to String or from String to Double). See Section 6.2, “ Invoking Stored Procedures’ for
more on using thecal | Pr ocedur e() method.

5.2.3. Creating and Executing SQL Queries in Stored
Procedures

The main function of the stored procedure is to perform database queries. In VoltDB thisis done in two
steps:

1. Queuethe queries using thevol t QueueSQL() function
2. Execute the queue and return the resultsusing the vol t Execut eSQL() function

Queuing SQL Statements Thefirst argumentto vol t QueueSQL() isthe SQL statement to be executed.
The SQL statement is declared using a special class, SQLSt nt , with question marks as placeholders for
values that will be inserted at runtime.

The SQL statements must be declared asf i nal and initialized at compile time, either when declared or
within aconstructor or staticinitializer. Thisallowsthe VoltDB planner to determinethe optimal execution
plan for each statement when the procedureisloaded and declared in the schema. To allow for code reuse,
SQL Stmt objects can be inherited from parent classes or constructed from other compile-time constants.

The remaining arguments to vol t QueueSQ.() are the actual values that VoltDB inserts into the
placeholders. For example, if you want to perform a SELECT of atable using two columnsin the WHERE
clause, your SQL statement might look something like this:

SELECT Customer| D FROM Cust omer WHERE Fi r st Name=? AND Last Nane=?;

At runtime, you want the questions marks replaced by values passed in as arguments from the calling
application. So the actual vol t QueueSQL() invocation might look like this:

public final SQ.Stnt getcustid = new SQLSt nt (
"SELECT Custonerl D FROM Cust oner " +
"WHERE First Name=? AND Last Nane=?;");

vol t QueueSQL(getcustid, firstnm Ilastnm;

Y our stored procedure can call vol t QueueSQL() morethan once to queue up multiple SQL statements
before they are executed. Queuing multiple SQL statements improves performance when the SQL
gueries execute because it minimizes the amount of network traffic within the cluster. Once you have
gueued all of the SQL statements you want to execute together, you then process the queue using the
vol t Execut eSQL() function.

Vol t Tabl e[] queryresults = volt Execut eSQL();

Cycles of Queue and Execute

Y our procedure can queue and execute SQL statements in as many cycles as necessary to complete the
transaction. For example, if you want to make a flight reservation, you may need to access the database
and verify that the flight exists before creating the reservation in the database. One way to do thisis to
look up the flight, verify that avalid row was returned, then insert the reservation, like so:

36

Designing Stored Procedures
to Access the Database

Example 5.2. Cycles of Queue and Executein a Stored Procedure

final String getflight = "SELECT Flightl D FROM Fl i ght WHERE Fl i ghtl D=?;"; (1]
final String makeres = "I NSERT | NTO Reservation (?,?,?,?,?);";

public final
public final

SQLStnt getflightsgl = new SQ.Stnt (getflight);
SQLStmt makeressqgl = new SQLSt nt (makeres);

public VoltTable[] run(int reservenum int flightnum int customernum) (2]
t hrows Vol t Abort Exception {

/1 Verify flight ID
vol t QueueSQL(getflightsql, flightnum; (3]
Vol t Tabl e[] queryresults = volt Execut eSQL();

/1

If there is no matching record, rollback

if (queryresults[0].getRowCount() == 0) throw new Vol t Abort Exception(); (4]

5.24.

/1 Make reservation
vol t QueueSQL(nmaker essql, reservenum flightnum custonmernum O, 0); (5]
return vol t Execut eSQL();

This stored procedure code to make areservation is described as follows:

(1]

(2]

Define the SQL statements to use. The getflight string contains an SQL statement that verifies the
flight 1D, and the makeres string contains the SQL statement that makes the reservation.
Definether un() method for the stored procedure. This stored procedure takes as input arguments
the reservation number, the flight number, and the customer number.

Queue and execute an SQL statement. Inthisexamplethevol t Execut eSQ.() method processes
thesingleget f I i ght sqgl () function, which executesthe SQL statement specified in the getflight
string.

Process results. If the flight is not available, the exception Vol t Abor t Except i on aborts the
stored procedure and rolls back the transaction.

The second SQL statement to make the reservation is then queued and executed. The
vol t Execut eSQL() method processesthesinglenaker essql () function, which executesthe
SQL statement specified in the makeres string.

Interpreting the Results of SQL Queries

Withthevol t Execut eSQ.() cal, theresultsof all the queued SQL statementsarereturned in an array
of Vol t Tabl e structures. The array contains one Vol t Tabl e for each SQL statement in the queue.
TheVol t Tabl e structures are returned in the same order as the respective SQL statementsin the queue.

The Vol t Tabl e itself consists of rows, where each row contains columns, and each column has the
column name and a value of afixed datatype. The number of rows and columns per row depends on the
specific query.

Figure5.1. Array of VoltTable Structures

Column-name, value e Column-name, value

]]

37

Designing Stored Procedures
to Access the Database

For example, if you queue two SQL SELECT statements, one looking for the destination of a specific
flight and the second looking up the Reservel D and Customer name (first and last) of reservations for that
flight, the code for the stored procedure might look like the following:

public final SQStnt getdestsql = new SQLSt nt (
"SELECT Destinati on FROM Fl i ght WHERE Fl i ghtlD=?;");
public final SQStnt getressql = new SQLStnt (
"SELECT r.Reservel D, c.FirstNane, c.LastName " +
"FROM Reservation AS r, Customer AS c " +
"WHERE r. FlightlD=? AND r. Custoner| D=c. Custoner|D;");

vol t QueueSQL(get destsql, flightnuny;
vol t QueueSQL(getressql,flightnum;
Vol t Tabl e[] results = volt Execut eSQL();
The array returned by vol t Execut eSQL() will have two elements:

e Thefirst array elementisaVol t Tabl e with one row (FlightID is defined as unique) containing one
column, because the SELECT statement returns only one value.

e Thesecond array elementisaVol t Tabl e with as many rows as there are reservations for the specific
flight, each row containing three columns. Reservel D, FirstName, and LastName.

Assuming the stored procedure call input was a FlightID value of 134, the data returned for the second
array element might be represented as follows:

Figure5.2. One VoltTable Structureisreturned for each Queued SQL Statement

FlightID, 134 ReservelD, 4747 FirstName, Will LastName, Poger

ReservelID, 9879 FirstName, Janice | LastName, Josly
ReserveID, 3456 FirstName, Holly LastName, Eagan
ReserveID, 1098 FirstName, Ralph LastName, Finess

VoltDB provides a set of convenience methods for accessing the contents of the Vol t Tabl e array.
Table 5.1, “Methods of the VoltTable Classes’ lists some of the most common methods. (See also Java
Stored Procedure API.)

38

http://docs.voltdb.com/javadoc/procedure-api/
http://docs.voltdb.com/javadoc/procedure-api/

Designing Stored Procedures
to Access the Database

Table5.1. Methods of the VoltTable Classes

Method

Description

int fetchRow(int index)

Returns an instance of the VoltTableRow class for
the row specified by index.

int getRowCount()

Returns the number of rows in the table.

int getColumnCount()

Returns the number of columns for each row in the
table.

Type getColumnType(int index)

Returns the datatype of the column at the specified
index. Type is an enumerated type with the
following possible values:

BIGINT
DECIMAL
FLOAT
GEOGRAPHY
GEOGRAPHY _POINT
INTEGER
INVALID
NULL
NUMERIC
SMALLINT
STRING
TIMESTAMP
TINYINT
VARBINARY
VOLTTABLE

String getColumnName(int index)

Returns the name of the column at the specified
index.

double getDouble(int index)

long getL ong(int index)

String getString(int index)

BigDecimal getDecimal AsBigDecimal(int index)
double getDecimal AsDoubl&(int index)

Date getTimestampAsTimestamp(int index)

long getTimestampAsLong(int index)

byte[] getVarbinary(int index)

Methods of VoltTable.Row

Return the value of the column at the specified index
in the appropriate datatype. Because the datatype of
the columnsvary depending onthe SQL query, there
is no generic method for returning the value. You
must specify what datatype to use when fetching the
value.

Itisalso possibleto retrieve the column values by name. Y ou can invoke any of the getDatatype() methods
and pass a string argument specifying the name of the column, rather than the numeric index. Accessing
the columns by name can make code easier to read and less susceptible to errors due to changes in the
SQL schema (such as changing the order of the columns). On the other hand, accessing column values by
numeric index is potentially more efficient under heavy load conditions.

Example 5.3, “Displaying the Contents of VoltTable Arrays’ shows a generic routine for “walking”
through the return results of a stored procedure. In this example, the contents of the Vol t Tabl e array

are written to standard outpui.

39

Designing Stored Procedures
to Access the Database

Example 5.3. Displaying the Contents of VoltTable Arrays

public void displayResults(VoltTable[] results) {
int table = 1;
for (VoltTable result : results) {
Systemout.printf("*** Table % ***\n",tabl et++);
di spl ayTabl e(resul t);

}

public void displayTabl e(VoltTable t) {

final int col Count = t.get Col umCount();
i nt rowCount = 1;
t.reset RowPosition();
while (t.advanceRowm)) {
Systemout.printf("--- Row % ---\n", rowCount ++);

for (int col=0; col<col Count; col ++) {
Systemout.printf("%: ",t.getColumNane(col));
switch(t. get Col umType(col)) {
case TINYINT: case SMALLI NT: case Bl G NT: case | NTEGER
Systemout.printf("%\n", t.getLong(col));
br eak;
case STRI NG
Systemout.printf("%\n", t.getString(col));
br eak;
case DECI MAL:
Systemout.printf("%\n", t.getDeciml AsBi gDeci nal (col));
br eak;
case FLOAT:
Systemout.printf("%\n", t.getDouble(col));
br eak;

For further details on interpreting the VoltTable structure, see the Java documentation that is provided
onlineinthedoc/ subfolder for your VoltDB installation.

5.2.5. Returning Results from a Stored Procedure

Stored procedures can return the following types:
» Long integer

* SingleVoltTable

» Array of VoltTable structures

You can return al of the query results by returning the Vol t Tabl e array, or you can return a scalar
value that is the logical result of the transaction. (For example, the stored procedure in Example 5.1,
“Components of a VoltDB Java Stored Procedure’ returns a long integer representing the number of
remaining seats available in the flight.)

40

Designing Stored Procedures
to Access the Database

5.2.6.

Whatever value the stored procedure returns, make sure the r un() method includes the appropriate
datatype in its definition. For example, the following two definitions specify different return datatypes,
the first returns along integer and the second returns the results of a SQL query asa Vol t Tabl e array.

public long run(int flightid)

public VoltTable[] run (String lastname, String firstnanme)

Note that you can interpret the results of SQL queries either in the stored procedure or in the client
application. However, for performance reasons, it isbest to limit the amount of additional processing done
by the stored procedure to ensure it executes quickly and frees the queue for the next stored procedure. So
unless the processing is necessary for subsequent SQL queries, it isusually best to return the query results
(in other words, the Vol t Tabl e array) directly to the calling application and interpret them there.

Rolling Back a Transaction

Finally, if a problem arises while a stored procedure is executing, whether the problem is anticipated or
unexpected, it isimportant that the transaction rolls back. Rollback means that any changes made during
the transaction are undone and the database is|eft in the same state it was in before the transaction started.

VoltDB is a fully transactional database, which means that if a transaction (stored procedure) fails, the
transaction isautomatically rolled back and the appropriate exception is returned to the calling application.
Exceptions that can cause arollback include the following:

» Runtime errorsin the stored procedure code, such as division by zero or datatype overflow.

* Violating database constraintsin SQL queries, such asinserting a duplicate value into acolumn defined
as unique.

The atomicity of the stored procedure depends on VoltDB being able to roll back incomplete database
changes. VoltDB relies on Java exception handling outside the stored procedure to perform the roll back.
Therefore, you should not attempt to alter any exceptions thrown by the voltExecuteSql method. If your
procedure code does catch exceptions thrown as a result of executing SQL statements, make sure that the
exception handler re-throws the exception to allow VoltDB to perform the necessary roll back activities
before the stored procedure returns to the calling program.

On the other hand, there may be situations where an exception occurs in the program logic. The
issue might not be one that is caught by Java or VoltDB, but till there is no practical way for the
transaction logic to complete. In these situations, you can force a rollback by explicitly throwing the
Vol t Abor t Except i on exception. For example, if aflight ID does not exist, you do not want to create
areservation so the stored procedure can force arollback like so:

if (!flightid) { throw new VoltAbortException(); }

See Section 7.3, “ Verifying Expected Query Results’ for another way to roll back procedureswhen queries
do not meet necessary conditions.

5.3. Installing Stored Procedures into the Database

When your stored procedure code is ready, you need to get the procedures into the database and ready to
use. You first compile the procedure code, create ajar file, and load the resulting jar file into the database.
Then you need to declare in the schema which procedures are stored procedures. Finally, depending
on which table each stored procedure accesses, you need to partition each procedure to match the table
partitioning. These processes are covered in the following sections:

» Compiling, Packaging, and Loading Stored Procedures

41

Designing Stored Procedures
to Access the Database

 Declaring Stored Procedures in the Schema
* Partitioning Stored Procedures in the Schema

These sections show how to use DDL to declare and partition stored procedures in the database schema.
If you find you need to modify the schema, see Section 4.6, “Modifying the Schema”.

5.3.1. Compiling, Packaging, and Loading Stored Procedures

The VoltDB stored procedures are written as Java classes, so you compile them using the Java compiler.
Anytime you update your stored procedure code, remember to recompile, package, and reload it into the
database using the following steps:

$ javac -classpath "./:/opt/voltdb/voltdb/*" \ o
-d ./obj \
*.java
$ jar cvf nyproc.jar -C obj . (2]
$ sqglcnmd (3]

1> | oad cl asses myproc.jar;
2> show cl asses;

The steps are described as follows:
O Usethejavac command to compile the procedure Java code.

You include libraries by using the - cl asspat h argument on the command line or by defining the
environment variable CLASSPATH. Y ou must include the VoltDB librariesin the classpath so Java
can resolve references to the VoltDB classes and methods. This example assumes that the VoltDB
software has been installed in the folder / opt / vol t db. If you installed VoltDB in a different
directory, you need to include your installation path. Also, if your client application depends on other
libraries, they need to be included in the classpath as well.

Usethe - d flag to specify an output directory in which to create the resulting classfiles.
® Usethejar command to package your Java classes into a Java archive, or JAR file.

The JAR file must have the same Java package structure as the classesin the JAR file. For example,
if a class has a structure such as nyapp. pr ocedur es. Pr ocedur eFoo, then the JAR file has
to have myapp/ pr ocedur es/ Pr ocedur eFoo. cl ass asthe class structure for thisfile.

The JAR filemust include any inner classes or other dependent classes used by the stored procedures.
It can also be used to load any resource files, such as XML or other data files, that the procedures
need. Any additional resources in the JAR file are loaded into the server as long as they are in a
subfolder. (Resourcesin the root directory of the JAR file are ignored.)

® Usethesglemd load classes directive to load the stored procedure classes into the database.

You can use the show classes command to display information about the classes installed in the
cluster.

Before a stored procedure can be called by aclient application, you need to declare it in the schema, which
is described next.

5.3.2. Declaring Stored Procedures in the Schema

To make your stored procedures accessible in the database, you must declare them in the schema using
the CREATE PROCEDURE statement. Be sure to identify all of your stored procedures or they will not

42

Designing Stored Procedures
to Access the Database

5.3.3.

be available to the client applications at runtime. Also, before you declare a procedure, ensure the tables
and columns the procedure accesses are in the schema.

The following DDL statements declare five stored procedures, identifying them by their class name:

$ sqgl cnd

1> CREATE PROCEDURE FROM CLASS f advi sor. procedur es. LookupFl i ght;

2> CREATE PROCEDURE FROM CLASS f advi sor. procedur es. Howivany Seat s;

3> CREATE PROCEDURE FROM CLASS f advi sor. procedur es. MakeReservati on;
4> CREATE PROCEDURE FROM CLASS f advi sor. procedures. Cancel Reservati on;
5> CREATE PROCEDURE FROM CLASS f advi sor. procedur es. RemoveFl i ght;

For some situations, you can create stored procedures directly in the schema using SQL instead of loading
Javacode. Seehow to usethe CREATE PROCEDURE A Sstatement in Section 7.2, “ Shortcut for Defining
Simple Stored Procedures’.

For more about modifying a schemawith DDL, see Section 4.6, “Modifying the Schema’.

Partitioning Stored Procedures in the Schema

Wewant the most frequently used stored proceduresto be single-partitioned. Thismeansthat the procedure
executes in the one partition that also has the data it needs. Single-partitioned stored procedures do not
have the overhead of processing across multiple partitions and servers, wasting time searching through the
data of the entire table. To ensure single-partitioned efficiency, the parameter the stored procedure usesto
identify its required data must be the same as the column on which the table rows are partitioned.

Remember that in our sample application the RESERVATION table is partitioned on FLIGHTID. Let's
say you create a stored procedure, MakeReservation(), with two arguments, flight_id and customer_id.
The following figure shows how the stored procedure will automatically execute in the partition that has
the requested row.

43

Designing Stored Procedures
to Access the Database

Figure 5.3. Stored Procedures Execute in the Appropriate Partition Based on the
Partitioned Parameter Value

1 exec MakeReservation, 145, 35791

exec MakeReservation, 321, 23650 'C

FlightlD CustomerlD FlightlD CustomerlD FlightlD CustomerlD
145 35791 687 45678 321 23650
145 46785 135 50987 487 36016
156 67093 . .

If you do not declare a procedure as single-partitioned, it is assumed to be multi-partitioned by default.
The advantage of multi-partitioned stored procedures is that they have full access to al of the datain
the database, across all partitions. However, the real focus of VoltDB, and the way to achieve maximum
throughput for your application, is through the use of single-partitioned stored procedures.

5.3.3.1. How to Declare Single-Partition Procedures
Before declaring a single-partitioned procedure, ensure the following prerequisites:

1. The table that the stored procedure accesses has been partitioned in the schema. See Section 4.4,
“Partitioning Database Tables’.

2. If the procedure is implemented with Java code, it is loaded into the database. See Section 5.3.1,
“Compiling, Packaging, and Loading Stored Procedures’.

When you declare a stored procedure as single-partitioned, you must specify both the associated table and
the column on which it is partitioned using the PARTITION ON clause in the CREATE PROCEDURE
statement. The following example uses the RESERVATION table and the FLIGHTID column as the
partitioning column. For example:

CREATE PROCEDURE
PARTI TI ON ON
TABLE Reservation COLUW FlightlD
FROM CLASS f advi sor. procedur es. MakeReservati on;

The PARTITION ON clause assumes that the partitioning column value is also the first parameter to the
stored procedure. Suppose you wish to partition a stored procedure on the third parameter such as the

44

Designing Stored Procedures
to Access the Database

procedure Get Cust oner Det ai | s() , where the third parameter is a customer_id. You must specify
the partitioning parameter using the PARAMETER clause and an index for the parameter position. The
index is zero-based so the third parameter would be "2" and the CREATE PROCEDURE statement would
be asfollows:

CREATE PROCEDURE
PARTI TI ON ON
TABLE Customer COLUWN Custoner!| D PARAVETER 2
FROM CLASS f advi sor. procedures. GetCustonerDetails;

5.3.3.2. Queries in Single-Partitioned Stored Procedures

Single-partitioned stored procedures are special because they operate independently of other partitions,
which is why they are so fast. At the same time, single-partitioned stored procedures operate on only a
subset of the entire data, that is, only the data within the specified partition.

Caution

It is the application developer's responsibility to ensure that the queries in a single-partitioned
stored procedure are truly single-partitioned. VoltDB does not warn you about SELECT or
DELETE statements that might return incompl ete results. For example, if your single-partitioned
procedure attempts to operate on a range of values for the partitioning column, the range is
incomplete and includes only a subset of the table data that isin the current partition.

VoltDB does generate a runtime error if you attempt to INSERT a row that does not belong in
the current partition.

After you partition a procedure, your stored procedure can operate on only those recordsin the partitioned
table that are identified by the partitioning column, in this example the RESERVATION table identified
by a FLIGHTID. Y our stored procedure can operate on records in replicated tables because all partitions
have the same copy of areplicated table. However, for other partitioned tables, the stored procedure can
only operate on those records if both tables are partitioned on the same attribute. In this example that
would be FLIGHTID.

In other words, the following rules apply:
» Any SELECT, UPDATE, or DELETE queries must use the constraint, WHERE i denti fi er =?

The question mark is replaced at runtime by the input value that identifies the row of datain the table.
In our example, queries on the RESERVATION table must use the constraint, WHERE FLI GHTI D=7

» SELECT statements can join the partitioned table to replicated tables, aslong asthe preceding WHERE
constraint is also applied.

» SELECT statements can join the partitioned table to other partitioned tables as long as the following
aretrue:

« Thetwo tables are partitioned on the same attribute or column (in our example, FLIGHTID).
» Thetablesare joined on the shared partitioning column.

e The following WHERE constraint is aso used: WHERE partitioned-table.
i denti fi er =? Inthisexample, WHERE RESERVATI ON. FLI GHTI D=?

For example, the RESERVATION table can be joined with the FLIGHT table (which is replicated).
However, the RESERVATION table cannot be joined with the CUSTOMER table in a single-partitioned

45

Designing Stored Procedures
to Access the Database

stored procedure because the two tables use different partitioning columns. (CUSTOMER is partitioned
on the CUSTOMERID column.)

The following are examples of invalid SQL queries for a single-partitioned stored procedure partitioned
on FLIGHTID:

e INVALID: SELECT * FROM reservati on WHERE r eser vati oni d=?

The RESERVATION table is being constrained by a column (RESERVATIONID) which is not the
partitioning column.

 INVALID: SELECT c. | astname FROM reservation AS r, custoner AS ¢ WHERE
r.flightid=? AND c.customerid = r.custonerid

The correct partitioning column is being used in the WHERE clause, but the tables are being joined on
adifferent column. As aresult, not all CUSTOMER rows are available to the stored procedure since
the CUSTOMER table is partitioned on a different column than RESERVATION.

46

Chapter 6. Designing VoltDB Client
Applications

After you design and partition your database schema (Chapter 4, Designing the Database Schema), and
after you design the necessary stored procedures (Chapter 5, Designing Stored Procedures to Access
the Database), you are ready to write the client application logic. The client code contains al the
business-specific logic required for the application, including business rule validation and keeping track
of constraints such as proper data ranges for arguments entered in stored procedure calls.

The three steps to using VoltDB from aclient application are:
1. Cresating a connection to the database

2. Calling stored procedures

3. Closing the client connection

The following sections explain how to perform these functions using the standard VoltDB Java client
interface. (SeeVoltDB JavaClient API.) TheVoltDB JavaClientisathread-safe classlibrary that provides
runtime access to VoltDB databases and functions.

It is possible to call VoltDB stored procedures from programming languages other than Java. However,
reading thischapter is still recommended to understand the processfor invoking and interpreting the results
of aVoltDB stored procedure. See Chapter 8, Using VoltDB with Other Programming Languages for more
information about using VoltDB from client applications written in other languages.

6.1. Connecting to the VoltDB Database

The first task for the calling program is to create a connection to the VVoltDB database. Y ou do this with
the following steps:

org.voltdb.client.Client client = null;
ClientConfig config = null;

try {
config = new CdientConfig("advent", "xyzzy"); (1]
client = dientFactory.createdient(config); (2]
client.createConnection("nyserver.xyz.net"); (3]

} catch (java.io.lCException e) {
e.printStackTrace();
Systemexit(-1);

© Define the configuration for your connections. In its simplest form, the Cl i ent Confi g class
specifies the username and password to use. It is not absolutely necessary to create a client
configuration object. For example, if security is not enabled (and therefore a username and password
are not needed) a configuration object is not required. But it is a good practice to define the client
configuration to ensure the same credentials are used for all connections against asingle client. Itis
also possibleto define additional characteristics of the client connections as part of the configuration,
such asthe timeout period for procedure invocations or a status listener. (See Section 6.5, “Handling
Errors’.)

47

http://docs.voltdb.com/javadoc/java-client-api/

Designing VoltDB Client Applications

Create an instance of the VoltDB Cl i ent class.

Call the cr eat eConnecti on() method. After you instantiate your client object, the argument
tocr eat eConnecti on() specifiesthe database node to connect to. Y ou can specify the server
node as a hostname (as in the preceding example) or as an IP address. Y ou can also add a second
argument if you want to connect to a port other than the default. For example, the following
creat eConnecti on() call attemptsto connect to the admin port, 21211:

()

client.createConnection("nyserver.xyz.net", 21211);

If security isenabled and the username and password intheCl i ent Conf i g() call do not matcha
user defined in the configuration file, the call to cr eat eConnect i on() will throw an exception.
See Chapter 12, Security for more information about the use of security with VVoltDB databases.

When you are done with the connection, you should make sure your application callsthecl ose() method
to clean up any memory allocated for the connection. See Section 6.4, “ Closing the Connection”.

6.1.1. Connecting to Multiple Servers

Y ou can create the connection to any of the nodes in the database cluster and your stored procedure will
be routed appropriately. In fact, you can create connections to multiple nodes on the server and your
subsequent requests will be distributed to the various connections. For example, the following Java code
creates the client object and then connects to al three nodes of the cluster. In this case, security is not
enabled so no client configuration is needed:

try {
client = dientFactory.createdient();

client.createConnection("serverl.xyz.net");
client.createConnection("server2.xyz.net");
client.createConnection("server3.xyz.net");
} catch (java.io.lOException e) {
e.printStackTrace();
Systemexit(-1);
}

Creating multiple connections has three major benefits:

» Multiple connections distribute the stored procedure requests around the cluster, avoiding a bottleneck
where all requests are queued through a single host. This is particularly important when using
asynchronous procedure calls or multiple clients.

 For Javaapplications, the VoltDB Javaclient library uses client affinity. That is, the client knowswhich
server to send each request to based on the partitioning, thereby eliminating unnecessary network hops.

» Finally, if aserver fails for any reason, when using K-safety the client can continue to submit requests
through connections to the remaining nodes. This avoids a single point of failure between client and
database cluster. See Chapter 10, Availability for more.

6.1.2. Using the Auto-Connecting Client

An easier way to create connectionsto all of the database serversisto use the "smart" or topology-aware
client. By setting the Java client to be aware of the cluster topology, you only need to connect to one server
and the client automatically connectsto all of the serversin the cluster.

An additional advantage of the smart client is that it will automatically reconnect whenever the topology
changes. That is, if a server fails and then rejoins the cluster, or new nodes are added to the cluster, the
client will automatically create connections to the newly available servers.

48

Designing VoltDB Client Applications

Y ou enable auto-connecting when you initialize the client object by setting the configuration option before
creating the client object. For example:

org.voltdb.client.Client client = null;

CientConfig config = new dientConfig("","");
confi g. set Topol ogyChangeAwar e(t r ue) ;
try {

client = dientFactory.createdient(config);
client.createConnection("serverl.xyz.net");

When set Topol ogyChangeAwar e() issettotrue, theclient library will automatically connect to all
serversin the cluster and adjust its connections any time the cluster topology changes.

6.2. Invoking Stored Procedures

After your client createsthe connection to the database, it isready to call the stored procedures. Y ouinvoke
astored procedure using the cal | Pr ocedur e() method, passing the procedure name and variables as
arguments. For example:

Vol t Tabl e[] results;

try { results = client.callProcedure("LookupFlight", o
origin,
dest,
departtine).getResul ts(); 2]
} catch (Exception e) { (3]

e. printStackTrace();
Systemexit(-1);

© The cal | Procedure() method takes the procedure name and the procedure's variables as
arguments. The LookupFl i ght () stored procedure requires three variables: the originating
airport, the destination, and the departure time.

® Once a synchronous call completes, you can evaluate the results of the stored procedure. The
cal | Procedure() method returns a Cl i ent Response object, which includes information
about the success or failure of the stored procedure. To retrieve the actual return values you use the
get Resul t s() method. See Section 5.2.4, “Interpreting the Results of SQL Queries’ for more
information about interpreting the results of VoltDB stored procedures.

® Notethat sincecal | Procedur e() can throw an exception (such as Vol t Abor t Except i on)
itisagood practice to perform error handling and catch known exceptions.

6.3. Invoking Stored Procedures Asynchronously

Calling stored procedures synchronously simplifiesthe program logic because your client application waits
for the procedure to complete before continuing. However, for high performance applications looking to
maximize throughput, it is better to queue stored procedure invocations asynchronously.

Asynchronous Invocation

To invoke stored procedures asynchronously, use the cal | Pr ocedur e() method with an additional
first argument, a callback that will be notified when the procedure completes (or an error
occurs). For example, to invoke a NewCust oner () stored procedure asynchronously, the call to
cal | Procedur e() might look like the following:

49

Designing VoltDB Client Applications

client.callProcedure(new MyCal | back(),
"NewCust oner ",
firstname,
| ast name,
cust | D};

The following are other important points to note when making asynchronous invocations of stored
procedures:

» Asynchronous calls to cal | Procedur e() return control to the calling application as soon as the
procedure call is queued.

* If the database server queue is full, cal | Procedure() will block until it is able to queue the
procedure call. This is a condition known as backpressure. This situation does not normally happen
unlessthe database cluster is not scaled sufficiently for the workload or there are abnormal spikesinthe
workload. See Section 6.5.3, “Writing a Status Listener to Interpret Other Errors’ for more information.

» Oncethe procedureis queued, any subsequent errors (such as an exception in the stored procedureitself
or loss of connection to the database) are returned as error conditions to the callback procedure.

Callback Implementation

The callback procedure (MyCal | back() inthisexample) isinvoked after the stored procedure completes
on the server. The following is an example of a callback procedure implementation:

static class MyCal |l back i npl enments ProcedureCall back {
@verride
public void clientCallback(d ientResponse clientResponse) {
if (clientResponse.getStatus() != CdientResponse. SUCCESS) (
Systemerr.println(clientResponse.getStatusString());
} else {
nmyEval uat eResul t sProc(cli ent Response. get Resul ts());
}

}
}

The callback procedureis passed thesame Cl i ent Response structure that isreturned in asynchronous
invocation. Cl i ent Response contains information about the results of execution. In particular, the
methodsget St at us() andget Resul t s() let your callback procedure determine whether the stored
procedure was successful and evaluate the results of the procedure.

The VoltDB Java client is single threaded, so callback procedures are processed one at a time.
Consequently, it is a good practice to keep processing in the callback to a minimum, returning control to
the main thread as soon as possible. If more complex processing is required by the callback, creating a
separate thread pool and spawning worker methods on a separate thread from within the asynchronous
callback is recommended.

6.4. Closing the Connection

When the client application is done interacting with the VoltDB database, it isagood practiceto closethe
connection. This ensures that any pending transactions are completed in an orderly way. The following
example demonstrates how to close the client connection:

try {
client.drain();

client.close();

50

Designing VoltDB Client Applications

} catch (InterruptedException e) {
e.printStackTrace();

}

There are two steps to closing the connection:

1. Cdldrai n() tomakesureal asynchronous calls have completed. Thedr ai n() method pausesthe
current thread until all outstanding asynchronous calls (and their callback procedures) complete. This
call is not necessary if the application only makes synchronous procedure calls. However, there is no
penalty for calling dr ai n() and so it can be included for completenessin all applications.

2. Call cl ose() tocloseall of the connections and release any resources associated with the client.

6.5. Handling Errors

6.5.1.

A special situation to consider when calling V oltDB stored proceduresiserror handling. TheVoltDB client
interface catches most exceptions, including connection errors, errors thrown by the stored procedures
themselves, and even exceptions that occur in asynchronous callbacks. These error conditions are not
returned to the client application as exceptions. However, the application can still receive notification and
interpret these conditions using the client interface.

The following sections explain how to identify and interpret errors that occur when executing stored
procedures and in asynchronous callbacks. These include:

* Interpreting Execution Errors
» Handling Timeouts

» Writing a Status Listener to Interpret Other Errors

Interpreting Execution Errors

If an error occurs in a stored procedure (such as an SQL constraint violation), VoltDB catches the error
and returns information about it to the calling application as part of the Cl i ent Response class. The
Cl i ent Response class provides several methods to help the calling application determine whether
the stored procedure completed successfully and, if not, what caused the failure. The two most important
methods areget St at us() andget Stat usString() .

static class MyCal |l back inpl ements ProcedureCall back {
@verride
public void clientCallback(C ientResponse clientResponse) ({
final byte AppCodeVarm = 1;
final byte AppCodeFuzzy = 2;

if (clientResponse.getStatus() != CientResponse. SUCCESS) ({ o
Systemerr.println(clientResponse.getStatusString()); (2]
} else {
if (clientResponse. get AppStatus() == AppCodeFuzzy) { (3]

Systemerr.println(clientResponse. get AppStatusString());
b
nyEval uat eResul t sProc(cl i ent Response. get Resul ts());

51

Designing VoltDB Client Applications

O The get Status() method tells you whether the stored procedure completed successfully
and, if not, what type of error occurred. It is good practice to always check the status of the
Cl i ent Response beforeevaluating theresultsof aprocedurecall, becauseif the statusisanything
but SUCCESS, there will not be any results returned. The possible values of get St at us() are:

¢ CONNECTION_L OST — The network connection waslost beforethe stored procedure returned
statusinformation to the calling application. The stored procedure may or may not have completed
successfully.

* CONNECTION_TIMEOUT — The stored procedure took too long to return to the calling
application. The stored procedure may or may not have completed successfully. See Section 6.5.2,
“Handling Timeouts’ for more information about handling this condition.

« GRACEFUL_FAILURE — An error occurred and the stored procedure was gracefully rolled
back.

« RESPONSE_UNKNOWN — This is a rare error that occurs if the coordinating node for the
transaction fails before returning a response. The node to which your application is connected
cannot determine if the transaction failed or succeeded before the coordinator was lost. The best
course of action, if you receive this error, is to use a new query to determine if the transaction
failed or succeeded and then take action based on that knowledge.

¢ SUCCESS — The stored procedure completed successfully.

e UNEXPECTED_FAILURE — An unexpected error occurred on the server and the procedure
failed.

*« USER_ABORT — The code of the stored procedure intentionally threw a UserAbort exception
and the stored procedure was rolled back.

® If agetStatus() cal identifies an error status other than SUCCESS, you can use the
get StatusString() method to return a text message providing more information about the
specific error that occurred.

® If youwant the stored procedureto provide additional information to the calling application, thereare
two more methodsto the G i ent Response that you can use. The methods get AppSt at us()
andget AppSt at usSt ri ng() actlikeget St at us() andget Stat usSt ri ng() , but rather
than returning information set by VoltDB, get AppSt at us() and get AppSt at usSt ri ng()
return information set in the stored procedure code itself.

In the stored procedure, you can use the methods set AppSt at usCode() and
set AppSt at usStri ng() to set the values returned to the calling application by the stored
procedure. For example:

/* stored procedure code */
final byte AppCodeVarm = 1;
final byte AppCodeFuzzy = 2;

set AppSt at usCode(AppCodeFuzzy) ;
set AppStatusString("l'mnot sure about that...");

6.5.2. Handling Timeouts

One particular error that needs specia handling isif a connection or a stored procedure call times out. By
default, the client interface only waits a specified amount of time (two minutes) for a stored procedure to
complete. If no responseisreceived from the server before the timeout period expires, the client interface

52

Designing VoltDB Client Applications

returns control to your application, notifying it of the error. For synchronous procedure calls, the client
interface returns the error CONNECTION_TIMEOUT to the procedure call. For asynchronous calls, the
client interface invokes the callback including the error informationinthecl i ent Response object.

It is important to note that CONNECTION_TIMEOUT does not necessarily mean the synchronous
procedure failed. In fact, it is very possible that the procedure may complete and return information after
the timeout error is reported. The timeout is provided to avoid locking up the client application when
procedures are delayed or the connection to the cluster hangs for any reason.

Similarly, if no response of any kind is returned on a connection (even if no transactions are pending)
within the specified timeout period, the client connection will timeout. When this happens, the
connection is closed, any open stored procedures on that connection are closed with a return status of
CONNECTION_LOST, and then the client status listener callback method connect i onLost () is
invoked. Unlike a procedure timeout, when the connection times out, the connection no longer exists, so
your client application will receive no further notifications concerning pending procedures, whether they
succeed or fail.

CONNECTION_LOST does not necessarily mean a pending asynchronous procedure failed. It ispossible
that the procedure completed but was unable to return its status due to a connection failure. The goal of
the connection timeout is to notify the client application of alost connection in atimely manner, even if
there are no outstanding procedures using the connection.

There are several things you can do to address potential timeouts in your application:

» Change the timeout period by calling either or both the methods set Pr ocedur eCal | Ti meout ()
and set Connect i onResponseTi nmeout () ontheCl i ent Confi g object. The default timeout
period is 2 minutesfor both procedures and connections. Y ou specify the timeout period in milliseconds,
where avalue of zero disables the timeout altogether. For example, the following client code resets the
procedure timeout to 90 seconds and the connection timeout period to 3 minutes, or 180 seconds:

config = new dientConfig("advent", "xyzzy");
config. set ProcedureCal | Ti meout (90 * 1000);

confi g. set Connecti onResponseTi neout (180 * 1000);
client = dientFactory.createdient(config);

 Catch and respond to the timeout error as part of the response to a procedure call. For example, the
following code excerpt from a client callback procedure reports the error to the console and ends the
callback:

static class MyCal | back inpl enments ProcedureCallback {
@verride

public void clientCallback(Cd ientResponse response) {

if (response.getStatus() == dient Response. CONNECTI ON_TI MEQUT) {
Systemout.println("A procedure invocation has tinmed out.");
return;

b

if (response.getStatus() == Cdient Response. CONNECTI ON_LOST) {
System out. println("Connection |ost before procedure response.");
return;

}s

» Set a status listener to receive the results of any procedure invocations that complete after the client
interfacetimesout. Seethefollowing Section 6.5.3, “Writing aStatus Listener to Interpret Other Errors’
for an example of creating a status listener for delayed procedure responses.

53

Designing VoltDB Client Applications

6.5.3. Writing a Status Listener to Interpret Other Errors

Certain types of errors can occur that the Cl i ent Response class cannot notify you about immediately.
In these cases, an error happens and is caught by the client interface outside of the normal stored procedure
execution cycle. If you want your application to address these situations, you need to create a listener,
whichisaspecial type of asynchronous callback that the client interface will notify whenever such errors
occur. The types of errorsthat alistener addresses include:

Lost Connection

If a connection to the database cluster is lost or times out and there are outstanding asynchronous
requests on that connection, the Cl i ent Response for those procedure calls will indicate that the
connection failed before areturn status was received. This means that the procedures may or may not
have completed successfully. If no requests were outstanding, your application might not be notified
of the failure under normal conditions, since there are no callbacks to identify the failure. Since the
loss of aconnection can impact the throughput or durability of your application, it isimportant to have
amechanism for general natification of lost connections outside of the procedure callbacks.

Backpressure
If backpressure causes the client interface to wait, the stored procedure is never queued and so your
application does not receive control until after the backpressure is removed. This can happen if the
client applications are queuing stored procedures faster than the database cluster can process them.
The result is that the execution queue on the server gets filled up and the client interface will not let
your application queue any more procedure calls. Two waysto handl e this situation programmatically
areto:

* Let the client pause momentarily to let the queue subside. The asynchronous client interface does
this automatically for you.

 Create multiple connectionsto the cluster to better distribute asynchronous calls across the database
nodes.

Exceptions in a Procedure Callback
Anerror can occur in an asynchronous cal lback after the stored procedure compl etes. These exceptions
are also trapped by the VoltDB client, but occur after the Cl i ent Response is returned to the
application.

L ate Procedure Responses
Procedure invocations that time out in the client may later complete on the server and return results.
Sincethe client application can no longer react to thisresponseinline (for example, with asynchronous
procedure calls, the associated callback has already received a connection timeout error) the client
may want away to process the returned results.

For the sake of example, the following status listener does little more than display a message on standard
output. However, in real world applications the listener would take appropriate actions based on the
circumstances.

/*
* Declare the status |istener
*/
Client StatusLi stenerExt nylistener = new Cient StatusLi st ener Ext () (1]
{
@verride
public void connectionLost(String hostnane, int port, (2]

i nt connectionsLeft,

54

Designing VoltDB Client Applications

Di sconnect Cause cause)

{
Systemout.printf("A connection to the database has been |l ost."
+ "There are %l connections renmai ning.\n", connectionsLeft);
}
@verride
public voi d backpressure(bool ean status)
{
System out. printl n("Backpressure fromthe database "
+ "is causing a delay in processing requests.");
}
@verride

public void uncaught Excepti on(ProcedureCal | back cal | back,
Cl i ent Response r, Throwabl e e)

{
Systemout.println("An error has occurred in a callback "
+ "procedure. Check the follow ng stack trace for details.");
e.printStackTrace();
}
@verride

public void | ateProcedur eResponse(Cl i ent Response response,
String hostname, int port)
{

Systemout.printf("A procedure that tined out on host %: %"
+ " has now responded.\n", hostnane, port);
}
b
/*
* Declare the client configuration, specifying
* a usernane, a password, and the status |istener

*/

CientConfig myconfig = new CientConfig("usernane", (3]
"password”,
nmyl i stener);

/*

* Create the client using the specified configuration.

*/

Cient nyclient = CientFactory.createCient(nmyconfig); o

By performing the operationsin the order as described here, you ensure that all connectionsto the VoltDB
database cluster use the same credentials for authentication and will notify the status listener of any error
conditions outside of normal procedure execution.

O Declaread i ent St at usLi st ener Ext listener callback. Define the listener before you define
the VoltDB client or open a connection.

® Thed ient StatusLi stener Ext interface has four methods that you can implement, one for
each type of error situation:

e connectionLost ()
e backpressure()
e uncaught Excepti on()

e | at eProcedur eResponse()

55

Designing VoltDB Client Applications

® Define the client configuration ClientConfig object. After you declare your
Cli ent St at usLi st ener Ext , youdefinead i ent Conf i g object to use for al connections,
which includes the username, password, and status listener. This configuration isthen used to define
the client next.

O Create aclient with the specified configuration.

6.6. Compiling and Running Client Applications

VoltDB client applications written in Java compile and run like other Java applications. (See Chapter 8,
Using VoltDB with Other Programming Languages for more on writing client applications using other
languages.) To compile, you must include the VolItDB libraries in the classpath so Java can resolve
references to the VoltDB classes and methods. It is possible to do this manually by defining the
environment variable CLASSPATH or by using the- cl asspat h argument on the command line. If your
client application depends on other libraries, they need to be included in the classpath as well. Y ou can
also specify where to create the resulting class files using the - d flag to specify an output directory, as
in the following example:

$ javac -classpath "./:/opt/voltdb/voltdb/*" \
-d ./obj \
*.java

The preceding example assumesthat the VoltDB software hasbeeninstalledinthefolder / opt / vol t db.
If you installed VoltDB in a different directory, you need to include your installation path in the -
cl asspat h argument.

If you are using Apache Maven to manage your application development, the VoltDB Java client library
is available from the central Maven repository. So rather than installing VoltDB locally, you can simply
include it as a dependency in your Maven project object model, or pom.xml, like so:

<dependency>
<gr oupl d>or g. vol t db</ gr oupl d>
<artifactld>voltdbclient</artifactld>
<versi on>5. 1</ versi on>

</ dependency>

6.6.1. Starting the Client Application

6.6.2.

Before you start your client application, the VoltDB database must be running. When you start your client
application, you must ensure that the VoltDB library JAR file isin the classpath. For example:

$ java -classpath "./:/opt/voltdb/voltdb/*" MUCientApp

If you develop your application using one of the sample applications as a template, the r un. sh file
manages this dependency for you.

Running Clients from Outside the Cluster

If you are running the database on a cluster and the client applications on separate machines, you do not
need to include al of the VoltDB software with your client application. The VoltDB distribution comes
with two separate libraries: vol tdb-n. n. nn.jar and vol tdbclient-n.n.nn.jar (where
n.n.nn isthe VoltDB version number). Thefirst fileis acomplete library that is required for building and
running aVoltDB database server.

Thesecondfile, vol t dbcl i ent-n. n. nn. j ar,isasmaler library containing only those components
needed to runaclient application. If you aredistributing your client applications, you only need to distribute

56

Designing VoltDB Client Applications

the client classes and the VoltDB client library. You do not need to install all of the VoltDB software
distribution on the client nodes.

57

Chapter 7. Simplifying Application
Development

The previous chapter (Chapter 6, Designing VoltDB Client Applications) explains how to develop your
VoltDB database application using the full power and flexibility of the Java client interface. However,
some database tasks — such as inserting records into a table or retrieving a specific column value — do
not need all of the capabilities that the Java API provides.

Now that you know how the VoltDB programming interface works, VoltDB has features to simplify
common tasks and make your application development easier. Those features include:

 Using Default Procedures
« Shortcut for Defining Simple Stored Procedures
 Verifying Expected Query Results

The following sections describe each of these features separately.

7.1. Using Default Procedures

Although it is possible to define quite complex SQL queries, often the simplest are also the most common.
Inserting, selecting, updating, and deleting records based on a specific key value are the most basic
operations for a database. Another common practice is upsert, where if arow matching the primary key
already exists, the record is updated — if not, a new record is inserted. To simplify these operations,
VoltDB defines these default stored procedures for tables.

Thedefault stored procedures use astandard naming scheme, where the name of the procedureiscomposed
of the name of the table (in all uppercase), a period, and the name of the query in lowercase. For example,
the Hello World tutorial (doc/ t ut ori al s/ hel | owor | d) contains a single table, HELLOWORLD,
with three columns and the partitioning column, DIALECT, as the primary key. As aresult, five default
stored procedures are included in addition to any user-defined procedures declared in the schema. The
parameters to the procedures differ based on the procedure.

VoltDB defines a default insert stored procedure when any table is defined:

HELLOWORLD.insert |The parameters are the table columns, in the same order as defined in the
schema.

VoltDB defines default update, upsert, and delete stored procedures if the table has a primary key:

HELLOWORLD.update | The parameters are the new column values, in the order defined by the schema,
followed by the primary key column values. This means the primary key
column values are specified twice: once as their corresponding new column
values and once as the primary key value.

HELLOWORLD.upsert | The parameters are the table columns, in the same order as defined in the
schema.

HELLOWORLD.delete | The parameters are the primary key column values, listed in the order they
appear in the primary key definition.

VoltDB defines adefault select stored procedure if the table has a primary key and the table is partitioned:

58

Simplifying Application Development

HELLOWORLD.select | The parameters are the primary key column values, listed in the order they
appear in the primary key definition.

Usethe sglcmd command show procedur estolist al the stored procedures availableincluding the number
and type of parametersrequired. Use @yst enCat al og wi t h t he PROCEDURECOLUMNS selector
to show more details about the order and meaning of each procedure's parameters.

The following code example uses the default procedures for the HELLOWORLD table to insert, retrieve
(select), update, and delete a new record with the key value "American";

Vol t Tabl e[] results;

client.call Procedure("HELLOAORLD. i nsert",
"Anmeri can", "Howdy", "Earth");

results = client.callProcedure("HELLOAORLD. sel ect ",
"Anmerican").getResults();

client.callProcedure("HELLOADRLD. updat e",
"Anmerican", "Yo", "Bi osphere",
"Anerican");

client.call Procedure("HELLOAORLD. del ete",
"Anerican");

7.2. Shortcut for Defining Simple Stored
Procedures

Sometimesall you want isto execute asingle SQL query and return theresultsto the calling application. In
these simple cases, writing the necessary Java code to create a stored procedure can be tedious, so VoltDB
provides a shortcut. For very simple stored procedures that execute a single SQL query and return the
results, you can define the entire stored procedure as part of the database schema.

Recall from Section 5.3.2, “Declaring Stored Procedures in the Schema’, that normally you use the
CREATE PROCEDURE statement to specify the class name of the Javaprocedureyou coded, for example:

CREATE PROCEDURE FROM CLASS MakeReservati on;
CREATE PROCEDURE FROM CLASS Cancel Reservati on;

However, to create procedures without writing any Java, you can simply insert a SQL query in the AS
clause:

CREATE PROCEDURE Count Reservati ons AS
SELECT COUNT(*) FROM RESERVATI ON;

VoltDB creates the procedure when you include the SQL query in the CREATE PROCEDURE AS
statement. Note that you must specify a unique class name for the procedure, which is unique among all
stored procedures, including both those declared in the schemaand those created as Java classes. (Y ou can
use the sglemd command show proceduresto display alist of all stored procedures.)

It is also possible to pass arguments to the SQL query in simple stored procedures. If you use the
guestion mark placeholder in the SQL, any additional argumentsyou passin client applicationsthrough the
cal | Procedur e() method are used to replace the placeholders, in their respective order. For example,
the following simple stored procedure expects to receive three additional parameters:

CREATE PROCEDURE MyReservationsByTrip AS
SELECT R RESERVEI D, F. FLIGHTI D, F. DEPARTTI ME
FROM RESERVATI ON AS R, FLIGHT AS F

59

Simplifying Application Development

WHERE R CUSTOMERID = ?
AND R FLIGHTI D = F. FLI GHTI D
AND F. ORI G N=? AND F. DESTI NATI ON=?;

You can also specify whether the simple procedure is single-partitioned or not. By default, stored
procedures are assumed to be multi-partitioned. But if your procedure should be single-partitioned, specify
itspartitioning inthe PARTITION ON clause. In thefollowing example, the stored procedureis partitioned
on the FLIGHTID column of the RESERVATION table using the first parameter as the partitioning key.

CREATE PROCEDURE Fet chReservati ons
PARTI TI ON ON
TABLE Reservation COLUWN flightid
AS
SELECT * FROM RESERVATI ON WHERE FLI GHTI D=7?;

Finally, if you want to execute multiple SQL statements within a simple procedure, you must enclose the
SQL inaBEGIN-END clause. For example, the following CREATE PROCEDURE AS statement fetches
separate records from the CUSTOMER and ORDER tables:

CREATE PROCEDURE OpenOrders
AS BEG N
SELECT ful |l nane FROM CUSTOVER WHERE CUSTOVERI D=7?;
SELECT * FROM ORDER WHERE CUSTOMERI D=7?;
END;

Some important points to note concerning multi-statement simple procedures:
» The END statement and all of the enclosed SQL statements, must be terminated with a semi-colon.
» The procedure returns an array of VoltTables, one for each statement in the procedure.

» Each placeholder represents one parameter to the stored procedure. Parameters cannot be reused. Soin
the previous example, the customer ID would need to be entered twice as separate parameters to the
stored procedure, one parameter for the first statement and one parameter for the second statement.

7.3. Verifying Expected Query Results

The automated default and simple stored procedures reduce the coding needed to perform simple queries.
However, another substantial chunk of stored procedure and client application code is often required to
verify the correctness of the results returned by the queries. Did you get the right number of records? Does
the query return the correct value?

Rather than you having to write the code to validate the query results manually, VoltDB provides a way
to perform several common validations as part of the query itself. The Java client interface includes an
Expect at i on object that you can useto definethe expected results of aquery. Then, if the query doesnot
meet those expectations, the executing stored procedure automatically throwsaVol t Abor t Excepti on
and rolls back.

Y ou specify the expectation as the second parameter (after the SQL statement but before any arguments)
when queuing the query. For example, when making a reservation in the Flight application, the procedure
must make sure there are seats available. To do this, the procedure must determine how many seats the
flight has. This query can also be used to verify that the flight itself exists, because there should be one
and only onerecord for every flight ID.

Thefollowing code fragment usesthe EXPECT_ONE_ROW expectation to both fetch the number of seats
and verify that the flight itself exists and is unique.

60

Simplifying Application Development

i mport org.voltdb. Expectati on;

public final SQStnt GetSeats = new SQStnt (
"SELECT nunber of seats FROM Fl i ght WHERE flightid=?;");

vol t QueueSQL(Get Seat s, EXPECT_ONE ROW flightid);
Vol t Tabl e[] recordset = voltExecuteSQL();
Long nunofseats = recordset[0].asScal arLong();

By using the expectation, the stored procedure code does not need to do additional error checking to verify
that there is one and only one row in the result set. The following table describes all of the expectations
that are available to usein stored procedures.

Expectation Description

EXPECT_EMPTY The query must return no rows.

EXPECT_ONE_ROW The query must return one and only one row.

EXPECT_ZERO _OR_ONE_ROW The query must return no more than one row.

EXPECT_NON_EMPTY The query must return at least one row.

EXPECT_SCALAR The query must return asingle value (that is, one row with one
column).

EXPECT_SCALAR_LONG The query must return a single value with a datatype of Long.

EXPECT_SCALAR MATCH(long) |The query must return a single value equal to the specified
Long value.

61

Chapter 8. Using VoltDB with Other
Programming Languages

VoltDB stored procedures are written in Java and the primary client interface also uses Java. However,
that is not the only programming language you can use with VoltDB.

It is possible to have client interfaces written in almost any language. These client interfaces allow
programs written in different programming languages to interact with a VoltDB database using native
functions of the language. The client interface then takes responsibility for translating those requests into
a standard communication protocol with the database server as described in the VoltDB wire protocol.

Some client interfaces are developed and packaged as part of the standard VoltDB distribution kit while
othersare compiled and distributed as separate client kits. Asof thiswriting, thefollowing client interfaces
are available for VoltDB:

. Ct

o Ct++

» Erlang

+ Go

» Java (packaged with VoltDB)
» JDBC (packaged with VoltDB)
» JSON (packaged with VoltDB)
* Nodejs

» ODBC

« PHP

* Python

The JSON client interface may be of particular interest if your favorite programming languageisnot listed
above. JSON is a data format, rather than a programming interface, and the JSON interface provides a
way for applications written in any programming language to interact with VoltDB via JSON messages
sent across a standard HTTP protocaol.

The following sections explain how to use the C++, JSON, and JDBC client interfaces.

8.1. C++ Client Interface

VoltDB provides aclient interface for programs written in C++. The C++ client interface is available pre-
compiled asaseparatekit from the VoltDB web site, or in source format from the V oltDB github repository
(http://github.com/V oltDB/voltdb-client-cpp). Thefollowing sections describe how to write VVoltDB client
applicationsin C++.

8.1.1. Writing VoltDB Client Applications in C++

When using the VoltDB client library, as with any C++ library, it is important to include al of the
necessary definitions at the beginning of your source code. For VolItDB client applications, this includes

62

http://voltdb.com/
http://github.com/VoltDB/voltdb-client-cpp

Using VoltDB with Other
Programming Languages

definitionsfor the VoltDB methods, structures, and datatypes aswell asthelibrariesthat VoltDB depends
on (specifically, boost shared pointers). For example:

#defi ne __STDC_CONSTANT_MACROS
#define _ STDC LI M T_MACRCS

#i ncl ude <vector>

#i ncl ude <boost/shared ptr. hpp>
#include "Cient.h"

#i ncl ude "Tabl e. h"

#i nclude "Tabl elterator.h"

#i ncl ude " Row. hpp"

#i nclude "WreType. h"

#i ncl ude "Paraneter. hpp"

#i ncl ude " Par anet er Set . hpp"

#i ncl ude "ProcedureCal | back. hpp"

Once you have included all of the necessary declarations, there are three steps to using the interface to
interact with VoltDB:

1. Create and open aclient connection
2. Invoke stored procedures
3. Interpret the results

The following sections explain how to perform each of these functions.

8.1.2. Creating a Connection to the Database Cluster

8.1.3.

Beforeyou can call VoltDB stored procedures, you must create aclient instance and connect to the database
cluster. For example:

vol tdb:: dientConfig config("nyusernane", "mypassword");
voltdb::Cient client = voltdb::Client::create(config);
client.createConnection("nyserver");

As with the Java client interface, you can create connections to multiple nodes in the cluster by making
multiple cals to the createConnection method specifying a different | P address for each connection.

Invoking Stored Procedures

The C++ client library provides both a synchronous and asynchronous interface. To make a synchronous
stored procedure call, you must declare objects for the parameter types, the procedure call itself, the
parameters, and theresponse. Notethat the datatypes, the procedure, and the parameters need to be declared
in a specific order. For example:

/* Declare the nunber and type of parameters */

std::vector<vol tdb:: Paraneter> paraneterTypes(3);

par amet er Types|[0] vol t db: : Paranet er (vol tdb: : WRE_TYPE_BI G NT) ;
par amet er Types|[1] vol t db: : Paranet er (vol tdb: : WRE_TYPE_STRI NG ;
par amet er Types| 2] vol t db: : Paranet er (vol tdb: : WRE_TYPE_STRI NG ;

/* Declare the procedure and paraneter structures */
vol tdb: : Procedure procedure("AddCustoner", paraneterTypes);
vol t db: : Paranet er Set* parans = procedure. parans();

63

Using VoltDB with Other
Programming Languages

8.1.4.

/* Declare a client response to receive the status and return val ues */
vol tdb: : I nvocat i onResponse response;

Once you instantiate these objects, you can reuse them for multiple callsto the stored procedure, inserting
different valuesinto params each time. For example:

par ans- >addl nt 64(13505) . addString("W/lliani').addString("Smth");
response = client.invoke(procedure);

par ams- >addl nt 64(13506) . addString("Mary").addString("WI1liams");
response = client.invoke(procedure);

par ans- >addl nt 64(13507) . addString("Bill").addString("Smyt he");
response = client.invoke(procedure);

Invoking Stored Procedures Asynchronously

To make asynchronous procedure calls, you must also declare a callback structure and method that will
be used when the procedure call completes.

cl ass AsyncCal | back : public voltdb:: ProcedureCal |l back
{
public:
bool call back
(vol tdb: : I nvocati onResponse response)
throw (vol tdb: : Exception)

{
/*
* The work of your call back goes here...
*/

}

}s

Then, when you go to make the actual stored procedure invocation, you declare an callback instance and
invoke the procedure, using both the procedure structure and the callback instance:

boost :: shared_ptr<AsyncCal | back> cal | back(new AsyncCal | back());
client.invoke(procedure, call back);

Note that the C++ interface is single-threaded. The interface is not thread-safe and you should not use
instances of the client, client response, or other client interface structures from within multiple concurrent
threads. Also, the application must release control occasionaly to give the client interface an opportunity
to issue network requests and retrieve responses. Y ou can do this by calling either the run() or runOnce()
methods.

The run() method waits for and processes network requests, responses, and callbacks until told not to.
(That is, until acallback returns avalue of false)

The runOnce() method processes any outstanding work and then returns control to the client application.

In most applications, you will want to create a loop that makes asynchronous requests and then calls
runOnce(). This allows the application to queue stored procedure requests as quickly as possible while
also processing any incoming responses in atimely manner.

Another important difference when making stored procedure calls asynchronously is that you must make
sureall of the procedure calls compl ete before the client connection is closed. The client objects destructor
automatically closes the connection when your application |eaves the context or scope within which the

64

Using VoltDB with Other
Programming Languages

client is defined. Therefore, to make sure all asynchronous calls have completed, be sure to call thedrain
method until it returns true before leaving your client context:

while (!client.drain()) {}

8.1.5. Interpreting the Results

Both the synchronous and asynchronous invocations return a client response object that contains both the
status of the call and the return values. Y ou can use the status information to report problems encountered
while running the stored procedure. For example:

if (response.failure())

{

std::cout << "Stored procedure failed.
exit(-1);

<< response.toString();

}

If the stored procedure is successful, you can use the client response to retrieve the results. The results
are returned as an array of VoltTable structures. Within each VoltTable object you can use an iterator to
walk through the rows. There are also methods for retrieving each datatype from the row. For example,
the following exampl e displays the results of asingle VoltTable containing two strings in each row:

/* Retrieve the results and an iterator for the first volttable */
std::vector<voltdb:: Table> results = response.results();
voltdb:: Tablelterator iterator = results[O].iterator();

/* lterate through the rows */
while (iterator.hasNext())

voltdb:: Row row = iterator.next();
std::cout << row.getString(0) << ", " << row.getString(l) << std::endl;

}

8.2. JSON HTTP Interface

JSON (JavaScript Object Notation) is not a programming language; it is a data format. The JSON
"interface” to VoltDB is actually a web interface that the VoltDB database server makes available for
processing reguests and returning datain JSON format.

The JSON interface lets you invoke VoltDB stored procedures and receive their results through HTTP
requests. To invoke a stored procedure, you pass VoltDB the procedure name and parameters as a
guerystring to the HTTP request, using either the GET or POST method.

Although many programming languages provide methods to simplify the encoding and decoding of JSON
strings, you still need to understand the data structures that are created. So if you are not familiar with
JSON encoding, you may want to read more about it at ht t p: / / www. j son. or g.

8.2.1. How the JSON Interface Works

When a VoltDB database starts, it opens port 8080 on each server as a smple web server. You have
complete control over thisfeature through the configuration file and the voltdb start command, including:

 Disabling just the JSON interface, or the HTTP port entirely using the <ht t pd> element in the
configuration file.

65

http://www.json.org/

Using VoltDB with Other
Programming Languages

 Enabling TLS encryption on the port using the <ss| > element.
» Changing the port number using the - - ht t p flag on the voltdb start command.

See the section on the "Web Interface Port" in the VoltDB Administrator's Guide for more information
on configuring the HTTP port.

This section assumes the database is using the default httpd configuration. In which case, any HTTP
requests sent to thelocation /api/1.0/ on that port areinterpreted as JSON requeststo run astored procedure.
The structure of the request is:

URL http://<server>:8080/api/1.0/

Arguments Procedure=<procedure-name>
Parameters=<procedure-parameters>

User=<username for authentication>
Password=<password for authentication>
Hashedpassword=<Hashed password for authentication>
admin=<truelfal se>

jsonp=<function-name>

The arguments can be passed either using the GET or the POST method. For example, the following URL
uses the GET method (where the arguments are appended to the URL) to execute the system procedure
@Systemlnformation on the VoltDB database running on node voltsvr.mycompany.com:

http://vol tsvr. nyconmpany. com 8080/ api /1. 0/ ?Pr ocedur e=@byst em nf or mati on

Note that only the Procedur e argument is required. You can authenticate using the User and
Passwor d (or Hashedpasswor d) argumentsiif security is enabled for the database. Use Passwor d
to send the password as plain text or Hashedpasswor d to send the password as an encoded string. (The
hashed password must be either a 40-byte hex-encoding of the 20-byte SHA-1 hash or a 64-byte hex-
encoding of the 32-byte SHA-256 hash.)*

Y ou can al so include the parameters on the request. However, it isimportant to note that the parameters —
and the response returned by the stored procedure — are JSON encoded. The parametersare an array (even
if thereisonly one element to that array) and therefore must be enclosed in square brackets. Also, although
there is an upper limit of 2 megabytes for the entire length of the parameter string, large parameter sets
must be sent using POST to avoid stricter limitations on allowable URL lengths.

The adm n argument specifies whether the request is submitted on the standard client port (the default)
or the admin port (when you specify admni n=t r ue). When the database is in admin mode, the client
port is read-only; so you must submit write requests with adm n=t r ue or else the request is rejected
by the server.

The j sonp argument is provided as a convenience for browser-based applications (such as Javascript)
where cross-domain browsing is disabled. When you include thej sonp argument, the entire response is
wrapped as a function call using the function name you specify. Using this technique, the response is a
complete and valid Javascript statement and can be executed to create the appropriate language-specific
object. For example, caling the @Statistics system procedure in Javascript using the jQuery library looks
likethis:

$.get JSON(' http:// myserver: 8080/ api/ 1.0/ ?Procedure=@pt ati stics' +
" &Par anet er s=[" MANAGEMVENT", 0] & sonp=?",
{}, WCal | Back) ;

"Hashi ng the password stops the text of your password from being detectable from network traffic. However, it does not make the database access
any more secure. To secure the transmission of credentials and data between client applications and VoltDB, enable TLS encryption for the HTTP
port using the configuration file.

66

https://docs.voltdb.com/AdminGuide/HostConfigPortOpts.php#ServerConfigHttpdPort
http://docs.voltdb.com/AdminGuide/

Using VoltDB with Other
Programming Languages

Perhaps the best way to understand the JSON interfaceisto seeit in action. If you build and start the Hello
World example application that is provided in the VoltDB distribution kit (including the client that loads
data into the database), you can then open a web browser and connect to the local system through port
8080, to retrieve the French trandlation of "Hello World". For example:

http://1 ocal host: 8080/ api/ 1. 0/ ?Pr ocedur e=Sel ect &Par anet er s=[" French"]
The resulting display is the following:

{"status":1, "appstatus":-128,"statusstring":null,"appstatusstring":null,
"exception":null,"results":[{"status":-128,"schema": [{"name":"HELLO",
"type": 9}, {"name":"WORLD", "type":9}],"data":[["Bonjour","Mnde"]]}]}

Asyou can see, the results (which are a JSON-encoded string) are not particularly easy to read. But then,
the JSON interface is not really intended for human consumption. It'sreal purposeisto provide ageneric
interface accessible from almost any programming language, many of which already provide methods for
encoding and decoding JSON strings and interpreting their results.

8.2.2. Using the JSON Interface from Client Applications

The general process for using the JSON interface from within a programiis:
1. Encode the parameters for the stored procedure as a JISON-encoded string

2. Instantiate and execute an HTTP request, passing the name of the procedure and the parameters as
arguments using either GET or POST.

3. Decode the resulting JSON string into alanguage-specific data structure and interpret the results.

The following are examples of invoking the Hello World Insert stored procedure from several different
languages. In each case, the three arguments (the name of the language and the words for "Hello" and
"World") are encoded as a JSON string.

PHP

<?php
/1 Construct the procedure nane, paraneter list, and URL.

$vol tdbserver = "http:// myserver:8080/api/1.0/";
$proc = "Insert";

$a = array("Croatian", "Pozdrav", "Svijet");

$parans = json_encode($a);

$paranms = url encode($par ans);

$querystring = "Procedure=$proc&Par anet er s=$par ans";

/1 create a new cURL resource and set options
$ch = curl _init();
curl _setopt ($ch, CURLOPT_URL, $voltdbserver);
curl _setopt ($ch, CURLOPT_HEADER, 0);
curl _setopt ($ch, CURLOPT_FAI LONERROR, 1);
curl _setopt ($ch, CURLOPT_POCST, 1);
curl _setopt ($ch, CURLOPT_POSTFI ELDS, $querystring);
curl _setopt ($ch, CURLOPT_RETURNTRANSFER, true);

/1 Execute the request
$resultstring = curl _exec($ch);

67

Using VoltDB with Other
Programming Languages

Python

Perl

C#

?>

inmport urllib
i mport urllib2
i mport json

Construct the procedure nanme, paraneter |ist, and URL.
url = "http://nmyserver: 8080/ api/1.0/"
vol t parans = json. dunps(["Croatian", "Pozdrav", "Svijet"])
httpparanms = urllib.urlencode({
"Procedure': 'Insert',
' Parameters' : voltparans
})
print httpparans
Execute the request
data = urllib2.urlopen(url, httpparans).read()

Decode the results
result = json.l|oads(data)

use LWP:: Si mpl e;
ny $server = 'http://nmyserver:8080/api/1l.0/";

Insert "Hello Wrld" in Croatian

ny $proc = 'lInsert’;
ny $parans = '["Croatian", "Pozdrav","Svijet"]";
ny $url = $server . "?Procedur e=$pr oc&Par anet er s=$par ans"”;

ny $content = get $url;
die "Couldn't get $url" unless defined $content;

usi ng System

usi ng System Text;
usi ng System Net;
using System1Q

nanespace hel |l ovol t

{
cl ass Program
{
static void Main(string[] args)
{
string Vol tDBServer = "http://nyserver:8080/api/1.0/";
string VoltDBProc = "Insert";
string VoltDBParanms = "[\"Croatian\",\"Pozdrav\",\"Svijet\"]";
string Ul = Vol tDBServer + "?Procedure=" + Vol tDBProc

+ " &Par anet ers=" + Vol t DBPar arrs;

68

Using VoltDB with Other
Programming Languages

string result = null;
WebResponse response = nul | ;
StreanReader reader = null;

try
{
Ht t pebRequest request = (HttpWbRequest)WbRequest. Create(Url);
request. Method = "GET";
response = request. CGet Response();
reader = new StreanReader (response. Get ResponseSt rean(), Encodi ng. UTF8) ;
result = reader. ReadToEnd();

}
catch (Exception ex)
{ /1 handle error
Consol e. WitelLi ne(ex. Message);
}
finally
{
if (reader != null)reader.C ose();
if (response != null) response.C ose();
}

}
}
}

8.2.3. How Parameters Are Interpreted

When you pass arguments to the stored procedure through the JSON interface, VoltDB does its best to
map the data to the datatype required by the stored procedure. Thisisimportant to make sure partitioning
values are interpreted correctly.

For integer values, the JSON interface maps the parameter to the smallest possible integer type capable of
holding the value. (For example, BY TE for values less than 128). Any values containing a decimal point
are interpreted as DOUBLE.

String values (those that are quoted) are handled in several different ways. If the stored procedure is
expecting a BIGDECIMAL, the JSON interface will try to interpret the quoted string as a decimal value.
If the stored procedure is expecting a TIMESTAMP, the JSON interface will try to interpret the quoted
string as a JDBC-encoded timestamp value. (You can aternately pass the argument as an integer value
representing the number of microseconds from the epoch.) Otherwise, quoted strings are interpreted as
astring datatype.

Table 8.1, “Datatypes in the JSON Interface” summarizes how to pass different datatypes in the JSON
interface.

Table 8.1. Datatypesin the JSON Interface

Datatype How to Pass Example

Integers (Byte, Short, Integer,|An integer value 12345
Long)

69

Using VoltDB with Other
Programming Languages

Datatype How to Pass Example
DOUBLE A value with a decimal point 123.45
BIGDECIMAL A quoted string containing avalue|"123.45"
with a decimal point
TIMESTAMP Either an integer value or a|12345
quoted string containing a JDBC-
encoded date and time "2010-07-01 12:30:21"
String A quoted string "l am astring"

8.2.4. Interpreting the JSON Results

Making the request and decoding the result string are only the first steps. Once the request is compl eted,
your application needs to interpret the results.

When you decode a JSON string, it is converted into alanguage-specific structure within your application,
composed of objects and arrays. If your request is successful, VoltDB returns a JSON-encoded string that
represents the same ClientResponse object returned by callsto the call Procedure method in the Javaclient
interface. Figure 8.1, “The Structure of the VoltDB JSON Response” shows the structure of the object
returned by the JSON interface.

Figure8.1. The Structure of the VoltDB JSON Response

{ appstatus (i nteger, bool ean)

appstatusstring (string)

exception (i nteger)
results (array)

[(obj ect, VoltTabl e)
{ data (array)
][(any type)

schena (array)

[name (string)
type (integer, enunerated)

]

st at us (i nteger, bool ean)
}
]
status (i nteger)
statusstring (string)

}
The key components of the JSON response are the following:

appstatus Returns additional information, provided by the application developer, about the success
or failure of the stored procedure. The values of appstatus and appstatusstring can be
set programmatically in the stored procedure. (See Section 6.5.1, “Interpreting Execution
Errors’ for details.)

results An array of objects representing the data returned by the stored procedure. Thisisan array
of VoltTable objects. If the stored procedure does not return avalue (i.e. is void or null),
then results will be null.

data Within each VoltTable object, data is the array of values.

70

Using VoltDB with Other
Programming Languages

8.2.5.

schema Within each VoltTable, object schema isan array of objects with two elements: the name
of the field and the datatype of that field (encoded as an enumerated integer value).

status Indicates the success or failure of the stored procedure. If status is false, statusstring
contains the text of the status message..

It is possible to create a generic procedure for testing and evaluating the result values from any VoltDB
stored procedure. However, in most cases it is far more expedient to evaluate the values that you know
the individual procedures return.

For example, again using the Hello World examplethat is provided with the VVoltDB software, itispossible
to usethe JSON interfaceto call the Select stored procedure and return the valuesfor "Hello" and "World"
in a specific language. Rather than evaluate the entire results array (including the name and type fields),
we know we are only receiving one VoltTable object with two string elements. So we can simplify the
code, as in the following python example:

import urllib

i mport urllib2
i mport json

i mport pprint

Construct the procedure nanme, paraneter |ist, and URL.
url = "http://1ocal host:8080/api/1.0/"'
vol t parans = json. dunmps(["French"])
httpparans = urllib.url encode({
"Procedure': 'Select',
"Paraneters' : voltparans

19)

Execute the request
data = urllib2.urlopen(url, httpparans).read()

Decode the results
result = json.loads(data)

Get the data as a sinple array and di splay them
foreignwords = result[u'results'][0][u' data'][0]

print foreignwords[0], foreignwords[1]

Error Handling using the JSON Interface

There are anumber of different reasonswhy a stored procedure request using the JSON interface may fail:
the VoltDB server may be unreachable, the database may not be started yet, the stored procedure name
may be misspelled, the stored procedure itself may fail... When using the standard Java client interface,
these different situations are handled at different times. (For example, server and database access issues
are addressed when instantiating the client, whereas stored procedure errors can be handled when the
procedures themselves are called.) The JSON interface simplifies the programming by rolling all of these
activitiesinto asingle call. But you must be more organized in how you handle errors as a consequence.

When using the JSON interface, you should check for errorsin the following order:

1. First check to seethat the HT TP request was submitted without errors. How thisisdone depends on what
language-specific methodsyou usefor submitting the request. In most cases, you can usethe appropriate
programming language error handlers (such as try-catch) to catch and interpret HTTP request errors.

71

Using VoltDB with Other
Programming Languages

2. Next check to seeif VoltDB successfully invoked the stored procedure. Y ou can do this by verifying
that the HTTP request returned a valid JSON-encoded string and that its status is set to true.

3. If theVoltDB server successfully invoked the stored procedure, then check to seeif the stored procedure
itself succeeded, by checking to see if appstatusistrue.

4. Finally, check to seethat the results are what you expect. (For example, that the data array is non-empty
and contains the values you need.)

8.3. JDBC Interface

8.3.1.

JDBC (Java Database Connectivity) is a programming interface for Java programmers that abstracts
database specifics from the methods used to access the data. JDBC provides standard methods and classes
for accessing a relational database and vendors then provide JDBC drivers to implement the abstracted
methods on their specific software.

VoltDB providesa JDBC driver for those who would prefer to use JDBC asthe data access interface. The
VoltDB JDBC driver supportsad hoc queries, prepared statements, calling stored procedures, and methods
for examining the metadata that describes the database schema.

Using JDBC to Connect to a VoltDB Database

The VoltDB driver is a standard class within the VoltDB software jar. To load the driver you use the
Class.forName method to load the class org.voltdb.jdbc.Driver.

Once the driver is loaded, you create a connection to a running VoltDB database server by constructing
a JDBC url using the "jdbc:" protocol, followed by "voltdb://", the server name, a colon, and the port
number. In other words, the complete JDBC connection url is"jdbc:voltdb://{ server} :{ port}". To connect
to multiple nodes in the cluster, use a comma separated list of server names and port numbers after the
"jdbc:voltdb://" prefix.

For example, the following code loads the VoltDB JDBC driver and connectsto the servers svrl and svr2
using the default client port:

Cl ass. forName("org. vol tdb.jdbc. Driver");
Connection ¢ = DriverManager. get Connecti on(
"jdbc:voltdb://svrl:21212, svr2:21212");

If, after the connection is made, the connection to one or more of the servers is lost due to a network
issue or server failure, the VoltDB JDBC client does not automatically reconnect the broken connection
by default. However, you can have the JIDBC driver reconnect lost connections by adding the autoconnect
argument to the connection string. For example:

Cl ass. forName("org.vol tdb.jdbc. Driver");
Connection ¢ = DriverManager. get Connecti on(
"jdbc:voltdb://svrl:21212, svr2:21212%aut or econnect =true");

When autoreconnect is enabled and a server goes offline, the JDBC driver periodicaly attempts to
reconnect to the missing server until it comes back online and the connection is reestablished.

If security is enabled for the database, you must also provide a username and password. Set these as
properties using the setProperty method before creating the connection and then pass the properties as a
second argument to getConnection. For example, the following code uses the username/password pair of
"Hemingway" and "KeyWest" to authenticate to the VoltDB database:

72

Using VoltDB with Other
Programming Languages

Cl ass.forName("org.vol tdb.jdbc. Driver");

Properties props = new Properties();

props. set Property("user", “Hem ngway");

props. set Property("password”, “KeyWst");

Connection ¢ = DriverManager. get Connecti on(
"jdbc:voltdb://svrl:21212, svr2:21212", props);

8.3.2. Using JDBC to Query a VoltDB Database

Once the connection is made, you use the standard JDBC classes and methods to access the database. (See
the JDBC documentation at ht t p: / / downl oad. or acl e. coml j avase/ 8/ docs/t echnot es/
gui des/ j dbc for details.) Note, however, when running the JDBC application, you must make sure
both the VoltDB software jar and the Guavalibrary are in the Java classpath. Guavaisathird party library
that is shipped as part of the VoltDB kit in the /lib directory. Unless you include both components in the
classpath, your application will not be able to find and load the necessary driver class.

The following is a complete example that uses JDBC to access the Hello World tutorial that comes with
the VoltDB software in the subdirectory / doc/ t ut ori al s/ hel | owor | d. The IDBC demo program
executes both an ad hoc query and a call to the VoltDB stored procedure, Select.

i mport java.sql.*;
i mport java.io.?*;

public class JdbcDenmo {
public static void main(String[] args) {

String driver = "org.voltdb.jdbc.Driver";

String url = "jdbc:voltdb://Ilocal host:21212";
String sgl = "SELECT di al ect FROM hel | owor| d";
try {

/1 Load driver. Create connection.
Cl ass. forName(driver);
Connection conn = DriverManager. get Connection(url);

/] create a statenent
Statement query = conn.createStatenent();
Resul t Set results = query. executeQuery(sql);
while (results.next()) {

System out. printl n("Language is

+ results.getString(1));
}

/1 call a stored procedure
Cal | abl eSt atement proc = conn. prepareCall ("{call Select(?)}");
proc.setString(1l, "French");
results = proc. executeQery();
while (results.next()) {
Systemout.printf("%, %!\n", results.getString(1l),
results.getString(2));

//Close statenents, connections, etc.
query. cl ose();

73

http://download.oracle.com/javase/8/docs/technotes/guides/jdbc
http://download.oracle.com/javase/8/docs/technotes/guides/jdbc

Using VoltDB with Other
Programming Languages

proc. close();
results.close();
conn. cl ose();

} catch (Exception e) {

}

e.printStackTrace();

74

Chapter 9. Using VoltDB in a Cluster

Itispossibleto runVoltDB onasingle server and still get all the advantages of parallelism because VoltDB
creates multiple partitions on each server. However, there are practical limits to how much memory or
processing power any one server can sustain.

One of the key advantages of VoItDB is its ease of expansion. You can increase both capacity and
processing (i.e. the total number of partitions) smply by adding servers to the cluster to achieve almost
linear scalability. Using VoltDB in a cluster also gives you the ability to increase the availability of the
database — protecting it against possible server failures or network glitches.

This chapter explains how to create a cluster of VoltDB servers running a single database. It also explains
how to expand the cluster when additional capacity or processing power isneeded. The following chapters
explain how to increase the availability of your database through the use of K-safety and database
replication, as well as how to enable security to limit access to the data.

9.1. Starting a Database Cluster

Asdescribed in Chapter 3, Sarting the Database, starting aV oltDB cluster issimilar to starting VVoltDB on
asingle server — you use the same commands. To start asingle server database, you use the voltdb start
command by itself. To customize database features, you specify a configuration file when you initialize
the root directory with voltdb init.

To start a cluster, you aso use the voltdb start command. In addition, you must:
« Specify the number of nodesin the cluster using the --count argument.

» Choose one or more nodes as the potential lead or "host" node and specify those nodes using the --host
argument on the start command

* |ssue the same voltdb start command on all nodes of the cluster

For example, if you are creating anew five node cluster and choose nodes server2 and server3 asthe hosts,
you would issue a command like the following on al five nodes:

$ voltdb start --host=server2,server3 --count=5

To restart a cluster using command logs or automatic snapshots, you repeat the same command.
Alternately, you can specify all nodes in the cluster in the --host argument and skip the server count:

$ voltdb start --host=serverl, server?2, server3, server4, server5

No matter which approach you choose, you must specify the same list of potential hosts on all nodes of
the cluster. Once the database cluster is running the leader's special roleis complete and al nodes become
peers.

9.2. Updating the Cluster Configuration

Before you start the cluster, you choose what database features to use by specifying a configuration file
when you initialize the database root directory on each node using the voltdb init command. Y ou must
specify the same configuration file on every node of the cluster. For example:

$ voltdb init --config=depl oynent.xmn

75

Using VoltDB in a Cluster

If you choose to change database options, many of the features can be adjusted while the database is
running by either:

» Using the web-based VoltDB Management Center to make changes interactively in the Admin tab

 Editing the original configuration file and applying the modifications with the voltadmin update
command

For example, you can change security settings, import and export configurations, and resource limits
dynamically. With either approach, the changes you make are saved by VoltDB in the database root
directory.

However, there are some changes that cannot be made while the database is running. For example,
changing the K-safety value or the number of partitions per server require shutting down, re-initializing,
and restarting the database. To change these static aspects of your cluster, you must save the database
contents, reconfigure the root directory, then restart and restore the database. The stepsfor changing static
configuration options are:

1. Pause the database (voltadmin pause)
2. Save a snapshot of the contents (voltadmin save {path} {file-prefix})
3. Shutdown the database (voltadmin shutdown)

4. Re-initialize the root directory with the new configuration file and the - - f or ce argument (voltdb
init --for ce --config=file)

5. Restart the database in admin mode (voltdb start --pause)
6. Restore the snapshot (voltadmin restore {path} {file-prefix})
7. Resume normal operations (voltadmin resume)

See Chapter 13, Saving & Restoring a VoltDB Database for information on using save and r estor e. When
doing benchmarking, where you need to change the number of partitions, reducing the number of servers,
or adjusting other static configuration options, this is the recommended approach. However, if you are
simply adding nodes to the cluster to add capacity or increase performance, you can add the nodes while
the database is running. Adding nodes "on the fly" is also known as elastic scaling, as described in the
next section.

9.2.1. Adding Nodes with Elastic Scaling

When you are ready to extend the cluster by adding one or more nodes, you simply initialize and start the
VoltDB database process on the new nodes using the voltdb init command to initialize and the voltdb
start command to start with the - - add argument, specifying the name of one or more of the existing
cluster nodes as the hosts. For example, if you are adding node ServerX to a cluster where ServerA is
already a member, you can execute the following commands on ServerX:

$ voltdb init --config=depl oynent.xmn
$ voltdb start --add --host=ServerA

Once the elastic add action is initiated, the cluster performs the following tasks:
1. The cluster acknowledges the presence of a new server.

2. Copies of the current schema and configuration settings are sent to the new node.

76

Using VoltDB in a Cluster

3. Once sufficient nodes are added, copies of al replicated tables and their share of the partitioned tables
are sent to the new nodes.

4. Asthe data is redistributed (or rebalanced), the added nodes begin participating as full members of
the cluster.

There are some important notes to consider when expanding the cluster using elastic scaling:

» You must add a sufficient number of nodes to create an integral K-safe unit. That is, K+1 nodes. For
example, if the K-safety value for the cluster is two, you must add three nodes at a time to expand the
cluster. If the cluster is not K-safe (in other words it has a K-safety value of zero), you can add one
node at atime.

» When you add nodes to a K-safe cluster, the nodes added first will complete steps #1 and #2 above,
but will not complete steps #3 and #4 until the correct number of nodes are added, at which point all
nodes rebalance together.

» Whilethecluster isrebalancing (Step #3), the database continuesto handleincoming requests. However,
depending on the workload and amount of data in the database, rebalancing may take a significant
amount of time,

» Oncedasdtic scaling iscomplete, your database configuration has changed. If you shutdown the database
and then restart, you must specify the new server count in the - - count argument to the voltdb start
command.

9.2.2. Configuring How VoltDB Rebalances New Nodes

Once you add the necessary number of nodes (based on the K-safety value), VoltDB rebalancesthe cluster,
moving data from existing partitions to the new nodes. During the rebalance operation, the database
remains available and actively processing client requests. How long the rebalance operation takes is
dependent on two factors: how often rebalance tasks are processed and how much data each transaction
MOves.

Rebalance tasks are fully transactional, meaning they operate within the database's ACID-compliant
transactional model. Because they involve moving data between two or more partitions, they are also
multi-partition transactions. This meansthat each rebal ance work unit can incrementally add to the latency
of pending client transactions.

Y ou can control how quickly the rebal ance operation compl etes versus how much rebalance work impacts
ongoing client transactions using two attributes of the <el ast i ¢> element in the configuration file:

» The duration attribute sets a target value for the length of time each rebalance transaction will take,
specified in milliseconds. The default is 50 milliseconds.

» The throughput attribute sets a target value for the number of megabytes per second that will be
processed by the rebalance transactions. The default is 2 megabytes.

When you change the target duration, VVoltDB adjusts the amount of datathat is moved in each transaction
to reach the target execution time. If you increase the duration, the volume of data moved per transaction
increases. Similarly, if you reduce the duration, the volume per transaction decreases.

When you change the target throughput, VoltDB adjuststhe frequency of rebalance transactionsto achieve
the desired volume of data moved per second. If you increase the target throughout, the number of
rebalance transactions per second increases. Similarly, if you decrease the target throughout, the number
of transactions decreases.

77

Using VoltDB in a Cluster

The<elastic> element isachild of the <systemsettings> element. For exampl e, thefollowing configuration
file sets the target duration to 15 milliseconds and the target throughput to 1 megabyte per second before
starting the database:

<depl oynent >

<systensettings>
<el astic duration="15" throughput="1"/>
</ systensettings>
</ depl oynent >

78

Chapter 10. Availability

10.1.

Durability is one of the four key ACID attributes required to ensure the accurate and reliable operation of
atransactional database. Durability refers to the ability to maintain database consistency and availability
in the face of external problems, such as hardware or operating system failure. Durability is provided by
four features of VVoltDB: snapshots, command logging, K-safety, and disaster recovery through database
replication.

» Snapshots are a "snapshot” of the data within the database at a given point in time written to disk. You
can use these snapshot filesto restore the database to a previous, known state after afailure which brings
down the database. The snapshots are guaranteed to be transactionally consistent at the point at which
the snapshot was taken. Chapter 13, Saving & Restoring a VoltDB Database describes how to create
and restore database snapshots.

« Command Logging isafeature where, in addition to periodic snapshots, the system keeps alog of every
stored procedure (or "command") asit is invoked. If, for any reason, the serversfail, they can "replay"
the log on startup to reinstate the database contents completely rather than just to an arbitrary point-
in-time. Chapter 14, Command Logging and Recovery describes how to enable, configure, and replay
command logs.

» K-safety refers to the practice of duplicating database partitions so that the database can withstand the
loss of cluster nodes without interrupting the service. For example, aK value of zero means that there
isno duplication and losing any serverswill result in aloss of data and database operations. If there are
two copies of every partition (a K value of one), then the cluster can withstand the loss of at least one
node (and possibly more) without any interruption in service.

» Database Replication is similar to K-safety, since it involves replicating data. However, rather than
creating redundant partitions within a single database, database replication involves creating and
maintaining a complete copy of the entire database. Database replication has a number of uses, but
specifically in terms of durability, replication lets you maintain two copies of the database in separate
geographic locations. In case of catastrophic events, such as fires, earthquakes, or large scale power
outages, the replica can be used as a replacement for a disabled cluster.

Subsequent chapters describe snapshots and command logging. The next chapter describes how you can
use database replication for disaster recovery. This chapter explains how K-safety works, how to configure
your VoltDB database for different values of K, and how to recover in the case of a system failure.

How K-Safety Works

K-safety involves duplicating database partitions so that if a partition is lost (either due to hardware or
software problems) the database can continue to function with the remaining duplicates. In the case of
VoltDB, the duplicate partitions are fully functioning members of the cluster, including all read and write
operations that apply to those partitions. (In other words, the duplicates function as peers rather than in
amaster-slave relationship.)

Itisalsoimportant to notethat K-safety isdifferent than WAN replication. In replication the entire database
cluster isreplicated (usually at aremote location to provide for disaster recovery in case the entire cluster
or site goes down due to catastrophic failure of some type).

In replication, the replicated cluster operates independently and cannot assist when only part of the active
cluster fails. The replicate is intended to take over only when the primary database cluster fails entirely.
So, in caseswhere the database is mission critical, it is not uncommon to use both K-safety and replication
to achieve the highest levels of service.

79

Availability

To achieve K=1, it is necessary to duplicate all partitions. (If you don't, failure of a node that contains a
non-duplicated partition would cause the database to fail.) Similarly, K=2 requires two duplicates of every
partition, and so on.

What happens during normal operations is that any work assigned to a duplicated partition is sent to all
copies (as shown in Figure 10.1, “K-Safety in Action”). If anode fails, the database continues to function
sending the work to the unaffected copies of the partition.

Figure 10.1. K-Safety in Action

10.2. Enabling K-Safety

Y ou specify the desired K-safety value as part of the cluster configuration when you initialize the database
root directory. By default, VoltDB usesaK -saf ety value of zero (no duplicate partitions). Y ou can specify a
larger K-safety value using the kf act or attribute of the<cl ust er > tag. For example, in the following
configuration file, the K-safety valueis set to 2:

<?xm version="1.0"?>
<depl oynent >

<cl uster kfactor="2" />
</ depl oynent >

When you start the database specifying a K-safety value greater than zero, the appropriate number of
partitions out of the cluster will be assigned as duplicates. For example, if you start a cluster with 3 nodes
and the default partitions per node of 8, there are atotal of 24 partitions. With K=1, half of those partitions
(12) will be assigned as duplicates of the other half. If K isincreased to 2, the cluster would be divided
into 3 copies consisting of 8 partitions each.

The important point to note when setting the K value is that, if you do not change the hardware
configuration, you are dividing the availabl e partitions among the duplicate copies. Therefore performance

80

Availability

(and capacity) will be proportionally decreased as K-safety is increased. So running K=1 on a 6-node
cluster will be approximately equivalent to running a 3-node cluster with K=0.

If you wish to increase reliability without impacting performance, you must increase the cluster size to
provide the appropriate capacity to accommodate for K-safety.

10.2.1. What Happens When You Enable K-Safety

Of course, to ensure a system failure does not impact the database, not only do the partitions need to be
duplicated, but VVoltDB must ensure that the duplicates are kept on separate nodes of the cluster. To achieve
this, VoltDB calculates the maximum number of unigque partitions that can be created, given the number
of nodes, partitions per node, and the desired K-safety value.

When the number of nodes is an integral multiple of the duplicates needed, thisis easy to calculate. For
example, if you have asix node cluster and choose K=1, VoltDB will create two instances of three nodes
each. If you choose K=2, VoltDB will create three instances of two nodes each. And so on.

If the number of nodesis not amultiple of the number of duplicates, VoltDB doesits best to distribute the
partitions evenly. For example, if you have a three node cluster with two partitions per node, when you
ask for K=1 (in other words, two of every partition), VoltDB will duplicate three partitions, distributing
the six total partitions across the three nodes.

10.2.2. Calculating the Appropriate Number of Nodes for K-
Safety

By now it should be clear that there is a correlation between the K value and the number of nodes and
partitionsin the cluster. Ideally, the number of nodesisamultiple of the number of copiesneeded (in other
words, the K value plus one). Thisis both the easiest configuration to understand and manage.

However, if the number of nodes is not an exact multiple, VoltDB distributes the duplicated partitions
across the cluster using the largest number of unique partitions possible. Thisisthe highest whole integer
where the number of unique partitions is equal to the total number of partitions divided by the needed
number of copies:

Uni que partitions = (nodes * partitions/node) / (K + 1)

Therefore, when you specify a cluster size that is not a multiple of K+1, but where the total number of
partitionsis, VoltDB will use all of the partitions to achieve the required K-safety value.

Note that the total number of partitions must be awhole multiple of the number of copies (that is, K+1).
If neither the number of nodes nor the total number of partitions is divisible by K+1, then VoltDB will
not let the cluster start and will display an appropriate error message. For example, if the configuration
specifies 3 sites per host and a K-safety value of 1 but the voltdb start command specifies a server count
of 3, the cluster cannot start because the total number of partitions (3X3=9) isnot a multiple of the number
of copies (K+1=2). To start the cluster, you must either change the configuration to increase the K-safety
value to 2 (so the number of copies is 3) or change the sites per host to 2 or 4 so the total number of
partitionsis divisible by 2.

Finally, if the configuration specifiesaK value higher than the available number of nodes, it isnot possible
to achieve the requested K-safety. Even if there are enough partitions to create the requested duplicates,
VoltDB cannot distribute the duplicates to distinct nodes. For example, if you start a 3 node cluster when
the configuration specifies 4 partitions per node (12 total partitions) and a K-safety value of 3, the number
of total partitions (12) isdivisible by K+1 (4) but not without some duplicates residing on the same node.

81

Availability

10.3

In this situation, VoltDB issues an error message. You must either reduce the K-safety or increase the
number of nodes.

Recovering from System Failures

When running without K-safety (in other words, a K-safety value of zero) any node failure is fatal and
will bring down the database (since there are no longer enough partitions to maintain operation). When
running with K-safety on, if a node goes down, the remaining nodes of the database cluster log an error
indicating that a node has failed.

By default, these error messages are logged to the console terminal. Since the loss of one or more nodes
reducesthereliability of the cluster, you may want to increase the urgency of these messages. For example,
you can configure aseparate L og4J appender (such asthe SM TP appender) to report node failure messages.
To do this, you should configure the appender to handle messages of class HOST and severity level
ERROR or greater. See the chapter on Logging in the VoltDB Administrator's Guide for more information
about configuring logging.

When a node fails with K-safety enabled, the database continues to operate. But at the earliest possible
convenience, you should repair (or replace) the failed node.

To replace a failed node to arunning VoltDB cluster, you restart the VoltDB server process specifying
the address of at least one of the remaining nodes of the cluster as the host. For example, to rejoin a node
to the VoltDB cluster where server5 is one of the current member nodes, you use the following voltdb
start command:

$ voltdb start --host=server5

If you started the servers specifying multiple hosts, you can use the same voltdb start command used to
start the cluster as a whole since, even if the failed node is in the host list, one of the other nodes in the
list can service its rejoin request.

If thefailed server cannot be restarted (for example, if hardware problems caused the failure) you can start
areplacement server initsplace. Note you will need to initialize aroot directory on the replacement server
before you can start the database process. Y ou can either initialize the root with the original configuration
file. Or, if you have changed the configuration, you can download a copy of the current configuration from
the VoltDB Management Center and use that file to initialize the root directory before starting:

$ voltdb init --config=latest-config.xn
$ voltdb start --host=server5

Note that at least one node you specify in the --host argument must be an active member of the cluster. It
does not have to be one of the nodes identified as the host when the cluster was originally started.

10.3.1. What Happens When a Node Rejoins the Cluster

When you use voltdb start to bring back a server to a running cluster, the node first rejoins the cluster,
then retrieves a copy of the database schema and the appropriate data for its partitions from other nodes
in the cluster. Rgjoining the cluster only takes seconds and once this is done and the schemaiis received,
the node can accept and distribute stored procedure requests like any other member.

However, the new node will not actively participate in the work until afull working copy of its partition
dataisreceived. While the datais being copied, the cluster separates the rejoin process from the standard
transactional workflow, allowing the database to continue operating with a minimal impact to throughput
or latency. So the database remains available and responsive to client applications throughout the rejoin
procedure.

82

http://docs.voltdb.com/AdminGuide/ChapLogging.php
http://docs.voltdb.com/AdminGuide/

Availability

Itisimportant to remember that the cluster isnot fully K-safeuntil the restorationiscomplete. For example,
if the cluster was established with a K-safety value of two and one node failed, until that node rejoins and
is updated, the cluster is operating with a K-safety value of one. Once the node is up to date, the cluster
becomes fully operational and the original K-safety is restored.

10.3.2. Where and When Recovery May Fail

It is possible to rejoin any appropriately configured node to the cluster. It does not have to be the same
physical machine that failed. This way, if a node fails for hardware reasons, it is possible to replace it
in the cluster immediately with a new node, giving you time to diagnose and repair the faulty hardware
without endangering the database itself.

There are afew conditions in which the rejoin operation may fail. Those situations include the following:
* Insufficient K-safety

If the database is running without K-safety, or more nodesfail simultaneously than the cluster is capable
of sustaining, the entire cluster will fail and must be restarted from scratch. (At a minimum, aVoltDB
database running with K-safety can withstand at least as many simultaneous failures as the K-safety
value. It may be able to withstand more node failures, depending upon the specific situation. But the K-
safety value tells you the minimum number of node failures that the cluster can withstand.)

» Mismatched configuration in the root directory

If the configuration file that you specify when initializing the root directory does not match the current
configuration of the database, the cluster will refuse to let the node rejoin.

» More nodes attempt to rejoin than have failed

If one or more nodes fail, the cluster will accept rejoin reguests from as many nodes as failed. For
example, if one node fails, the first node requesting to rejoin will be accepted. Once the cluster is back
to the correct number of nodes, any further requeststo rejoin will be rejected. (Thisisthe same behavior
asif you try to start more nodes than specified in the - - count argument to the voltdb start command
when starting the database.)

10.4. Avoiding Network Partitions

VoltDB achieves scalability by creating a tightly bound network of servers that distribute both data and
processing. When you configure and manage your own server hardware, you can ensure that the cluster
resides on asingle network switch, guaranteeing the best network connection between nodes and reducing
the possibility of network faults interfering with communication.

However, there are situations where this is not the case. For example, if you run VoltDB "in the cloud”,
you may not control or even know what is the physical configuration of your cluster.

The danger is that a network fault — between switches, for example — can interrupt communication
between nodes in the cluster. The server nodes continue to run, and may even be able to communicate
with others nodes on their side of the fault, but cannot "see" the rest of the cluster. In fact, both halves of
the cluster think that the other half has failed. This condition is known as a network partition.

10.4.1. K-Safety and Network Partitions

When you run aVoltDB cluster without availability (in other words, no K-safety) the danger of anetwork
partition is simple: loss of the database. Any node failure makes the cluster incomplete and the database

83

Availability

will stop, Y ou will need to reestablish network communications, restart VoltDB, and restore the database
from the last snapshot.

However, if you are running acluster with K-safety, it is possible that when anetwork partition occurs, the
two separate segments of the cluster might have enough partitions each to continue running, each thinking
the other group of nodes has failed.

For example, if you have a 3 node cluster with 2 sites per node, and a K-safety value of 2, each nodeisa
separate, self-sustaining copy of the database, as shown in Figure 10.2, “Network Partition”. If a network
partition separates nodes A and B from node C, each segment has sufficient partitions remaining to sustain
the database. Nodes A and B think node C has failed; node C thinks that nodes A and B have failed.

Figure 10.2. Network Partition

Network Partition

Server
B

The problem isthat you never want two separate copies of the database continuing to operate and accepting
requests thinking they are the only viable copy. If the cluster is physically on a single network switch,
the threat of a network partition is reduced. But if the cluster is on multiple switches, the risk increases
significantly and must be accounted for.

10.4.2. Using Network Fault Protection

VoltDB provides a mechanism for guaranteeing that a network partition does not accidentally create two
separate copies of the database. The feature is called network fault protection.

Because the consequences of a partition are so severe, use of network partition detection is strongly
recommended and VoltDB enables partition detection by default. In addition it is recommended that,
wherever possible, K-safe clusters be configured with an odd number of nodes.

However, it is possible to disable network fault protection in the configuration file when you initialize the
database, if you choose. Y ou enable and disable partition detection using the <partition-detection> tag.
The <partition-detection> tag is a child of <deployment> and peer of <cluster>. For example:

<depl oynent >
<cl uster hostcount="4"
si tesper host ="2"
kfactor="1" />
<partition-detection enabled="true"/>
</ depl oynment >

Availability

When network fault protection is enabled, and a fault is detected (either due to a network fault or one or
more serversfailing), any viable segment of the cluster will perform the following steps:

1. Determine what nodes are missing
2. Determineif the missing nodes are also a viable self-sustained cluster. If so...
3. Determine which segment is the larger segment (that is, contains more nodes).

« If the current segment is larger, continue to operate assuming the nodes in the smaller segment have
failed.

« If the other segment is larger, shutdown to avoid creating two separate copies of the database.

For example, in the case shown in Figure 10.2, “Network Partition”, if anetwork partition separates nodes
A and B from C, the larger segment (nodes A and B) will continue to run and node C will shutdown (as
shown in Figure 10.3, “Network Fault Protection in Action”).

Figure 10.3. Network Fault Protection in Action

Network Partition

If a network partition creates two viable segments of the same size (for example, if a four node cluster
is split into two two-node segments), a specia case is invoked where one segment is uniquely chosen
to continue, based on the internal numbering of the host nodes. Thereby ensuring that only one viable
segment of the partitioned database continues.

Network fault protection is a very valuable tool when running VoltDB clusters in a distributed or
uncontrolled environment where network partitions may occur. The one downside is that there is no
way to differentiate between network partitions and actual node failures. In the case where network fault
protection is turned on and no network partition occurs but a large number of nodes actualy fail, the
remaining nodes may believe they are the smaller segment. In this case, the remaining nodes will shut
themselves down to avoid partitioning.

For example, in the previous case shown in Figure 10.3, “Network Fault Protection in Action”, if rather
than a network partition, nodes A and B fail, hode C is the only node still running. Although node C is
viable and could continue because the database was configured with K-safety set to 2, if fault protection
is enabled node C will shut itself down to avoid a partition.

Intheworst case, if half the nodes of acluster fail, the remaining nodes may actually shut themselves down
under the special provisions for a network partition that splits a cluster into two equal parts. For example,
consider the situation where atwo node cluster with ak-safety value of one has network partition detection

85

Availability

enabled. If one of the nodes fails (half the cluster), thereis only a 50/50 chance the remaining node is the
"blessed" node chosen to continue under these conditions. If the remaining node is not the chosen node, it
will shut itself down to avoid a conflict, taking the database out of service in the process.

Because this situation — a 50/50 split — could result in either a network partition or a viable cluster
shutting down, VoltDB recommends always using network partition detection and using clusters with an
odd number of nodes. By using network partitioning, you avoid the dangers of a partition. By using an
odd number of servers, you avoid even the possibility of a 50/50 split, whether caused by partitioning or
node failures.

86

Chapter 11. Database Replication

There are times when it is useful to create multiple copies of a database. Not just a snapshot of a moment
intime, but live, constantly updated copies.

K-safety maintains redundant copies of partitions within a single VoltDB database, which helps protect
the database cluster against individua node failure. Database replication also creates a copy. However,
database replication creates and maintains copiesin separate, often remote, databases.

VoltDB supports two forms of database replication:
* One-way (Passive)
» Two-way (Cross Datacenter)

Passive replication copies the contents from one database, known as the master database, to the other,
known as the replica. In passive replication, replication occurs in one direction: from the master to the
replica. Clients can connect to the master database and perform all normal database operations, including
INSERT, UPDATE, and DELETE statements. As shown in Figure 11.1, “Passive Database Replication”
changes are copied from the master to the replica. To ensure consistency between the two databases, the
replicais started as a read-only database, where only transactions replicated from the master can modify
the database contents.

Figure 11.1. Passive Database Replication

==t
ww

Clients
EE H B B E E E EHE BE BB BB ’ E E
Cluster 1 Cluster 2
Master Replica

Cross Datacenter Replication (XDCR), or active replication, copies changes in both directions. XDCR
can be set up on multiple clusters (not just two). Client applications can then perform read/write operations
on any of the participating clusters and changes in one database are then copied and applied to all the other
databases. Figure 11.2, “ Cross Datacenter Replication” shows how XDCR can support client applications
attached to each database instance.

87

Database Replication

11.1.

Figure 11.2. Cross Datacenter Replication

Cluster 1 Cluster 2

| | |
»
J ¥ XA
L 8 ,l'o
QU sS4 R n .
(ul TNRN ¢4 jul
Clients ~ & Cluster3 » , Clients
“ S p
mr
N
o
Clients

Database replication (DR) providestwo key business advantages. Thefirst is protecting your business data
against catastrophic events, such as power outages or natural disasters, which could take down an entire
cluster. Thisis often referred to as disaster recovery. Because the clusters can be in different geographic
locations, both passive DR and XDCR alow other clusters to continue unaffected when one becomes
inoperable. Because the replica is available for read-only transactions, passive DR aso alows you to
offload read-only workloads, such as reporting, from the main database instance.

The second businessissue that DR addressesis the need to maintain separate, active copies of the database
in separate locations. For example, XDCR allows you to maintain copies of a product inventory database
at two or more separate warehouses, close to the applications that need the data. This feature makes it
possible to support massive numbers of clients that could not be supported by a single database instance
or might result in unacceptabl e latency when the database and the users are geographically separated. The
databases can even reside on separate continents.

It is important to note, however, that database replication is not instantaneous. The transactions are
committed locally, then copied to the other database or databases. So when using XDCR to maintain
multiple active clusters you must be careful to design your applications to avoid possible conflicts when
transactions change the same record in two databases at approximately the same time. See Section 11.3.8,
“Understanding Conflict Resolution” for more information about conflict resolution.

The remainder of this chapter discusses the following topics:

e Section 11.1, “How Database Replication Works”

Section 11.2, “Using Passive Database Replication”

Section 11.3, “Using Cross Datacenter Replication”

Section 11.4, “Monitoring Database Replication”

How Database Replication Works

Database replication (DR) involves duplicating the contents of selected tables between two database
clusters. In passive DR, the contents are copied in one direction: from master to replica. In active or cross
datacenter DR, changes are copied in both directions.

88

Database Replication

You identify which tables to replicate in the schema, by specifying the table name in a DR TABLE
statement. For example, to replicate all tables in the voter sample application, you would execute three
DR TABLE statements when defining the database schema:

DR TABLE contestants;
DR TABLE vot es;
DR TABLE area_code_state;

11.1.1. Starting Database Replication

You enable DR by including the <dr > tag in the configuration files when initializing the database. The
<dr > element identifies three pieces of information:

* A unique cluster ID for each database. The ID is required and can be any number between 0 and 127,
aslong as each cluster has a different ID.

» Therole the cluster plays, whether master, replica, or xdcr. The default is master.

* For the replica and xdcr roles, a connection source listing the host name or I1P address of one or more
nodes from the other databases.

For example:

<dr id="2" role="replica">
<connecti on source="serverAl, server A2" />
</ dr>

Each cluster must have aunique ID. For passive DR, only the replicaneedsa<connect i on> element,
since replication occursin only one direction.

For cross datacenter replication (XDCR), all clusters must includethe<connect i on> element pointing
to at each one other cluster. If you are establishing an XDCR network with multiple clusters, the
<connect i on> tag can specify hosts from one or more of the other clusters. The participating clusters
will coordinate establishing the correct connections, even if the <connect i on> element does not list
them all.

Note that for XDCR, you must specify the attribute r ol e="xdcr" before starting each cluster. You
cannot mix active and passive DR in the same database group.

For passive DR, you must start the replica database with ther ol e="repl i ca" attribute to ensure the
replicais in read-only mode. Once the clusters are configured properly and the schema of the DR tables
match in the databases, replication starts.

The actual replication process is performed in multiple parallel streams; each unique partition on one
cluster sends a binary log of completed transactions to the other clusters. Replicating by partition has two
key advantages:

» Theprocessisfaster — Because the replication process uses abinary log of the results of the transaction
(rather than the transaction itself), the receiving cluster (or consumer) does not need to reprocess the
transaction; it simply applies the results. Also, since each partition replicates autonomously, multiple
streams of data are processed in parallel, significantly increasing throughout.

e The process is more durable — In a K-safe environment, if a server fails on a DR cluster, individual
partition streams can be redirected to other nodes or a stream can wait for the server to rejoin — without
interfering with the replication of the other partitions.

89

Database Replication

If dataalready existsin one of the clusters before database replication starts for the first time, that database
sends a snapshot of the existing data to the other, as shown in Figure 11.3, “Replicating an Existing
Database”. Once the snapshot isreceived and applied (and the two clusters are in sync), the partitions start
sending binary logs of transaction results to keep the clusters synchronized.

Figure 11.3. Replicating an Existing Database

Q, x
&g
Existing @‘fs g‘rQ
Data Qf)
::oaoooo.% Y .-
HE HE
Cluster 1 Cluster 2

For passive DR, only the master database can have existing data before starting replication for the first
time. Thereplica's DR tables must be empty. For XDCR, the first database that is started can have datain
the DR tables. If other clusters contain data, replication cannot start. Once DR has started, the databases
can stop and recover using command logging without having to restart DR from the beginning.

11.1.2. Database Replication, Availability, and Disaster
Recovery

Once replication begins, the DR process is designed to withstand normal failures and operational
downtime. When using K-safety, if anodefails on any cluster, you can rejoin the node (or areplacement)
using the voltdb start command without breaking replication. Similarly, if a cluster shuts down, you can
use voltdb start to restart the database and restart replication where it left off. The ability to restart DR
assumes you are using command logging. Specifically, synchronous command logging is recommended
to ensure compl ete durability.

If unforeseen events occur that make a database unreachable, database replication lets you replace the
missing database with its copy. Thisprocessisknown asdisaster recovery. For cross datacenter replication
(XDCR), you simply need to redirect your client applications to the remaining cluster(s). For passive
DR, there is an extra step. To replace the master database with the replica, you must issue the voltadmin
promote command on the replicato switch it from read-only mode to a fully operational database.

90

Database Replication

Figure 11.4. Promoting the Replica

Qo
(ww

|} |

| |

| | |
Cluster1 Cluster 2
Master Replica

$ voltadmin promote

See Section 11.2.6.3, “Promoting the Replica When the Master Becomes Unavailable” for more
information on promoting the replica database.

11.1.3. Database Replication and Completeness

It is important to note that, unlike K-safety where multiple copies of each partition are updated
simultaneously, database replication involves shipping the results of completed transactions from one
database to another. Because replication happens after the fact, there is no guarantee that the contents of
the clustersareidentical at any given point in time. Instead, the receiving database (or consumer) "catches
up" with the sending database (or producer) after the binary logs are received and applied by each partition.

Also, because DR occurs on aper partition basis, changes to partitions may not occur in the same order on
the consumer, since one partition may replicate faster than another. Normally thisis not a problem because
the results of all transactions are atomic in the binary log. However, if the producer cluster crashes, there
is no guarantee that the consumer has managed to retrieve al the logs that were queued. Therefore, it is
possible that some transactions that completed on the producer are not reflected on the consumer.

Fortunately, using command logging, when you restart the failed cluster, any unacknowledged transactions
will bereplayed from thefailed cluster's disk-based DR cache, allowing the clustersto recover and resume
DR where they left off. However, if the failed cluster does not recover, you will need to decide how to
proceed. Y ou can choose to restart DR from scratch or, if you are using passive DR, you can promote the
replicato replace the master.

To ensure effective recovery, the use of synchronous command logging is recommended for DR.
Synchronous command logging guarantees that all transactions are recorded in the command log and no
transactions are lost. If you use asynchronous command logging, there is a possibility that abinary log is
applied but not captured by the command log before the cluster crashes. Then when the database recovers,
the clusters will not agree on the last acknowledged DR transaction, and DR will not be able to resume.

The decision whether to promote the replica or wait for the master to return (and hopefully recover all
transactions from the command log) is not an easy one. Promoting the replica and using it to replace the
original master may involve losing one or more transactions per partition. However, if the master cannot
be recovered or cannot not be recovered quickly, waiting for the master to return can result in significant
business loss or interruption.

Your own business requirements and the specific situation that caused the outage will determine which
choice to make — whether to wait for the failed cluster to recover or to continue operations on the

91

Database Replication

remaining cluster only. The important point is that database replication makes the choice possible and
significantly eases the dangers of unforeseen events.

11.2. Using Passive Database Replication

The following sections provide step-by-step instructions for setting up and running passive replication
between two VoltDB clusters. The steps include:

1. Specifying what tables to replicate in the schema

2. Configuring the master and replicaroot directories for DR

3. Starting the databases

4. Loading the schema

The remaining sections discuss other aspects of managing passive DR, including:
 Updating the schema

* Stopping database replication

» Promoating the replica database

e Using thereplicafor read-only transactions

11.2.1. Specifying the DR Tables in the Schema

First, you must identify which tables you wish to copy from the master to the replica. Only the selected
tables are copied. You identify the tables in both the master and the replica database schema with the
DR TABLE statement, For example, the following statements identify two tables to be replicated, the
Customers and Orderstables:

CREATE TABLE custoners (
custoner| D | NTEGER NOT NULL,
firstname VARCHAR(128),
| ast nane VARCHAR(128)

)

CREATE TABLE orders (

order | D | NTEGER NOT NULL,
custoner| D | NTEGER NOT NULL,
pl aced TI MESTAMP

)

DR TABLE cust oners;

DR TABLE orders;

Y ou can identify any regular table, whether partitioned or not, asa DR table, aslong asthetableis empty.
That is, the table must have no datain it when you issue the DR TABLE statement.

The important point to remember is that the schema for both databases must contain matching table
definitions for any tables identified as DR tables, including the associated DR TABLE declarations.
Although it is easiest to have the master and replica databases use the exact same schema, that is not
necessary. The replica can have a subset or superset of the tables in the master, as long as it contains
matching definitions for all of the DR tables. The replica schema can even contain additional objects not
in the master schema, such as additional views. Which can be useful when using the replicafor read-only
or reporting workloads, just as long as the DR tables match.

92

Database Replication

11.2.2. Configuring the Clusters

The next step isto properly configure the master and replica clusters. The two database clusters can have
different physical configurations (that is, different numbers of nodes, different sites per host, or adifferent
K factor). Identical cluster configurations guarantee the most efficient replication, because the replica
does not need to repartition the incoming binary logs. Differing configurations, on the other hand, may
incrementally increase the time needed to apply the binary logs.

Before you start the databases, you must initialize the root directoriesfor both clusters with the appropriate
DR attributes. Y ou enable DR in the configuration file using the <dr > element, including a unique cluster
ID for each database cluster and that cluster'srole. The ID is a number between 0 and 127 which VoltDB
usesto uniquely identify each cluster as part of the DR process. Theroleis either master or replica.

For example, you could assign ID=1 for the master cluster and ID=2 for the replica. On the replica, you
must also include a<connect i on> sub-element that points to the master database. For example:

Master Cluster <dr id="1" role="master"/>
Replica Cluster <dr id="2" role="replica">
<connecti on source="NMaster Svr A, Mast er SvrB" />
</ dr>

11.2.3. Starting the Clusters

The next step is to start the databases. You start the master database as normal with the voltdb start
command. If you are creating a new database, you can then load the schema, including the necessary DR
TABLE statements. Or you can restore a previous database instance if desired. Once the master database
starts, it is ready and can interact with client applications.

For the replica database, you use the voltdb start command to start a new, empty database. Once the
database is running, you can execute DDL statementsto load the database schema, but you cannot perform
any data manipulation queries such as INSERT, UPDATE, or DELETE because the replicais in read-
only mode.

Thesour ce attribute of the<connect i on> taginthereplicaconfiguration fileidentifiesthe hostname
or P address (and optionally port number) of one or more servers in the master cluster. Y ou can specify
multiple servers so that DR can start evenif one of thelisted serverson the master cluster iscurrently down.

It isusually convenient to specify the connection information when initializing the database root directory.
But this property can be changed after the database is running, in case you do not know the address of
the master cluster nodes before starting. (Note, however, that the cluster ID cannot be changed once the
database starts.)

11.2.4. Loading the Schema and Starting Replication

As soon as the replica database starts with DR enabled, it will attempt to contact the master database to
start replication. The replica will issue warnings that the schema does not match, since the replica does
not have any schemadefined yet. Thisis normal. Thereplicawill periodically contact the master until the
schemafor DR objects on the two databases match. This gives you time to load a matching schema.

Assoon asthe replicadatabase has started, you can load the appropriate schema. L oading the same schema
as the master database is the easiest and recommended approach. The key point is that once a matching
schema is loaded, replication will begin automatically.

When replication starts, the following actions occur:

93

Database Replication

1. Thereplica and master databases verify that the DR tables match on the two clusters.

2. If dataaready existsin the DR tables on the master, the master sends a snapshot of the current contents
to the replicawhere it is restored into the appropriate tables.

3. Oncethe snapshot, if any, isrestored, the master starts sending binary logs of changesto the DR tables
to thereplica

If any errors occur during the snapshot transmission, replication stops and must be restarted from the
beginning. However, once the third step is reached, replication proceeds independently for each unique
partition and, in aK safe environment, the DR process becomes durable across node failures and rejoins
and other non-fatal events.

If either the master or the replica database crashes and needs to restart, it is possible to restart DR where it
left off, assuming the databases are using command logging for recovery. If the master fails, you ssimply
usethevoltdb start command to restart the master database. Thereplicawill wait for the master to recover.
The master will then replay any DR logs on disk and resume DR where it | eft off.

If the replicafails, the master will queue the DR logs to disk waiting for the replica to return. If you use
the voltdb start command on the replica cluster, the replicawill perform the following actions:

1. Restart the replica database, restoring both the schema and the data, and placing the database in read-
only mode.

2. Contact the master cluster and attempt to re-establish DR.

3. If both clusters agree on where (that is, what transaction), DR was interrupted, DR will resume from
that point, starting with the DR logs that the master database has queued in the interim.

If the clusters do not agree on where DR stopped during step #3, the replica database will generate an error
and stop replication. For example, if you recover from an asynchronous command log where the last few
DR logs were ACKed to the master but not written to the command log, the master and the replica will
bein different states when the replicarecovers.

If this occurs, you must restart DR from the beginning, by re-initializing the replica root directory (with
the --force flag), restarting the database, and then rel oading a compatible schema. Similarly, if you are not
using command logging, you cannot recover the replica database and must start DR from scratch.

11.2.5. Updating the Schema During Replication

Replication can only occur while the schema for the DR tables match on both clusters. However, you do
not want to stop and reinitialize DR every time you need to change the schema. Fortunately, you do not
have to.

To change the schema for DR tables in passive DR, you must change the schema on the master cluster
first, then change the schema on the replica cluster to match. When you change the schema on the master
cluster, amessage is sent to the replica as part of the binary logs indicating that the schema has changed.
When the replica processes this message, it pauses all DR activity and waits for its schemato be updated
so the DR tables match the master. Once the schema match again, DR processing automatically resumes.

The trick is you must make sure that the replica has processed al binary logs from the original schema
before making any changes to its schema. The easiest way to do thisis the following:

1. Pause the master cluster with the voltadmin pause --wait command
2. Update the schema on the master and resume with the voltadmin resume command

3. Update the schema on the replica

94

Database Replication

The pause --wait command waits until all DR logs are sent and acknowledged before returning control to
the user. This way you know the replica has processed all old DR logs before the schema updates occur.
However, if the replicais slow in processing the binary logs (due to heavy volume or network latency)
the pause --wait command may take a significant amount of time to complete, during which transactions
are no longer processed on the master.

An dternative is to use the voltadmin pause command in step #1 without the --wait flag. The pause
command is recommended because it allows you to synchronize changes to the schemawith any changes
needed to the client applications to accommodate the new schema. This operation is very quick because
you can immediately apply the schema change and resume the master in step #2. The schema change is
applied transactionally as soon as any outstanding client transactions are completed. It does not wait for
thereplica

However, if you use this alternate method, before performing step #3, you must make sure any outstanding
DR logs have been processed by thereplica. Y ou can do this by checking the @Stati stics system procedure
with the DRCONSUMER selector on the consumer cluster. As soon asthe IS PAUSED column reports
"true” for all partitions, you know the replicais ready for the schema update. For example:

$ echo "exec @tatistics DRCONSUMER 0" | sqlcnd

11.2.6. Stopping Replication

If, for any reason, you wish to stop replication of a database, there are two ways to do this: you can stop
sending data from the master or you can "promote" the replica to stop it from receiving data. Since the
individual partitions are replicating data independently, if possible you want to make sure all pending
transfers are completed before turning off replication.

So, under the best circumstances, you should perform the following steps to stop replication:

1. Stop write transactions on the master database by putting it in admin mode using the voltadmin pause
command.

2. Wait for al pending DR log transfers to be completed.
3. Reset DR on the master cluster using the voltadmin dr reset command.

4. Depending on your goals, either shut down the replica or promote it to a fully-functional database as
described in Section 11.2.6.3, “Promoting the Replica When the Master Becomes Unavailable”.

11.2.6.1. Stopping Replication on the Master if the Replica Becomes
Unavailable

If the replica becomes unavailable and is not going to be recovered or restarted, you should consider
stopping DR on the master database, to avoid consuming unnecessary disk space.

The DR processisresilient against network glitchesand node or cluster failures. Thisdurability isachieved
by the master database continually queueing DR logs in memory and — if too much memory is required
— todisk whileit waitsfor thereplicato ACK thelast message. Thisway, when the network interruption
or other delay is cleared, the DR process can pick up where it left off. However, the master database has
no way to distinguish atemporary network failure from an actual stoppage of DR on the replica

Therefore, if the replica stops unexpectedly, it is a good idea to restart the replica and re-initiate DR as
soon as convenient. Or, if you are not going to restart DR, you should reset DR on the master to cancel
the queuing of DR logs and to delete any pending logs. To reset the DR process on the master database,
use the voltadmin dr reset command. For example:

95

Database Replication

$ voltadnm n dr reset --host=serverA

Of course, if you do intend to recover and restart DR on the replica, you do not want to reset DR on the
master. Resetting DR on the master will delete any queued DR logs and make restarting replication where
it left off impossible and force you to start DR over from the beginning.

11.2.6.2. Database Replication and Disaster Recovery

If unforeseen events occur that make the master database unreachabl e, database replication letsyou replace
the master with the replicaand restore normal business operationswith aslittle downtime as possible. You
switch the replica from read-only to a fully functional database by promoting it. To do this, perform the
following steps:

1. Make sure the master is actually unreachable, because you do not want two live copies of the same
database. If it is reachable but not functioning properly, be sure to pause or shut down the master
database.

2. Promote the replicato a read/write mode using the voltadmin promote command.
3. Redirect the client applications to the newly promoted database.

Figure 11.4, “Promoting the Replica’ illustrates how database replication reduces the risk of major
disasters by alowing the replicato replace the master if the master becomes unavailable.

Once the master is offline and the replica is promoted, the data is no longer being replicated. As soon as
normal business operations have been re-established, it isagood ideato also re-establish replication. This
can be done using any of the following options:

« If the original master database hardware can be restarted, take a snapshot of the current database (that
is, the original replica), restore the snapshot on the original master and redirect client traffic back to the
original. Replication can then be restarted using the original configuration.

» An dlternative, if the original database hardware can be restarted but you do not want to (or need to)
redirect the clients away from the current database, is to use the origina master hardware to create
areplica of the newly promoted cluster — essentially switching the roles of the master and replica
databases — as described in Section 11.2.6.4, “Reversing the Master/Replica Roles”.

* If the original master hardware cannot be recovered effectively, create a new database cluster in athird
location to use as areplica of the current database.

11.2.6.3. Promoting the Replica When the Master Becomes Unavailable

If the master database becomes unreachable for whatever reason (such as catastrophic system or network
failure) it may not be possible to turn off DR in an orderly fashion. In this case, you may choose to “turn
on” thereplicaasafully active (writable) database to replace the master. To do this, you usethe voltadmin
promote command. When you promote the replica database, it exits read-only mode and becomes a
fully operational VoltDB database. For example, the following Linux shell command uses voltadmin to
promote the replica node serverB:

$ voltadm n pronote --host=serverB

11.2.6.4. Reversing the Master/Replica Roles

If you do promote the replicaand start using it as the primary database, you will likely want to establish a
new replica as soon as possible to return to the original production configuration and level of durahility.

96

Database Replication

Y ou can do this by creating a new replica cluster and connecting to the promoted database as described in
Section 11.2.3, “ Starting the Clusters” . Or, if the master database can berestarted, you can reusethat cluster
as the new replica, by modifying the configuration file to change the DR role from master to replica, and
add the necessary <connect i on> element, re-initializing the database root directory, and then starting
the new database cluster with the voltdb start command.

11.2.7. Database Replication and Read-only Clients

While database replication is occurring, the only changes to the replica database come from the binary
logs. Client applications can connect to the replica and use it for read-only transactions, including read-
only ad hoc queries and system procedures. However, any attempt to perform a write transaction from a
client application returns an error.

There will always be some delay between a transaction completing on the master and its results being
applied on the replica. However, for read operations that do not require real-time accuracy (such
as reporting), the replica can provide a useful source for offloading certain less-frequent, read-only
transactions from the master.

Figure 11.5. Read-Only Accessto the Replica

1w
= n Wl ul

(read-only)
== HE E NN EEEENEENEEENEBEGB®R ’ = =
L1} |]
Cluster1 Cluster 2
Master Replica

11.3. Using Cross Datacenter Replication

The following sections provide step-by-step instructions for setting up and running cross datacenter
replication (XDCR) between two or more VoltDB clusters. The sections describe how to:

1. Design your schemaand identify the DR tables
2. Configure the database clusters, including:
» Choosing unique cluster IDs
¢ ldentifying the DR connections
3. Start the databases
4. Load the schemaand start replication

Later sections discuss other aspects of managing XDCR, including:

97

Database Replication

Updating the schema during replication
* Stopping database replication

* Resolving conflicts

I mportant

XDCR isaseparately licensed feature. If your current VoltDB license does not include akey for
XDCR you will not be ableto complete the tasks described in this section. See your VoltDB sales
representative for more information on licensing XDCR.

11.3.1. Designing Your Schema for Active Replication

To manage XDCR, VoltDB storesasmall amount (8 bytes) of extrametadatawith every row of datathat is
shared. Thisadditional spaceisallocated automatically for any table declared asaDR TABLE on acluster
configured with the <dr > role attribute set to xdcr. Be sure to take this additional space requirement into
consideration when planning the memory usage of servers participating in an XDCR network.

Next, you must identify which tables you wish to share between the databases. Only the selected tables are
copied. You identify the tables in the schemawith the DR TABLE statement. For example, the following
statements identify two tablesto be replicated, the Customers and Orders tables:

CREATE TABLE custoners (
custoner| D | NTEGER NOT NULL,
firstname VARCHAR(128),
LASTNAME var char (128)

)

CREATE TABLE orders (

order | D | NTEGER NOT NULL,
custoner| D | NTEGER NOT NULL,
pl aced TI MESTAMP

)

DR TABLE cust oners;

DR TABLE orders;

Y ou can identify any regular table, whether partitioned or not, asa DR table, aslong asthe tableis empty.
That is, the table must have no datain it when you issue the DR TABLE statement. The important point
to remember is that the schema definitions for al DR tables, including the DR TABLE statements, must
beidentical on all the participating clusters.

11.3.2. Configuring the Database Clusters

The next step is to configure and initialize the database root directories. The database clusters can have
different physical configurations (that is, different numbers of nodes, different sites per host, or adifferent
K factor). Identical cluster configurations guarantee the most efficient replication, because the databases
do not need to repartition the incoming binary logs. Differing configurations, on the other hand, may
incrementally increase the time needed to apply the binary logs.

When initializing the database root directories, you must also enable and configure DR in the configuration
file, including:

» Choosing aunique ID for each cluster

 Specifying the DR connections

98

Database Replication

11.3.2.1. Choosing Unique IDs

You enable DR in the configuration file using the <dr > element and including a unique cluster ID for
each database cluster.

To manage the DR process VoltDB needs to uniquely identify the clusters. You provide this unique
identifier as a number between 0 and 127 when you configure the clusters. For example, if we assign
ID=1to acluster in New York and ID=2 to another in Chicago, their respective configuration files must
contain the following <dr > elements. Y ou must also specify that the cluster is participating in XDCR by
specifying the role. For example:

New York Cluster
<dr id="1" role="xdcr" />
Chicago Cluster

<dr id="2" role="xdcr" />

11.3.2.2. Identifying the DR Connections

For each database cluster, you must also specify the source of replication in the <connect i on> sub-
element. Y ou do this by pointing each cluster to at least one of the other clusters, specifying one or more
servers on the remote cluster(s) in the source attribute.

You only need to point each connection source at servers from one of the other clusters, even if more
clusters are participating in the XDRC relationship. However, it is a good idea to include them all in the
source string so the current cluster is not dependent on the order in which the clusters start.

For example, say there are two clusters. The New York cluster has nodes NY serverA, NY serverB, and
NY serverC. While the Chicago cluster has CHIserverX, CHIserverY, and CHIserverZ. The configuration
filesfor the two clusters might look like this:

New York Cluster

<dr id="1" role="xdcr" >
<connection source="CH server X, CH serverY" />
</ dr>

Chicago Cluster

<dr id="2" role="xdcr" >
<connecti on sour ce="NYserver A, NYser ver B, NYserverC' />
</ dr>

Note that both clusters must have a connection defined for active replication to start. An aternative
approach is to initialize the databases leaving the source attribute of the <connection> element empty.
Y ou can then update the configuration to add source servers once the database is up and running and the
appropriate schema has been applied. For example:

<dr id="1" rol e="xdcr">
<connection source="" />
</ dr>

Once the configuration files have the necessary declarations, you can initialize the root directories on all
cluster nodes using the appropriate configuration files:

New York Cluster

99

Database Replication

$ voltdb init -D ~/nydb --config=nyconfig.xm
Chicago Cluster
$ voltdb init -D ~/chidb --config=chiconfig.xnl

If you then want to add a third cluster to the XDRC relationship (say San Francisco), you can define a
configuration file that points at either or both of the other clusters:

San Francisco Cluster

<dr id="3" role="xdcr" >
<connection source="CHl server X, CH serverY, NYserver A, NYserverB" />
</ dr>

When configuring three or more XDCR clusters, you also have the option of specifying which cluster a
new instance uses as the source for downloading theinitial snapshot. For example, if two of the clustersare
located in the same physical location, you can specify the cluster 1D of apreferred sourceto reducethetime
needed to synchronize the clusters. Note that the preferred source attribute only applies when the database
first joins the XDCR environment or if DR is restarted from scratch. When the cluster recovers existing
data under normal operation the preferred sourceisignored. For example, a second Chicago cluster could
specify the cluster ID of the original Chicago database as the preferred source, like so:

2nd Chicago Cluster

<dr id="4" role="xdcr" >
<connection source="CHI server X, CH serverY, NYserver A, NYser ver B"
preferred-source="2" />
</dr>

11.3.3. Starting the Database Clusters

Once the servers are initialized with the necessary configuration, you can start the database clusters.
However, it isimportant to note three important points:

» Only one of the clusters can have datain the DR tables when setting up XDCR and that database must
bethefirst in the XDCR network. In other words, start the database containing the datafirst. Then start
and connect a second, empty databaseto it.

» Assoon asthe databases start, they automatically attempt to contact each other, verify that the DR table
schema match, and start the DR process

e Only one database can join the XDCR network at a time. You must wait for each joining cluster to
complete theinitial synchronization before starting the next.

Often the easiest method for starting the databasesis to:

1. Start one cluster

2. Load the schema (including the DR table declarations) and any pre-existing data on that cluster

3. Oncethefirst cluster isfully configured, start the second cluster and load the schema

4. Oncethe second cluster finishes synchronizing with thefirst, start each additional cluster, one at atime.

Using this approach, DR does not start until step #3 is complete and the first two clusters are fully
configured. Then any additional clusters are added separately.

100

Database Replication

You can then start and load the schema on the databases and perform any other preparatory work you
require. Then edit the configuration files— one at atime using the voltadmin update command — filling
in the source attribute for each cluster to point at another. As soon as the source attribute is defined and
the schema match, the DR process will begin for the first pair of clusters. Once the first two clusters
synchronize, you can repeat this process, one at atime, with any other participating clusters.

Note

Although the source attribute can be modified on arunning database, the unique cluster ID cannot
be changed after the database starts. So it isimportant to include the <dr> element with the unique
ID and xdcr role when initializing the database root directories.

11.3.4. Loading a Matching Schema and Starting Replication

As soon as the databases start with DR enabled, they attempt to contact a cooperating database to start
replication. Each cluster will issue warnings until the schemafor the databases match. Thisis normal and
gives you time to load a matching schema. The key point is that once matching schema are loaded on the
databases, replication will begin automatically.

When replication starts, the following actions occur:
1. Theclusters verify that the DR tables match on both clusters.

2. If data already existsin the DR tables of the first database, that cluster sends a snapshot of the current
contents to the other cluster where it is restored into the appropriate tables.

3. Oncethe snapshot, if any, isrestored, both databases (and any other participating clusters) start sending
binary logs of changes from DR tablesto the other cluster.

If any errors occur during the snapshot transmission, replication stops and must be restarted from the
beginning. However, once the third step is reached, replication proceeds independently for each unique
partition and, in aK safe environment, the DR process becomes durable across node failures and rejoins
aswell as cluster shutdowns and restarts.

11.3.5. Updating the Schema During Active Replication

SQL statements such as DELETE, INSERT, and UPDATE are transmitted through the DR binary logs,
but schema changes are not. So you must be careful to only make changes to the schema of DR tables
while the XDCR clusters are paused and quiesced. If not, a schema change to one cluster will likely break
replication.

The process for changing the schemafor DR tablesin XDCR isthe following:

1. Pause and drain the outstanding DR binary logs on all clusters using the voltadmin pause --wait
command

2. Update the schemafor the DR tables on all clusters

3. Resume all clusters using the voltadmin resume command

11.3.6. Stopping Replication

If, for any reason, you need to break replication between the XDCR databases, you canissuethevoltadmin
dr reset command to any cluster. For example, if one of two clusters goes down and will not be brought
back onlinefor an extended period, you canissue avoltadmin dr reset command on the remaining cluster

101

Database Replication

to tell it to stop queuing binary logs. If not, the logs will be saved on disk, waiting for the other cluster
to return, until you run out of disk space.

When using multiple clusters in an XDCR environment, you must choose whether to break replication
with all other clusters (voltadmin dr reset --all) or with one specific cluster. Breaking replication with
all clusters means that all of the other clusters will need to restart DR from scratch to rejoin the XDCR
environment. Breaking replication with a single cluster means the remaining clusters retain their XDCR
relationship.

If you wish to remove just one, active cluster from the XDCR relationship, you can issue the voltadmin
dr drop command to the cluster you wish to remove. This command finalizes any remaining DR logs on
the cluster and tells all other clustersto break their DR connection with that cluster. If the cluster you want
to removeis not currently running, you can issue the voltadmin dr reset --cluster=n to al the remaining
clusterswhere n isthe cluster ID of the cluster being removed.

However, there is a danger that if you remove afailed cluster from a multi-cluster XDCR environment,
the failed cluster may not have sent the same binary logsto all of the other clusters. In which case, when
you drop that cluster from the environment, the data on the remaining clusters will diverge. So, using dr
reset --cluster isrecommended only if you are sure that there were no outstanding logs to be sent from the
failed cluster. For example, stopping an XDCR cluster with an orderly shutdown (voltadmin shutdown)
ensures that all its binary logs are transmitted and therefore the other clusters are in sync.

When using the dr reset --cluster command, you must also include the --for ce option to verify that you
understand the risks associated with this action. So, the process for removing a single, failed cluster from
amulti-cluster XDCR enivornment is:

1. Identify the cluster ID of the cluster that has failed.

2. Issue the voltadmin dr reset --cluster ={failed-cluster-ID} --force command on al the remaining
clustersto clear the binary log queues.

Thisway, the remaining clusters can maintain their XDCR relationship but not retain queued data for the
failed cluster. If, later, you want to rejoin the failed cluster to the XDCR environment, you will need to
reinitialize the failed cluster's root directories and restart its XDCR relationship from scratch.

11.3.7. Example XDCR Configurations

It is not possible to mix XDCR clusters and passive DR in the same database relationship. However, it is
possible to create "virtual" replicasin a XDCR environment, if your business requires it.

Normally, in an XDCR environment, all cluster participate equally. They can all initiate transactions and
replicate those transactions among themselves, as shown in Figure 11.6, “ Standard XDCR Configuration”.

Figure 11.6. Standard XDCR Configuration

id=3
¥ am V-
- - HE © ~ .
id=1 ‘id=2
Bl == === ===== P mm
B QRLRLLLLL i

If you also want to have one (or more) clusters on "standby", for example, purely for disaster recovery
or to off-load read-only workloads, you can dedicate clusters from within your XDCR environment for
that purpose. The easiest way to do that is to configure the extra clusters as normal XDCR clusters. That

102

Database Replication

is setting their role as "XDCR" and assigning them a unique DR ID. However, rather than starting the
clustersin normal operational mode, you can usethe - - pause flag on the voltdb start command to start
them in admin mode. Thisway no transactions can be initiated on the cluster's client ports. However, the
cluster will receive and process DR binary logs from the other clustersin the DR relationship. Figure 11.7,
“XDCR Configuration with Read-Only Replicas’ demonstrates one such configuration.

Figure 11.7. XDCR Configuration with Read-Only Replicas

’
TR -
EEE = --—-

B

Y

voltdb start --pause

11.3.8. Understanding Conflict Resolution

One aspect of database replication that is unique to cross datacenter replication (XDCR) is the need to
prepare for and manage conflicts between the databases. Conflict resolution is not an issue for passive
replication since changes travel in only one direction. However, with XDCR it is possible for changes to
be made to the same data at approximately the same time on two databases. Those changes are then sent
to the other database, resulting in possible inconsistencies or invalid transactions.

For example, say clusters A and B are processing transactions as shown in Figure 11.8, “Transaction
Order and Conflict Resolution”. Cluster A executes a transaction that modifies a specific record and this
transaction is included in the binary log A;. By the time cluster B receives the binary log and processes
A4, cluster B has aready processed its own transactions B, and B». Those transactions may have modified
the same record as the transaction in A, or another record that would conflict with the changein A1, such
as a matching unique index entry.

Figure 11.8. Transaction Order and Conflict Resolution

=N

Cluster A Cluster B
Al/!0/—— _Bi—=
I ——— S
Bi—/—— <4 T A/
As— B:——
A4 j— 84:

Under these conditions, cluster B cannot simply apply the changes in A4 because doing so could violate
the uniqueness constraints of the schema and, more importantly, is likely to result in the content of the

103

Database Replication

two database clusters diverging. Instead, cluster B must decide which change takes priority. That is, what
resolution to the conflict is most likely to produce meaningful results or match the intent of the business
application. This decision making processis called conflict resolution.

No matter what the resolution, it isimportant that the database administrators are notified of the conflict,
why it occurred, and what action was taken. The following sections explain:

11.3.8.1.

How to avoid conflicts
How VoltDB resolves conflicts when they do occur
What types of conflicts can occur

How those conflicts are reported

Designing Your Application to Avoid Conflicts

VoltDB uses well-defined rules for resolving conflicts. However, the best protection against conflicts and
the problems they can causeisto design your application to avoid conflictsin thefirst place. There are at
least two things you can do in your client applications to avoid conflicts:

11.3.8.2.

Use Primary Keys

It is best, wherever possible, to define a primary key for al DR tables. The primary key index greatly
improves performance for finding the matching row to apply the change on aconsumer cluster. It isalso
required if you want conflicts to be resolved using the standard rules described in the following section.
Any conflicting action without a primary key is rejected.

Apply related transactions to the same cluster

Another tactic for avoiding conflictsisto make sure any autonomous set of transactions affecting a set
of rows are al applied on the same cluster. For example, ensuring that all transactions for a single user
session, or associated with a particular purchase order, are directed to the same cluster.

How Conflicts are Resolved

Even with the best application design possible, errorsin program logic or operation may occur that result
in conflicting records being written to two or more databases. When a conflict does occur, VoltDB follows
specific rules for resolving the issue. The conflict resolution rules are:

Conflicts are resolved on a per action basis. That is, resolution rules apply to the individual INSERT,
UPDATE, or DELETE operation on a specific tuple. Resolutions are not applied to the transaction as
awhole.

The resolution is that the incoming action is accepted (that is, applied to the receiving database) or
rejected.

Only actions involving a table with a primary key can be accepted, all other conflicting actions are
rejected.

Accepted actions are applied as a whole — the entire record is changed to match the result on the
producer cluster. That meansfor UPDATE actions, all columnsarewritten not just the columns specified
in the SQL statement.

For tables with primary keys, the rules for which transaction wins are, in order:

1. DELETE transactions awayswin

104

Database Replication

2. If neither action isa DELETE, the last transaction (based on the timestamp) wins

Let'slook at a simple example to see how these rules work. Assume that the database stores user records,
using a numeric user ID as the primary key and containing columns for the user's name and password. A
user logs on simultaneously in two locations and performstwo separate updates: one on cluster A changing
their name and one on cluster B changing the password. These updates are almost simultaneous. However,

cluster A timestamps its transaction as occurring at 10:15.00.003 and cluster B timestamps its transaction
at 10:15.00.001.

The binary logs from the two transactions include the type of action, the contents of the record before
and after the change, and the timestamps — both of the last previous transaction and the timestamp of the
new transaction. (Note that the timestamp includes both the time and the cluster ID where the transaction
occurred.) So the two binary logs might look like the following.

Binary Log A1:
Action: UPDATE
Current Timestanp: 1, 10:15.00.003
Previ ous Tinmestanp: 1, 06:30.00.000
Before After
User | Dt 12345 User | Dt 12345
Nane: Joe Smith Nane: Joseph Snith
Passwor d: abal one Passwor d: abal one
Binary Log B;:

Action: UPDATE
Current Tinestanp: 2, 10:15.00.001
Previ ous Tinmestanp: 1, 06:30.00.000

Before After
User | D 12345 User | D 12345
Name: Joe Snith Name: Joe Snith
Passwor d: abal one Password: fl ounder

When the binary log A, arrives at cluster B, the DR process performs the following steps:
1. Usesthe primary key (12345) to look up the current record in the database.
2. Compares the current timestamp in the database with the previous timestamp in the binary log.

3. Because the transaction in B4 has already been applied on cluster B, the time stamps do not match. A
conflict is recognized.

4. A primary key exists, so cluster B attempts to resolve the conflict by comparing the new timestamp,
10:15.00.003, to the current timestamp, 10:15.00.001.

5. Becausethe new timestamp isthe later of the two, the new transaction "wins' and the change is applied
to the database.

6. Finally, the conflict and resolution is logged. (See Section 11.3.8.4, “Reporting Conflicts’ for more
information about how conflicts are reported.)

105

Database Replication

Note that when the UPDATE from A is applied, the change to the password in B is overwritten and
the password is reset to "abalone". Which at first looks like a problem. However, when the binary log B
arrives at cluster A, the same steps are followed. But when cluster A reaches steps #4 and 5, it finds that
the new timestamp from B is older than the current timestamp, and so the action isrejected and the record
is left unchanged. As a result both databases end up with the same value for the record. Essentially, the
password change is dropped.

If the transaction on cluster B had been to delete the user record rather than change the password, then
the outcome would be different, but still consistent. In that case, when binary log A4 reaches cluster B, it
would not be able to find the matching record in step #1. Thisis recognized as a DELETE action having
occurred. Since DELETE always wins, the incoming UPDATE isrejected. Similarly, when binary log B
reaches cluster A, the previous timestamps do not match but, even though the incoming action in B has
an older timestamp than the UPDATE action in A4, B; "wins' because it is a delete action and the record
isdeleted from cluster A. Again, the result is consistent across the two databases.

The real problem with conflicts is when there is no primary key on the database table. Primary keys
uniquely identify arecord. Without aprimary key, thereisno way for VoltDB to tell, eveniif there are one
or more unique indexes on the table, whether two records are the same record modified or two different
records with the same unique key values.

Asaresult, if there is a conflict between two transactions without a primary key, VoltDB has no way to
resolve the conflict and simply rejects the incoming action. Going back to our example, if the user table
had a unique index on the user ID rather than a primary key, and both cluster A and cluster B update the
user record at approximately the same time, when binary log A1 arrives at cluster B, it would look for the
record based on all columns in the record and fail to find a match.

However, when it attemptsto insert the record, it will encounter aconstraint violation on the unique index.
Again, since thereis no primary key, VoltDB cannot resolve the conflict and rejects the incoming action,
leaving the record with the changed password. On cluster A, the same process occurs and the password
changein By getsrejected, leaving cluster A with a changed name column and database B with a changed
password column — the databases diverge.

11.3.8.3. What Types of Conflict Can Occur

The preceding section uses a simple case of conflicting UPDATE transactions to illustrate the steps
involved in conflict resolution. However, there are several different types of conflict that can occur. First,
there are three possible actions that the binary log can contain: INSERT, UPDATE, or DELETE. There
are aso three types of conflicts that can be generated:

» Missing row — The affected row is missing from the consumer database.

* Timestamp mismatch — The affected row exists in the consumer database, but has a different
timestamp than expected (in other words, it has been modified).

» Constraint violation — Applying theincoming action would result in one or more constraint violations
on unigue indexes.

A missing row means that the binary log contains an UPDATE or DELETE action, but the affected row
cannot befound in the consumer database. (A missing row conflict cannot occur for INSERT actions, since
INSERT assumes no such row exists.) In the case of amissing row conflict, VoltDB assumesa DELETE
action has removed the affected row. Since the rule is that DEL ETE wins, this means the incoming action
isrejected.

Note that if the table does not have a primary key, the assumption that a DEL ETE action removed the row
is not guaranteed to be true, since it is possible an UPDATE changed the row. Without a primary key,

106

Database Replication

thereisno way for the DR process to find the matching row when some columns may have changed, so it
assumes it was deleted. As aresult, an UPDATE could occur on one cluster and a DELETE on the other.
Thisiswhy assigning primary keys is recommended for DR tables when using XDCR.

If the matching primary key is found, it is still possible that the contents of the row have been changed.
In which case, the timestamps will not match and a timestamp mismatch conflict occurs. Again, this can
happen for UPDATE and DEL ETE actionswhere an existing row isbeing modified. If theincoming action
is a DELETE, it takes precedence and the row is deleted. If not, if the incoming action has the later of
the two timestamps, it is accepted. If the existing record has the later timestamp, the incoming action is
rejected.

Finally, whether the timestamps match or not, with an INSERT or UPDATE action, it is possible that
applying the action would violate one of more unique index constraints. This can happen because another
row has been updated with matching values for the unique index or another record has been inserted
with similar values. Whatever the cause, VoltDB cannot apply the incoming action so it is rejected. Note
that for a single action there can be more than one unique index that applies to the table, so there can
be multiple constraint violations as well as a possible incorrect timestamp. When a conflict occurs, all
conflicts associated with the action are included in the conflict log.

To summarize, the following chart shows the conflicts that can occur with each type of action and the
result for tables with a primary key.

Action Possible Conflict Result for Tableswith Primary Key
INSERT Constraint violation Rejected
UPDATE Missing row Rejected
Timestamp mismatch Last transaction wins
Constraint violation Rejected
DELETE Missing row Accepted (no op)
Timestamp mismatch Accepted

11.3.8.4. Reporting Conflicts

VoltDB makes arecord of every conflict that occurs when processing the DR binary logs. These conflict
logs include:

* Theintended action

The type of conflict

The timestamp and contents of the row before and after the action from the binary log
» Thetimestamp and contents of the row(s) in the consumer database that caused the conflict
» Thetimestamp and cluster ID of the conflict itself

By default, these logs are written as comma-separated value (CSV) files on the cluster where the
conflicts occur. These files are usually written to a subfolder of the voltdbroot directory (vol t dbr oot /
xdcr _confli cts) using the file prefix LOG. However, you can configure the logs to be written to
different destinations or locations using the VoltDB export configuration settings.

The DR process writes the conflicts as export data to the export stream VOLTDB_XDCR_CONFLICTS.
You do not need to explicitly configure export — the DR process automatically declares the necessary
export streams, establishes a default export configuration for the file connector, and enables the export

107

Database Replication

stream. However, if you want the datato be sent to adifferent location or using adifferent export connector,
you can do this by configuring the export stream yourself.

For example, if you want to export the XDCR conflicts to a Kafka stream where they can be
used for automatic notifications, you can change the export properties in the configuration file. The
following configuration file code writes the conflict logs to the Kafka topic sysops on the broker
kafkabroker.mycompany.com:

<export>
<configuration enabl ed="true" type="kafka"
streanm=" VOLTDB_XDCR_CONFLI CTS" >
<property nane="br oker">kaf kabr oker. nyconpany. conx/ pr operty>
<property nane="topi c">sysops</property>
</ configuration>
</ export >

Each action in the binary log can generate one or more conflicts. When this occurs, VoltDB logs the
conflict(s) as multiple rows in the conflict report. Each row is identified by the type of action (INSERT,
UPDATE, DELETE) aswell asthe type of information the row contains:

* EXISTING (EXT) — The timestamp and contents of an existing row in the consumer database that
caused a conflict. There can be multiple existing row logs, if there are multiple conflicts.

* EXPECTED (EXP) — The timestamp and contents of the row that is expected before the action is
applied (from the binary log).

* NEW (NEW) — The new timestamp and contents for the row once the action is applied (from the
binary log).

» DELETE (DEL) — For a DELETE conflict, the timestamp and cluster ID indicating when and where
the conflict occurred.

For an INSERT action, there is no EXPECTED row. For either an INSERT or an UPDATE action there
isno DELETE row. And for aDELETE action there isno NEW row. The order of the rowsin the report
isasfollows:

1. The EXISTING row, if thereis atimestamp mismatch

2. The EXPECTED row, if there is atimestamp mismatch

3. One or more EXISTING rows, if there are any constraint violations
4. The NEW row, for all actions but DELETE

5. The DELETE row, for the DELETE action only

Table 11.1, “ Structure of the XDCR Conflict Logs’ describes the structure and content of the conflict log
records in the export stream.

Table 11.1. Structure of the XDCR Conflict L ogs

Column Name Datatype Description

ROW_TYPE 3 Bytestring The type of row, specified as:
EXT — existing
EXP — expected

108

Database Replication

Column Name Datatype Description
NEW— new
DEL — delete

ACTION_TYPE 1 Byte string The type of action, specified as:

| —insert
U— update
D— delete

CONFLICT_TYPE 4 Byte string The type of conflict, specified as:

M SS — missing row

MSMTI' — timestamp mismatch
CNST — constraint violation
NONE — no violation®

CONFLICTS _ON TINYINT Whether aconstraint violation is associated with the
_PRIMARY_KEY primary key. 1 for true and O for false.
DECISION 1 Byte string How the conflict was resolved, specified as:

A — the incoming action is accepted
R — the incoming action isrejected

CLUSTER_ID TINYINT The DR cluster ID of the cluster that last modified
the row

TIMESTAMP BIGINT The timestamp of the row.

DIVERGENCE 1 Bytestring Whether the resulting action could cause the two

cluster to diverge, specified as:

C— the clusters are consistent
D — the cluster may have diverged

TABLE_NAME String The name of the table.

CURRENT TINYINT The DR cluster ID of the cluster reporting the
_CLUSTER_ID conflict.

CURRENT BIGINT The timestamp of the conflict.

_TIMESTAMP

TUPLE JSON-encoded string The schema and contents of the row, as a JSON-

encoded string. The column is limited to IMB in
size. If the schema and contents exceeds the 1IMB
limit, it is truncated.

8Update operations are executed as two separate statements: a delete and an insert, where only one of the two statements might result

inaviolation. For example, the delete may trigger amissing row violation but the insert not generate a violation. In which case the
EXT row of the conflict log reports the MISS conflict and the NEW row reports NONE.

11.4. Monitoring Database Replication

Database replication runs silently in the background. To ensure replication is proceeding effectively,
VolItDB provides statistics on the producer and consumer clusters that help you understand the current
state of the DR process. Specificaly, the statistics can tell you:

» The amount of DR data waiting to be sent from the producer

e Thetimestamp and unique ID of the last transaction received by the consumer

109

Database Replication

» Whether any partitions are "falling behind" in processing DR data

This information is available from the @Statistics system procedure using the DRROLE,
DRCONSUMER, and DRPRODUCER selectors. All clusters provide summary information in response
to the DRROLE selector. For one-way (passive) DR, the master database is a "producer” and provides
additional information through the DRPRODUCER sel ector and thereplicaisthe" consumer" and provides
additional information through the DRCONSUMER selector. For two-way (cross datacenter) replication,
all clusters act as both producer and consumer and can provide statistics on both roles:

* On dl databases, the @Statistics DRROLE procedure provides summary information about the
database's DR role (master, replica, xdcr, or none), the cluster 1D, and the current state of the DR process.

¢ On the producer database, the @Statistics DRPRODUCER procedure includes columns for the cluster
IDs of the current cluster and the consumer, as well as the transaction ID and timestamp of the last
queued transaction and for the last transaction ACKed by the consumer. The difference between these
two events can tell you the approximate latency between the two databases.

» On the consumer database, the @Statistics DRCONSUMER procedure includes statistics, on a per
partition basis, showing whether it hasan identified "host" server from each producer cluster "covering"
it, or in other words, providing it DR logs. The system procedure results also include columns listing
the ID and timestamp of the last received transaction for each producer cluster. If a consumer partition
isnot covered, it meansit haslost contact with the server on the producer database that was providing it
logs (possibly due to anode failure). It is possible for the partition to recover, once the covering server
rejoins. However, the difference between the last received timestamp of that partition and the other
partitions may give you an indication of how long the interruption has persisted and how far behind
that partition may be.

110

Chapter 12. Security

12.1.

12.2.

Security is an important feature of any application. By default, VoltDB does not perform any security
checks when a client application opens a connection to the database or invokes a stored procedure. This
is convenient when devel oping and distributing an application on a private network.

However, on public or semi-private networks, it isimportant to make sure only known client applications
are interacting with the database. VoltDB lets you control access to the database through settings in the
schema and configuration files. The following sections explain how to enable and configure security for
your VoltDB application.

How Security Works in VoltDB

When an application creates a connection to a VoltDB database (using ClientFactory.clientCreate), it
passes a username and password as part of the client configuration. These parameters identify the client
to the database and are used for authenticating access.

At runtime, if security is enabled, the username and password passed in by the client application are
validated by the server against the users defined in the configuration file. If the client application passes
in avalid username and password pair, the connection is established. When the application calls a stored
procedure, permissions are checked again. If the schema identifies the user as being assigned a role
having access to that stored procedure, the procedure is executed. If not, an error is returned to the calling
application.

Note

VoltDB uses hashing rather than encryption when passing the username and password between
the client and the server. The Java and C++ clients use SHA-2 hashing while the older clients
currently use SHA-1. The passwords are also hashed within the database. To secure the actual
communication between the server and client, you can implement either Transport Layer Security
(TLS) or Kerberos security. Use of TLS is described in Section 12.7, “Encrypting VoltDB
Communication Using TLS/SSL” while the use of Kerberos with VoltDB is described in
Section 12.8, “Integrating K erberos Security with VoltDB”.

There are three steps to enabling security for aVVoltDB application:

1. Addthe<security enabl ed="true"/ > tag to the configuration file to turn on authentication
and authorization.

2. Define the users and roles you need to authenticate.
3. Define which roles have access to each stored procedure.

The following sections describe each step of this process, plus how to enable access to system procedures
and ad hoc queries.

Enabling Authentication and Authorization

By default VoltDB does not perform authentication and client applications have full accessto the database.
To enable authentication, add the <security> tag to the configuration file. Y ou can enable security when
you initialize the database root directory, or you can use voltadmin update to change the security setting
on the running database. (Or you can change the setting interactively through the VoltDB Management
Center.)

111

Security

12.3.

<depl oynent >
<security enabl ed="true"/>

</ depl oyment >

Defining Users and Roles

Thekey to security for VoltDB applicationsisthe users and roles defined in the schemaand configuration.
Y ou define users in the configuration file and roles in the schema.

Thissplit isdeliberate becauseit allows you to define the overall security structure globally in the schema,
assigning permissionsto generic roles (such as operator, dbuser, apps, and so on). Y ou then define specific
users and assign them to the generic roles as part of the database configuration. This way you can create
one configuration (including cluster information and users) for development and testing, then move the
database to a different configuration and a different set of usersfor production by changing only onefile:
the configuration file.

Y ou define users within the <users> ... </users> tag set in the configuration file. The syntax for defining
usersisasfollows.

<depl oynent >
<user s>
<user nanme="user - nanme"
passwor d="passwor d-stri ng"
rol es="rol e-nanme[,...]" />

[...]

</ user s>
</ depl oynent >
Note

If you do not want to distribute the account passwordsin plain text, you can use the voltdb mask
command to hash the passwords in the configuration file.

Include a<user> tag for every username/password pair you want to define. Y ou specify which roles auser
belongsto as part of the user definition in the configuration file using the roles attribute to the <user> tag.
Y ou can assign users built-in roles, user-defined roles, or both. For user-defined roles, you define theroles
in the database schema using the CREATE ROLE statement.

CREATE ROLE rol e- nane;

Note that at least one user must be assigned the built-in ADMINISTRATOR role. For example, the
following code defines three users, assigning operator the built-in ADMINISTRATOR role and the user-
defined OPS role, assigning developer the user-defined roles OPS and DBUSER, and assigning the user
clientapp DBUSER. When a user is assigned more than one role, you specify the role names as acomma-
delimited list.

<depl oynent >
<users>
<user name="operator" password="mech" rol es="adm ni strator, ops"
<user name="devel oper"” password="tech" rol es="ops, dbuser” />
<user name="clientapp" password="xyzzy" rol es="dbuser" />
</ users>

</ depl oyment >

112

/>

Security

124

Three important notes concerning the assignment of users and roles:

» Users must be assigned at least one role, or else they have no permissions. (Permissions are assigned
by role.)

At least one user must be assigned the built-in ADMINISTRATOR role.

» There must be a corresponding role defined in the schema for any user-defined roles listed in the
configuration file.

Assigning Access to Stored Procedures

Onceyou definethe users and rolesyou need, you assign them accessto individual stored proceduresusing
the ALLOW clause of the CREATE PROCEDURE statement in the schema. In the following example,
usersassigned therolesdbuser and ops are permitted accessto both the MyProc1 and MyProc2 procedures.
Only users assigned the ops role have access to the MyProc3 procedure.

CREATE PROCEDURE ALLOW dbuser, ops FROM CLASS MyProcl,
CREATE PROCEDURE ALLOW dbuser, ops FROM CLASS MyProc2;
CREATE PROCEDURE ALLOW ops FROM CLASS MyProc3;

Usually, when security isenabled, you must specify accessrightsfor each stored procedure. If aprocedure
declaration does not include an ALLOW clause, no accessis allowed. In other words, calling applications
will not be able to invoke that procedure.

12.5. Assigning Access by Function (System
Procedures, SQL Queries, and Default Procedures)

It isnot always convenient to assign permissions one at atime. Y ou might want aspecial role for accessto
all user-defined stored procedures. Also, there are special capabilities available within VoltDB that are not
called out individually in the schema so cannot be assigned using the CREATE PROCEDURE statement.

For these special cases VoltDB provides named permissions that you can use to assign functions as a
group. For example, the ALLPROC permission grants arole access to all user-defined stored procedures
so the role does not need to be granted access to each procedure individualy.

Severa of the special function permissions have two versions: a full access permission and a read-
only permission. So, for example, DEFAULTPROC assigns access to all default procedures while
DEFAULTPROCREAD alows accessto only the read-only default procedures; that is, the TABLE.select
procedures. Similarly, the SQL permission alows the user to execute both read and write SQL queries
interactively while SQLREAD only allows read-only (SELECT) queries to be executed.

One additional functional permission isaccessto the read-only system procedures, such as @Statistics and
@Systeminformation. This permission is specia in that it does not have a name and does not need to be
assigned; al authenticated users are automatically assigned read-only access to these system procedures.

Table 12.1, “Named Security Permissions’ describes the named functional permissions.

Table 12.1. Named Security Permissions

Permission Description Inherits
DEFAULTPROCREAD |Access to read-only default procedures
(TABLE.select)

113

Security

Permission Description Inherits
DEFAULTPROC Access to al default procedures (TABLE.select,| DEFAULTPROCREAD
TABLE.insert, TABLE.delete, TABLE.update, and

TABLE.upsert)
SQLREAD Accessto read-only ad hoc SQL queries (SELECT) | DEFAULTPROCREAD
SQL Access to all ad hoc SQL queries and default| SQLREAD,
procedures DEFAULTPROC
ALLPROC Access to al user-defined stored procedures
ADMIN Full accesstoall system procedures, all user-defined| ALLPROC,
procedures, as well as default procedures, ad hoc| DEFAULTPROC, SQL
SQL, and DDL statements.
Note: For backwards compatibility, the special permissions ADHOC and SY SPROC are still recognized.
They areinterpreted as synonyms for SQL and ADMIN, respectively.

In the CREATE ROLE statement you enable access to these functions by including the permission name
in the WITH clause. (The default, if security is enabled and the keyword is not specified, is that the role
is not allowed access to the corresponding function.)

Note that the permissions are additive. So if a user is assigned one role that allows access to SQLREAD
but not DEFAULTPROC, but that user is also assigned another role that allows DEFAULTPROC, the
user has both permissions.

The following example assigns full access to members of the ops role, access to interactive SQL queries
(and default procedures by inheritance) and all user-defined procedures to members of the developer role,
and no specia access beyond read-only system procedures to members of the appsrole.

CREATE RCOLE ops W TH admi n;
CREATE RCOLE devel oper WTH sql, allproc;
CREATE ROLE apps;

12.6. Using Built-in Roles

To simplify the development process, VoltDB predefines two roles for you when you enable security:
administrator and user. Administrator has ADMIN permissions. access to al functions including
interactive SQL queries, DDL, system procedures, and user-defined procedures. User has SQL and
ALLPROC pemissions; accessto ad hoc SQL and all default and user-defined stored procedures.

These predefined roles areimportant, because when you start the database thereis no schemaand therefore
no user-defined roles available to assign to users. So you must always include at least one user who is
assigned the Administrator role when starting a database with security enabled. Y ou can use this account
to then load the schema — including additional security roles and permissions — and then update the
configuration to add more users as necessary.

12.7. Encrypting VoltDB Communication Using
TLS/SSL

VoltDB hashes usernames and passwords both within the database server and while passing them
across the network. However, the network communication itself is not encrypted by default. You can
enable Transport Layer Security (TLS) — the recommended upgrade from Secure Socket Layer (SSL)
communication — for the HTTP port, which affects the VoltDB Management Center and the JSON

114

Security

interface. You can also extend TLS encryption to al external interfaces (HTTP, client, and admin) and
the port used for database replication (DR) for more thorough security. The following sections summarize
how to enable TLS for the serversin a cluster, including:

» Configuring TLS encryption on the server

Choosing which ports to encrypt

Using the VoltDB command line utilitieswith TLS

Implementing TLS communication in Java client applications

» Configuring Database Replication (DR) using TLS

12.7.1. Configuring TLS/SSL on the VoltDB Server

TLS, like its predecessor SSL, uses certificates to validate the authenticity of the communication. You
can either use a certificate created by a commercia certificate provider (such as Digitcert, GeoTrust, or
Symantec) or you can create your own certificate. If you use a commercia provider, that provider also
handles the authentication of the certificate. If you create a local or self-signed certificate, you need to
provide the certificate and authentication to the server and clients yourself.

If you purchaseacommercia certificate, the server configuration must include apointer to the certificatein
the<keyst or e> element. So, for example, if the path to the certificateis/ et ¢/ ssl / certi fi cat e,
you can enable TLS for al externa interfaces by including the following XML in the database
configuration file:

<ssl enabl ed="true" external ="true">
<keystore path="/etc/ssl/certificate" password="nyssl password"/>
</ssl >

If you chooseto use alocally created certificate, you must first generate the certificate key store and trust
store. Y ou can create alocal certificate using the Javakeytool utility. Creating the key store and trust store
requires several stepsincluding:

1. Creating akey store and password

2. Creating akey signing request

3. Creating and signing the certificate

4. Importing the certificate into the key store
5. Creating the associated trust store

There are a number of different options when performing this task. It is important to understand how
these options affect the resulting certificate. Be sure to familiarize yoursalf with the documentation of the
keytool utility before creating your own certificate. The following exampl e uses some common options to
generate a self-signed certificate key store and trust store.

$ keytool -genkey -keystore nydb. keystore \
-storepass nypasswd -alias nydb \
-keyalg rsa -validity 365 -keysize 2048

$ keytool -certreq -keystore nydb. keystore \
-storepass nypasswd -alias nydb \
-keyalg rsa -file mydb. csr

$ keytool -gencert -keystore nydb. keystore \

115

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

Security

-storepass nypasswd -alias nydb \

-infile mydb.csr -outfile mydb.cert -validity 365
$ keytool -inport -keystore nydb. keystore \

-storepass nypasswd -alias nydb \

-file nydb. cert
$ keytool -inport -keystore nydb.truststore \

-storepass nypasswd -alias nydb \

-file nydb. cert

Once you create the key store and the trust store, you can reference them in the database configuration file
to enable TLS when initializing the database root directory. For example:

<ssl enabl ed="true" external ="true">
<keystore pat h="/etc/ssl/|ocal/mydb. keystore" password="nypasswd"/ >
<truststore path="/etc/ssl/l|ocal/nydb.truststore" password="mypasswd"/>
</ssl >

12.7.2. Choosing What Ports to Encrypt with TLS/SSL

If TLS encryption is enabled, the HTTP is always encrypted. Y ou can selectively choose to encrypt other
ports as well. Y ou specify which portsto encrypt using attributes of the <ssl> element:

 External ports (external), including the client and admin ports
 Extranet ports (dr), including the replication port used for DR

For each type of port, you specify that the portsare either enabled ("true") or disabled ("false"). Thedefault
is false. For example, the following configuration enables TLS encryption on both the external and DR
ports:

<ssl enabl ed="true" external ="true" dr="true">
<keyst ore pat h="/etc/ssl/|ocal/nydb. keystore" password="nypasswd"/ >
<truststore path="/etc/ssl/|ocal/nydb.truststore” password="mypasswd"/>
</ssl >

Note that if you enable TLS encryption for the DR port, other clusters replicating from this cluster must
include the appropriate client configuration when they enable DR. See Section 12.7.5, “Configuring
Database Replication (DR) With TLS/SSL” for information on setting up TLS when configuring DR.

Finally, it isimportant to note that all portswhere TLSisenabled and all the serverswithin asingle cluster
use the same certificate.

12.7.3. Using the VoltDB Command Line Utilities with TLS/
SSL

Onceyou enable TL Sfor the external interfaces on your database servers, you must also enable TLSon the
command line utilities so they use the appropriate protocols to connect to the servers. (The voltdb utility
is the one exception. Since it only operates on the local server it does not require a network connection.)

When invoking the command line utilities, such as voltadmin and sqlcmd, you use the - - ssl option to
activate encryption with TLS-enabled VoltDB servers. If the servers are using a commercially-provided
certificate, you can specify the - - ssl option without an argument. For example;

$ sqglcnmd --ssl

116

Security

If the servers are using alocal or self-signed certificate you must also specify a Java properties file as an
argument to the - - ss| option. For example:

$ sqlcnd --ssl=localcert.txt

The properties file must declare two properties that specify the path to the trust store and the trust store
password, respectively. So, using the trust store generated by the examplein Section 12.7.1, “ Configuring
TLS/SSL onthe VoltDB Server”, thel ocal cert . t xt filecould be:

trust Store=/etc/ssl/Iocal/mydb.truststore
t rust St or ePasswor d=nypasswd

12.7.4. Implementing TLS/SSL in the Java Client Applications

Just as the command line tools must specify how to connect to an TL S-enabled server, client applications
must also establish an appropriate connection. Using the VoltDB Java API, you can enable TLS by
setting the appropriate attributes of the client configuration. Specifically, if you are using a self-signed
certificate, you must provide the path to the trust store and its password. You can do this using
either the .setTrustStore() or .setTrustStoreConfigFromPropertyFile(). For example, the following two
commands are equivalent, assuming the | ocal cert . t xt file matches the properties file described in
Section 12.7.3, “Using the VoltDB Command Line Utilitieswith TLS/SSL":

clientConfig.setTrustStore("/etc/ssl/local/nydb.truststore", "nypasswd");
cl i ent Confi g. set Trust St oreConfi gFronPropertyFile("l ocalcert.txt");

After setting the trust store properties you can enable TL S communication using the .enableSSL () method
and create the client connection. For example:

CientConfig clientConfig = new CientConfig("JDoe", "JDsPasswd");
cl i ent Config. set Trust St oreConfi gFronPropertyFile("localcert.txt");
cl i ent Confi g. enabl eSSL() ;

client = dientFactory.createdient(clientConfig);

When using a commercially generated certificate, you do not need to specify the trust store and can use
just the .enableSSL () method.

12.7.5. Configuring Database Replication (DR) With TLS/SSL

When using TLS encryption on the DR port, the DR snapshots and binary logs are encrypted as they
pass from the producer cluster to the consumer cluster. This means that the producer must not only have
TLS enabled for the DR port, but the consumer cluster must use the appropriate TLS credentials when
it contacts the producer.

So, for example, in passive DR, the master cluster must have TLS enabled for the DR port and the replica
must be configured to use TL S when connecting to the master. In XDCR, you enable TLSfor all clusters
in the XDCR relationship. So each cluster must both enable TLSfor its DR port aswell as configure TLS
for its connections to the other clusters.

Section 12.7.1, “Configuring TLS/SSL on the VoltDB Server” describes how to enable TLS encryption
for the DR port, which must be done before the cluster starts. To configure TLS connectivity at the other
end, you add the ssl attribute to the <connect i on> element within the DR configuration. The value
of thessl attribute is either blank — for commercial certificates — or the path to a Java properties file
specifying the trust store and password for the remote cluster(s) when using alocally-generated certificate.
These attribute values are the same as the - - ssl argument you use when running the command line
utilities described in Section 12.7.3, “Using the VoltDB Command Line Utilitieswith TLS/SSL”.

117

Security

For example, when configuring TLS encryption for passive DR, the master cluster must enable TLS on
the DR port and the replica must specify use of TLS in the <connect i on> element. The respective
configuration files might look like this:

Master Cluster <ssl| enabl ed="true" dr="true">
<keystore path="/etc/ssl/|ocal/mnmydb. keystore" password="nypass\
<truststore path="/etc/ssl/local/nydb.truststore" password="nny|

</ ssl >
Replica Cluster <dr id="2" role="replica">
<connecti on source="Mast er Svr A, Mast er Svr B" ssl ="/usr/| ocal / mast
</dr>

Note that the replica does not need to enable TLS for its DR port, since it is a consumer and its own port
is not used.

For XDCR, each cluster must both enable DR for its own port and specify the TLS credentials for the
remote clusters. The configuration file might look like this:

XDCR Cluster <ssl enabl ed="true" dr="true">
<keystore path="/etc/ssl/l|ocal/nydb. keystore" password="mnypasswd"/
<truststore path="/etc/ssl/|ocal/nydb.truststore" password="mnypas:
</ssl >
<dr id="1" rol e="xdcr">
<connecti on source="NYCSvr A, NYCSvrB" ssl="/usr/local/nyccert.txt":
</ dr>

Note that when using locally-generated certificates, there is only one properties file specified in the ss|i
attribute. So all of the clusters in the XDCR relationship must use the same certificate. When using
commercialy purchased certificates, the ssl attributes is left blank; so each cluster can, if you choose,
use a separate certificate.

12.8. Integrating Kerberos Security with VoltDB

For environments where more secure communication is required than hashed usernames and passwords, it
ispossiblefor aVoltDB database to use Kerberos to authenticate clients and servers. Kerberosisapopular
network security protocol that you can use to authenticate the Java client processes when they connect to
VoltDB database servers. Use of Kerberosis supported for the Javaclient library and JSON interface only.

To use Kerberos authentication for VoltDB security, you must perform the following steps:
1. Set up and configure Kerberos on your network, servers, and clients.

2. Ingtall and configure the Java security extensions on your VoltDB servers and clients.

3. Configurethe VoltDB cluster and client applications to use Kerberos.

The following sections describe these steps in detail.

12.8.1. Installing and Configuring Kerberos

Kerberos is a complete software solution for establishing a secure network environment. It includes
network protocols and software for handling authentication and authorization in a secure, encrypted
fashion. Kerberos requires one or more servers known as key distribution centers (KDC) to authenticate
and authorize services and the users who access them.

118

Security

To use Kerberos for VoltDB authentication you must first set up Kerberos within your network
environment. If you do not already have a Kerberos KDC, you will need to create one. Y ou will also need
to install the Kerberos client libraries on all of the VoltDB servers and clients and set up the appropriate
principalsand services. Because K erberosisacomplete network environment rather than asingle platform
application, it is beyond the scope of this document to explain how to install and configure Kerberos
itself. This section only provides notes specific to configuring Kerberos for use by VoltDB. For complete
information about setting up and using Kerberos, please see the K erberos documentation.

Part of the Kerberos setup is the creation of a configuration file on both the VoltDB server and client
machines. By default, the configuration file is located in / et ¢/ kr b5. conf on Linux systems. (On
Macintosh systems, the configuration file is edu. nmi t . Ker ber os located either in ~/ Li brary/
Pref erences/ or/Li brary/ Preferences/.) Be sure this file exists and points to the correct
realm and KDC.

Once a KDC exists and the nodes are configured correctly, you must create the necessary Kerberos
accounts — known as "user principals' for the accounts that run the VoltDB client applications and a
"service principal” for the VoltDB cluster. If you intend to use the web-based VoltDB Management Center
or the JSON interface, you will also want to create a host and HTTP service principle for each server as
well. For example, to create the service keytab file for the VoltDB database, you can issue the following
commands on the Kerberos KDC:

$ sudo kadmin. | ocal
kadmi n. | ocal : addprinc -randkey service/voltdb
kadm n.l ocal : ktadd -k vol tdb. keytab service/voltdb

Then copy the keytab file to the database servers, making sure it is only accessible by the user account
that starts the database process:

$ scp vol tdb. keytab vol tadm n@ol t svr:vol t db. keyt ab
$ ssh vol tadm n@ol tsvr chnod 0600 vol t db. keyt ab

Y ou can then create host and HTTP service principles for each server in the cluster and write them to a
server-specific keytab. For example, to create a keytab file for the database node server1, the command
would be the following:

$ sudo kadnin. | ocal

kadm n. | ocal : addprinc -randkey host/server1. myconpany. | an
kadm n. | ocal : addprinc -randkey HTTP/ server1. myconpany. | an

kadm n. | ocal : ktadd -k serverl. nyconpany. | an. keytab HITP/ server 1. nyconpany. | an
kadm n. | ocal : ktadd -k serverl. nyconpany. | an. keytab host/server1l. nyconpany. | an

12.8.2. Installing and Configuring the Java Security
Extensions

Thenext stepistoinstall and configure the Java security extension known as Java Cryptography Extension
(JCE). JCE enables the more robust encryption required by Kerberos within the Java Authentication and
Authorization Service (JAAS). Thisis necessary because VoltDB uses JAASto interact with Kerberos.

The JCE that needs to be installed is specific to the version of Java you are running. See the the Javaweb
site for details. Again, you must install JCE on both the VoltDB servers and client nodes

Once JCE isinstalled, you create a JAAS login configuration file so Java knows how to authenticate the
current process. By default, the JAAS login configuration fileis $HOVE/ . j ava. | ogi n. confi g. On

119

http://web.mit.edu/kerberos/
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Security

the database servers, the configuration file must define the VoltDBService module and associate it with
the keytab created in the previous section.

To enableK erberos access from the web-based V oltDB Management Center and JSON interface, you must
also include entries for the Java Generic Security Service (JGSS) declaring the VoltDB service principle
and the server's HTTP service principle. For example:

Server JAAS Login Configuration File

Vol t DBSer vi ce {
com sun. security. aut h. nodul e. Kr b5Logi nModul e required
useKeyTab=t rue keyTab="/hone/vol tadm n/voltdb. keyt ab"
doNot Pr onpt =t r ue
princi pal ="servi ce/ vol t do@WCOVPANY. LAN"' st or eKey=tr ue;

}s

comsun.security.jgss.initiate {
com sun. securi ty. aut h. nodul e. Kr b5Logi nModul e required
princi pal ="servi ce/ vol t db@WCOVPANY. LAN"
keyTab="/hone/ vol t adm n/ vol t db. keyt ab"
useKeyTab=t rue
st oreKey=true
debug=f al se;

}s

com sun. security.jgss.accept {
com sun. security. aut h. nodul e. Kr b5Logi nModul e required
princi pal ="HTTP/ server 1. myconpany. | an@WCOVPANY. LAN'
useKeyTab=t rue
keyTab="/ et c/ kr b5. keyt ab"
st oreKey=true
debug=f al se
i slnitiator=fal se;

b
On the client nodes, the JAAS login configuration defines the VoltDBClient module.
Client JAAS Login Configuration File

Vol t DBCl i ent {
com sun. securi ty. aut h. nodul e. Kr b5Logi nModul e required
useTi cket Cache=true renewlGI=t rue doNot Pronpt =true;

i
12.8.3. Configuring the VoltDB Servers and Clients

Finally, once Kerberos and the Java security extensions are installed and configured, you must configure
the VoltDB database cluster and client applications to use Kerberos.

On the database servers, you enable Kerberos security using the <security> element when you initialize
the database root directory, specifying "kerberos" as the provider. For example:

<?xm version="1.0"?>
<depl oynent >

120

Security

<security enabl ed="true" provider="kerberos"/>
</ depl oyment >

Y ou then assign rolesto individual users as described in Section 12.3, “ Defining Users and Roles”, except
in place of generic usernames, you specify the Kerberos user — or "principa" — names, including their
realm. Since Kerberos uses encrypted certificates, the password attribute is ignored and can be filled in
with arbitrary text. For example:

<?xm version="1.0"?>
<depl oynent >
<security enabl ed="true" provider="kerberos"/>

<user s>
<user name="nt wai n@ANCOVPANY. LAN' password="n/a" rol es="adm ni strator"/>
<user name="cdi ckens @WCOVPANY. LAN' password="n/a" rol es="dev"/>
<user name="hbal zac @IWCOVPANY. LAN' password="n/a" rol es="adhoc"/>
</ users>
</ depl oynment >

Having configured Kerberos in the configuration file, you are ready to initialize and start the VoltDB
cluster. When starting the VoltDB process, Java must know how to access the Kerberos and JAAS login
configuration files created in the preceding sections. If the files are not in their default locations, you
can override the default location using the VOLTDB_OPTS environment variable and setting the flags
java.security. krb5. conf andj ava. security. aut h. | ogi n. confi g, respectively.!

In Java client applications, you specify Kerberos as the security protocol when you create the client
connection, using the enableK erberosA uthentication method as part of the configuration. For example:

i mport org.voltdb.client.dientConfig;
i mport org.voltdb.client.dientFactory;

CientConfig config = new dientConfig();
/1 specify the JAAS | ogi n nodul e
confi g. enabl eKer ber osAut hentication("VoltDBO ient");

VoltCient client = dientFactory.createCient(config);
client.createConnection("voltsvr");

Note that the VoltDB client automatically picks up the Kerberos cached credential s of the current process,
the user'sKerberos"principal”. So you do not need to — and should not — specify ausername or password
as part of the VoltDB client configuration.

When using the VoltDB JDBC client interface, you can enable Kerberos by setting the ker ber os
property on the connection to match the settings in the Java API. For example, you can enable Kerberos
by setting the property on the connection string as a query parameter:

Cl ass. forNane("org.vol tdb.jdbc.Driver");
Connection ¢ = DriverMnager. get Connecti on(
"jdbc:vol tdb://svrl:21212, svr2:21212?ker beros=Vol t DB i ent");

Alternately, you can supply alist of properties, including the ker ber os property, when you initialize
the connection:

on Macintosh systems, you must always specify thej ava. security. kr b5. conf property.

121

Security

Cl ass.forName("org.vol tdb.jdbc. Driver");

Properties props = new Properties();

props. set Property("kerberos”, “VoltDBCient");

Connection ¢ = DriverManager. get Connecti on(
"jdbc:voltdb://svrl:21212, svr2:21212", props);

12.8.4. Accessing the Database from the Command Line and
the Web

It is also important to note that once the cluster starts using Kerberos authentication, only Java, JDBC,
JSON, and Python clients can connect to the cluster and they must use Kerberos authenticationto doiit. The
sameistrue for the CLI commands, such has sglcmd and voltadmin. To authenticateto a VoltDB server
with Kerberos security enabled using the Java-based utilities sglcmd and cvsloader, you must include the
- - ker ber os flag identifying the name of the Kerberos client service module. For example:

$ sglcnd --kerberos=Vol t DBC i ent

If the configuration files are not in the default location, you must specify their location on the command
line:

$ sqlcnmd --kerberos=Vol t DBC i ent \
-J-Dj ava. security. aut h.l ogi n. confi g=nyclient.kerber os. conf

To use the Python API or Python-based voltadmin utility, you must first make sure you have the python-
gssapi package installed. Then, login to your Kerberos account using kinit before invoking the Python
client. When using the voltadmin utility, you must also include - - ker ber os flag, but you do not need
to specify any argument since it picks up the credentialsin the Kerberos user's cache. For example:

$ vol tadm n shutdown --kerberos

To use the VoltDB Management Center or the JISON interface to access the database, your web browser
must be configured to use the Simple and Protected GSS-API Negotiation Mechanism (also known as
SPNEGO). See your web browser's help for instructions on configuring SPNEGO.

122

Chapter 13. Saving & Restoring a VoltDB
Database

There are times when it is necessary to save the contents of aVVoltDB database to disk and then restore it.
For example, if the cluster needs to be shut down for maintenance, you may want to save the current state
of the database before shutting down the cluster and then restore the database once the cluster comes back
online. Performing periodic backups of the data can also provide afallback in case of unexpected failures
— either physical failures, such as power outages, or logic errors where a client application mistakenly
corrupts the database contents.

VoltDB provides shell commands, system procedures, and an automated snapshot feature that help you
perform these operations. Thefollowing sections explain how to save and restorearunning VoltDB cluster,
either manually or automatically.

13.1. Performing a Manual Save and Restore of a
VoltDB Cluster

Manually saving and restoring a VoltDB database is useful when you need to modify the database's
physical structure or make schema changes that cannot be made to a running database. For example,
changing the K-safety value, the number of sites per site, or changing the partitioning column of a
partitioned table. The normal way to perform such a maintenance operation using save and restore is as
follows:

1. Stop database activities (using pause).

2. Use save to write a snapshot of the current data to disk.

3. Shutdown the cluster.

4. Make changesto the VVoltDB schema, cluster configuration, and/or configuration file as desired.
5. Reinitialize the database with the modified configuration file, using voltdb init --for ce.

6. Restart the cluster in admin mode, using voltdb start --pause.

7. Optionally, reload the schema and stored procedures (if you are changing the schema).

8. Restore the previous snapshot.

9. Restart client activity (using resume).

The key isto make sure that al database activity is stopped before the save and shutdown are performed.
This ensures that no further changes to the database are made (and therefore lost) after the save and before
the shutdown. Similarly, it isimportant that no client activity starts until the database has started and the
restore operation completes.

Also note that Step #7, reloading the schema, is optional. If you are going to reuse the same schemain a
new database instance, the restore operation will automatically load the schema from the snapshot itself.
If you want to modify the schemain any way, such as changing indexes or tables and columns, you should
load the modified schema before restoring the data from the snapshot. If the database schemais not empty
(that is there are tables aready defined), only the data is loaded from the snapshot. See Section 13.1.3.2,

123

Saving & Restoring
aVoltDB Database

“Modifying the Database Schema and Stored Procedures’ for more information on modifying the schema
when restoring snapshots.

Save and restore operations are performed either by calling VoltDB system procedures or using the
corresponding voltadmin shell commands. In most cases, the shell commands are simpler since they do
not require program code to use. Therefore, this chapter uses voltadmin commands in the examples. If
you are interested in programming the save and restore procedures, see Appendix G, System Procedures
for more information about the corresponding system procedures.

When you issue a save command, you specify a path where the data will be saved and a unique identifier
for tagging thefiles. VoltDB then saves the current data on each node of the cluster to a set of files at the
specified location (using the unique identifier as a prefix to the file names). This set of files is referred
to as a snapshot, since it contains a complete record of the database for a given point in time (when the
save operation was performed).

The - - bl ocki ng option lets you specify whether the save operation should block other transactions
until it completes. In the case of manual saves, it is a good idea to use this option since you do not want
additional changes made to the database during the save operation.

Note that every node in the cluster uses the same absolute path, so the path specified must be valid, must
exist on every node, and must not already contain data from any previous saves using the same unique
identifier, or the save will fail.

When you issue a restore command, you specify the same absolute path and unique identifier used when
creating the snapshot. VoltDB checks to make sure the appropriate save set exists on each node, then
restores the data into memory.

13.1.1. How to Save the Contents of a VoltDB Database

To save the contents of a VoltDB database, use the voltadmin save command. The following example
creates a snapshot at the path /tmp/voltdb/backup using the unique identifier TestShapshot.

$ vol tadm n save --bl ocking /tnp/voltdb/backup "Test Snapshot"

In this exampl e, the command tellsthe save operation to block all other transactions until it completes. Itis
possible to save the contents without blocking other transactions (which is what automated snapshots do).
However, when performing a manual save prior to shutting down, it is normal to block other transactions
to ensure you save a known state of the database.

Notethat it is possible for the save operation to succeed on some nodes of the cluster and not others. When
you issue the voltadmin save command, VoltDB displays messages from each partition indicating the
status of the save operation. If there are any issues that would stop the process from starting, such as a
bad file path, they are displayed on the console. It is a good practice to examine these messages to make
sure al partitions are saved as expected.

Note that it is also possible to issue the voltadmin save command without arguments. In that case the
snapshot is saved to the default snapshots folder in the database root directory. This can be useful because
the voltdb start command can automatically restore the latest snapshot in that directory as described in
the next section.

13.1.2. How to Restore the Contents of a VoltDB Database
Manually

The easiest way to restore a snapshot is to let VoltDB do it for you as part of the recover operation. If
you are not changing the cluster configuration you can use an automated snapshot or other snapshot saved

124

Saving & Restoring
aVoltDB Database

into the vol t dbr oot / snapshot s directory by smply restarting the cluster nodes using the voltdb
start command. With the start action VoltDB automatically starts and restores the most recent snapshot.
If command logging is enabled, it also replays any logs after the snapshot. This approach has the added
benefit that VoltDB automatically |oads the previous schema as well as part of the snapshot.

However, you cannot use voltdb start to restore a snapshot if the physical configuration of the cluster has
changed or if you want to restore an earlier snapshot or a snapshot stored in an alternate location. In these
cases you must do amanual restore.

To manually restore a VoltDB database from a snapshot previously created by a save operation, you can
create a new database instance and use the voltadmin restor e command. So, for example, if you modify
the configuration, you must re-initialize the root directory with the new configuration file, using the --
force flag to overwrite the previous configuration and database content:

$ voltdb init --config=newconfig.xm --force

Then you can start the reconfigured database, which creates a new empty database. It is also a good idea
to start the database in admin mode by including the --pause flag:

$ voltdb start --pause

Finally, you restore the previously saved snapshot using the same pathname and unique identifier used
during the save. The following example restores the snapshot created by the example in Section 13.1.1
and resumes normal operation (that is, exits admin mode).

$ voltadm n restore /tnp/voltdb/backup "Test Snapshot"
$ voltadnin resune

Aswith save operations, it isawaysagood ideato check the statusinformation displayed by the command
to ensure the operation completed as expected.

13.1.3. Changing the Cluster Configuration Using Save and
Restore

Most changes to a VoltDB database can be made "on the fly" while the database is running. Adding
and removing tables, enabling and disabling database features such as import and export, and adding or
updating stored procedures can al be done while the database is active. However, between a save and a
restore, it is possible to make changes to the database and cluster configuration that cannot be made on
arunning cluster. For example, you can:

* Add or remove nodes from the cluster

» Modify the schema and/or stored procedures that:
» Change partitioned tables to replicated and vice versa
 Change the partitioning column on partitioned tables
« Add unique indexes to tables with existing data

* Change the number of sites per host

» Change the K-safety value

The following sections discuss these procedures in more detail.

125

Saving & Restoring
aVoltDB Database

13.1.3.1. Adding and Removing Nodes from the Database

To add nodes to the cluster, use the following procedure:
1. Save the database with the voltadmin save command.

2. Shutdown and re-initialize the database root directories on each node (including initializing new root
directories for the nodes you are adding).

3. Startthecluster (including the new nodes) specifying the new server count withthe- - count argument
to the voltdb start command.

4. Restore the database with the voltadmin restore command..

When the snapshot is restored, the database (and partitions) are redistributed over the new cluster
configuration.

It is also possible to remove nodes from the cluster using this procedure. However, to make sure that no
dataislost in the process, you must copy the snapshot files from the nodes that are being removed to one
of the nodes that is remaining in the cluster. This way, the restore operation can find and restore the data
from partitions on the missing nodes.

13.1.3.2. Modifying the Database Schema and Stored Procedures

The easiest and recommended way to change the database schema is by sending the appropriate SQL
database definition language (DDL) statements to the sglcmd utility. Similarly you can update the stored
procedures on arunning database using the LOAD CLASSES and REMOVE CLASSES directives.

However, there are afew changes that cannot be made to a running database,. For example, changing the
partitioning column of atableif the table contains data. For these changes, you must use save and restore
to change the schema.

To modify the database schema or stored procedures between a save and restore, make the appropriate
changes to the source files (that is, the database DDL and the stored procedure Java source files). If you
modify the stored procedures, be sure to repackage any Java stored procedures into a JAR file. Then you
can:

1. Save the database with the voltadmin save command.

2. Shutdown and re-initialize the database root directories on each node.

3. Start the cluster with the voltdb start command.

4. Load the modified schema and stored procedures using sglcmd.

5. Restore the database contents with the voltadmin restor e command.

Two points to note when modifying the database structure before restoring a snapshot are:

* When existing rows are restored to tables where new columns have been added, the new columns are
filled with either the default value (if defined by the schema) or nulls.

» When changing the datatypes of columns, it is possible to decrease the datatype size (for example, going
froman INT toan TINYINT). However, if any existing values exceed the capacity of the new datatype
(such as an integer value of 5,000 where the datatype has been changed to TINYINT), the entire restore
will fail.

126

Saving & Restoring
aVoltDB Database

13.2

13.3

If you remove or modify stored procedures (particularly if you change the number and/or datatype of the
parameters), you must make sure the corresponding changes are made to client applications as well.

Scheduling Automated Snapshots

Save and restore are useful when planning for scheduled down times. However, these functions are also
important for reducing the risk from unexpected outages. VoltDB assists in contingency planning and
recovery from such worst case scenarios as power failures, fatal system errors, or data corruption due to
application logic errors.

In these cases, the database stops unexpectedly or becomes unreliable. By automatically generating
snapshots at set intervals, VoltDB gives you the ability to restore the database to a previous valid state.

Y ou schedule automated snapshots of the database as part of the configuration file. The <snapshot> tag
lets you specify:

» Thefreguency of the snapshots. Y ou can specify any whole number of seconds, minutes, or hours (using
the suffix "s", "m", or "h", respectively, to denote the unit of measure). For example "3600s", "60m",
and "1h" are all equivalent. The default frequency is 24 hours.

» Theuniqueidentifier to use as a prefix for the snapshot files. The default prefix is"AUTOSNAP".

» Thenumber of snapshotsto retain. Snapshots are marked with atimestamp (as part of the file names), so
multiple snapshots can be saved. Ther et ai n attribute lets you specify how many snapshots to keep.
Older snapshots are purged once this limit is reached. The default number of snapshots retained istwo.

Thefollowing example enables automated snapshots every thirty minutes using the prefix "flightsave" and
keeping only the three most recent snapshots.

<snapshot prefix="flightsave"
frequency="30nt
retain="3"

/>

By default, automated snapshots are stored in a snapshots subfolder of the VoltDB root directory (as
described in Section 3.7.2, “Configuring Paths for Runtime Features”). Y ou can save the snapshots to a
specific path by adding the <snapshots> tag within to the <paths>...</paths> tag set. For example, the
following example defines the path for automated snapshotsas/ et ¢/ vol t db/ aut obackup/ .

<pat hs>
<snapshots pat h="/etc/vol tdb/ aut obackup/" />
</ pat hs>

Managing Snapshots

VoltDB does not delete snapshots after they are restored; the snapshot files remain on each node of the
cluster. For automated snapshots, the oldest snapshot files are purged according to the settings in the
configuration file. But if you create snapshots manually or if you change the directory path or the prefix
for automated snapshots, the old snapshots will also be left on the cluster.

To simplify maintenance, it is agood idea to observe certain guidelines when using save and restore:
 Create dedicated directories for use as the paths for VoltDB snapshots.

» Do not store any other filesin the directories used for VoltDB snapshots.

127

Saving & Restoring
aVoltDB Database

* Periodically cleanup the directories by deleting obsolete, unused snapshots.

You can delete snapshots manually. To delete a snapshot, use the unique identifier, which is applied as
a filename prefix, to find al of the files in the snapshot. For example, the following commands remove
the snapshot with the ID TestSave from the directory /etc/voltdb/backup/. Note that VoltDB separates the
prefix from the remainder of the file name with a dash for manual snapshots:

$ rm/etc/vol tdb/ backup/ Test Save-*

However, it is easier if you use the system procedures VoltDB provides for managing snapshots. If you
delete snapshots manually, you must make sure you execute the commands on all nodes of the cluster.
When you use the system procedures, VoltDB distributes the operations across the cluster automatically.

VoltDB provides severa system procedures to assist with the management of snapshots:

o @Statistics"SNAPSHOTSTATUS' providesinformation about the most recently performed snapshots
for the current database. The response from @Statistics for this selector includes information about
up to ten recent snapshots, including their location, when they were created, how long the save took,
whether they completed successfully, and the size of theindividual files that make up the snapshot. See
the reference section on @Statistics for details.

» @SnapshotScan listsal of the snapshots availablein aspecified directory path. Y ou can usethis system
procedure to determine what snapshots exist and, as a consequence, which ought to be deleted. See the
reference section on @SnapshotScan for details.

* @SnapshotDelete deletes one or more snapshots based on the paths and prefixes you provide. The
parameters to the system procedure are two string arrays. Thefirst array specifies one or more directory
paths. The second array specifiesoneor moreprefixes. Thearray el ementsaretakenin pairsto determine
which snapshots to delete. For example, if the first array contains paths A, B, and C and the second
array contains the unique identifiers X, Y, and Z, the following three snapshots will be deleted: A/X,
B/Y, and C/Z. See the reference section on @SnapshotDelete for details.

13.4. Special Notes Concerning Save and Restore

The following are special considerations concerning save and restore that are important to keep in mind:

» Save and restore do not check the cluster health (whether all nodes exist and are running) before
executing. The user can find out what nodes were saved by looking at the messages displayed by the
save operation.

 Both the save and restore calls do a pre-check to see if the action is likely to succeed before the actual
savelrestore is attempted. For save, VoltDB checks to see if the path exists, if there is any data that
might be overwritten, and if it has write access to the directory. For restore, VoltDB verifies that the
saved data can be restored completely.

It is possible to provide additional protection against failure by copying the automated snapshots to
remote locations. Automated snapshots are saved locally on the cluster. However, you can set up a
network process to periodically copy the snapshot files to a remote system. (Be sure to copy the files
from all of the cluster nodes.) Another approach would be to save the snapshots to a SAN disk that is
aready set up to replicate to another location. (For example, using iSCSI.)

128

Chapter 14. Command Logging and
Recovery

By executing transactions in memory, VoltDB, freesitself from much of the management overhead and 1/
O costs of traditional database products. However, accidents do happen and it isimportant that the contents
of the database be safeguarded against loss or corruption.

Snapshots provide one mechanism for safeguarding your data, by creating a point-in-time copy of the
database contents. But what happens to the transactions that occur between snapshots?

Command logging provides a more complete solution to the durability and availability of your VoltDB
database. Command logging keeps arecord of every transaction (that is, stored procedure) asit is executed.
Then, if the servers fail for any reason, the database can restore the last snapshot and "replay” the
subsequent logs to re-establish the database contents in their entirety.

The key to command logging is that it logs the invocations, not the consegquences, of the transactions. A
single stored procedure can include many individual SQL statements and each SQL statement can modify
hundreds or thousands of table rows. By recording only the invocation, the command logs are kept to a
bare minimum, limiting the impact the disk 1/O will have on performance.

However, any additional processing canimpact overall performance, especially whenitinvolvesdisk 1/0.
So it is important to understand the tradeoffs concerning different aspects of command logging and how
it interacts with the hardware and any other options you are utilizing. The following sections explain how
command logging works and how to configure it to meet your specific needs.

14.1. How Command Logging Works

When command logging is enabled, VoltDB keeps a log of every transaction (that is, stored procedure)
invocation. At first, the log of the invocations are held in memory. Then, at a set interval the logs are
physically written to disk. Of course, at a high transaction rate, even limiting the logs to just invocations,
the logs begin to fill up. So at a broader interval, the server initiates a snapshot. Once the snapshot is
complete, the command logging processis ableto free up — or "truncate” — thelog keeping only arecord
of procedure invocations since the last snapshot.

This process can continue indefinitely, using snapshots as a baseline and loading and truncating the
command logs for all transactions since the last snapshot.

Figure 14.1. Command Logging in Action

; AN
aatae MMM sesceces MMM

S 7
]

Frequency

Snapshots @ @

The frequency with which the transactions are written to the command log is configurable (as described in
Section 14.3, “ Configuring Command Logging for Optimal Performance”). By adjusting thefrequency and

129

Command Logging and Recovery

type of logging (synchronous or asynchronous) you can balance the performance needs of your application
against the level of durability desired.

In reverse, when it is time to "replay" the logs, you start the database and the server nodes establish a
quorum, the first thing the database servers do is restore the most recent snapshot. Then they replay all of
the transactions in the log since that snapshot.

Figure 14.2. Recovery in Action

X
hy I
AN) N

VolDB | \ Start \
database / Recover /
L / L Ny
’ Replay 4
Command IO
Logs))

Snapshots @

14.2. Controlling Command Logging

Command logging is enabled by default in the VoltDB Enterprise Edition. Using command logging is
recommended to ensure durability of your data. However, you can choose whether to have command
logging enabled or not using the <commandl og> element in the configuration file. For example:
<depl oynent >

<cluster kfactor="1" />

<comuand| og enabl ed="true"/>
</ depl oynent >
In its smplest form, the <comuand| og/ > tag enables or disables command logging by setting the

enabl ed attribute to "true" or "false". You can also use other attributes and child elements to control
specific characteristics of command logging. The following section describes those options in detail .

14.3. Configuring Command Logging for Optimal
Performance

Command logging can provide complete durability, preserving a record of every transaction that is
completed before the database stops. However, the amount of durability must be balanced against the
performance impact and hardware requirements to achieve effective 1/0.

VoltDB provides three settings you can use to optimize command logging:

» The amount of disk space alocated to the command logs

» The frequency between writes to the command logs

» Whether logging is synchronous or asynchronous

The following sections describe these options. A fourth section discusses the impact of storage hardware
on the different logging options.

130

Command Logging and Recovery

14.3.1. Log Size

The command log size specifies how much disk space is preallocated for storing the logs on disk. The
logs are divided into three "segments’ Once a segment is full, it is written to a snapshot (as shown in
Figure 14.1, “Command Logging in Action”).

For most workloads, the default log size of one gigabyte is sufficient. However, if your workload writes
largevolumesof dataor useslarge stringsfor queries (so the procedureinvocationsinclude large parameter
values), the log segments fill up very quickly. When this happens, VoltDB can end up snapshotting
continuously, because by the time one snapshot finishes, the next log segment is full.

Toavoid thissituation, you can increase thetotal 1og size, to reduce the frequency of snapshots. Y ou define
the log size in the configuration file using the | ogsi ze attribute of the <comrand| og> tag. Specify
the desired log size as an integer number of megabytes. For example:

<conmandl og enabl ed="true" | ogsize="3072" />

Whenincreasing thelog size, be awarethat the larger thelog, thelonger it may take to recover the database
since any transactions in the log since the last snapshot must be replayed before the recovery is complete.
So, while reducing the frequency of snapshots, you also may be increasing the time needed to restart.

The minimum log size is three megabytes. Note that the log size specifies the initial size. If the existing
segments are filled before a snapshot can truncate the logs, the server will allocate additional segments.

14.3.2. Log Frequency

The log frequency specifies how often transactions are written to the command log. In other words, the
interval between writes, as shown in Figure 14.1, “Command Logging in Action”. You can specify the
frequency in either or both time and number of transactions.

For example, you might specify that the command log is written every 200 milliseconds or every 10,000
transactions, whichever comes first. You do this by adding the <f r equency> element as a child of
<comand| og> and specifying the individual frequencies as attributes. For example:

<comuand| og enabl ed="true">
<frequency tine="200" transactions="10000"/>
</ command| og>

Time frequency is specified in milliseconds and transaction frequency is specified as the number of
transactions. Y ou can specify either or both types of frequency. If you specify both, whichever limit is
reached first initiates awrite.

14.3.3. Synchronous vs. Asynchronous Logging

If the command logs are being written asynchronously (which is the default), results are returned to the
client applications as soon as the transactions are completed. This alows the transactions to execute
uninterrupted.

However, with asynchronous logging there is always the possibility that a catastrophic event (such as a
power failure) could cause the cluster to fail. In that case, any transactions completed since the last write
and before the failurewould be lost. The smaller the frequency, the less datathat could belost. Thisishow
you "dial up" the amount of durability you want using the configuration options for command logging.

In some cases, no loss of datais acceptable. For those situations, it isbest to use synchronouslogging. When
you select synchronous logging, no results are returned to the client applications until those transactions

131

Command Logging and Recovery

are written to the log. In other words, the results for all of the transactions since the last write are held on
the server until the next write occurs.

The advantage of synchronouslogging isthat no transaction is"complete”" and reported back to the calling
application until it is guaranteed to be logged — no transactions are lost. The obvious disadvantage of
synchronous logging isthat theinterval between writes (i.e. the frequency) while theresults are held, adds
to the latency of the transactions. To reduce the penalty of synchronous logging, you need to reduce the
frequency.

When using synchronous logging, it is recommended that the frequency be limited to between 1 and 4
milliseconds to avoid adding undue latency to the transaction rate. A frequency of 1 or 2 milliseconds
should have little or no measurable affect on overall latency. However, low frequencies can only be
achieved effectively when using appropriate hardware (as discussed in the next section, Section 14.3.4,
“Hardware Considerations”).

To select synchronous logging, use the synchr onous attribute of the <command| og> tag. For
example:

<commandl og enabl ed="true" synchronous="true" >
<frequency tinme="2"/>
</ command| og>

14.3.4. Hardware Considerations

Clearly, synchronous logging is preferable since it provides complete durability. However, to avoid
negatively impacting database performance you must not only use very low frequencies, but you must have
storage hardware that is capable of handling frequent, small writes. Attempting to use aggressively low
log frequencies with storage devices that cannot keep up will also hurt transaction throughput and latency.

Standard, uncached storage devices can quickly become overwhel med with frequent writes. So you should
not use low frequencies (and therefore synchronous logging) with slower storage devices. Similarly, if the
command logs are competing for the device with other disk 1/0, performance will suffer. So do not write
the command logsto the same devicethat isbeing used for other 1/0, such as snapshots or export overflow.

On the other hand, fast, cached devices such as disks with a battery-backed cache, are capable of handling
frequent writes. So it isstrongly recommended that you use such devices when using synchronous logging.

To specify where the command logs and their associated snapshots are written, you use tags within the
<pat hs>...</ pat hs> tag set. For example, the following example specifies that the logs are written to
/ fast di sk/ vol t dbl og and the snapshots are writtento/ opt / vol t db/ cndsnaps:

<pat hs>
<commandl og pat h="/faskdi sk/voltdblog/" />
<command| ogsnapshot pat h="/opt/vol tdb/cndsnaps/" />
</ pat hs>

Note that the default paths for the command logs and the command log snapshots are both subfolders of
the voltdbroot directory. To avoid overloading a single device on production servers, it is recommended
that you specify an explicit path for the command logs, at a minimum, and preferably for both logs and
snapshots.

To summarize, the rules for balancing command logging with performance and throughput on production
databases are;

 Use asynchronous logging with slower storage devices.

132

Command Logging and Recovery

» Write command logs to a dedicated device. Do not write logs and snapshots to the same device.
» Uselow (1-2 milisecond) frequencies when performing synchronous logging.

» Use moderate (100 millisecond or greater) frequencies when performing asynchronous logging.

133

Chapter 15. Importing and Exporting Live
Data

15.1.

VoltDB is an in-memory, transaction processing database. It excels at managing large volumes of
transactionsin real-time.

However, transaction processing is often only one aspect of the larger business context and data needs to
transition from system to system as part of the overall solution. The process of moving from one database
to another as data moves through the system is often referred to as Extract, Transform, and Load (ETL).
VoltDB supports ETL through the ability to selectively export data as it is committed to the database, as
well as the ahility to import data through multiple standard protocols.

Exporting data differs from save and restore (as described in Chapter 13, Saving & Restoring a VoltDB
Database) in severa ways:

» You only export selected data (as required by the business process)
» Export is an ongoing process rather than a one-time event

» The outcome of exporting datais that information is used by other business processes, not as a backup
copy for restoring the database

Thetarget for exporting datafrom VoltDB may be another database, arepository (such as asequential log
file), or a process (such as a system monitor or accounting system). No matter what the target, VoltDB
helps automate the process for you. This chapter explains how to plan for and implement the exporting
of live datausing VVoltDB.

For import, VVoltDB supports both one-timeimport through dataloading utilities and ongoing import as part
of the database process. The following sections describe how to use VoltDB export and import in detail.

Understanding Export

VoltDB lets you automate the export process by specifying streams in the schema as sources for export.
Streams act just like tables, except no data is actually stored in the database. At runtime, any data
written to the specified streamsis sent to the sel ected export connector, which queues the data for export.
Then, asynchronously, the connector sends the queued export data to the selected output target. Which
export connector runs depends on the target you choose when setting up export in the configuration file.
Currently, VoltDB provides connectors for exporting to files, for exporting to other business processes
via a distributed message queue or HTTP, and for exporting to other databases via JDBC. The connector
processes are managed by the database servers themselves, helping to distribute the work and ensure
maximum throughput.

Figure 15.1, “Overview of the Export Process’ illustrates the basic export procedure, where streams B
and D are specified as export streams. (Streams can be used for other things besides export. This chapter
focuses on their use for export but see the description of the CREATE STREAM statement for other uses.)

134

Importing and Exporting Live Data

Figure 15.1. Overview of the Export Process

Table
A Stream|
B ':
J\ Export
Tagle Connector |:> Target
Stream
0 ..
Table
E

Note that you do not need to modify the schema or the client application to turn exporting of live data on
and off. The application's stored procedures insert datainto the streams; but it is the database configuration
that determines whether export actually occurs at runtime.

When a stored procedure uses an SQL INSERT statement to write data into a export stream, rather than
storing that datain the database, it is handed off to the connector when the stored procedure successfully
commits the transaction.* Export streams have severa important characteristics:

 Streamslet you limit the export to only the datathat is required. For example, in the preceding example,
Stream B may contain a subset of columns from Table A. Whenever a new record is written to Table
A, the corresponding columns can be written to Stream B for export to the remote database.

» Streams let you combine fields from several existing tables into a single exported row. This technique
is particularly useful if your VoltDB database and the target of the export have different schema. The
stream can act as a transformation of VoltDB data to a representation of the target schema.

» Streams let you control when data is exported. Again, in the previous example, Stream D might be an
exact replicaof Table C. However, therecordsin Table C are updated frequently. The client application
can choose to copy records from Table C to Stream D only when all of the updates are completed and
the datais finalized, significantly reducing the amount of data that must pass through the connector.

Of course, there are restrictions to export streams. Since they have no storage associated with them, they
are for INSERT only. Any attempt to SELECT, UPDATE, or DELETE data from streams will result in
an error.

15.2. Planning your Export Strategy
The important point when planning to export data, is deciding:
* What datato export
» When to export the data

» Whereto export datato

MThereisno guarantee on the latency of export between the connector and the export target. The export function istransactionally correct; no export
occursif the stored procedure rolls back and the export dataisin the appropriate transaction order. But the flow of export datafrom the connector to
the target is not synchronous with the completion of the transaction. There may be several seconds delay before the export data reaches the target.

135

Importing and Exporting Live Data

It is possible to export al of the datain aVoltDB database. Y ou would do this by creating export stream
replicas of al tables in the schema and writing to the corresponding stream whenever you insert into the
normal table. However, this means the same number of transactions and volume of data that is being
processed by VoltDB will be exported through the connector. There is a strong likelihood, given a high
transaction volume, that the target database will not be able to keep up with the load VoltDB is handling.
As a consequence you will usually want to be more selective about what data is exported when.

If you have an existing target database, the question of what datato export islikely decided for you (that is,
you need to export the data matching the target's schema). If you are defining both your VoltDB database
and your target at the same time, you will need to think about what information is needed "downstream”
and create the appropriate export streams within VoltDB.

The second consideration is when to export the data. For tables that are not updated frequently, inserting
the data to a complementary export stream whenever dataisinserted into the real table is the easiest and
most practical approach. For tables that are updated frequently (hundreds or thousands of times a second)
you should consider writing a copy of the datato an export stream at an appropriate milestone.

Using the flight reservation system as an example, one aspect of the workflow not addressed by
the application described in Chapter 6, Designing VoltDB Client Applications is the need to archive
information about the flights after takeoff. Changes to reservations (additions and cancellations) are
important in real time. However, oncetheflight takes off, all that needsto berecorded (for billing purposes,
say) iswhat reservations were active at the time.

In other words, the archiving database needs information about the customers, the flights, and the final
reservations. According to the workload in Table 4.1, “Example Application Workload”, the customer
and flight tables change infrequently. So data can be inserted into the export streams at the same time as
the "live" flight and reservation tables. (It is a good idea to give the export stream a meaningful name so
its purpose is clear. In this example we identify the streams with the export_ prefix or, in the case of the
reservation stream which is not an exact copy, the _final suffix.)

The reservation table, on the other hand, is updated frequently. So rather than export all changes to
a reservation to the reservation stream in real-time, a separate stored procedure is invoked when a
flight takes off. This procedure copies the final reservation data to the export stream and deletes the
associated flight and reservation records from the VoltDB database. Figure 15.2, “Flight Schema with
Export Streams” shows the modified database schemawith the added export streams, EXPORT_FLIGHT,
EXPORT_CUSTOMER, and RESERVATION_FINAL.

Figure 15.2. Flight Schema with Export Streams

flight reservation customer
Flight ID Customer ID
Flight ID
export reservation export
_flight _final _customer

This design adds a transaction to the VoltDB application, which is executed approximately once a second
(when aflight takes off). However, it reduces the number of reservation transactions being exported from

136

Importing and Exporting Live Data

153

1200 a second to less than 200 a second. These are the sorts of trade offs you need to consider when adding
export functionality to your application.

The third decision iswhere to export the datato. As described in Section 15.4, “ Configuring Export in the
Configuration File”, you can export the data through multiple different protocols: files, HTTP. JDBC, etc.
Y our choice of protocol will depend on the ultimate target destination for your exported data.

You can aso export to multiple destinations at once. When you declare a stream, you can assign it to a
specific export target. If you want different streams to be exported to different destinations, you declare
the streams to belong to different targets. Then in the configuration file you can assign each target to be
exported to a different destination.

Identifying Export Streams in the Schema

Once you decide what datato export, you are ready to declare your export streamsin the schema. Streams
are defined in the database schema much like tables, except you use the CREATE STREAM statement
instead of CREATE TABLE. So in the case of the flight application, we need to add the export streams
to our schema. The following example illustrates (in bold) the addition of a stream for reservations with
asubset of columns from the normal reservation table.

CREATE TABLE Reservation (
Reservel D | NTEGER UNI QUE NOT NULL,
Flight!I D | NTEGER NOT NULL,
Custoner| D | NTEGER NOT NULL,
Seat VARCHAR(5) DEFAULT NULL,
Confirmed TI NYI NT DEFAULT '0Q',
PRI MARY KEY(Reservel D)

)

CREATE STREAM Reservation_fi nal

EXPORT TO TARGET archive (
Reservel D | NTEGER NOT NULL,
Flight!| D | NTEGER NOT NULL,
Custoner| D | NTEGER NOT NULL,
Seat VARCHAR(5) DEFAULT NULL

)

When you declare your streamsin the schema, you need to assign them to the appropriate target, using the
EXPORT TO TARGET clause. In our example, the three streams are being exported to the same target,
so would name the same target in the declaration, as shown in the following abbreviated example:

CREATE STREAM export _cust oner
EXPORT TO TARGET archive (

)
CREATE STREAM export _fli ght
EXPORT TO TARGET archive (

)
CREATE STREAM reservation_final
EXPORT TO TARGET archive (

)

137

Importing and Exporting Live Data

154

If astream does not specify an export target, it is not exported. In the preceding example, export_customer,
export_flight, and reservation final streams are identified as the streams that will be sent to the export
target called archive. Note that, even if an export target is specified in the CREATE STREAM statement,
inserting data into these streams will have no effect until export is enabled for the archive target in the
configuration file.

If you want to export to different locations, you can assign the streams to different targets, then export
each stream separately. For example, if you want to export the reservations to alog file but the customer
and flight records to an archival database, you can assign the streams to two different targets:

CREATE STREAM export _cust oner
EXPORT TO TARGET archive (

);
CREATE STREAM export _fli ght
EXPORT TO TARGET archive (

)
CREATE STREAM reservation_final
EXPORT TO TARGET | og (

)

Note that no changes are required to the client application. The configuration of streams and export targets
isall done through the schema and configuration file.

You can also specify whether the streams are partitioned or not using the PARTITION ON COLUMN
clause in the CREATE STREAM statement. For example, if an export stream is a copy of a normal
data table, it can be partitioned on the same column. However, partitioning is not necessary for export
streams. Whether they are partitioned or "replicated", since no storage is associated with the stream, you
can INSERT into the stream in either a single-partitioned or multi-partitioned stored procedure. In either
case, the export connector ensures that at least one copy of the tuple iswritten to the export target.

Configuring Export in the Configuration File

To enable export at runtime, you include the <export > and <confi gurati on> tags in the
configuration file when you initialize the database root directory. Alternately, you can add or modify the
export configuration while the database is running using the voltadmin update command or interactively
with the web-based VoltDB Management Center. In the configuration file, the export tags specify the
target you are configuring and which export connector to use (with thet ype attribute). For example:

<export >
<configuration enabl ed="true" target="1og" type="file">

</ configuration>
</ export >

To export to multiple destinations, you include multiple <conf i gur at i on> tags, each specifying the
target it is configuring. Any streams identified as exporting to that target (in a CREATE STREAM...
EXPORT TO TARGET statement), then use that configuration for export. For example:

138

Importing and Exporting Live Data

<export>
<configuration enabl ed="true" type="file" target="10g">

</ configuration>
<configuration enabl ed="true" type="jdbc" target="archive">

</ configuration>
</ export >

Y ou must al so configure each export connector by specifying propertiesasoneor more<pr oper t y> tags
within the <conf i gur at i on> tag. For example, the following XML code enables export to comma-
separated (CSV) text files using the file prefix "MyExport".

<export>
<configuration enabl ed="true" target="1o0g" type="file">
<property nane="type">csv</property>
<property name="nonce">M/Export </ property>
</ configuration>
</ export >

The propertiesthat are allowed and/or required depend on the export connector you select. VoltDB comes
with six export connectors:

» Export tofile (type="file")

» Export to HTTP, including Hadoop (type="http")
» Export to IDBC (type="jdbc")

» Export to Kafka (type="kafka")

» Export to RabbitMQ (type="rabbitmq")

» Export to Elasticsearch (type="elasticsearch")

Asthe nameimplies, the file connector writesthe exported datato local files, either as comma-separated or
tab-delimited files. Similarly, the JDBC connector writes datato avariety of possible destination databases
through the JDBC protocol. The Kafka connector writes export data to an Apache Kafka distributed
message queue, where one or more other processes can read the data. In all three cases you configure the
specific features of the connector using the <pr oper t y> tag as described in the following sections.

In addition to the connectors shipped as part of the VoltDB software kit, an export connector for
Amazon Kinesis is available from the VoltDB public Github repository (https://github.com/VoltDB/
export-kinesis).

15.5. How Export Works

Two important aspects of export to keep in mind are:

» Exportisautomatic. When you enable an export target in the configuration file, the database serverstake
care of starting and stopping the connector on each server when the database starts and stops, including
if nodesfail and rejoin the cluster. Y ou can also start and stop export on arunning database by updating
the configuration file using the voltadmin update command.

» Export is asynchronous. The actual delivery of the data to the export target is asynchronous to the
transactions that initiate data transfer.

139

https://github.com/VoltDB/export-kinesis
https://github.com/VoltDB/export-kinesis

Importing and Exporting Live Data

The advantage of an asynchronous approach isthat any delaysin delivering the exported data to the target
system do not interfere with the VoltDB database performance. The disadvantage is that VoltDB must
handle queueing export data pending its actual transmission to the target, including ensuring durability in
case of system failures. Again, thistask is handled automatically by the VoltDB server process. But it is
useful to understand how the export queuing works and its consequences.

One consequence of this durability guarantee is that VoltDB will send at least one copy of every export
record to the target. However, it is possible when recovering command logs or rejoining nodes, that certain
export records are resent. It is up to the downstream target to handle these duplicate records. For example,
using unigue indexes or including a unique record ID in the export stream.

15.5.1. Export Overflow

For the export process to work, it is important that the connector keep up with the queue of exported
information. If too much data gets queued to the connector by the export function without being delivered
by the target system, the VoltDB server process consumes increasingly large amounts of memory.

If the export target does not keep up with the connector and the data queue fills up, VoltDB starts writing
overflow datain the export buffer to disk. This protects your database in several ways:

* If the destination is intermittently unreachable or cannot keep up with the data flow, writing to disk
helps VoltDB avoid consuming too much memory while waiting for the destination to catch up.

« If the database is stopped, the export data is retained across sessions. When the database restarts, the
connector will retrieve the overflow data and reinsert it in the export queue.

You can specify where VoltDB writes the overflow export data using the <exportoverflow> element in
the configuration file. For example:

<pat hs>
<exportoverflow path="/tnmp/export/"/>
</ pat hs>

If you do not specify apath for export overflow, VoltDB creates asubfolder in the database root directory.
See Section 3.7.2, “ Configuring Paths for Runtime Features’ for moreinformation about configuring paths
in the configuration file.

15.5.2. Persistence Across Database Sessions

It isimportant to note that VoltDB only uses the disk storage for overflow data. However, you can force
VoltDB to write all queued export data to disk using any of the following methods:

* Calling the @Quiesce system procedure
* Requesting a blocking snapshot (using voltadmin save --blocking)
 Performing an orderly shutdown (using voltadmin shutdown)

This means that if you perform an orderly shutdown with the voltadmin shutdown command, you can
recover the database — and any pending export queue data — by simply restarting the database cluster
in the same root directories.

Note that when you initialize or re-initialize a root directory, any subdirectories of the root are purged.2
So if your configuration did not specify a different location for the export overflow, and you re-initiaize
the root directories and then restore the database from a snapshot, the database is restored but the export

2nitializi ng a root directory deletes any files in the command log and overflow directories. The snapshots directory is archived to a named
subdirectory.

140

Importing and Exporting Live Data

overflow will belost. If both your original and new configuration use the same, explicit directory outside
the root directory for export overflow, you can start a new database and restore a snapshot without losing
the overflow data

15.6. The File Export Connector

Thefile connector receives the serialized data from the export streams and writes it out astext files (either
comma or tab separated) to disk. The file connector writes the data out one file per stream, "rolling" over

to new files periodically. The filenames of the exported data are constructed from:

A unique prefix (specified with the nonce property)

A unique value identifying the current version of the database schema

¢ The stream name

* A timestamp identifying when the file was started

While the file is being written, the file name also contains the prefix "active-". Once the file is complete
and a new file started, the "active-" prefix is removed. Therefore, any export files without the prefix are
complete and can be copied, moved, deleted, or post-processed as desired.

There are two properties that must be set when using the file connector:

* Thet ype property lets you choose between comma-separated files (csv) or tab-delimited files (tsv).

» Thenonce property specifies a unique prefix to identify all files that the connector writes out for this
database instance.

Table 15.1, “File Export Properties’ describes the supported properties for the file connector.

Table 15.1. File Export Properties

Property Allowable Values Description

type* csv, tsv Specifies whether to create comma-separated (CSV) or tab-
delimited (TSV) files,

nonce string A unique prefix for the output files.

outdir directory path The directory where the files are created. Relative paths are relative
to the database root directory on each server. If you do not specify
an output path, VoltDB writes the output files into the root directory
itself.

period Integer The frequency, in minutes, for "rolling" the output file. The default
frequency is 60 minutes.

binaryencoding hex, base64 Specifies whether VARBINARY datais encoded in hexadecimal or
BASE64 format. The default is hexadecimal.

dateformat format string The format of the date used when constructing the output file names.
Y ou specify the date format as a Java SimpleDateFormat string. The
default format is"yyyyMMddHHmMmss".

timezone string The time zone to use when formatting the timestamp. Specify the
time zone as a Java timezone identifier. The default is GMT.

delimiters string Specifies the delimiter characters for CSV output. The text string

specifies four characters in the following order: the separator, the
guote character, the escape character, and the end-of-line character.

141

Importing and Exporting Live Data

Property

Allowable Values Description

Non-printing characters must be encoded as Java literals. For
example, the new line character (ASCII code 13) should be entered
as"\n". Alternately, you can use Java Unicode literals, such as
"\u000d". Y ou must also encode any XML special characters,

such as the ampersand and left angle bracket asHTML entities for
inclusion in the XML configuration file. For example encoding "<"
as"&qgt;".

The following property definition matches the default delimiters.
That is, the comma, the double quotation character twice (as both
the quote and escape delimiters) and the new line character:

<property name="delimter"> ""\n</property>

batched

true, false Specifies whether to store the output filesin subfolders that are
"rolled" according to the frequency specified by the period property.
The subfolders are named according to the nonce and the timestamp,
with "active-" prefixed to the subfolder currently being written.

skipinternals true, false Specifies whether to include six columns of VoltDB metadata

(such as transaction ID and timestamp) in the output. If you specify
skipinternals as "true", the output files contain only the exported
stream data.

with-schema true, false Specifies whether to write a JSON representation of each stream's

schema as part of the export. The JSON schema files can be used to
ensure the appropriate datatype and precision is maintained if and
when the output files are imported into another system.

"Required

Whatever properties you choose, the order and representation of the content within the output filesis the
same. The export connector writes a separate line of data for every INSERT it receives, including the
following information:;

 Six columns of metadata generated by the export connector. Thisinformation includes atransaction ID,
atimestamp, a sequence number, the site and partition 1Ds, as well as an integer indicating the query

type.

» The remaining columns are the columns of the database stream, in the same order as they are listed in
the database definition (DDL) file.

15.7. The HTTP Export Connector

The HTTP connector receives the serialized data from the export streams and writes it out via HTTP
requests. The connector is designed to be flexible enough to accommodate most potential targets. For
example, the connector can be configured to send out individual records using a GET request or batch
multiple records using POST and PUT requests. The connector also contains optimizations to support
export to Hadoop via WebHDFS.

15.7.1. Understanding HTTP Properties

The HTTP connector is a general purpose export utility that can export to any number of destinations
from simple messaging services to more complex REST APIs. The properties work together to create a
consistent export process. However, it isimportant to understand how the propertiesinteract to configure
your export correctly. The four key properties you need to consider are:

142

Importing and Exporting Live Data

 batch.mode — whether datais exported in batches or one record at atime
* method — the HTTP reguest method used to transmit the data

» type— theformat of the output

» endpoint — the target HTTP URL to which export iswritten

The properties are described in detail in Table 15.2, “HTTP Export Properties’. This section explains the
relationship between the properties.

There are essentially two types of HTTP export: batch mode and one record at a time. Batch mode is
appropriate for exporting large volumes of data to targets such as Hadoop. Exporting one record at atime
islessefficient for large volumes but can be very useful for writing intermittent messagesto other services.

In batch mode, the datais exported using aPOST or PUT method, where multiple records are combined in
either comma-separated value (CSV) or Avro format in the body of the request. When writing one record
at atime, you can choose whether to submit the HTTP request as a POST, PUT or GET (that is, as a
querystring attached to the URL). When exporting in batch mode, the method must be either POST or PUT
and the type must be either csv or avr 0. When exporting one record at a time, you can use the GET,
PCOST, or PUT method, but the output type must bef or m

Finally, the endpoint property specifies the target URL where data is being sent, using either the http: or
https: protocol. Again, the endpoint must be compatible with the possible settings for the other properties.
In particular, if the endpoint isa WebHDFS URL, batch mode must enabled.

The URL can aso contain placeholders that are filled in at runtime with metadata associated with the
export data. Each placeholder consists of a percent sign (%) and asingle ASCII character. The following
are the valid placeholders for the HTTP endpoint property:

Placeholder Description

%ot The name of the VoltDB export stream. The stream name is inserted into the endpoint
inall uppercase.

%p TheVoltDB partition ID for the partition where the INSERT query to the export stream
is executing. The partition ID is an integer value assigned by VoltDB internally and
can be used to randomly partition data. For example, when exporting to webHDFS, the
partition ID can be used to direct data to different HDFS files or directories.

%g The export generation. The generation is an identifier assigned by VoltDB. The
generation increments each time the database starts or the database schemais modified
inany way.

%d The date and hour of the current export period. Applicable to WebHDFS export only.

This placeholder identifies the start of each period and the replacement value remains
the same until the period ends, at which point the date and hour is reset for the new
period.

You can use this placeholder to "roll over" WebHDFS export destination files on a
regular basis, as defined by the per i od property. The peri od property defaults to
one hour.

When exporting in batch mode, the endpoint must contain at least one instance each of the %t, %p, and
%pg placeholders. However, beyond that requirement, it can contain as many placeholders as desired and
in any order. When not in batch mode, use of the placeholders are optional.

Table 15.2, “HTTP Export Properties’ describes the supported properties for the HT TP connector.

143

Importing and Exporting Live Data

Table15.2. HTTP Export Properties

Property Allowable Values Description

endpoint’ string Specifies the target URL. The endpoint can contain placeholders for
inserting the stream name (%t), the partition 1D (%p), the date and
hour (%d), and the export generation (%g).

avro.compress true, false Specifies whether Avro output is compressed or not. The default is

false and this property isignored if the typeis not Avro.

avro.schema.location |string

Specifies the location where the Avro schemawill be written.

The schema location can be either an absolute path name on the
local database server or awebHDFS URL and must include at

least one instance of the placeholder for the stream name (%t).
Optionally it can contain other instances of both %t and %g. The
default location for the Avro schemaisthe file path export/
avro/ % avro_schena. j son on the database server under the
voltdbroot directory. This property isignored if the typeis not Avro.

batch.mode true, false

Specifies whether to send multiple rows as a single request or send
each export row separately. The default is true. Batch mode must be
enabled for WebHDFS export.

httpfs.enable true, false

Specifies that the target of WebHDFS export is an Apache HttpFS
(Hadoop HDFS over HTTP) server. This property must be set to true
when exporting webHDFS to HttpFS targets.

kerberos.enable true, false

Specifies whether Kerberos authentication is used when connecting
to aWebHDFS endpoint. This property is only valid when
connecting to WebHDFS servers and is false by default.

method

get, post, put

Specifies the HTTP method for transmitting the export data. The
default method is POST. For WebHDFS export, this property is
ignored.

period

Integer

Specifies the frequency, in hours, for "rolling" the WebHDFS
output date and time. The default frequency is every hour (1). For
WebHDFS export only.

timezone

string

The time zone to use when formatting the timestamp. Specify the
time zone as a Java timezone identifier. The default isthe local time
Zone.

type

csv, avro, form

Specifies the output format. If batch.mode is true, the default type
isCSV. If batch.mode is false, the default and only allowable value
for typeisform. Avro format is supported for WebHDFS export
only (see Section 15.7.2, “Exporting to Hadoop via WebHDFS’ for
details.)

"Required

15.7.2. Exporting to Hadoop via WebHDFS

As mentioned earlier, the HTTP connector contains specia optimizations to support exporting data to
Hadoop via the WebHDFS protocol. If the endpoint property contains a WebHDFS URL (identified by
the URL path component starting with the string "/webhdfsiv1/"), special rules apply.

First, for WebHDFS URLSs, the batch.mode property must be enabled. Also, the endpoint must have at
least one instance each of the stream name (%t), the partition ID (%p), and the export generation (%g)
placeholders and those placeholders must be part of the URL path, not the domain or querystring.

144

Importing and Exporting Live Data

Next, the method property isignored. For WebHDFS, the HTTP connector uses a combination of POST,
PUT, and GET requests to perform the necessary operations using the WebHDFS REST API.

For example, The following configuration file excerpt exports stream datato WebHDFS using the HTTP
connector and writing each stream to a separate directory, with separate files based on the partition 1D,
generation, and period timestamp, rolling over every 2 hours:

<export >
<configuration target="hadoop" enabl ed="true" type="http">
<property nane="endpoi nt">
htt p: // nyhadoopsvr/ webhdf s/ v1l/ % / dat a%- %y. %d. csv
</ property>
<property name="bat ch. node" >t rue</ property>
<property name="period">2</property>
</ configuration>
</ export >

Note that the HTTP connector will create any directories or files in the WebHDFS endpoint path that do
not currently exist and then append the data to those files, using the POST or PUT method as appropriate
for the WebHDFS REST API.

Y ou also have a choice between two formats for the export data when using WebHDFS: comma-separated
values (CSV) and Apache Avro™ format. By default, data is written as CSV data with each record on
a separate line and batches of records attached as the contents of the HTTP request. However, you can
choose to set the output format to Avro by setting the t ype property, asin the following example:

<export >
<configuration target="hadoop" enabl ed="true" type="http">
<property nane="endpoi nt">
htt p: // nyhadoopsvr/ webhdf s/ v1l/ % / dat a%- %g. %d. avro
</ property>
<property nane="type">avro</property>
<property nane="avro.conpress">true</property>
<property nane="avro.schena. |l ocation">
htt p: // nyhadoopsvr/ webhdfs/v1l/ %/ schema. json
</ property>
</ configuration>
</ export >

Avro is adata serialization system that includes a binary format that is used natively by Hadoop utilities
such as Pig and Hive. Becauseit is abinary format, Avro data takes up less network bandwidth than text-
based formats such as CSV. In addition, you can choose to compress the data even further by setting the
avr 0. conpr ess property to true, asin the previous example.

When you select Avro as the output format, VoltDB writes out an accompanying schema definition as a
JSON document. For compatibility purposes, the stream name and columns names are converted, removing
underscores and changing the resulting words to lowercase with initial capital letters (sometimes called
"camelcase"). Thestream nameisgivenaninitial capital |etter, while columns names start with alowercase
letter. For example, the stream EMPLOY EE_DATA and its column named EMPLOYEE iD would be
converted to EmployeeData and employeeld in the Avro schema.

By default, the Avro schemaiis written to alocal file on the VoltDB database server. However, you can
specify an aternate location, including a webHDFS URL. So, for example, you can store the schemain
the same HDFS repository as the data by setting theavr o. schema. | ocat i on property, as shownin
the preceding example.

145

Importing and Exporting Live Data

See the Apache Avro web site for more details on the Avro format.

15.7.3. Exporting to Hadoop Using Kerberos Security

15.8.

If the WebHDFS service to which you are exporting data is configured to use Kerberos security, the
VoltDB servers must be able to authenticate using Kerberos as well. To do this, you must perform the
following two extra steps:

» Configure Kerberos security for the VoltDB cluster itself
» Enable Kerberos authentication in the export configuration

Thefirst step isto configure the VoltDB serversto use Kerberos as described in Section 12.8, “ Integrating
Kerberos Security with VoltDB”. Because use of Kerberos authentication for VoltDB security changes
how the clients connect to the database cluster, It is best to set up, enable, and test Kerberos authentication
first to ensure your client applicationswork properly in this environment before trying to enable Kerberos
export aswell.

Once you have Kerberos authentication working for the VoltDB cluster, you can enable Kerberos
authentication in the configuration of the WebHDFS export target as well. Enabling Kerberos
authentication in the HT TP connector only requires one additional property, ker ber os. enabl e, to be
set. To use Kerberos authentication, set the property to "true". For example:

<export >
<configuration target="hadoop" enabl ed="true" type="http">
<property nane="endpoi nt">
htt p: // nyhadoopsvr/ webhdf s/ v1l/ % / dat a%- %g. %d. csv
</ property>
<property nane="type">csv</property>
<property nane="ker ber 0s. enabl e" >t rue</ property>
</ configuration>
</ export >

Note that Kerberos authentication is only supported for WebHDFS endpoints.

The JDBC Export Connector

The JDBC connector receives the serialized data from the export streams and writes it, in batches, to
another database through the standard JDBC (Java Database Connectivity) protocol.

By default, when the JDBC connector opens the connection to the remote database, it first attempts to
create tables in the remote database to match the VoltDB export stream by executing CREATE TABLE
statements through JDBC. Thisisimportant to note because, it ensures there are suitable tables to receive
the exported data. The tables are created using either the stream names from the VVoltDB schemaor (if you
do not enable the ignoregenerations property) the stream name prefixed by the database generation ID.

If the target database has existing tables that match the VoltDB export streams in both name and structure
(that is, the number, order, and datatype of the columns), be sure to enable the ignoregenerations property
in the export configuration to ensure that VoltDB uses those tables as the export target.

It isalso important to note that the JDBC connector exports datathrough JDBC in batches. That is, multiple
INSERT instructions are passed to the target database at atime, in approximately two megabyte batches.
There are two conseguences of the batching of export data:

146

http://avro.apache.org/

Importing and Exporting Live Data

Table 15.3. JDBC Export Properties

e For many databases, such as Netezza, where there is a cost for individual invocations, batching
reduces the performance impact on the receiving database and avoids unnecessary latency in the export

processing.

» Ontheother hand, no matter what the target database, if aquery failsfor any reason the entire batch fails.

To avoid errors causing batch inserts to fail, it is strongly recommended that the target database not use
unique indexes on the receiving tables that might cause constraint violations.

If any errorsdo occur when the JDBC connector attemptsto submit datato the remote database, the VoltDB
disconnects and then retries the connection. This process is repeated until the connection succeeds. If
the connection does not succeed, VoltDB eventually reduces the retry rate to approximately every eight

seconds.

Table 15.3, “JDBC Export Properties’ describes the supported properties for the JIDBC connector.

Property

Allowable Values

Description

jdbeurl”

connection string

The JDBC connection string, also known as the URL.

jdbcuser”

string

The username for accessing the target database.

jdbcpassword string

The password for accessing the target database.

jdbcdriver

string

The class name of the IDBC driver. The JDBC driver class must
be accessible to the VoltDB process for the JIDBC export process
towork. Place the driver JAR filesinthel i b/ ext ensi on/
directory where VolItDB isinstalled to ensure they are accessible at
runtime.

Y ou do not need to specify the driver as a property value for several
popular databases, including MySQL, Netezza, Oracle, PostgreSQL,
and Vertica. However, you still must provide the driver JAR file.

schema

string

The schema name for the target database. The use of the schema
name is database specific. In some cases you must specify the
database name as the schema. In other cases, the schemanameis
not needed and the connection string contains all the information
necessary. See the documentation for the JDBC driver you are using
for more information.

minpoolsize integer

The minimum number of connectionsin the pool of connections to
the target database. The default valueis 10.

maxpoolsize integer

The maximum number of connectionsin the pool. The default value
is 100.

maxidletime integer

The number of milliseconds a connection can be idle beforeit is
removed from the pool. The default value is 60000 (one minute).

maxstatementcached |integer

The maximum number of statements cached by the connection pool.
The default value is 50.

createtable

true, false

Specifies whether VVoltDB should create the corresponding table

in the remote database. By default , VoltDB creates the table(s) to
receive the exported data. (That is, the default istrue.) If you set this
property to false, you must create table(s) with matching names to
the VoltDB export streams before starting the export connector.

147

Importing and Exporting Live Data

Property

Allowable Values

Description

lowercase

true, false Specifies whether VoltDB uses lowercase table and column names
or not. By default, VoltDB issues SQL statements using uppercase
names. However, some databases (such as PostgreSQL) are case
sensitive. When this property is set to true, VoltDB use al lowercase
names rather than uppercase. The default isfalse.

ignoregenerations true, false Specifies whether a unique ID for the generation of the database

isincluded as part of the output table name(s). The generation ID
changes each time a database restarts or the database schemais
updated. The default isfalse.

skipinternals true, false Specifies whether to include six columns of VoltDB metadata

(such as transaction ID and timestamp) in the output. If you specify
skipinternals as true, the output contains only the exported stream
data. The default isfalse.

15.9. The Kafka Export Connector

TheKafkaconnector receives serialized datafrom the export streamsand writesit to amessage queue using
the Apache Kafka version 0.8.2 protocols. Apache Kafka is a distributed messaging service that lets you
set up message queues which are written to and read from by "producers’ and "consumers', respectively.
In the Apache Kafka model, VoltDB export acts as a "producer” capable of writing to any Kafka service
using version 0.8.2 or later.

Before using the Kafka connector, we strongly recommend reading the Kafka documentation and
becoming familiar with the software, since you will need to set up a Kafka service and appropriate
"consumer" clients to make use of VoltDB's Kafka export functionality. The instructions in this section
assume aworking knowledge of Kafka and the Kafka operational model.

When the K afka connector receives datafrom the VoltDB export streams, it establishes a connection to the
Kafka messaging service as a Kafka producer. It then writes records to Kafkatopics based on the VoltDB
stream name and certain export connector properties.

The majority of the Kafka export properties are identical in both in name and content to the Kafka
producer properties listed in the Kafka documentation. All but one of these properties are optional for the
Kafka connector and will use the standard Kafka default value. For example, if you do not specify the
gueue. buf f eri ng. max. ns property it defaults to 5000 milliseconds.

The only required property is boot strap. server s, which lists the Kafka servers that the VoltDB
export connector should connect to. Y ou must include this property so VoltDB knows where to send the
export data. Specify each server by its IP address (or hostname) and port; for example, myserver:7777. If
there are multiple serversin the list, separate them with commas.

In addition to the standard Kafka producer properties, there are several custom properties specific to
VoltDB. The properties bi nar yencodi ng, ski pi nternal s, andt i mezone affect the format of
thedata. Thet opi c. prefi x andt opi c. key properties affect how the datais written to Kafka.

Thet opi c. prefi x property specifies the text that precedes the stream name when constructing the
Kafka topic. If you do not specify a prefix, it defaults to "voltdbexport". Alternately, you can map
individual streamsto topics using thet opi c. key property. Inthet opi c. key property you associate
a VoltDB export stream name with the corresponding Kafka topic as a named pair separated by a period
(). Multiple named pairs are separated by commas (,). For example:

148

http://kafka.apache.org/
http://kafka.apache.org/documentation.html

Importing and Exporting Live Data

Enpl oyee. EnpTopi ¢, Conpany. CoTopi ¢, Ent er pri se. Ent Topi ¢

Any stream-specific mappingsin thet opi c. key property override the automated topic name specified
by topic. prefix.

Note that unless you configure the Kafka brokers with the aut 0. cr eat e. t opi ¢s. enabl e property
set to true, you must create the topics for every export stream manually before starting the export process.
Enabling auto-creation of topics when setting up the Kafka brokers is recommended.

When configuring the Kafka export connector, it is important to understand the relationship between
synchronous versus asynchronous processing and its effect on database latency. If the export data is sent
asynchronously, the impact of export on the database is reduced, since the export connector does not wait
for the Kafka infrastructure to respond. However, with asynchronous processing, VoltDB is not able to
resend the data if the message fails after it is sent.

If export to Kafkaisdone synchronously, the export connector waitsfor acknowledgement of each message
sent to Kafka before processing the next packet. This allows the connector to resend any packets that fail.
The drawback to synchronous processing is that on a heavily loaded database, the latency it introduces
means export may not be able to keep up with the influx of export data and and have to write to overflow.

Y ou specify the level of synchronicity and durability of the connection using the Kafka acks property.
Set acks to"0" for asynchronous processing, "1" for synchronous delivery to the Kafkabroker, or "all" to
ensure durability on the Kafka broker. Use of "al" is not recommended for VoltDB export. See the Kafka
documentation for more information.

VoltDB guarantees that at least one copy of all export data is sent by the export connector. But when
operating in asynchronous mode, the Kafka connector cannot guarantee that the packet is actually received
and accepted by the Kafka broker. By operating in synchronous mode, VVoltDB can catch errors returned
by the Kafka broker and resend any failed packets. However, you pay the penalty of additional latency
and possible export overflow.

Finally, the actual export datais sent to Kafka as a comma-separated values (CSV) formatted string. The
message includes six columns of metadata (such as the transaction ID and timestamp) followed by the
column values of the export stream.

Table 15.4, “Kafka Export Properties’ lists the supported properties for the Kafka connector, including
the standard Kafka producer properties and the VoltDB unique properties.

Table 15.4. Kafka Export Properties

Property

Allowable Description
Values

bootstrap.servers* string A comma-separated list of Kafka brokers

(specified as | P-address:port-number). Y ou can use
nmet adat a. br oker. I i st asasynonym for
boot st rap. servers.

acks

0,1, al Specifies whether export is synchronous (1 or all) or
asynchronous (0) and to what extent it ensures delivery.
See the Kafka documentation of the producer properties
for details.

acks.retry.timeout integer Specifies how long, in milliseconds, the connector will

wait for acknowledgment from Kafkafor each packet.
The retry timeout only appliesif acknowledgements are
enabled. That is, if theacks property is set greater than
zero. The default timeout is 5,000 milliseconds. When

149

http://kafka.apache.org/documentation.html#producerconfigs
http://kafka.apache.org/documentation.html#producerconfigs
http://kafka.apache.org/documentation.html#producerconfigs

Importing and Exporting Live Data

Property Allowable Description
Values
the timeout is reached, the connector will resend the
packet of messages.
partition.key {stream}. Specifies which stream column value to use as the Kafka
{column}[,...] partitioning key for each stream. Kafka uses the partition

key to distribute messages across multiple servers.

By default, the value of the stream'’s partitioning column
isused as the Kafka partition key. Using this property
you can specify alist of stream column names, where the
stream name and column name are separated by a period
and the list of stream referencesis separated by commas.
If the stream is not partitioned and you do not specify a
key, the server partition ID is used as a default.

binaryencoding hex, base64 Specifies whether VARBINARY datais encoded
in hexadecimal or BASE64 format. The default is
hexadecimal.

skipinternals true, false Specifies whether to include six columns of VoltDB

metadata (such as transaction 1D and timestamp) in the
output. If you specify skipinternals as true, the output
contains only the exported stream data. The default is

false.

timezone string The time zone to use when formatting the timestamp.
Specify the time zone as a Javatimezone identifier. The
defaultisGMT.

topic.key string A set of named pairs each identifying aVoltDB stream

name and the corresponding Kafka topic name to which
the stream is written. Separate the names with a period
(.) and the name pairs with a comma.(,).

The specific stream/topic mappings declared by
topic.key override the automated topic names specified
by topic.prefix.

topic.prefix string The prefix to use when constructing the topic name.
Each row is sent to atopic identified by { prefix}
{stream-name} . The default prefix is "voltdbexport".

Kafka producer properties various Y ou can specify standard Kafka producer properties
as export connector properties and their values will be
passed to the Kafka interface. However, you cannot
modify the property bl ock. on. buffer.full.

"Required

15.10. The RabbitMQ Export Connector

The RabbitMQ connector fetches serialized data from the export streams and writes it to a RabbitMQ
message exchange. RabbitMQ is a popular message queueing service that supports multiple platforms,
multiple languages, and multiple protocols, including AMQP.

Before using the RabbitM Q connector, we strongly recommend reading the RabbitM Q documentation and
becoming familiar with the software, since you will need to set up a RabbitMQ exchange, queues, and

150

http://www.rabbitmq.com/
http://www.rabbitmq.com/documentation.html

Importing and Exporting Live Data

routing key filtersto make use of VoltDB's RabhitM Q export functionality. Theinstructionsin this section
assume a working knowledge of RabbitMQ and the RabbitM Q operational model.

Y oumust alsoinstall the RabbitM Q Javaclient library before you can usethe VoltDB connector. To install
the RabbitMQ Java client library:

1. Download the client library version 3.34 or later from the RabbitMQ website (http:/
www.rabbitmg.com/java-client.html).

2. Copy the client JAR fileinto thel i b/ ext ensi on/ folder where VoltDB isinstalled for each node
in the cluster.

When the RabbitM Q connector receives data from the VoltDB export streams, it establishes a connection
to the RabbitM Q exchange as a producer. It then writes records to the service using the optional exchange
name and routing key suffix. RabbitM Q usesthe routing key to identify which queuethe datais sent to. The
exchange examines the routing key and based on the key value (and any filters defined for the exchange)
sends each message to the appropriate queue.

Every message sent by VoltDB to RabbitMQ contains a routing key that includes the name of the export
stream. Y ou can further refine the routing by appending a suffix to the stream name, based on the contents
of individual stream columns. By default, the value of the export stream'’s partitioning column is used as
asuffix for the routing key. Alternately, you can specify a different column for each stream by declaring
the routing.key.suffix property as alist of stream and column name pairs, separating the stream from the
column name with a period and separating the pairs with commas. For example:

<export >
<configuration target="queue" enabl ed="true" type="rabbitng">
<property name="broker. host">rabbi t ng. nyconpany. conx/ property>
<property nane="routing. key. suffi x">
vot er _export.state, contestants_export.contestant_nunber
</ property>
</ configuration>
</ export >

The important point to remember is that it is your responsibility to configure a RabbitMQ exchange
that matches the name associated with the exchange.name property (or take the default exchange) and
create queues and/or filters to match the routing keys generated by VoltDB. At a minimum, the exchange
must be able to handle routing keys starting with the export stream names. This can be achieved by
using a filter for each export stream. For example, using the flight example in Section 15.2, “Planning
your Export Strategy”, you can create filters for EXPORT_FLIGHT.*, EXPORT_CUSTOMER.*, and
RESERVATION_FINAL.*.

Table 15.5, “RabhitMQ Export Properties’ lists the supported properties for the RabbitMQ connector.

Table 15.5. RabbitM Q Export Properties

Property Allowable Values Description

broker.host” string The host name of a RabbitMQ exchange server.

broker.port integer The port number of the RabbitMQ server. The default port number
is5672.

amgap.uri string An alternate method for specifying the location of the RabbitMQ
exchange server. Use of amgp.uri allows you to specify additional
RabbitMQ options as part of the connection URI. Either
br oker. host orangp. uri must be specified.

virtual .host string Specifies the namespace for the RabbitM Q exchange and queues.

151

http://www.rabbitmq.com/java-client.html
http://www.rabbitmq.com/java-client.html

Importing and Exporting Live Data

Property Allowable Values Description

username string The username for authenticating to the RabbitMQ host.

password string The password for authenticating to the RabbitMQ host.
exchange.name string The name of the RabbitMQ exchange to use. If you do not specify a

value, the default exchange for the RabbitM Q server is used.

routing.key.suffix

{ stream} { column}

[..]

Specifies which stream columns to use as a suffix for the RabbitMQ
routing key. The routing key always starts with the stream name, in
uppercase. A suffix is then appended to the stream name, separated
by a period.

By default, the value of the stream's partitioning column is used
as the suffix. Using this property you can specify alist of stream
column names, where the stream name and column name are
separated by a period and the list of stream referencesis separated
by commas. This syntax allows you to specify a different routing
key suffix for each stream.

gueue.durable

true, false

Whether the RabbitMQ queueis durable. That is, datain the queue
will be retained and restarted if the RabbitM Q server restarts. If you
specify the queue as durable, the messages themselves will also be
marked as durable to enable their persistence across server failure.
The default istrue.

binaryencoding

hex, base64

Specifies whether VARBINARY datais encoded in hexadecimal or
BASE64 format. The default is hexadecimal.

skipinternals

true, false

Specifies whether to include six columns of VoltDB metadata
(such as transaction ID and timestamp) in the output. If you specify
skipinternals as true, the output contains only the exported stream
data. The default isfalse.

timezone

string

The time zone to use when formatting the timestamp. Specify the
time zone as a Javatimezone identifier. The default is GMT.

"Required

15.11. The Elasticsearch Export Connector

The Elasticsearch connector receives serialized data from the export streams and inserts it into an
Elasticsearch server or cluster. Elasticsearch is an open-source full-text search engine built on top of
Apache Lucene™. By exporting selected streams from your VoltDB database to Elasticsearch you can
perform extensive full-text searches on the data not possible with VoltDB aone.

Before using the Elasticsearch connector, we recommend reading the Elasticsearch documentation and
becoming familiar with the software. The instructions in this section assume a working knowledge of
Elasticsearch, its configuration and its capabilities.

Theonly required property when configuring Elasticsearch isthe endpoint, which identifiesthe location of
the Elasticsearch server and what index to use when inserting recordsinto the target system. The structure
of the Elasticsearch endpoint is the following:

<protocol >://<server>: <port>//<i ndex- name>// <t ype- nanme>

For example, if the target Elasticsearch service is on the server esear ch. | an using the default port
(9200) and the exported records are being inserted into the enpl oyees index as documents of type
per son, the endpoint declaration would look like this:

152

https://www.elastic.co/guide/index.html

Importing and Exporting Live Data

<property nane="endpoi nt">
http://esearch. | an: 9200/ enpl oyees/ per son
</ property>

You can use placeholders in the endpoint that are replaced at runtime with information from the export
data, such asthe stream name (%t), the partition 1D (%p), the export generation (%g), and the date and hour
(%d). For example, to use the stream name as the index name, the endpoint might look like the following:

<property nane="endpoi nt">
http://esearch. | an: 9200/ % / per son
</ property>

When you export to Elasticsearch, the export connector creates the necessary index names and types
in Elasticsearch (if they do not already exist) and inserts each record as a separate document with the
appropriate metadata. Table 15.6, “Elasticsearch Export Properties’ lists the supported properties for the
Elasticsearch connector.

Table 15.6. Elasticsear ch Export Properties

Allowable Description
Values
string Specifiesthe root URL of the RESTful interface for the

Elasticsearch cluster to which you want to export the
data. The endpoint should include the protocol, host
name or |P address, port, and path. The path is assumed
to include an index name and a type identifier.

The export connector will use the Elasticsearch RESTful
API to communicate with the server and insert records
into the specified locations. Y ou can use placeholders
to replace portions of the endpoint with data from the
exported records at runtime, including the stream name
(%t), the partition ID (%p), the date and hour (%d), and
the export generation (%g).

batch.mode true, false Specifies whether to send multiple rows asasingle
reguest or send each export row separately. The default
istrue.
string The time zone to use when formatting timestamps.

Specify the time zone as a Javatimezone identifier. The
default is the local time zone.

15.12. Understanding Import

Just as VoltDB can export data from selected streams to various targets, it supports importing data to
selected tables from external sources. Import worksin two ways:

» One-timeimport of datausing one of several dataloading utilities VVoltDB provides. These dataloaders
support multiple standard input protocols and can be run from any server, even remotely from the
database itsalf.

 Streaming import as part of the database server process. For data that is imported on an ongoing basis,
use of the built-in import functionality ensures that import starts and stops with the database.

153

Importing and Exporting Live Data

The following sections discuss these two approaches to dataimport.

15.12.1. One-Time Import Using Data Loading Utilities

Often, when migrating data from one database to another or when pre-loading a set of datainto VoltDB
asastarting point, you just want to perform the import once and then use the data natively within VoltDB.
For these one-time uses, VoltDB provides separate dataloader utilitiesthat you can run once and then stop.

Each data loader supports a different source format. Y ou can load data from text files— such as comma-
separated value (CSV) files— using the csvloader utility. Y ou canload datafrom another JDBC-compliant
database using the jdbcloader utility. Or you can load data from a streaming message service with the
Kafkaloader utility, kafkaloader.

All of the data loaders operate in much the same way. For each utility you specify the source for the
import and either a table that the data will be loaded into or a stored procedure that will be used to load
the data. So, for example, to load records from a CSV file named staff.csv into the table EMPLOY EES,
the command might be the following:

$ csvl oader enpl oyees --file=staff.csv
If instead you are copying the data from a JDBC-compliant database, the command might look like this:

$ j dbcl oader enpl oyees \
--jdbcurl =j dbc: postgresql : //renotesvr/ corphr \
--j dbct abl e=enpl oyees \
--jdbcdriver=org. postgresql.Driver

Each utility has arguments unique to the data source (such as - - j dbcur |) that alow you to properly
configure and connect to the source. See the description of each utility in Appendix D, VoltDB CLI
Commands for details.

15.12.2. Streaming Import Using Built-in Import Features

If importing data is an ongoing business process, rather than a one-time event, then it is desirable to make
it an integral part of the database system. This can be done by building a custom application to push data
into VoltDB using one of its standard APIs, such as the JDBC interface. Or you can take advantage of
VoltDB's built-in import infrastructure.

The built-in importers work in much the same way as the data loading utilities, where incoming data is
written into one or more database tables using an existing stored procedure. The differenceisthat the built-
in importers start automatically whenever the database starts and stop when the database stops, making
import an integral part of the database process.

Y ou configure the built-in importersin the configure file the same way you configure export connections.
Within the <import> element, you declare each import stream using separate <configuration> elements.
Within the <configuration> tag you use attributes to specify the type and format of data being imported
and whether the import configuration is enabled or not. Then enclosed within the <configuration> tags
you use <property> elements to provide information required by the specific importer and/or formatter.
For example:

154

Importing and Exporting Live Data

<i nport >
<configuration type="kafka" format="csv" enabl ed="true">
<property name="brokers">kaf kasvr: 9092</ pr operty>
<property name="t opi cs">enpl oyees</ property>
<property name="procedure">EMPLOYEE. i nsert </ property>
</ configuration>
</inport >

When the database starts, the import infrastructure starts any enabled configurations. If you are importing
multiple streamsto separate tables through separate procedures, you must include multiple configurations,
even if they come from the same source. For example, the following configuration imports data from two
Kafka topics from the same Kafka serversinto separate VoltDB tables.

<i nport>
<configuration type="kafka" enabl ed="true">
<property name="brokers">kaf kasvr: 9092</ pr operty>
<property name="t opi cs">enpl oyees</ property>
<property name="procedure">EMPLOYEE. i nsert </ property>
</ configuration>
<configuration type="kafka" enabl ed="true">
<property name="brokers">kaf kasvr: 9092</ pr operty>
<property name="t opi cs" >manager s</ property>
<property name="procedure">MANAGER. i nsert </ property>
</ configuration>
</inport >

VoltDB currently provides support for two types of import:
 Import from Apache Kafka (type="kafka")
* Import from Amazon Kinesis (type="kinesis")

VoltDB also provides support for two import formats: comma-separated values (csv) and tab-separated
values (tsv). Comma-separated values are the default format. So if you are using CSV-formatted input,
you can leave out the format attribute, as in the preceding example.

The following sections describe each of the importers and the CSV/TSV formatter in more detail.

15.13. The Kafka Importer

The Kafka importer connects to the specified Kafka messaging service and imports one or more Kafka
topics and writes the records into the VoltDB database. The data is decoded according to the specified
format — comma-separated values (CSV) by default — and is inserted into the VoltDB database using
the specified stored procedure.

The Kafka importer supports both Kafka versions 0.8 and 0.10 or later. You can specify the version
of Kafka to use with the ver si on attribute of the <conf i gur at i on> tag. The default version is
"8" (Kafka 0.8). To use Kafka 0.10 or later, specify ver si on="10". For example:

<configuration type="kafka" version="10" enabl ed="true">
For either version, you must specify at least the following properties for each configuration:

 brokers— Identifies one or more Kafkabrokers. That is, servers hosting the Kafka service and desired
topics. Specify asingle server or acommarseparated list of brokers.

155

Importing and Exporting Live Data

 topics — ldentifies the Kafka topics that will be imported. The property value can be a single topic
name or a commarseparated list of topics.

» procedure — ldentifies the stored procedure that is invoked to insert the records into the VoltDB
database.

When import starts, the importer first checks to make sure the specified stored procedure exists in the
database schema. If not (for example, when you first create a database and before a schemais loaded), the
importer issues periodic warnings to the console.

Once the specified stored procedure is declared, the importer looks for the specified Kafka brokers and
topics. If the specified brokers cannot be found or the specified topics do not exist on the brokers, the
importer reports an error and stops. Y ou will need to restart import once this error condition is corrected.
Y ou can restart import using any of the following methods:

 Stop and restart the database
* Pause and resume the database using the voltadmin pause and voltadmin resume commands

 Updatethe configuration using the voltadmin update command or the web-based V oltDB Management
Center

If the brokers are found and the topics exist, the importer starts fetching data from the Kafka topics and
submitting it to the stored procedureto insert into the database. In the simplest case, you can use the default
insert procedure for atable to insert recordsinto a single table. For more complex data you can write your
own import stored procedure to interpret the data and insert it into the appropriate table(s).

Table 15.7, “Kafka Import Properties’ lists the allowable properties for the Kafkaimporter. Y ou can also
specify properties associated with the formatter, as described in Table 15.9, “CSV and TSV Formatter
Properties”.

Table 15.7. Kafka Import Properties

Allowable Description

Values

string A comma-separated list of Kafka brokers.

string The stored procedure to invoke to insert the incoming

datainto the database.

string A comma-separated list of Kafkatopics.

commit.policy integer Because the importer performs two distinct tasks

— retrieving records from Kafka and then inserting
them into VoltDB — Kafka's automated tracking of
the current offset may not match what records are
successfully inserted into the database. Therefore, by
default, the importer uses amanual commit policy to
ensure the Kafka offset matches the completed inserts.

Use of the default commit policy is recommended.
However, you can, if you choose, use Kafka's automated
commit policy by specifying acommit interval, in
milliseconds, using this property.

string A user-defined name for the group that the client belongs
to. Kafka maintains a single pointer for the current
position within the stream for al clientsin the same

group.

156

Importing and Exporting Live Data

Property Allowable Description
Values
The default group ID is "voltdb". In the rare case where
you have two or more databases importing data from
the same Kafka brokers and topics, be sure to set this
property to give each database a unique group ID and
avoid the databases interfering with each other.
fetch.message.max.bytes string These Kafka version 0.8-specific consumer properties
socket.timeout.ms are supported as import properties when using
version="8". See the Kafka 0.8 documentation for
details.
fetch.max.bytes string These Kafka version 0.10-specific consumer properties
heartbeat.interval.ms are supported as import properties as import properties
max.partition.fetch.bytes when using version="10". See the Kafka 0.11
max.poll.interval.ms documentation for details.
max.poll.records
reguest.timeout.ms
on.timeout.ms

"Required

15.14. The Kinesis Importer

The Kinesis importer connects to the specified Amazon Kinesis stream and writes the records into the
VoltDB database. Kinesis streams et you aggregate data from multiple sources, such as click streams and
media feeds, which isthen pushed as streaming data to the application. The VoltDB Kinesisimporter acts
as atarget application for the Kinesis Stream. The data is decoded according to the specified format —
comma-separated values (CSV) by default — and isinserted into the V oltDB database using the specified
stored procedure.

When import starts, the importer first checks to make sure the specified stored procedure exists in the
database schema. If not (for example, when you first create a database and before a schema is loaded), the
importer issues periodic warnings to the console.

Once the specified stored procedureis declared, the importer looks for the specified Kinesis stream. If the
stream cannot be found or accessed (for example, if the keys don't match), the importer reports an error
and stops. You will need to restart import once this error condition is corrected. You can restart import
using any of the following methods:

» Stop and restart the database
* Pause and resume the database using the voltadmin pause and voltadmin resume commands

 Updatethe configuration using the voltadmin update command or the web-based V oltDB Management
Center

If the stream isfound and can be accessed, the importer starts fetching data and submitting it to the stored
procedure to insert into the database. In the simplest case, you can use the default insert procedure for a
table to insert records into a single table. For more complex data you can write your own import stored
procedure to interpret the data and insert it into the appropriate table(s).

Table 15.8, “Kinesis Import Properties’ lists the allowable properties for the Kinesis importer. You can
also specify properties associated with the formatter, asdescribed in Table 15.9, “ CSV and TSV Formatter
Properties”.

157

https://kafka.apache.org/082/documentation.html#simpleconsumerapi
https://kafka.apache.org/documentation/#consumerconfigs
https://kafka.apache.org/documentation/#consumerconfigs

Importing and Exporting Live Data

Table 15.8. KinesisImport Properties

Property Allowable Description
Values

aop.name* string A user-defined name that is used by Kinesisto track the
application's current position in the stream.

procedure’ string The stored procedure to invoke to insert the incoming
data into the database.

regi on string The Amazon region where the Kinesis stream service is
running.

stream.name’ string The name of the Kinesis stream.

access.kef string The Amazon access key for permitting access to the
stream.

secret.key* string The Amazon secret key for permitting accessto the
stream.

max.read.batch.size integer The maximum number of recordsto read in asingle

batch. The default batch size is size 10,000 records.

"Required

15.15. The CSV/TSV Import Formatters

Besides the source of the data, which can be configured using propertiesin the <configuration> element of
the configuration file, the import infrastructure uses formatters to interpret the incoming data and convert
it for insertion into the database. If you use the CSV or TSV formatter, you can control how the data is
interpreted by setting additional properties associated with those formatters. For example, the following
configuration for the Kafkaimporter includes the formatter property bl ank specifying that blank entries
should generate an error, rather than being interpreted as null or empty values:

<i nport>

<configuration type="kafka" format="csv" enabl ed="true">
<property nane="brokers" >kaf kasvr: 9092</ pr operty>
<property nane="topi cs">enpl oyees</ property>
<property nane="procedure">EMPLOYEE. i nsert </ property>
<property nane="hl ank">error</property>

</ configuration>
</inmport >

Y ou include the formatter propertiesin the <configuration> element along with the import type properties.
Table 15.9, “CSV and TSV Formatter Properties’ lists the allowable properties for the CSV and TSV

import formatters.

Table 15.9. CSV and TSV Formatter Properties

Property Allowable Description
Values
blank empty, error, null | Specifies what to do with missing valuesin the

input. If you specify enpt y, missing entries result

in the corresponding "empty" value (that is, zero for
INTEGER, azero-length string for VARCHAR, and so
on); if you specify er r or , missing entries generate an

158

Importing and Exporting Live Data

Property

Allowable
Values

Description

error, if you specify nul | , missing entries result in a
null value. The default interpretation of missing valuesis
nul | .

nowhitespace

true, false

Specifies whether the input can contain whitespace
between data values and separators. If you specify

t r ue, any input lines containing whitespace will
generate an error and not be inserted into the database.
The defaultisf al se.

nullstring

string

Specifies a custom string to be interpreted as a null
value. By default, the following entries are interpreted as
null:

¢ Anempty entry
e NULL (unguoted, uppercase)
« \ N(quoted or unquoted, either upper or lowercase)

If you specify a custom null string, it overrides all
default null strings.

trimrawtext

true, false

Specifies whether any white space around unguoted
string valuesisincluded in the string input or not. If you
specify t r ue, surrounding white space is dropped; if
you specify f al se, surrounding white space between
the string value and the separatorsisincluded in the
input value. The defaultist r ue.

159

Appendix A. Supported SQL DDL
Statements

This appendix describes the subset of the SQL Data Definition Language (DDL) that VoltDB supports
when defining the schema for a VoltDB database. VoltDB also supports extensions to the standard
syntax to allow for the declaration of stored procedures and partitioning information related to tables and
procedures.

Thefollowing sections are not intended as a compl ete description of the standard SQL DDL. Instead, they
summarize the subset of standard SQL DDL statements that are allowed when defining aVoltDB schema
and any exceptions, extensions, or limitations that application devel opers should be aware of .

The supported standard SQL DDL statements are:

* ALTERTABLE
» CREATEINDEX
» CREATETABLE
*» CREATEVIEW

The supported VoltDB-specific extensions for declaring functions, stored procedures, streams, and
partitioning are:

*» CREATE FUNCTION

* CREATE PROCEDURE AS
* CREATE PROCEDURE FROM CLASS
* CREATEROLE

* CREATE STREAM

* DRTABLE

* DROP FUNCTION

* DROP INDEX

* DROP PROCEDURE

* DROPROLE

* DROP STREAM

* DROPTABLE

* DROPVIEW

* PARTITION PROCEDURE
* PARTITION TABLE

160

Supported SQL DDL Statements

ALTER TABLE

ALTER TABLE — Maodifies an existing table definition.

Syntax

ALTER TABLE table-name DROP CONSTRAINT constraint-name
ALTER TABLE table-name DROP [COLUMN] column-name [CASCADE]
ALTER TABLE table-name DROP {PRIMARY KEY | LIMIT PARTITION ROWS}

ALTER TABLE table-name ADD {constraint-definition | column-definition [BEFORE column-
name] }

ALTER TABLE table-name ALTER column-definition [CASCADE]
ALTER TABLE table-name ALTER [COLUMN] column-name SET {DEFAULT value | [NOT]
NULL}

column-definition: [COLUMN] column-name datatype [DEFAULT value] [NOT NULL] [index-
type]

constraint-definition: [CONSTRAINT constraint-name] { index-definition | limit-definition }
index-definition: {index-type} (column-name [,...])
limit-definition: LIMIT PARTITION ROWS row-count

index-type: PRIMARY KEY | UNIQUE | ASSUMEUNIQUE

Description

The ALTER TABLE modifies an existing table definition by adding, removing or modifying a column or
congtraint. Thereare several different formsof the ALTER TABLE statement, depending on what attribute
you are atering (a column or a constraint) and how you are changing it. The key point to remember is
that you only alter one item at atime. To change two columns or a column and a constraint, you need to
issuetwo ALTER TABLE statements.

There arethree ALTER TABLE operations:
« ALTERTABLE ADD

* ALTER TABLE DROP

* ALTERTABLEALTER

The syntax of each statement depends on whether you are modifying a column or a constraint. You can
ADD or DROP either acolumn or anindex. However, you can ALTER columnsonly. To ater an existing
constraint you must first drop the constraint and then ADD the new definition.

There are two forms of the ALTER TABLE DROP statement. Y ou can drop a column or constraint by
name or you can drop a PRIMARY KEY or LIMIT PARTITION ROWS constraint by identifying the
type of constraint, since thereis only one such constraint for any given table.

161

Supported SQL DDL Statements

The syntax for the ALTER TABLE ADD statement uses the same syntax to define a new column or
constraint as that used in the CREATE TABLE command. When adding columns you can also specify
the BEFORE clause to specify where the new columns falls in the order of table columns. If you to not
specify BEFORE, the column is added at the end of the list of columns.

The ALTER TABLE ALTER COLUMN statement also has two forms. You can alter the column by
providing a complete replacement definition, similar tothe ALTER TABLE ADD COLUMN statement,
or you can alter a specific attribute using the ALTER TABLE ALTER COLUMN... SET syntax. Use
SET DEFAULT to add or modify an existing default. Use SET DEFAULT NULL to remove an existing
default. Y ou can aso use the SET clause to specify whether the column can be null (SET NULL) or must
not contain anull value (SET NOT NULL).

Handling Dependencies

Y ou can only alter tablesif there are no dependencies on the table, column, or index that would be violated
by the change. For example, you cannot drop the partitioning column from a partitioned table if there
are stored procedures partitioned on that table and column as well. You must first drop the partitioned
store procedures before dropping the column. Note that by dropping the partitioning column, you are also
automatically changing the table into areplicated table.

The most common dependency is if the table already has data in it. You can add, delete, and (within
reasonable bounds) modify the columns of a table with existing data as long as those columns are not
named in an index, view, or PARTITION statement. If acolumn is referenced in aview or index, you can
specify CASCADE when you drop the column to automatically drop the referring indexes and views.

When a table has records in it, data associated with dropped columns is deleted. Added columns are
interpreted as null or filled in with the specified default value. (Y ou cannot add a column that is defined as
NOT NULL, but without a default, if the table has existing datain it.) Y ou can even change the datatype
of the column within reason. In other words, you can increase the size of the datatype (for example, from
INTEGER to BIGINT) but you cannot decrease the size (say, from INTEGER to TINYINT) since some
of the existing data may already violate the size constraint.

You can aso add non-unique indexes to tables with existing data. However, you cannot add unique
constraints (such as PRIMARY KEY) if data exists.

If atable has no recordsin it, you can make almost any changes you like to it assuming, again, there are
no dependencies. Y ou can add and remove unique constraints, add, remove, and modify columns, even
change column datatypes at will.

However, if there are dependencies, such as stored procedure queries that reference adropped or modified
column, you may not be allowed to make the change. If there are such dependencies, it is often easier to
do drop the stored procedures before making the changes then recreate the stored procedures afterwards.

Examples

The following example uses ALTER TABLE to drop a unique constraint, add a new column, and then
recreate the constraint adding the new column.

ALTER TABLE Enpl oyee DROP CONSTRAI NT Uni queNanes;
ALTER TABLE Enpl oyee ADD COLUWN M ddl el nitial VARCHAR(1);
ALTER TABLE Enpl oyee ADD CONSTRAI NT Uni queNanes

UNI QUE (FirstNane, Mddlelnitial, LastName);

162

Supported SQL DDL Statements

CREATE FUNCTION

CREATE FUNCTION — Defines a SQL function and associates it with a Java method.

Syntax

CREATE FUNCTION function-name FROM METHOD class-path.method-name

Description

The CREATE FUNCTION statement declaresauser-defined function and associatesit with aJavamethod.
Thereturn value of the function matches the datatype of the Java method itself. Similarly, the number and
datatype of the function's arguments are defined by the arguments of the method.

User-defined functions allow you to extend the functionality of the SQL language by declaring your own
functionsthat can be used in SQL queries and data manipul ation statements. The steps for creating a user-
defined function are:

1. Write, compile, and debug the program code for the method that will perform the function's action.

2. Packagethe class and method in aJAR file, just as you would a stored procedure. (Classesfor functions
and stored procedures can be packaged in the same JAR file.)

3. Load the JAR fileinto the database using the LOAD CLASSES statement.
4. Declare and name the user-defined function using the CREATE FUNCTION statement.

For example, let's say you want to create function that decodes an HTML-encoded string. The beginning
of the Java method might look like this, declaring a method of type String and accepting two arguments:
the string to encode and an integer value for the maximum length.

package nyapp. dat at ypes;
public class HmM {

public String decode(String html, int maxlength)
t hrows Vol t Abort Exception {

After compiling and packaging this class into a JAR file, you can load the class and declare it as a SQL
function:

sql cnd
1> LOAD CLASSES nyfunctions.jar;
2> CREATE FUNCTI ON html _decode FROM METHOD nyapp. dat at ypes. Ht m . decode;

Note that the function name and method name do not have to be identical. Also, the function name is not
case sensitive. However, the Java class and method names are case sensitive. Finally, the Java methods
for user-defined functions must follow the same rules for determinism as user-defined stored procedures,
asoutlined in Section 5.1.2.2, “Avoid Introducing Non-deterministic Va ues from External Functions”.

Examples

The following example defines a function called emoticon from a Java method findEmoji Code:

163

Supported SQL DDL Statements

CREATE FUNCTI ON enoti con FROM METHOD uti |l s. Char code. fi ndEnpj i Code;

164

Supported SQL DDL Statements

CREATE INDEX

CREATE INDEX — Creates an index for faster access to atable.

Syntax

CREATE [UNIQUE|JASSUMEUNIQUE] INDEX index-name
ON {table-name | view-name} (index-column [,...])
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description

Creating an index on atable or view makes read access to the data faster when using the columns of the
index as akey. Note that VoltDB creates an index automatically when you specify a constraint, such as
aprimary key, inthe CREATE TABLE statement.

When you specify that the index is UNIQUE, VoltDB constrains the table to at most one row for each set
of index column values. If an INSERT or UPDATE statement attemptsto create arow where all the index
column values match an existing indexed row, the statement fails.

Because the uniqueness constraint is enforced separately within each partition, only indexes on replicated
tables or containing the partitioning column of partitioned tables can ensure global uniqueness for
partitioned tables and therefore support the UNIQUE keyword.

If you wish to create an index on a partitioned table that acts like a unique index but does not include the
partitioning column, use the keyword ASSUMEUNIQUE instead of UNIQUE. Assumed unique indexes
are treated like unique indexes (VoltDB verifies they are unique within the current partition). However,
it is your responsibility to ensure these indexes are actually globally unique. Otherwise, it is possible an
index will generate a constraint violation during an operation that modifies the partitioning of the database
(such as adding nodes on the fly or restoring a snapshot to a different cluster configuration).

The indexed items (index-column) are either columns of the specified table or expressions, including
functions, based on the table. For example, the following statements index atable based on the cal culated
areaand its distance from a set location:

CREATE | NDEX areaof pl ot ON plot (width * height);
CREATE | NDEX di stancefromi9 ON plot (ABS(latitude - 49));

Y ou can create a partial index by including a WHERE clausein the index definition. The WHERE clause
limits the number of rows that get indexed. Thisis useful if certain columns in the index are not evenly
distributed. For example, if you are not interested in recordswhere acolumnisnull, you can useaWHERE
clause to exclude those records and optimize the size and performance of the index.

The partial index is utilized by the database when a query's WHERE clause contains the same condition
asthe partial index definition. A specia caseisif theindex conditionis{col uim} 1S NOT NULL.In
this situation, the index may be applied even in the query does not contain that exact condition, aslong as
the query contains a WHERE condition that implies the column is not null, such as{ col um} > 0.

By default, VoltDB creates a tree index. Tree indexes provide the best general performance for a wide
range of operations, including exact value matches and queries involving a range of values, such as
SELECT ... WHERE Score > 1 AND Score < 10.

If an index is used exclusively for exact matches (such as SELECT ... WHERE MyHashCol um
= 123), it is possible to create a hash index instead. To create a hash index, include the string "hash"
as part of the index name.

165

Supported SQL DDL Statements

Examples

The following example creates two indexes on asingle table. The first is, by default, a non-unique index
based on the departure time The second is a unique index based on the columns for the airline and flight
number.

CREATE | NDEX flightTimeldx ON FLIGHT (departtine);
CREATE UNI QUE | NDEX Flight Keyldx ON FLIGHT (airline, flightlD);

You can aso use functions in the index definition. For example, the following is an index based on the
element movie within a JSON-encoded VARCHAR column named favorites and the member'sID.

CREATE | NDEX FavoriteMvie ON MEMBER (
FI ELD(favorites, 'nmovie'), menberlD
)

The following exampl e demonstrates the use of a partial index, by including a WHERE clause, to exclude
records with anull column.

CREATE | NDEX conpl et ed_t asks
ON tasks (task_id, startdate, enddate)
WHERE enddate 1S NOT NULL;

166

Supported SQL DDL Statements

CREATE PROCEDURE AS

CREATE PROCEDURE AS — Defines a stored procedure composed of one or more SQL statements.

Syntax

CREATE PROCEDURE procedure-name
[PARTITION ON TABLE table-name COLUMN column-name [PARAMETER position]]
[ALLOW role-name [,...]]
AS sgl-statement;

CREATE PROCEDURE procedure-name
[PARTITION ON TABLE table-name COLUMN column-name [PARAMETER position]]
[ALLOW role-name [,...]]
AS BEGIN
sqgl-statement; [,...]
END;

Description

You must declare stored procedures as part of the schema to make them accessible at runtime. The
CREATE PROCEDURE AS statement lets you create a procedure from one or more SQL statements
directly within the DDL statement. The SQL statements can contain question marks (?) as placeholders
that arefilled in at runtime with the arguments to the procedure call.

There are two forms of the CREATE PROCEDURE AS statement:

» A single statement procedure where the CREATE PROCEDURE AS statement isfollowed by one SQL
statement terminated by a semi-colon.

» A multi-statement procedure where the CREATE PROCEDURE AS statement is followed by multiple
SQL statements enclosed in aBEGIN-END clause.

For a single statement, the stored procedure returns the results of the query as a VoltTable. For multi-
statement procedures, the results are returned as an array of VoltTable structures, one for each statement.

For all CREATE PROCEDURE AS statements, the procedure name must follow the naming conventions
for Java class names. For example, the name is case-sensitive and cannot contain any white space.

When creating single-partitioned procedures, you specify the partitioning in the PARTITION ON clause.
Partitioning astored procedure meansthat the procedure executes within aunique partition of the database.
The partition in which the procedure executesis chosen at runtime based on the table and column specified
by table-name and column-name. By default, V oltDB usesthefirst parameter to the stored procedure asthe
partitioning value. However, you can use the PARAMETER clause to specify a different parameter. The
position value specifies the parameter position, counting from zero. (In other words, position 0 isthe first
parameter, position 1 isthe second, and so on.) The specified table must be a partitioned table or stream.

If security is enabled at runtime, only those roles named in the ALLOW clause (or with the ALLPROC or
ADMIN permissions) have permission to invoke the procedure. If security is not enabled at runtime, the
ALLOW clauseisignored and all users have access to the stored procedure.

167

Supported SQL DDL Statements

Examples

The following example defines a stored procedure, CountUsersByCountry, as a single SQL query with a
placeholder for matching the country column:

CREATE PROCEDURE Count User sByCountry AS
SELECT COUNT(*) FROM Users WHERE country=?;

The next example restricts access to the stored procedure to only users with the operator role. It also
partitions the stored procedure on the userID column of the Accounts table. Note that the PARAMETER
clauseis used since the userI D isthe second parameter to the procedure:

CREATE PROCEDURE ChangeUser Password
PARTI TI ON ON TABLE Accounts COLUWN user| D PARAMETER 1
ALLOW oper at or
AS UPDATE Accounts SET HashedPasswor d=? WHERE user | D=7?;

Thelast example usesaBEGIN-END clauseto include four SQL statementsin the procedure. In this case,
the procedure performs two INSERT INTO SELECT statements, a DELETE statement and then selects
the total count of records after the operation. The stored procedure returns four VoltTables, one for each
statement, with the last one containing the final record count since SELECT is the last statement in the
procedure.

CREATE PRCCEDURE MoveOrders
AS BEG N
| NSERT | NTO enroute SELECT * FROM Orders
VWHERE shi p_date < NOAN) AND delivery_date > NON);
| NSERT | NTO hi story SELECT * FROM enroute
VWHERE del i very_date < NOW);
DELETE FROM enroute
VWHERE del i very_date < NOW);
SELECT COUNT(*) FROM enroute;
END;

168

Supported SQL DDL Statements

CREATE PROCEDURE FROM CLASS

CREATE PROCEDURE FROM CLASS — Defines a stored procedure associated with a Java class.

Syntax

CREATE PROCEDURE
[PARTITION ON TABLE table-name COLUMN column-name [PARAMETER position]]
[ALLOW role-name [,...]]
FROM CLASS class-name

Description

Y ou must declare stored procedures to make them accessible to client applications and the sglcmd utility.
CREATE PROCEDURE FROM CLASS lets you declare stored procedures that are written as Java
classes.The class-name is the name of the Java class.

Before you declare the stored procedure, you must create, compile, and load the associated Java class. It
isusually easiest to do this by compiling all of your Java stored procedures and packaging the resulting
classfilesinto asingle JAR file that can be loaded once. For example:

$ javac -d ./obj src/procedures/*.java

$ jar cvf nyprocs.jar —C obj

$ sqlcmd

1> | oad cl asses myprocs.jar;

2> CREATE PROCEDURE FROM CLASS procedur es. AddCust orer ;

When creating single-partitioned procedures, you specify the partitioning in the PARTITION ON clause.
Partitioning astored procedure meansthat the procedure executes within aunique partition of the database.
The partition in which the procedure executesis chosen at runtime based on the table and column specified
by table-name and column-name. By default, VoltDB uses the first parameter to the stored procedure as
the partitioning value. However, you can use the PARAMETER clause to specify a different parameter.
The position value specifies the parameter position, counting from zero. (In other words, position O isthe
first parameter, position 1 is the second, and so on.)

The specified table must be a partitioned table and cannot be an export stream or replicated table.

If security isenabled at runtime, only those roles named in the ALLOW clause (or with the ALLPROC or
ADMIN permissions) have permission to invoke the procedure. If security is not enabled at runtime, the
ALLOW clauseisignored and all users have access to the stored procedure.

Example

The following example declares a stored procedure matching the Java class MakeReservation. Note that
the class name includes its location within the current class path (in this case, as a child of flight and
procedures). However, the name itself, MakeReservation, must be unique within the schema because at
runtime stored procedures are invoked by name only.

CREATE PROCEDURE FROM CLASS flight. procedures. MakeReservati on;

169

Supported SQL DDL Statements

CREATE ROLE

CREATE ROLE — Defines arole and the permissions associated with that role.

Syntax

CREATE ROLE role-name [WITH permission [,...]]

Description

The CREATE ROLE statement defines a named role that can be used to assign access rights to specific
procedures and functions. When security isenabled in the database configuration, the permissions assigned
in the CREATE ROLE and CREATE PROCEDURE statements specify which users can access which
functions.

Use the CREATE PROCEDURE statement to assign permissions to named roles for accessing specific
stored procedures. The CREATE ROLE statement lets you assign certain generic permissions. The
following table describes the permissions that can be assigned the WITH clause.

Permission Description Inherits
DEFAULTPROCREAD |Access to read-only default procedures
(TABLE.select)
DEFAULTPROC Access to al default procedures (TABLE.select,| DEFAULTPROCREAD
TABLE.insert, TABLE.delete, TABLE.update, and
TABLE.upsert)
SQLREAD Access to read-only ad hoc SQL queries (SELECT) | DEFAULTPROCREAD
SQL Access to all ad hoc SQL queries and default| SQLREAD,
procedures DEFAULTPROC
ALLPROC Access to al user-defined stored procedures
ADMIN Full accesstoall system procedures, all user-defined| ALLPROC,
procedures, as well as default procedures, ad hoc| DEFAULTPROC, SQL
SQL, and DDL statements.
Note: For backwards compatibility, the special permissions ADHOC and SY SPROC are still recognized.
They areinterpreted as synonyms for SQL and ADMIN, respectively.

The generic permissions are denied by default. So you must explicitly enable them for those roles that
need them. For example, if users assigned to the "interactive" role need to run ad hoc queries, you must
explicitly assign that permission in the CREATE ROLE statement:

CREATE ROLE interactive WTH sql;

Also note that the permissions are additive. So if a user is assigned to one role that allows access to
defaultproc but not allproc, but that user also is assigned to ancther role that allows allproc, the user has
both permissions.

Example

The following example defines three roles — admin, developer, and batch — each with a different set
of permissions;

170

Supported SQL DDL Statements

CREATE ROLE admin W TH adm n;
CREATE RCLE devel oper WTH sql, allproc;
CREATE RCLE batch W TH def aul t pr oc;

171

Supported SQL DDL Statements

CREATE STREAM

CREATE STREAM — Creates an output stream in the database.

Syntax

CREATE STREAM stream-name
[PARTITION ON COLUMN column-name]
[EXPORT TO TARGET export-target-name] (
column-definition [,...]

);
column-definition: column-name datatype [DEFAULT value] [NOT NULL]

Description

The CREATE STREAM statement defines a stream and its associated columns in the database. A stream
can be thought of as a virtua table. It has the same structure as a table, consisting of a list of columns
and supporting all the same datatypes (Table A.1, “Supported SQL Datatypes’) as tables. The columns
have the same rules in terms of naming and size. Y ou can also use the INSERT statement to insert data
into the stream once it is defined.

The three differences between streams and tables are:

* Nodatais stored in the database for a stream, it is only used as a passthrough.

» Because no datais stored, you cannot SELECT, UPDATE, or DELETE the stream contents.
» Noindexes or constraints (such as primary keys) are allowed on a stream.

Datainserted into the stream is not stored in the database. The stream is an ephemeral container used only
for analysis and/or passing data through VoltDB to other systems via the export function.

Combining streams with views lets you perform summary analysis on data passing through VoltDB
without having to store all of the underlying data. For example, you might want to know how many times
users access a website and their most recent visit. But you do not need to store a record for each visit.
In this case, you can create a stream, visits, to capture the event and a view, visit_by user, to capture the
cumulative data:

CREATE STREAM vi sits PARTI TI ON ON COLUMN user_id (
user _id BIG NT NOT NULL,
| ogi n TI MESTAMP
)
CREATE VIEW Vi sit_by user
(user_id, total visits, last _visit)
AS SELECT user _id, COUNT(*), MAX(Iogin)
FROM vi sits GROUP BY user _id;

When creating aview on a stream, the stream must be partitioned and the partition column must appear in
the view. Another special feature of views on streams is that, because there is no underlying data stored
for the view, VoltDB lets you modify the views content manually by issuing UPDATE and DELETE
statements on the view. (This ability to manipulate the view is only available for views on streams. Y ou
cannot UPDATE or DELETE aview on atable; you must modify the datain the underlying tableinstead.)

172

Supported SQL DDL Statements

For example, if you only care about a daily rollup of visits, you can use DELETE with the stream name
to clear the data at midnight every night:

DELETE FROM vi sit_by_user;

Or if you need to adjust the cumulative analysis to, say, "reset" the entry for a specific user, you can use
UPDATE:

UPDATE vi sit _by_user
SET total visits = 0, last_visit = NULL
WHERE user _id = ?;

Streams can a so be used to export data out of VoltDB into other systems, such as Kafka, CSV files, and
so on. To export data into another system, you start by declaring one or more streams defining the data
that will be sent to the external system. In the CREATE STREAM statement you also specify the named
target for the export:

CREATE STREAM visits
EXPORT TO TARGET archive (
user _id BI G NT NOT NULL,

| ogi n TI MESTAMP

)

If no export targets are configured in the database configuration, inserting datainto the visits stream has no
effect. However, if the export target archiveis enabled in the configuration, then any datainserted into the
stream is sent to the export connector for delivery to the configured destination. See Chapter 15, Importing
and Exporting Live Data for more information on configuring export targets.

Finally, you can combine analysis with export by creating a stream with an export target and al so creating
aview on that stream. So in our earlier example, if we want to warehouse data about each visit but use
VoltDB to perform the real-time summary analysis, we would add an export definition, along with the
partitioning clause, to the CREATE STREAM statement for the visits stream:

CREATE STREAM visits
PARTI TI ON ON COLUWN user _id
EXPORT TO TARGET war ehouse (
user_id BI G NT NOT NULL,
[ogi n TI MESTAMP

)
Example

The following example defines a stream and a view on that stream. Note the use of the PARTITION ON
clause to ensure the stream is partitioned, since it isbeing used in aview.

CREATE STREAM fl i ghtdata
PARTI TI ON ON CCOLUWN ai rport (
flight_id BIG NT NOT NULL,
ai rport VARCHAR(3) NOT NULL,
passengers | NTEGER,
eta Tl MESTAWP
)
CREATE VIEW al | _flights
(airport, flight_count, passenger_count)
AS SELECT ai rport, count(*), sum passengers)

173

Supported SQL DDL Statements

FROM fli ghtdata GROUP BY airport;

174

Supported SQL DDL Statements

CREATE TABLE

CREATE TABLE — Creates atable in the database.

Syntax

CREATE TABLE table-name (
column-definition [,...]
[, constraint-definition [,...]]

);

column-definition: column-name datatype [DEFAULT value] [NOT NULL] [index-type]
constraint-definition: [CONSTRAINT constraint-name] { index-definition | limit-definition }
index-definition: {index-type} (column-name [,...])

limit-definition: LIMIT PARTITION ROWS row-count [EXECUTE (delete-statement)]

index-type: PRIMARY KEY | UNIQUE | ASSUMEUNIQUE

Description

The CREATE TABLE statement creates atable and its associated columnsin the database. The supported
datatypes are described in Table A.1, “ Supported SQL Datatypes’.

TableA.1. Supported SQL Datatypes

SQL Datatype Equivalent Description
Java Datatype

TINYINT byte 1-byte signed integer, -127 to 1272

SMALLINT short 2-byte signed integer, -32,767 to 32,767

INTEGER int 4-byte signed integer, -2,147,483,647 to
2,147,483,647

BIGINT long 8-byte signed integer, -9,223,372,036,854, 775,807
to0 9,223,372,036,854,775,807

FLOAT double 8-byte numeric, -(2-2"°%)-219% to (2-275%).219%

(Note that values less than or equal to -1.7E+308
areinterpreted asnull.)

DECIMAL BigDecimal 16-byte fixed scale of 12 and precision of 38,
-99999999999999999999999999.999999999999
to 99999999999999999999999999.999999999999

GEOGRAPHY or A geospatial region. The storage requirement for
GEOGRAPHY () geospatia data varies depending on the geometry.
The default maximum size in memory is 32768.
However, you can specify adifferent value by
specifying the maximum size (in bytes) in the

175

Supported SQL DDL Statements

SQL Datatype Equivalent Description
Java Datatype

declaration. For example: GEOGRAPHY (80000).
See the section on entering geospatial datain the
VolItDB Guide to Performance and Customization

for details.
GEOGRAPHY _POINT A geospatia location identified by its latitude and
longitude. Requires 16 bytes of storage.
VARCHAR() String Variable length text string, with a maximum length

specified in either characters (the default) or bytes.
To specify the length in bytes, usethe BY TES
keyword after the length value. For example:

VARCHAR(28 BYTES).

VARBINARY () byte array Variable length binary string (sometimes referred
to asa"blob") with a maximum length specified in
bytes

TIMESTAMP long, VoltDB Time in microseconds

TimestampType

8 or integer and floating-point datatypes, VVoltDB reserves the largest possible negative value to denote a null value. For example
-128 isinterpreted as null for TINYINT, -32768 for SMALLINT, and so on.

The following limitations are important to note when using the CREATE TABLE statement in VoltDB:
* CHECK and FOREIGN KEY constraints are not supported.
* VolItDB does not support AUTO_INCREMENT, the automatic incrementing of column values.

 Each column has amaximum size of one megabyte and the total declared size of al of the columnsina
table cannot exceed two megabytes. For VARCHAR columnswherethelengthisspecified in characters,
the declared sizeis calculated asfour bytes per character to allow for the longest potential UTF-8 string.

« If you intend to use a column to partition a table, that column cannot contain null values. Y ou must
specify NOT NULL in the definition of the column or VoltDB issues an error when compiling the
schema.

* When you specify an index constraint, by default VoltDB createsatreeindex. Y ou can explicitly create
a hash index by including the string "hash" as part of the index name. For example, the following
declaration creates a hash index, Ver si on_Hash_1 dx, of three numeric columns.

CREATE TABLE Version (
Maj or SMALLI NT NOT NULL,
M nor SMALLI NT NOT NULL,
basel evel | NTEGER NOT NULL,
Rel easeDat e Tl MESTAMP,
CONSTRAI NT Ver si on_Hash_| dx PRI MARY KEY
(Maj or, Mnor, Basel evel)

)

See the description of CREATE INDEX for more information on the difference between hash and tree
indexes.

» To specify anindex — either for an individual column or asatable constraint — that is globally unique
across the database, use the standard SQL keywords UNIQUE and PRIMARY KEY. However, for

176

https://docs.voltdb.com/PerfGuide/GeoWKT.php
https://docs.voltdb.com/PerfGuide/

Supported SQL DDL Statements

partitioned tables, VoltDB can only ensure uniqueness if the index includes the partitioning column.
Otherwise, these keywords are not allowed.

It can be a performance advantage to define indexes or constraints on non-partitioning columnsthat you,
asthe devel oper, know are going to contain unique values. Although VoltDB cannot ensure uniqueness
across the entire database, it does allow you to define indexes that are assumed to be unique by using
the ASSUMEUNIQUE keyword.

When you define an index on a partitioned table as ASSUMEUNIQUE, VolItDB verifies uniqueness
within the current partition when creating an index entry. However, it isyour responsibility as devel oper
or administrator to ensure that the values are actually globally unique. If the database is repartitioned
due to adding new nodes or restoring a snapshot to a different cluster configuration, non-unique
ASSUMEUNIQUE index entries may collide. When this occursit resultsin a constraint violation error
and the database will not be able to complete its current action.

Therefore, ASSUMEUNIQUE should be used with caution. Also, it is not necessary and should not
be used with replicated tables or indexes that contain the partitioning column, which can be defined
as UNIQUE.

VoltDB includesaspecia constraint, LIMIT PARTITION ROWS, that limitsthe number of rows of data
that can be inserted into any one partition for the table. This constraint is useful for managing memory
usage and avoiding accidentally running out of memory due to unbalanced partitions or unexpected
data growth.

Note that the limit, specified as an integer, limits the number of rows per partition, not for the table as
awhole. In the case of replicated tables, where each partition contains all rows of the table, the limit
applies equally to the table as a whole and each partition. Also, the constraint is applied to INSERT
operations. The constraint is not enforced when restoring a snapshot, altering the table declaration, or
rebalancing the cluster as part of elastically adding nodes. In these cases, ignoring the limit allows the
operation to succeed even if, as aresult, a partition ends up containing more rows than specified by the
LIMIT PARTITION ROWS constraint. But once the limit has been exceeded, any attempt to INSERT
more table rows into that partition will result in an error, until sufficient rows are deleted to reduce the
row count below the limit.

Aspart of the LIMIT PARTITION ROWS constraint, you can optionally include an EXECUTE clause
that specifiesaDEL ETE statement to be executed when an INSERT statement will exceed the partition's
row limit. For example, assume the events table has the following constraint as part of the CREATE
TABLE statement:

CREATE TABLE events (
event _time TI MESTAMP NOT NULL,
event _code | NTEGER NOT NULL,
event _nessage VARCHAR(128),
LIMT PARTI TI ON ROA5 1000 EXECUTE (
DELETE FROM events WHERE
SI NCE_EPOCH(second, NON - SI NCE_EPOCH(second, event _tinme) > 24*3600

)
)

At runtime, If an INSERT statement would result in the the current partition having more than 1000
rows, the delete statement will automatically be executed in an attempt to reduce the row count before
the INSERT statement isrun. In the example, any recordswith an event_time older than 24 hourswill be
deleted. Notethat it is your responsibility as the query designer to provide a DELETE statement that is
both deterministic and likely to remove sufficient rowsto allow the query to succeed. Several important
points to note about the EXECUTE clause:

177

Supported SQL DDL Statements

 If the DELETE statement does not delete sufficient rows, the INSERT statement will fail. For
example, in the previous example, if you attempt to insert more than 1000 rows into asingle partition
in a24 hour period, the DELETE statement will not del ete enough records when you attempt to insert
the 1001st record.

e TheLIMIT PARTITION ROWS constraint is applied per partition. That is, the DELETE statement
is executed as a single-partitioned query in the partition where the INSERT statement triggers the
row limit constraint, even if the INSERT statement is part of a multi-partitioned stored procedure.

» Thelength of VARCHAR columns can be specified in either characters (the default) or bytes. To specify
the length in bytes, include the BY TES keyword after the length value; for example VARCHAR(16
BYTES).

Specifying the VARCHAR length in charactersis recommended because UTF-8 characters can require
avariable number of bytesto store. By specifying the length in characters you can be sure the column
has sufficient space to store any string of the specified length. Specifying the length in bytes is only
recommended when all values contain only single byte (ASCII) characters or when conserving spaceis
required and the strings are less than 64 bytesin length.

» The VARBINARY datatype provides variable storage for arbitrary strings of binary data and operates
similarly to VARCHAR(n BYTES) strings. Y ou assign byte arrays to a VARBINARY column when
passinginvariables, or you can useahexidecimal string for assigning literal valuesinthe SQL statement.

» The VoltDB TIMESTAMP datatype is along integer representing the number of microseconds since
the epoch. Two important points to note about this timestamp:

e TheVoltDB TIMESTAMP s not the same as the Java Timestamp datatype or traditional Linux time
measurements, which are measured in millisecondsrather than microseconds. Appropriate conversion
is needed when casting values between aVoltDB TIMESTAMP and other timestamp datatypes.

e The VoltDB TIMESTAMP is interpreted as a Greenwich Meantime (GMT) value. Depending on
how time values are created, their value may or may not account for the local machine's default time
zone. Mixing timestamps from different time zones (for example, in WHERE clause comparisons)
can result in unexpected behavior.

e For TIMESTAMP columns, you can define a default value using the NOW or
CURRENT_TIMESTAMP keywords in place of a specific value. For example:

CREATE TABLE Event (
Event _| d | NTEGER UNI QUE NOT NULL,
Event Ti nestanp TI MESTAMP DEFAULT NOW
Event Descri pti on VARCHAR(128)

)

The default value is evaluated at runtime as an approximation, in milliseconds, of when the transaction
begins execution.

Example

The following example defines a table with five columns. The first column, Company, is not allowed
to be null, which is important since it is used as the partitioning column in the following PARTITION
TABLE statement. That columnisalso contained inthe PRIMARY KEY constraint. Again, it isimportant
to include the partitioning column in any fully unique indexes for partitioned tables.

CREATE TABLE I nventory (

178

Supported SQL DDL Statements

Conpany VARCHAR(32) NOT NULL,
Product | D Bl G NT NOT NULL,
Price DECI VAL,
Cat egory VARCHAR(32),
Descri pti on VARCHAR(256),
PRI MARY KEY (Conpany, Product! D)
)
PARTI TI ON TABLE | nventory ON COLUMN Conpany;

179

Supported SQL DDL Statements

CREATE VIEW

CREATE VIEW — Cresates a view into one or more tables, optimizing access to a summary of their
contents.

Syntax

CREATE VIEW view-name (view-column-name [,...])
AS SELECT { column-name | selection-expression } [AS alias] [,...]
FROM table-reference [join-clause...]
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
[GROUP BY { column-name | selection-expression } [,...]]

table-reference:
{ table-name [AS alias] }

join-clause:
, table-reference
[INNER] JOIN [{table-reference}] [join-condition]

join-condition:
ON conditional-expression
USING (column-reference [,...])

Description

The CREATE VIEW statement creates aview of atable, a stream, or joined tables with selected columns
and aggregates. VoltDB implements views as materialized views. In other words, the view is stored as a
special table in the database and is updated each time the corresponding database contents are modified.
This means there is a small, incremental performance impact for any inserts or updates to the tables, but
selects on the view will execute efficiently.

The following limitations are important to note when using the CREATE VIEW statement with VoltDB:
e The SELECT statement must include at |east one field specified as COUNT (*).

* If the SELECT statement containsa GROUPBY clause, all of the columns and expressionslisted in the
GROUPBY must belisted in the same order at the start of the SELECT statement. Aggregate functions,
including COUNT(*), are allowed following the GROUP BY columns.

» Views are alowed on individual tables or streams, or joins of multiple tables. Joining streams is not
supported.

» Joins must be inner joins and cannot be self-joins. All other limitations for joins as described in the
SELECT statement also apply to joinsin views.

» To avoid performance problems when inserting datainto aview that joins multiple tables, it is strongly
recommended you define indexes on the table columns involved in the join.

Examples

Thefollowing exampledefinesaview that countsthe number of recordsfor aspecific product item grouped
by itslocation (that is, the warehouse the item isin).

180

Supported SQL DDL Statements

CREATE VI EWi nventory_count _by war ehouse (
product | D,
war ehouse,
total _i nventory
) AS SELECT
product | D,
war ehouse,
COUNT(*)
FROM i nventory GROUP BY product| D, warehouse;

The next example uses a WHERE clause but no GROUP BY to provide a count and minimum and
maximum aggregates of all records that meet a certain criteria

CREATE VI EW snal | _towns (nunber, mininum naxi num)
AS SELECT count (*), mn(popul ation), nmax(popul ation)
FROM TOMNS WHERE popul ati on < 10000;

The final example demonstrates joining two tables in a view. This definition provides a similar view to
the first example, except it uses the product| D column to join two tables, Product and Inventory:

CREATE VI EWi nventory_count by war ehouse (
pr oduct Nane,
war ehouse,
total _inventory
) AS SELECT
product . product Nane,
i nvent ory. war ehouse,
COUNT(*)
FROM product JO N inventory
ON product. product! D = inventory. product| D
GROUP BY product. product Nane, inventory.warehouse;

181

Supported SQL DDL Statements

DR TABLE

DR TABLE — Identifies atable as a participant in database replication (DR)

Syntax

DR TABLE table-name [DISABLE]

Description

The DR TABLE statement identifies a table as a participant in database replication (DR). If DR is not
enabled, the DR TABLE statement has no effect on the operation of the table or the database as a whole.
However, once DR is enabled and if the current cluster is the master database for the DR operation, any
updates to the contents of tables identified in the DR TABLE statement are copied and applied to the
replica database as well.

The DR TABLE ... DISABLE statement reversesthe effect of aprevious DR TABLE statement, removing
the specified table from participation in DR. Because the replica database schema must have DR TABLE
statements for any tables being replicated by the master, if DR is actively occurring you must add the
DR TABLE statements to the replica before adding them to the master. In reverse, you must issue DR
TABLE... DISABLE statements on the master before you issue the matching statements on the replica.

See Chapter 11, Database Replication for more information about how database replication works.

Examples

The following example identifies the tables Employee and Department as participants in database
replication.

DR TABLE Enpl oyee;
DR TABLE Departnent;

182

Supported SQL DDL Statements

DROP FUNCTION

DROP FUNCTION — Removes the definition of a SQL function.

Syntax

DROP FUNCTION function-name [IF EXISTS]

Description

The DROP FUNCTION statement deletes the definition of the specified user-defined function. Note that,
for functions declared using CREATE FUNCTION and a classfile, the statement does not del ete the class
that implements the function, it only deletes the definition. To remove the Java class that contains the
associated function method, you must first drop the function definition then use the sglcmd remove classes
directive to remove the class.

ThelF EXISTSclause allowsthe statement to succeed even if the specified function name doesnot exist. If
the function does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Examples

Thefollowing exampleremovesthe definitions of theHTML_ENCODE and HTML_DECODE functions,
then uses remove classes to remove the class containing their corresponding methods.

$ sqglcnd

1> DROP FUNCTI ON htm _encode;

1> DROP FUNCTI ON ht m _decode;

2> renove classes "*. Ht m Functions";

183

Supported SQL DDL Statements

DROP INDEX

DROP INDEX — Removes an index.

Syntax

DROP INDEX index-name [IF EXISTS]

Description

The DROP INDEX statement deletes the specified index, and any data associated with it, from the
database. The IF EXISTS clause allows the statement to succeed even if the specified index does not exist.
If the index does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Y ou must use the name of theindex as specified in the original DDL when dropping theindex. Y ou cannot
drop an index if it was not explicitly named in the CREATE INDEX command. This is why you should
always name indexes and other constraints wherever possible.

Examples

The following example removes the index named employee idx_by lastname:

DROP | NDEX Empl oyee_i dx_by_| ast nane;

184

Supported SQL DDL Statements

DROP PROCEDURE

DROP PROCEDURE — Removes the definition of a stored procedure.

Syntax

DROP PROCEDURE procedure-name [IF EXISTS]

Description

The DROP PROCEDURE statement del etes the definition of the named stored procedure. Note that, for
procedures declared using CREATE PROCEDURE FROM and a classfile, the statement does not delete
the class that implements the procedure, it only deletes the definition and any partitioning information
associated with the procedure. To remove the associated stored procedure class, you must first drop the
procedure definition then use the sglcmd remove classes directive to remove the class.

The IF EXISTS clause allows the statement to succeed even if the specified procedure name does not
exist. If the stored procedure does not exist and you do not include the IF EXISTS clause, the statement
will return an error.

Examples

The following example removes the definition of the FindCanceledReservations stored procedure, then
uses remove classes to remove the corresponding class.

$ sqglcnd
1> DROP PROCEDURE Fi ndCancel edReser vati ons;
2> renove cl asses "*. Fi ndCancel edReservati ons";

185

Supported SQL DDL Statements

DROP ROLE

DROP ROLE — Removesarole.

Syntax

DROP ROLE role-name [IF EXISTS]

Description
The DROP ROLE statement deletes the specified role. The IF EXISTS clause allows the statement to

succeed even if the specified role does not exist. If the role does not exist and you do not include the IF
EXISTS clause, the statement will return an error.

Examples
The following example removes the role named debug;:

DROP ROLE debug;

186

Supported SQL DDL Statements

DROP STREAM

DROP STREAM — Removes a stream and, optionally, any views associated with it.

Syntax

DROP STREAM stream-name [IF EXISTS] [CASCADE]

Description

The DROP STREAM statement deletes the specified stream from the database. The IF EXISTS clause
allowsthe statement to succeed even if the specified stream does not exist. If the stream does not exist and
you do not include the IF EXISTS clause, the statement will return an error.

If you use the CASCADE clause, VoltDB automatically drops any referencing views aswell asthe stream
itself.

Example

The following example uses DROP STREAM with the IF EXISTS clause to remove the MeterReadings
stream definition.

DROP STREAM Met er Readi ngs | F EXI STS;

187

Supported SQL DDL Statements

DROP TABLE

DROP TABLE — Removes atable and any data associated with it.

Syntax

DROP TABLE table-name [IF EXISTS] [CASCADE]

Description

The DROP TABLE statement del etesthe specified table, and any dataassociated with it, from the database.
The IF EXISTS clause allows the statement to succeed even if the specified tables does not exist. If the
table does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Before dropping atable, you must first remove any stored proceduresthat reference thetable. For example,
if the table EMPLOYEE is partitioned and the stored procedure AddEmployee is partitioned on the
EMPLOY EE table, you must drop the procedure first before dropping the table:

PARTI TI ON TABLE Enpl oyee ON COLUWN Enpl D;
CREATE PROCEDURE
PARTI TI ON ON TABLE Enpl oyee COLUWN Enpl D
FROM CLASS myapp. procedur es. AddEnpl oyee;

[. . .]

DROP PROCEDURE AddEnpl oyee;
DROP TABLE Enpl oyee;

Attempting to drop the table before dropping the procedure will result in an error. The same will normally
happen if there are any views or indexes that reference the table. However, if you use the CASCADE
clause VoltDB will automatically drop any referencing indexes and views as well as the table itself.

Examples

The following example uses DROP TABLE with the IF EXISTS clause to remove any existing
Mail Address table definition and data before adding a new definition.

DROP TABLE User Signin | F EXI STS;
CREATE TABLE User Signin (

user | D BIG NT NOT NULL,

| astl ogin TI MESTAMP DEFAULT NOW

)

188

Supported SQL DDL Statements

DROP VIEW

DROP VIEW — Removes aview and any data associated with it.

Syntax

DROP VIEW view-name [IF EXISTS]

Description

The DROP VIEW statement del etes the specified view, and any data associated with it, from the database.
The IF EXISTS clause allows the statement to succeed even if the specified view does not exist. If the
view does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Dropping a view has the same constraints as dropping a table, in that you cannot drop a view that is

referenced by existing stored procedure queries. Before dropping the view, you must drop any stored
procedures that referenceit.

Examples

The following example removes the view named Votes by state:

DROP VI EW vot es_by_st at e;

189

Supported SQL DDL Statements

PARTITION PROCEDURE

PARTITION PROCEDURE — Specifies that a stored procedure is partitioned.

Syntax

PARTITION PROCEDURE procedure-name ON TABLE table-name COLUMN column-name
[PARAMETER position]

Description
Warning

The PARTITION PROCEDURE statement is deprecated and may beremoved in afuturerelease.
Please use the PARTITION ON clause of the CREATE PARTITION statement to declare and
partition the procedure in a single combined statement.

Partitioning astored procedure meansthat the procedure executes within aunique partition of the database.
The partition in which the procedure executesis chosen at runtime based on the table and column specified
by table-name and column-name and the value of the first parameter to the procedure. For example:

PARTI TI ON TABLE Enpl oyees ON COLUWN BadgeNunber ;
PARTI TI ON PROCEDURE Fi ndEnpl oyee ON TABLE Enpl oyees COLUVWN BadgeNunber ;

The procedure FindEmployee is partitioned on the table Employees, and table Employees is in turn
partitioned on the column BadgeNumber. This means that when the stored procedure FindEmployee is
invoked VoltDB determines which partition to run the stored procedure in based on the value of the first
parameter to the procedure and the corresponding partitioning value for the column BadgeNumber. So to
find the employee with badge number 145303 you would invoke the stored procedure as follows:

cl i ent Response response = client.call Procedure("Fi ndEnpl oyee", 145303);

By default, VoltDB uses the first parameter to the stored procedure as the partitioning value. However,
if you want to use the value of a different parameter, you can use the PARAMETER clause. The
PARAMETER clause specifies which procedure parameter to use as the partitioning value, with position
specifying the parameter position, counting from zero. (In other words, position 0 is the first parameter,
position 1 isthe second, and so on.)

The specified table must be a partitioned table and cannot be an export stream or replicated table.

Y ou specify the procedure by its simplified class name. Do not include any other parts of the class path.
Note that the simple procedure name you specify in the PARTITION PROCEDURE may be different than
the class name you specify in the CREATE PARTITION statement, which can include arelative path. For
example, if the class for the stored procedure is mydb.procedures.FindEmployee, the procedure name in
the PARTITION PROCEDURE statement should be FindEmployee:

CREATE PROCEDURE FROM CLASS nydb. pr ocedur es. Fi ndEnpl oyee;
PARTI TI ON PROCEDURE Fi ndEnmpl oyee ON TABLE Enpl oyees COLUMN BadgeNunber ;

Examples

The following example declares a stored procedure, using an inline SQL query, and then partitions
the procedure on the Customer table, Note that the PARTITION PROCEDURE statement includes the

190

Supported SQL DDL Statements

PARAMETER clause, since the partitioning column is not the first of the placeholdersin the SQL query.
Also notethat the PARTITION argument is zero-based, so the value "1" identifies the second placeholder.

CREATE PROCEDURE Get Cust oner ByNane AS
SELECT * from Custoner WHERE First Nane=? AND LastNanme = ?
ORDER BY Last Name, FirstNane, Custonerl D,

PARTI TI ON PROCEDURE Cet Cust oner By Nane
ON TABLE Custoner COLUWN Last Nane
PARAVETER 1;

The next example declares a stored procedure as a Java class. Since the first argument to the procedure's
run method is the value for the LastName column, The PARTITION PROCEDURE statement does not
require a POSITION clause and can use the defaullt.

CREATE PROCEDURE FROM CLASS or g. myconpany. ChangeCust orrer Addr ess;

PARTI TI ON PROCEDURE ChangeCust oner Addr ess
ON TABLE Custoner COLUWN Last Nane;

191

Supported SQL DDL Statements

PARTITION TABLE

PARTITION TABLE — Specifiesthat atableis partitioned and which is the partitioning column.

Syntax

PARTITION TABLE table-name ON COLUMN column-name

Description

Partitioning a table specifies that different records are stored in different unique partitions, based on the
value of the specified column. The table table-name and column column-name must be valid, declared
elementsin the current DDL file or VoltDB generates an error when compiling the schema.

For atableto be partitioned, the partitioning column must be declared asNOT NULL. If you do not declare
a partitioning column of atablein the DDL, the table is assumed to be areplicated table.

Example
The following example partitions the table Employee on the column Employeel D.

PARTI TI ON TABLE Enpl oyee on COLUWN Enpl oyeel D

192

Appendix B. Supported SQL Statements

This appendix describes the SQL syntax that VVoltDB supports in stored procedures and ad hoc queries.

This is not intended as a complete description of the SQL language and how it operates. Instead, it
summarizes the subset of standard SQL statements that are alowed in VoltDB and any exceptions or
limitations that application devel opers should be aware of .

The supported SQL statements are:

DELETE

INSERT

SELECT
TRUNCATE TABLE
UPDATE

UPSERT

193

Supported SQL Statements

DELETE

DELETE — Deletes one or more records from the database.

Syntax

DELETE FROM table-name

[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
[ORDER BY {column-name [ASC | DESC [},...] [LIMIT integer] [OFFSET integer]]

Description

The DELETE statement deletes rows from the specified table that meet the constraints of the WHERE
clause. The following limitations are important to note when using the DELETE statement in VVoltDB:

The DELETE statement can operate on only one table at atime. It does not support joins. However, it
does support subqueries in the WHERE expression.

The WHERE expression supports the boolean operators: equals (=), not equals (= or <>), greater than
(>), lessthan (<), greater than or equal to (>=), lessthan or equal to (<=), ISNULL, AND, OR, andNOT.
Note, however, although OR is supported syntactically, VoltDB does not optimize these operations and
use of OR may impact the performance of your queries.

Y ou can use subqueriesin the WHERE clause of the DELETE statement, with thefollowing provisions:

* See the description of subqueries in the SELECT statement for genera rules concerning the
construction of subqueries.

< In a multi-partition procedure, subqueries of the DELETE statement can only reference replicated
tables.

 Insingle-partitioned procedures, the subquery can reference both partitioned and replicated tables.

« For ad hoc DELETE statements, the same rules apply except the SQL statement itself determines
whether VoltDB executes it as a single-partitoned or multi-partitioned procedure. Statements that
delete rows from a partitioned tabl e based on a specific value of the partitioning column are executed
as single-partitioned procedures. All other statements are multi-partitioned.

» Subqueries are not allowed in a CREATE TABLE statement that includes DELETE syntax as part
of aLIMIT PARTITION ROW clause.

The ORDER BY clause lets you order the selection results and then select a subset of the ordered
records to delete. For example, you could delete only the five oldest records, chronologically, sorting
by timestamp:

DELETE FROM events ORDER BY event tine, event id ASC LIMT 5;
Similarly, you could choose to keep only the five most recent:
DELETE FROM events ORDER BY event tine, event id DESC OFFSET 5;

When using ORDER BY, the resulting sort order must be deterministic. In other words, the ORDER
BY must include enough columns to uniquely identify each row. (For example, listing all columns or

aprimary key.)

194

Supported SQL Statements

 You cannot use ORDER BY to delete rowsfrom apartitioned table in amulti-partitioned query. In other
words, for partitioned tables DELETE... ORDER BY must be executed as part of a single-partitioned
stored procedure or as an ad hoc query with a WHERE clause that uniquely identifies the partitioning
column value.

Examples

The following example removes rows from the EMPLOY EE table where the EMPLOYEE _ID column
isequal to 145303.

DELETE FROM enpl oyee WHERE enpl oyee id = 145303;

The following example removes rows from the BID table where the BIDDERID is 12345 and the
BIDPRICE isless than 100.00.

DELETE FROM bi d WHERE bi dderi d=12345 AND bi dpri ce<100. O;

195

Supported SQL Statements

INSERT

INSERT — Creates new rows in the database, using the specified values for the columns.

Syntax

INSERT INTO table-name [(column-name [,...])] VALUES (value-expression [,...])

INSERT INTO table-name [(column-name [,...])] SELECT select-expression

Description

The INSERT statement creates one or more new rowsin the database. There aretwo forms of the INSERT
statement, INSERT INTO... VALUES and INSERT INTO... SELECT. The INSERT INTO... VALUES
statement lets you enter specific values for a adding a single row to the database. The INSERT INTO...
SELECT statement lets you insert multiple rows into the database, depending upon the number of rows
returned by the select expression.

The INSERT INTO... SELECT statement is often used for copying rows from one table to another. For
example, say you want to export all of the records associated with aparticular column value. Thefollowing
INSERT statement copies all of the records from the table ORDERS with a warehousel D of 25 into the
table EXPORT_ORDERS:

| NSERT | NTO Export_Orders SELECT * FROM Orders WHERE Cust oner | D=25;

However, the select expression can be more complex, including joining multiple tables. The following
limitations currently apply to the INSERT INTO... SELECT statement:

* INSERT INTO... SELECT can join partitioned tables only if they are joined on equality of the
partitioning columns. Also, the resulting INSERT must apply to a partitioned table and be inserted
using the same partition column value, whether the query is executed in a single-partitioned or multi-
partitioned stored procedure.

e INSERT INTO... SELECT does not support UNION statements.

In addition to the preceding limitations, there are certain instances where the select expression is too
complex to be processed. Cases of invalid select expressionsin INSERT INTO... SELECT include:

* A LIMIT or TOP clause applied to a partitioned table in a multi-partitioned query
* A GROUPBY of apartitioned table where the partitioning column is not in the GROUP BY clause

Deterministic behavior is critical to maintaining the integrity of the data in a K-safe cluster. Because an
INSERT INTO... SELECT statement performs both aquery and aninsert based on the results of that query,
if the selection expression would produces non-deterministic results, the VoltDB query planner rejectsthe
statement and returns an error. See Section 5.1.2, “VoltDB Stored Procedures are Deterministic” for more
information on the importance of determinism in SQL queries.

If you specify the column names following the table name, the values will be assigned to the columnsin
the order specified. If you do not specify the column names, values will be assigned to columns based on
the order specified in the schema definition. However, if you specify a subset of the columns, you must
specify values for any columns that are explicitly defined in the schemaas NOT NULL and do not have
adefault value assigned.

196

Supported SQL Statements

You can use subgueries within the VALUES clause of the INSERT statement, with the following
provisions:

» Seethedescription of subqueriesinthe SELECT statement for general rules concerning the construction
of subqueries.

* Inamulti-partition procedure, subqueries of the INSERT statement can only reference replicated tables.
* Insingle-partitioned procedures, the subquery can reference both partitioned and replicated tables.

» For ad hoc INSERT statements, the samerules apply except the SQL statement itself determineswhether
VoltDB executes it as a single-partitoned or multi-partitioned procedure. Statements that insert rows
into a partitioned table based on a specific value of the partitioning column are executed as single-
partitioned procedures. All other statements are multi-partitioned.

Examples

The following example inserts values into the columns (firstname, mi, lastname, and emp_id) of an
EMPLOYEE table:

| NSERT | NTO enpl oyee VALUES ('Jane', '@, 'Public', 145303);

The next example performs the same operation with the same results, except this INSERT statement
explicitly identifies the column names and changes the order:

I NSERT | NTO enpl oyee (enp_id, |astnanme, firstnane, m)
VALUES (145303, 'Public', 'Jane', 'Q);

Thelast example assigns valuesfor the employee | D and thefirst and last names, but not the middleinitial.
This query will only succeed if the MI column is nullable or has a default value defined in the database
schema.

| NSERT | NTO enpl oyee (enp_id, |astnanme, firstnane)
VALUES (145304, 'Doe', 'John');

197

Supported SQL Statements

SELECT

SELECT — Fetches the specified rows and columns from the database.

Syntax

Select-statement [{set-operator} Select-statement] ...

Select-statement:
SELECT [TOP integer-value]
{*| [ALL | DISTINCT] { column-name | selection-expression } [AS alias] [,...] }
FROM { table-reference } [join-clause]...
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
[clause...]

table-reference:
{ table-name [AS alias] | view-name [AS alias] | sub-query AS alias }

sub-query:
(Select-statement)

join-clause:
, table-reference
[INNER | {LEFT | RIGHT | FULL } [OUTER]] JOIN [{table-reference}] [join-condition]

join-condition:
ON conditional-expression
USING (column-reference [,...])

clause:
ORDER BY { column-name | alias } [ASC | DESC] [,...]
GROUP BY { column-name | alias } [,...]
HAVING boolean-expression
LIMIT integer-value [OFFSET row-count]

set—operator:
UNION [ALL]
INTERSECT [ALL]
EXCEPT

Description

The SELECT statement retrieves the specified rows and columns from the database, filtered and sorted
by any clauses that are included in the statement. In its simplest form, the SELECT statement retrieves
the values associated with individual columns. However, the selection expression can be a function such
as COUNT and SUM.

The following features and limitations are important to note when using the SELECT statement with
VoltDB:

» SeeAppendix C, SQL Functions for afull list of the SQL functions that VoltDB supports.

198

Supported SQL Statements

VoltDB supportsthe following operatorsin expressions: addition (+), subtraction (-), multiplication (*),
division (*) and string concatenation (|]).

TOP nisasynonymforLIM T n.

The WHERE expression supports the boolean operators: equals (=), not equals (1= or <>), greater than
(>), lessthan (<), greater than or equal to (>=), lessthan or equal to (<=), LIKE, ISNULL, ISDISTINCT,
IS NOT DISTINCT, AND, OR, and NOT. Note, however, although OR is supported syntactically,
VoltDB does not optimize these operations and use of OR may impact the performance of your queries.

The boolean expression LIKE provides text pattern matching in a VARCHAR column. The syntax of
the LIKE expression is{stri ng- expressi on} LIKE '{pattern}' where the pattern can
contain text and wildcards, including the underscore (_) for matching a single character and the percent
sign (%) for matching zero or more characters. The string comparison is case sensitive.

Where an index exists on the column being scanned and the pattern starts with atext prefix (rather than
starting with awildcard), VoltDB will attempt to use theindex to maximize performance, For example, a
query limiting the resultsto rows from the EMPL OY EE table where the primary index, the JOB_CODE
column, begins with the characters "Temp" looks like this:

SELECT * from EMPLOYEE where JOB CODE |i ke ' Tenp% ;

Theboolean expression IN determinesif agiven valueisfound within alist of alternatives. For example,
in the following code fragment the IN expression looks to see if a record is part of Hispaniola by
eva uating whether the column COUNTRY is equal to either "Dominican Republic' or "Haiti":

WHERE Country IN (' Dom nican Republic', "Haiti')

Note that the list of alternatives must be enclosed in parentheses. The result of an IN expression is
equivalent to a sequence of equality conditions separated by OR. So the preceding code fragment
produces the same boolean result as.

VWHERE Country='Dom ni can Republic' OR Country='"Haiti'

The advantages are that the IN syntax provides more compact and readable code and can provide
improved performance by using an index on the initial expression where available.

The boolean expression BETWEEN determinesif avalue falls within agiven range. The evaluation is
inclusive of the end points. In thisway BETWEEN is a convenient alias for two boolean expressions
determining if avalue is greater than or equal to (>=) the starting value and less than or egqual to (<=)
the end value. For example, the following two WHERE clauses are equivalent:

VWHERE sal ary BETWEEN ? AND ?
WHERE sal ary >= ? AND salary <= ?

The boolean expressions ISDISTINCT FROM and ISNOT DISTINCT FROM are similar to theequals
("=") and not equals ("<>") operators respectively, except when evaluating null operands. If either or
both operands are null, the equals and not equals operators return a boolean null value, or false. IS
DISTINCT FROM and ISNOT DISTINCT FROM consider null avalid operand. Soif only one operand
isnull ISDISTINCT FROM returnstrue and ISNOT DISTINCT FROM returnsfalse. If both operands
arenull ISDISTINCT FROM returns false and ISNOT DISTINCT FROM returns true.

When using placeholders in SQL statements involving the IN list expression, you can either do
replacement of individual values within the list or replace the list as a whole. For example, consider
the following statements:

SELECT * from EMPLOYEE where STATUS IN (?, ?,7?);

199

Supported SQL Statements

SELECT * from EMPLOYEE where STATUS IN ?;

In the first statement, there are three parameters that replace individual valuesin the IN list, alowing
you to specify exactly three selection values. In the second statement the placeholder replacesthe entire
list, including the parentheses. In this case the parameter to the procedure call must be an array and
alows you to change not only the values of the alternatives but the number of criteria considered.

Thefollowing Javacode fragment demonstrates how thesetwo queries can be used in astored procedure,
resulting in equivalent SQL statements being executed:

String argl = "Sal ary";
String arg2 = "Hourly";
String arg3 = "Parttime";

vol t QueueSQL(queryl, argl, arg2, arg3);

String listargs[] = new String[3];

listargs[0] = argl;
listargs[1l] = arg2;
listargs[2] = arg3;

vol t QueueSQL(query2, (Object) listargs);

Note that when passing arrays as parameters in Java, it is a good practice to explicitly cast them as an
object to avoid the array being implicitly expanded into individual call parameters.

* VoltDB supportsthe use of CASE-WHEN-THEN-EL SE-END for conditional operations. For example,
the following SELECT expression uses a CASE statement to return different values based on the
contents of the price column:

SELECT Prod_nane,
CASE WHEN price > 100. 00
THEN ' Expensi ve'
ELSE ' Cheap'
END
FROM pr oduct s ORDER BY Prod_nane;

For more complex conditional operations with multiple alternatives, use of the DECODE() function is
recommended.

» VoltDB supports both inner and outer joins.

e The SELECT statement supports subqueries as atable reference in the FROM clause. Subqueries must
be enclosed in parentheses and must be assigned atable alias.

* You can only join two or more partitioned tables if those tables are partitioned on the same value and
joined on equality of the partitioning column. Joining two partitioned tables on non-partitioned columns
or on arange of valuesisnot supported. However, there are no limitations on joining to replicated tables.

» Extremely large result sets (greater than 50 megabytes in size) are not supported. If you execute a
SELECT statement that generates a result set of more than 50 megabytes, VoltDB will return an error.

Window Functions

Window functions, which can appear in the selection list, allow you to perform more selective calcul ations
on the statement results than you can do with plain aggregation functions such as COUNT() or SUM().
Window functions execute the specified operation on a subset of the total selection results, controlled by
the PARTITION BY and ORDER BY clauses. The overall syntax for awindow function is as follows:

200

Supported SQL Statements

function-name([expression])
OVER ([PARTITION BY {expression [,...]}] [ORDER BY { expression [,...]}])

Where:
« The PARTITION BY? clause defines how the selection results are grouped.
» The ORDER BY clause defines the order in which the rows are evaluated within each group.

An example may help explain the behavior of the two clauses. Say you have a database table that lists
the population of individual cities and includes columns for country and state. Y ou can use the window
function COUNT(city) OVER (PARTITION BY state) toinclude acount of all of the cities
within each state as part of each city record. Y ou can also control the order the records are evaluated using
the ORDER BY clause. Note, however, when you use the ORDER BY clause the window function results
are calculated sequentially. So rather than show the count of all cities in the state each time, the window
function will return the count of cities incrementally up to the current record in the group. So rather than
use COUNT() you can use RANK() to more accurately indicate the values being returned. For example,
RANK() OVER (PARTI TI ON BY state, ORDER BY city_popul ati on) liststhecitiesfor
each state with arank value showing their ranking in order of their population.

Please be aware of the following limitations when using the window functions:

* There can be only one window function per SELECT statement.

* You cannot use awindow function and GROUP BY in the same SELECT statement.

» The argument(s) to the ORDER BY clause can be either integer or TIMESTAMP expressions only.
The following list describes the operation and constraints for each window function separately.

RANK() OVER ([PARTITION BY {expression[,...]}] ORDER BY {expression[,...]})
The RANK() window function generates a BIGINT value (starting at 1) representing the ranking of
the current result within the group defined by the PARTITION BY expression(s) or of the entire result
set if PARTITION BY is not specified. No function argument is allowed and the ORDER BY clause
isrequired.

For example, if you rank a column (say, city population) and use the country column as the
partitioning column for the ranking, the cities of each country will be ranked separately. If you use
both state and country as partitioning columns, then the cities for each state in each country will be
ranked separately.

DENSE_RANK() OVER ([PARTITION BY {expression[,...]}] ORDER BY {expression[,...]})
The DENSE_RANK() window function generates a BIGINT value (starting at 1) representing the
ranking of the current result, in the same way the RANK() window function does. The difference
between RANK () and DENSE_RANK() is how they handle ranking when there is more than one row
with the same ORDER BY value.

If more than one row has the same ORDER BY value, those rows receive the same rank value in
both cases. However, with the RANK() function, the next rank value is incremented by the number
of preceding rows. For example, if the ORDER BY values of four rows are 100, 98, 98, and 73 the
respective rank values using RANK() will be 1, 2, 2, and 4. Whereas, with the DENSE_RANK()
function, the next rank value is always only incremented by one. So, if the ORDER BY values are
100, 98, 98, and 73, the respective rank values using DENSE_RANK() will be 1, 2, 2, and 3.

lUse of the keyword PARTITION is for compatibility with SQL syntax from other databases and is unrelated to the columns used to partition
single-partitioned tables. Y ou can use the RANK() functions with either partitioned or replicated tables and the ranking column does not need to
be the same as the partitioning column for VoltDB partitioned tables.

201

Supported SQL Statements

As with the RANK() window function, no function argument is allowed for the DENSE_RANK()
function and the ORDER BY clauseisrequired.

COUNT({expression}) OVER ([PARTITION BY {expression[,...]}] [ORDER BY {expression|,...]}])
The COUNT () window function generates a sub-count of the number of rowswithin the current result
set, where the PARTITION BY clause defines how the rows are grouped. The function argument is
required.

SUM({expression}) OVER ([PARTITION BY {expression[,...]}] [ORDER BY {expression[,..]}])
The SUM() window function generates a sub-total of the specified column within the current result
set, where the PARTITION BY clause defines how the rows are grouped. The function argument is
required.

MAX ({expression}) OVER ([PARTITION BY {expression[,...]}] [ORDER BY {expression[,...]}])
The MAX() window function reports the maximum value of a column within the current result set,
where the PARTITION BY clause defines how the rows are grouped. If the ORDER BY clause is
specified, the maximum value is calculated incrementally over the rows in the order specified. The
function argument is required.

MIN({expression}) OVER ([PARTITION BY {expression[,...]}] [ORDER BY {expression[,...]}])
The MIN() window function reports the minimum value of a column within the current result set,
where the PARTITION BY clause defines how the rows are grouped. If the ORDER BY clause is
specified, the minimum value is calculated incrementally over the rows in the order specified. The
function argument is required.

Subqueries

The SELECT statement can include subqueries. Subqueries are separate SELECT statements, enclosed in
parentheses, where the results of the subquery are used as values, expressions, or arguments within the
surrounding SELECT statement.

Subqueries, likeany SELECT statement, are extremely flexible and can return awide array of information.
A subquery might return:

» A single row with a single column — this is sometimes known as a scalar subquery and represents a
singlevalue

* A single row with multiple columns — this is also known as a row value expression
» Multiple rows with one or more columns

In general, VoltDB supports subqueries in the FROM clause, in the selection expression, and in boolean
expressionsinthe WHERE clause or in CASE-WHEN-THEN-EL SE-END operations. However, different
types of subqueries are alowed in different situations, depending on the type of data returned.

* Inthe FROM clause, the SELECT statement supports all types of subquery as a table reference. The
subquery must be enclosed in parentheses and must be assigned atable alias.

* Inthe selection expression, scalar subqueries can be used in place of a single column reference.

* Inthe WHERE clause and CA SE operations, both scalar and non-scalar subqueries can be used as part
of boolean expressions. Scalar subqueries can be used in place of any single-valued expression. Non-
scalar subqueries can be used in the following situations:

* Row value comparisons — Boolean expressions that compare one row value expression to another
can use subqueries that resolve to one row with multiple columns. For example:

202

Supported SQL Statements

select * fromtl
where (a,c) > (select a, ¢ fromt2 where b=tl.b);

¢ IN and EXISTS — Subqueries that return multiple rows can be used as an argument to the IN or
EXISTS predicate to determine if a value (or set of values) exists within the rows returned by the
subquery. For example:

select * fromtl

where a in (select a fromt?2);
select * fromtl

where (a,c) in (select a, ¢ fromt2 where b=t1.b);
select * fromtl where ¢ > 3 and

exists (select a, b fromt2 where a=t1l.a);

¢ ANY and ALL — Multi-row subqueriescan also beused asthetarget of an ANY or ALL comparison,
using either a scalar or row expression comparison. For example:

select * fromtl
where a > ALL (select a fromt2);
select * fromtl
where (a,c) = ANY (select a, ¢ fromt2 where b=t1.b);

Note that VoltDB does not support subqueries in the HAVING, ORDER BY, or GROUP BY clauses.
Subqueries are a so not supported for any of the data manipulation language (DML) statements: DELETE,
INSERT, UPDATE, and UPSERT.

For the initial release of subqueries in selection and boolean expressions, only replicated tables can be
used in the subquery. Both replicated and partitioned tables can be used in subqueries in place of table
references in the FROM clause.

Set Operations

VoltDB also supports the set operations UNION, INTERSECT, and EXCEPT. These keywords let you
perform set operations on two or more SELECT statements. UNION includes the combined results sets
from the two SELECT statements, INTERSECT includes only those rows that appear in both SELECT
statement result sets, and EXCEPT includes only those rows that appear in one result set but not the other.

Normally, UNION and INTERSECT provide a set including unique rows. That is, if a row appears in
both SELECT results, it only appears once in the combined result set. However, if you include the ALL
modifier, all matching rows are included. For example, UNION ALL will result in single entries for the
rows that appear in only one of the SELECT results, but two copies of any rows that appear in both.

The UNION, INTERSECT, and EXCEPT operations obey the same rules that apply to joins:
* You cannot perform set operations on SELECT statements that reference the sametable.

» All tablesin the SELECT statements must either be replicated tables or partitioned tables partitioned
on the same column value, using equality of the partitioning column in the WHERE clause.

Examples

The following example retrieves all of the columns from the EMPLOY EE table where the last name is
"Smith":

SELECT * FROM enpl oyee WHERE | astnane = 'Smith';

203

Supported SQL Statements

Thefollowing example retrieves selected columns for two tables at once, joined by the employee id using
an implicit inner join and sorted by last name:

SELECT | astnane, firstname, salary
FROM enpl oyee AS e, conpensation AS c
WHERE e. enpl oyee _id = c.enployee_id
ORDER BY | ast nane DESC;

The following example includes both a simple SQL query defined in the schema and a client application
to call the procedure repestedly. This combination usesthe LIMIT and OFFSET clausesto "page” through
alargetable, 500 rows at atime.

When retrieving very large volumes of data, it isagood ideato use LIMIT and OFFSET to constrain the
amount of datain each transaction. However, to perform LIMIT OFFSET queries effectively, the database
must include atree index that encompasses all of the columns of the ORDER BY clause (in this example,
the lastname and firstname columns).

Schema:

CREATE PROCEDURE EnpByLimt AS
SELECT | ast nanme, firstname FROM enpl oyee
WHERE conpany = ?
ORDER BY | ast nane ASC, firstnane ASC
LIMT 500 OFFSET ?;

PARTI TI ON PROCEDURE EmpByLimit ON TABLE Enpl oyee COLUWN Conpany;
Java Client Application:

| ong offset = 0;
String conpany = "ACME Expl osives";
bool ean al |l done = fal se;
while (! alldone) {
Vol t Tabl e results[] = client.callProcedure("EnpByLimt",
conpany, of fset) . get Resul ts();
if (results[0].getRowCount() < 1) {
/1 No nmore records.
al | done = true;
} else {
/1 do sonething with the results.
}

of fset += 500;

204

Supported SQL Statements

TRUNCATE TABLE

TRUNCATE TABLE — Deletes all records from the specified table.

Syntax

TRUNCATE TABLE table-name

Description

The TRUNCATE TABLE statement deletes al of the records from the specified table. TRUNCATE
TABLE isthe same as the statement DELETE FROM {t abl e- name} with no selection clause. These
statements contain optimizations to increase performance and reduce memory usage over an equivalent
DELETE statement containing a WHERE selection clause.

The following behavior is important to remember when using the TRUNCATE TABLE statement in
VoltDB:

» Executing a TRUNCATE TABLE query on a partitioned table within a single-partitioned stored
procedure will only delete the records within the current partition. Records in other partitions will be
unaffected.

* You cannot execute a TRUNCATE TABLE query on areplicated table from within a single-partition
stored procedure. To truncate a replicated table you must execute the query within a multi-partition
stored procedure or as an ad hoc query.

Examples
The following example removes all data from the CURRENT_STANDINGS table;

TRUNCATE TABLE Current _standi ngs;

205

Supported SQL Statements

UPDATE

UPDATE — Updates the values within the specified columns and rows of the database.

Syntax

UPDATE table-name SET column-name = value-expression [, ...]
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description

The UPDATE statement changes the values of columns within the specified records. The following
limitations are important to note when using the UPDATE statement with VoltDB:

» VoltDB supports the following arithmetic operators in expressions. addition (+), subtraction (-),
multiplication (*), and division (*).

» The WHERE expression supports the boolean operators: equals (=), not equals (!= or <>), greater than
(>), lessthan (<), greater than or equal to (>=), lessthan or equal to (<=), ISNULL, AND, OR, andNOT.
Note, however, although OR is supported syntactically, VoltDB does not optimize these operations and
use of OR may impact the performance of your queries.

* You can use subqueries in place of value expressions within the SET and WHERE clauses of the
UPDATE statement, with the following provisions:

e See the description of subqueries in the SELECT statement for genera rules concerning the
construction of subqueries.

¢ In a multi-partition procedure, subqueries of the UPDATE statement can only reference replicated
tables.

 Insingle-partitioned procedures, the subquery can reference both partitioned and replicated tables.

« For ad hoc UPDATE statements, the same rules apply except the SQL statement itself determines
whether VoltDB executes it as a single-partitoned or multi-partitioned procedure. Statements that
modify apartitioned table based on a specific value of the partitioning column are executed as single-
partitioned procedures. All other statements are multi-partitioned.

Examples

The following example changes the ADDRESS column of the EMPLOY EE record with an employee ID
of 145303:

UPDATE enpl oyee
SET address = '49 Lavender Sweep'
WHERE enpl oyee_id = 145303;

The following example increases the starting price by 25% for all ITEM records with a category ID of 7:

UPDATE item SET startprice = startprice * 1.25 WHERE categoryid = 7;

206

Supported SQL Statements

UPSERT

UPSERT — Either inserts new rows or updates existing rows depending on the primary key value.

Syntax

UPSERT INTO table-name [(column-name [,...])] VALUES (value-expression [,...])

UPSERT INTO table-name [(column-name [,...])] SELECT select-expression

Description

The UPSERT statement has the same syntax asthe INSERT statement and will perform the same function,
assuming arecord with amatching primary key does not already exist in the database. If such arecord does
exist, UPSERT updates the existing record with the new column values. Note that the UPSERT statement
can only be executed on tables that have a primary key.

UPSERT has the same two forms as the INSERT statement: UPSERT INTO... VALUES and UPSERT
INTO... SELECT. The UPSERT statement also has similar constraints and limitations as the INSERT
statement with regards to joining partitioned tables and overly complex SELECT clauses. (See the
description of the INSERT statement for details.)

However, UPSERT INTO... SELECT has an additional limitation: the SELECT statement must produce
deterministically ordered results. That is, the query must not only produce the same rows, they must bein
the same order to ensure the subsequent inserts and updates produce identical results.

You can use subqueries within the VALUES clause of the UPSERT statement, with the following
provisions:

 Seethedescription of subqueriesinthe SELECT statement for general rules concerning the construction
of subqueries.

* Inamulti-partition procedure, subqueriesof the UPSERT statement can only referencereplicated tables.
* Insingle-partitioned procedures, the subquery can reference both partitioned and replicated tables.

» For ad hoc UPSERT statements, the same rules apply except the SQL statement itself determines
whether VoltDB executes it as a single-partitoned or multi-partitioned procedure. Statements that
modify a partitioned table based on a specific value of the partitioning column are executed as single-
partitioned procedures. All other statements are multi-partitioned.

Examples

Thefollowing examples use two tables, Employee and Manager, both of which define the column emp_id
asaprimary key. In the first example, the UPSERT statement either creates a new row with the specified
values or updates an existing row with the primary key 145303.

UPSERT | NTO enpl oyee (enp_id, lastnane, firstnane, title, departnent)
VALUES (145303, 'Public', 'Jane', 'Manager', 'HR);

The next example copies records from the Employee table to the Manager table, if the employee's title
is"Manager". Again, new records will be created or existing records updated depending on whether the

207

Supported SQL Statements

employee already has arecord in the Manager table. Notice the use of the primary key in an ORDER BY
clause to ensure deterministic results from the SELECT statement.

UPSERT | NTO Manager (enp_id, lastnane, firstnane, title, departnent)
SELECT * from Enpl oyee WHERE titl e=' Manager' ORDER BY enp_i d;

208

Appendix C. SQL Functions

Functions let you aggregate column values and perform other calculations and transformations on data
within your SQL queries. This appendix liststhe functions al phabetically, describing for each their syntax
and purpose. The functions can also be grouped by the type of datathey produce or operate on, as listed
below.

Bitwise Functions

BIT_SHIFT_LEFT()
BIT_SHIFT_RIGHT()
BITAND()

BITNOT()

BITOR()

BITXOR()

Column Aggregation Functions

APPROX_COUNT _DISTINCTY()
AVG()

COUNT()

MAX()

MIN()

SUM()

Date and Time Functions

CURRENT_TIMESTAMP()
DATEADD()

DAY (), DAYOFMONTH()
DAY OFWEEK ()
DAYOFYEAR()
EXTRACT()
FROM_UNIXTIME()
HOUR()

IS VALID_TIMESTAMP()
MAX_VALID_TIMESTAMP()
MIN_VALID_TIMESTAMP()
MINUTE()

MONTH()

NOW()

QUARTER()

SECOND()
SINCE_EPOCH()
TO_TIMESTAMP()
TRUNCATE()

WEEK (), WEEKOFY EAR()
WEEKDAY ()

YEAR()

Geogspatial Functions

« AREA()

209

SQL Functions

ASTEXT()

CENTROID()
CONTAINS()
DISTANCE()

DWITHIN()
ISINVALIDREASON()
ISVALID()

LATITUDE()
LONGITUDE()
MAKEVALIDPOLY GON()
NUMINTERIORRINGS()
NUMPOINTS()
POINTFROMTEXT()
POLYGONFROMTEXT()
VALIDPOLYGONFROMTEXT()

JSON Functions

ARRAY_ELEMENT()
ARRAY_LENGTH()
FIELD()
SET_FIELD()

I nternet Functions

INET6_ATON()
INET6_NTOA()
INET_ATON()
INET_NTOA()

L ogic and Conversion Functions

CAST()
COALESCE()
DECODE()

M ath Functions

ABS()
CEILING()

EXP()
FLOOR()
LN(), LOG()
LOG10()
MOD()
POWER()
ROUND()

SQRT()

String Functions

BIN()
CHAR()
CHAR_LENGTH()

210

SQL Functions

CONCATY()
FORMAT_CURRENCY ()
HEX()

LEFT()

LOWER()
OCTET_LENGTH()
OVERLAY()
POSITION()
REGEXP_POSITION()
REPEAT()
REPLACE()

RIGHT()

SPACE()

STR()

SUBSTRINGY()

TRIM()

UPPER()

Trigonometric Functions

.« COY()

. COT()

.« CSC()

- DEGREES()
. PI()

« RADIANS()
. SEC()

. SIN()

. TAN()

211

SQL Functions

ABS()

ABS() — Returns the absolute value of a numeric expression.

Syntax

ABS(numeric-expression)

Description
The ABS() function returns the absolute value of the specified numeric expression.
Example

The following example sorts the results of a SELECT expression by its proximity to a target value

(specified by a placeholder), using the ABS() function to normalize values both above and below the
intended target.

SELECT price, product nanme FROM product |i st
ORDER BY ABS(price - ?) ASC

212

SQL Functions

APPROX_COUNT_DISTINCT()

APPROX_COUNT_DISTINCT() — Returns an approximate count of the number of distinct values for
the specified column expression.

Syntax

APPROX_COUNT_DISTINCT(column-expression)

Description

The APPROX_COUNT_DISTINCT() function returns an approximation of the number of distinct values
for the specified column expression. APPROX_COUNT_DISTINCT (column-expression) isan alternative
to the SQL expression "COUNT(DI STI NCT col utm- expr essi on) ™.

The reason for using APPROX_COUNT_DISTINCT() is because it can be significantly faster and use
less temporary memory than performing a precise COUNT DISTINCT operation. Thisis particularly true
when calculating a distinct count of a partitioned table across al of the partitions. The approximation
usually falls within £1% of the actual count.

Y ou can usethe APPROX_COUNT _DISTINCT() function on column expressions of decimal, timestamp,

or any size integer datatype. Y ou cannot use the function on floating point (FLOAT) or variable length
(VARCHAR and VARBINARY) columns.

Example

Thefollowing example returns an approximation of the number of distinct products availablein each store.

SELECT store, APPROX COUNT_ DI STI NCT(product i d) FROM cat al og
CGROUP BY store ORDER BY store,

213

SQL Functions

AREA()

AREA() — Returnsthe area of a polygon in square meters.

Syntax

AREA(polygon)

Description
The AREA () function returnsthe area of a GEOGRAPHY valuein square meters. The areaisthetotal area

of the outer ring minus the area of any inner rings within the polygon. The areais returned as a FLOAT
value.

Example

The following exampl e cal cul ates the sum of the areas of multiple polygons representing fields on afarm.

SELECT farner, SUM AREA(field)) FROM farm
VWHERE farner = 'A d MacDonal d° GROUP BY farner;

214

SQL Functions

ARRAY_ELEMENT()

ARRAY_ELEMENT() — Returns the element at the specified location in a JSON array.

Syntax

ARRAY_ELEMENT(JSON-array, element-position)

Description

The ARRAY_ELEMENTY() function extracts a single element from a JSON array. The array position is
zero-based. In other words, thefirst element inthearray isin position "0". The function returnsthe element
as astring. For example, the following function invocation returns the string "two":

ARRAY_ELEMENT('["zero", "one","two", "three"]", 2)

Note that the array element isalwaysreturned asa string. So in the following example, the function returns
"2" asastring rather than an integer:

ARRAY_ELEMENT('[0,1,2,3]",2)

Finally, the element may itself be a valid JSON-encoded object. For example, the following function
returns the string "[0,1,2,3]":

ARRAY ELEMENT('[[O0,1,2,3],["zero","one","tw","three"]]"', 0)

The ARRAY_ELEMENT() function can be combined with other functions, such as FIELD(), to traverse
more complex JSON structures. The function returns a NULL value if any of the following conditions
aretrue:

» The position argument is less than zero
» The position argument is greater than or equal to the length of the array
» The JSON string does not represent an array (that is, the string isavalid JSON scalar value or object)

The function returns an error if the first argument is not avalid JSON string.

Example

The following example uses the ARRAY_ELEMENT() function along with FIELD() to extract specific
array elements from onefield in a JSON-encoded VARCHAR column:

SELECT | anguage,
ARRAY_ELEMENT(FI ELD(wor ds, ' colors'), 1) AS col or,
ARRAY_ELEMENT(FI ELD(wor ds, ' nunbers'), 2) AS nunber
FROM wor | d_I| anguages WHERE | anguage = ' French';

Assuming the column words has the following structure, the query returns the strings "French’, "vert",

and "trois".

{"colors":["rouge","vert","bleu"],
“nunbers":["un","deux","trois"]}

215

SQL Functions

ARRAY_LENGTH()

ARRAY _L ENGTH() — Returns the number of elementsin a JSON array.

Syntax

ARRAY_LENGTH(JSON-array)

Description

The ARRAY_LENGTH() returns the length of a JSON array; that is, the number of elements the array
contains. The length is returned as an integer.

The ARRAY _LENGTH)() function can be combined with other functions, such as FIELD(), to traverse
more complex JSON structures.

The function returns NULL if the argument is a valid JSON string but does not represent an array. The
function returns an error if the argument is not avalid JSON string.

Example

Thefollowing example usesthe ARRAY _LENGTH(), ARRAY_ELEMENTY(), and FIELD() functionsto
return the last element of an array in alarger JSON string. The functions perform the following actions:

* Innermost, the FIEL D() function extractsthe JSON field "alerts’, which isassumed to be an array, from
the column messages.

* ARRAY_LENGTH() determines the number of elementsin the array.

* ARRAY_ELEMENT() returns the last element based on the value of ARRAY _LENGTH() minus one
(because the array positions are zero-based).

SELECT ARRAY_ELEMENT(FI ELD(messages, 'al erts'),
ARRAY_ LENGTH(FI ELD(nessages, 'alerts'))-1) AS last_alert,
station FROM report! og
WHERE st ati on=7?;

216

SQL Functions

ASTEXT()

ASTEXT() — Returns the Well Known Text (WKT) representation of a GEOGRAPHY or
GEOGRAPHY _POINT value.

Syntax

ASTEXT(polygon | point)

Description

The ASTEXT() function returns a text string containing a Well Known Text (WKT) representation of a
GEOGRAPHY or GEOGRAPHY _POINT vaue. ASTEXT(value) produces the same results as calling
CAST(value ASVARCHAR).

Note that ASTEXT() does not return the identical text string that was originally input using
POINTFROMTEXT() or POLY GONFROMTEXT(). When geospatia datais converted from WKT toits
internal representation, the string representations of longitude and latitude are converted to doubl e floating
point values. Rounding and differing levels of precision may result in small differencesin the stored values.
The use of spaces and capitalization may also vary between the original input strings and the computed
output of the ASTEXT() function.

Examples

The following SELECT statement uses the ASTEXT() function to return the WKT representation of a
GEOGRAPHY _POINT vauein the column location.

SELECT nane, ASTEXT(!ocation) FROMcity
WHERE state = 'NY' ORDER BY nane;

217

SQL Functions

AVG()

AVG() — Returns the average of arange of numeric column values.

Syntax

AVG(column-expression)

Description

The AV G() function returns the average of arange of numeric column values. The values being averaged
depend on the constraints defined by the WHERE and GROUP BY clauses.

Example

The following example returns the average price for each product category.

SELECT AVQE price), category FROM product |i st
GROUP BY cat egory ORDER BY category;

218

SQL Functions

BIN()

BIN() — Returns the binary representation of aBIGINT value as a string.

Syntax

BIN(value)

Description

The BIN() function returns the binary representation of a BIGINT value as a string. The function will
return the shortest valid string representation, truncating any preceding zeros (except in the case of the
value zero, which is returned as the string "0").

Example

The following example use the BIN and BITAND functions to return the binary representations of two
BIGINT values and their binary intersection.

$ sqglcmd

1> create table bits (a bigint, b bigint);

2> insert into bits val ues(55,99);

3> select bin(a) as intl, bin(b) as int2,

4> bi n(bitand(a, b)) as intersection frombits;
I NT1 | NT2 | NTERSECTI ON

110111 1100011 100011

219

SQL Functions

BIT_SHIFT_LEFT()

BIT_SHIFT_LEFT() — Shiftsthe bits of a BIGINT value to the |eft a specified number of places.

Syntax

BIT_SHIFT_LEFT(value, offset)

Description

TheBIT_SHIFT_LEFT() function shiftsthe bit values of aBIGINT value to the left the number of places
specified by offset. The offset must be a positiveinteger value. The unspecified bitsto the right are padded
with zeros. So, for example, if the offset is 5, theleft-most 5 bits are dropped, the remaining bits are shifted
5 places to the left, and the right-most 5 bits are set to zero. Theresult is returned asanew BIGINT value
— the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example shifts the bits in a BIGINT value three places to the left and displays the
hexadecimal representation of both theinitial value and the resulting value.

$ sqglcnd

1> create table bits (a bigint);

2> insert into bits values (112);

3> select hex(a), hex(bit_shift_left(a,3)) frombits;
Cl c2

220

SQL Functions

BIT_SHIFT_RIGHTY()

BIT_SHIFT_RIGHT() — Shiftsthe bits of aBIGINT value to the right a specified number of places.

Syntax

BIT_SHIFT_RIGHT(value, offset)

Description

The BIT_SHIFT_RIGHT() function shifts the bit values of a BIGINT value to the right the number of
places specified by offset. The offset must be a positive integer value. The unspecified bitsto the left are
padded with zeros. So, for example, if the offset is 5, the right-most 5 bits are dropped, the remaining bits
are shifted 5 places to the right, and the left-most 5 bits are set to zero. The result is returned as a new
BIGINT value — the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example shifts the bits in a BIGINT value three places to the right and displays the
hexadecimal representation of both theinitial value and the resulting value.

$ sqglcnd

1> create table bits (a bigint);

2> insert into bits values (112);

3> select hex(a), hex(bit_shift_right(a,3)) frombits;
Cl c2

221

SQL Functions

BITAND()

BITAND() — Returns the mask of bits set in both of two BIGINT values

Syntax

BITAND(value, value)

Description

The BITAND() function returns the mask of bits set in both of two BIGINT integers. In other words, it
performs a bitwise AND operation on the two arguments. The result is returned as a new BIGINT value
— the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example writes values into two BIGINT columns of the table bits and then returns the
bitwise AND of the columns:

$ sqglcnd

1> create table bits (a bigint, b bigint);
2> insert into bits (a,b) values (7,13);
3> select bitand(a,b) frombits;

Cc1

5

222

SQL Functions

BITNOTY()

BITNOT() — Returns the mask reversing every bit of aBIGINT value.

Syntax

BITNOT(value)

Description

TheBITNOT() function returnsthemask reversing every bitinaBIGINT value. In other words, it performs
a bitwise NOT operation, returning the complement of the argument. The result is returned as a new
BIGINT value — the argument to the function is not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example writesavalueinto aBIGINT column of the table bits and then returns the bitwise
NOT of the column:

$ sqglcnd

1> create table bits (a bigint);

2> insert into bits (a) values (1234567890);
3> select bitnot(a) frombits;

Cc1

-1234567891

223

SQL Functions

BITOR()

BITOR() — Returns the mask of bits set in either of two BIGINT values

Syntax

BITOR(value, value)

Description

The BITOR) function returns the mask of bits set in either of two BIGINT integers. In other words, it
performs a bitwise OR operation on the two arguments. The result is returned asanew BIGINT value —
the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example writes values into two BIGINT columns of the table bits and then returns the
bitwise OR of the columns:

$ sqglcnd

1> create table bits (a bigint, b bigint);
2> insert into bits (a,b) values (7,13);
3> select bitor(a,b) frombits;

Cl

15

224

SQL Functions

BITXOR()

BITXOR() — Returns the mask of bits set in one but not both of two BIGINT values

Syntax

BITXOR(value, value)

Description

The BITXOR() function returns the mask of bits set in one but not both of two BIGINT integers. In other
words, it performs abitwise XOR operation on the two arguments. Theresult isreturned asanew BIGINT
value — the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example writes values into two BIGINT columns of the table bits and then returns the
bitwise XOR of the columns:

$ sqglcnd

1> create table bits (a bigint, b bigint);
2> insert into bits (a,b) values (7,13);
3> select bitxor(a,b) frombits;

Cc1

10

225

SQL Functions

CAST()

CAST() — Explicitly converts an expression to the specified datatype.

Syntax

CAST(expression AS datatype)

Description

The CAST() function converts an expression to a specified datatype. Cases where casting is beneficial
include when converting between numeric types (such as integer and float) or when converting a numeric
value to astring.

All numeric datatypes can be used as the source and numeric or string datatypes can be the target. When
converting from decimal values to integers, values are truncated. Y ou can also cast from a TIMESTAMP
to a VARCHAR or from a VARCHAR to a TIMESTAMP, assuming the text string is formatted as
YYYY-MM-DD or YYYY-MM-DD HH: MM: SS.nnnnnnn. Where the runtime val ue cannot be converted (for
exampl e, the value exceeds the maximum allowable value of the target datatype) an error is thrown.

Y ou cannot use VARBINARY aseither thetarget or the source datatype. To convert between numeric and
TIMESTAMP values, use the TO_TIMESTAMP(), FROM_UNIXTIME(), and EXTRACT() functions.

Theresult of the CAST() function of anull value is the corresponding null in the target datatype.

Example

The following example uses the CAST() function to ensure the result of an expression is also afloating
point number and does not truncate the decimal portion.

SELECT contestant, CAST((votes * 100) as FLOAT) / ? as percentage
FROM cont est ORDER BY votes, contestant;

226

SQL Functions

CEILING()

CEILING() — Returnsthe smallest integer value greater than or equal to a numeric expression.

Syntax

CEILING(numeric-expression)

Description

The CEILING() function returnsthe next integer greater than or equal to the specified numeric expression.
In other words, the CEILING() function "rounds up" numeric values. For example:

CEl LI N&(3. 1415) = 4
CEILING(2.0) = 2
CEI LING(-5.32) = -5

Example

The following example uses the CEILING function to cal culate the shipping costs for a product based on
its weight in the next whole number of pounds.

SELECT shi ppi ng. cost _per _I b * CEI LI N product. wei ght),
product. prod_i d FROM pr oduct
JA N shi ppi ng ON product. prod_i d=shi ppi ng. prod_i d
ORDER BY product . prod_i d;

227

SQL Functions

CENTROID()

CENTROID() — Returns the central point of a polygon.

Syntax

CENTROID(polygon)

Description

The CENTROID() returns the central point of a GEOGRAPHY polygon. The centroid is the point where
any line passing through the centroid dividesthe polygon into two segments of equal area. Thereturn value
of the CENTROID() function isa GEOGRAPHY _POINT value.

Note that the centroid may fall outside of the polygon itself. For example, if the polygonisaring (that is,
acirclewith an inner circle removed) or a horseshoe shape.

Example

The following example uses the CENTROID() and LATITUDE() functions to return alist of countries
where the majority of the land mass falls above the equator.

SELECT nane, capital FROM country
WHERE LATI TUDE(CENTRO D(outline)) > 0
ORDER BY nane, capital;

228

SQL Functions

CHAR()

CHAR() — Returns a string with asingle UTF-8 character associated with the specified character code.

Syntax

CHAR(integer)

Description
The CHAR() function returns a string containing a single UTF-8 character that matches the specified

UNICODE character code. One use of the CHAR() function is to insert non-printing and other hard to
enter characters into string expressions.

Example

The following example uses CHAR() to add a copyright symbol into aVARCHAR field.

UPDATE book SET copyright _notice= CHAR(169) || CAST(? AS VARCHAR)
VWHERE i sbhn=7?;

229

SQL Functions

CHAR_LENGTH()

CHAR_LENGTH() — Returns the number of charactersin astring.

Syntax

CHAR_LENGTH(string-expression)

Description
The CHAR_LENGTH() function returns the number of text charactersin a string.

Note that the number of characters and the amount of physical space required to store those characters can
differ. To measure the length of the string, in bytes, use the OCTET_LENGTH() function.

Example

The following example returns the string in the column LastName as well as the number of characters and
length in bytes of that string.

SELECT Last Name, CHAR LENGTH(Last Nane), OCTET_LENGTH(Last Nane)
FROM Cust omer s ORDER BY Last Nane, First Nane;

230

SQL Functions

COALESCE()

COALESCE() — Returns the first non-null argument, or null.

Syntax

COALESCE(expression [, ...])

Description

The COALESCE() function takes multiple arguments and returns the value of the first argument that is
not null, or — if all arguments are null — the function returns null.

Examples

The following example uses COALESCE to perform two functions:
* Replace possibly null column values with placehol der text
* Return one of severa column values

In the second usage, the SELECT statement returns the value of the column State, Province, or Territory
depending on the first that contains a non-null value. Or the function returns a null value if none of the
columns are non-null.

SELECT | ast nane, firstnane,
COALESCE(addr ess, ' [address unkown] '),
COALESCE(state, province, territory),
country FROM users ORDER BY | ast nane;

231

SQL Functions

CONCAT()

CONCAT() — Concatenates two or more strings and returns the result.

Syntax

CONCAT(string-expression {, ... })

Description

The CONCAT() function concatenates two or more strings and returns the resulting string. The string
concatenation operator || performs the same function as CONCAT().

Example

The following example concatenates the contents of two columns as part of a SELECT expression.

SELECT price, CONCAT(category, part_nane) AS full _part_nane
FROM product |ist ORDER BY pri ce;

The next exampl e does something similar but usesthe || operator asashorthand to concatenate three strings,
two columns and a string constant, as part of a SELECT expression.

SELECT lastnanme || ', ' || firstname AS full _nane
FROM cust oners ORDER BY | ast nane, firstname;

232

SQL Functions

CONTAINS()

CONTAINS() — Returnstrue or false depending if a point falls within the specified polygon.

Syntax

CONTAINS(polygon, point)

Description

The CONTAINS() function determines if agiven point falls within the specified GEOGRAPHY polygon.
If so, the function returns a boolean value of true. If not, it returns false.

Example

The following example uses the CONTAINS function to see if a specific user is with the boundaries of a
city or not by evaluating if the user.location GEOGRAPHY _POINT column valuefallswithin the polygon
defined by the city.boundary GEOGRAPHY column.

SELECT user. nane, user.id, city.name FROM user, city
VWHERE user.id = ? AND CONTAI NS(city. boundary, user.|ocation);

233

SQL Functions

COSl)

COS() — Returns the cosine of an angle specified in radians.

Syntax

COS({numeric-expression})

Description

The COS() function returns the cosine of a specified angleasaFLOAT value. The angle must be specified
in radians as a numeric expression.

Example

The following example returns the sine, cosine, and tangent of angles from 0 to 90 degrees (where the
angleis specified in radians).

SELECT SI N(radi ans), COS(radians), TAN(radi ans)
FROM tri angl es WHERE radi ans >= 0 AND radi ans <= Pl ()/2;

234

SQL Functions

COT()

COT() — Returns the cotangent of an angle specified in radians.

Syntax

COT({numeric-expression})

Description

The COT() function returns the cotangent of a specified angle as a FLOAT value. The angle must be
specified in radians as a numeric expression.

Examples

The following example returns the secant, cosecant, and cotangent of angles from 0 to 90 degrees (where
the angleis specified in radians).

SELECT SEC(radi ans), CSC(radians), COT(radi ans)
FROM tri angl es WHERE radi ans >= 0 AND radi ans <= Pl ()/2;

235

SQL Functions

COUNT()

COUNT() — Returns the number of rows selected containing the specified column.

Syntax

COUNT(column-expression)

Description

The COUNT() function returns the number of rows selected for the specified column. Since the actual
value of the column is not used to calculate the count, you can use the asterisk (*) as awildcard for any
column. For example the query SELECT COUNT(*) FROM wi dget s returns the number of rowsin
thetablewi dget s, without needing to know what columns the table contains.

The one case where the column name is significant is if you use the DISTINCT clause to constrain the
selection expression. For example, SELECT COUNT(DI STI NCT | ast _nane) FROM cust oner
returns the count of unique last namesin the customer table.

Examples

The following example returns the number of rowswhere the product name starts with the captial letter A.

SELECT COUNT(*) FROM product _|i st
VWHERE pr oduct _nane LIKE 'A% ;

The next example returns the total number of unique product categories in the product list.

SELECT CQOUNT(DI STI NCT cat egory) FROM product list;

236

SQL Functions

CSC()

CSC() — Returns the cosecant of an angle specified in radians.

Syntax

CSC({numeric-expression})

Description

The CSC() function returns the cosecant of a specified angle as a FLOAT value. The angle must be
specified in radians as a numeric expression.

Examples

The following example returns the secant, cosecant, and cotangent of angles from 0 to 90 degrees (where
the angleis specified in radians).

SELECT SEC(radi ans), CSC(radians), COT(radi ans)
FROM tri angl es WHERE radi ans >= 0 AND radi ans <= Pl ()/2;

237

SQL Functions

CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP() — Returns the current time as a timestamp value.

Syntax

CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP

Description

The CURRENT_TIMESTAMP() function returns the current time as a VoltDB timestamp. The value of
the timestamp is determined when the query or stored procedure isinvoked. Since there are no arguments
to the function, the parentheses following the function name are optional.

Several important aspects of how the CURRENT_TIMESTAMP() function operates are:

The value returned is guaranteed to be identical for all partitions that execute the query.
Thevaluereturned ismeasured in millisecondsthen padded to create atimestamp valuein microseconds.

During command logging, the returned value is stored as part of the log, so when the command log is
replayed, the same value is used during the replay of the query.

Similarly, for database replication (DR) the value returned is passed and reused by the replica database
when replaying the query.

You can specify CURRENT_TIMESTAMP() as a default value in the CREATE TABLE statement
when defining the schema of aVoltDB database.

The CURRENT_TIMESTAMP() function cannot be used in the CREATE INDEX or CREATE VIEW
statements.

The NOW() and CURRENT_TIMESTAMP() functions are synonyms and perform an identical function.

Example

Thefollowing example uses CURRENT_TIMESTAMP() in the WHERE clause to delete alert eventsthat
occurred in the past:

DELETE FROM Al ert _event WHERE event tinestanp < CURRENT Tl MESTAMP;

238

SQL Functions

DATEADD()

DATEADD() — Returns a new timestamp value by adding a specified time interval to an existing
timestamp value.

Syntax

DATEADD(time-unit, interval, timestamp)

Description

The DATEADD() function creates a new TIMESTAMP value by adding (or subtracting for negative
values) the specified timeinterval from another TIMESTAMP value. Thefirst argument specifiesthetime
unit of the interval. The valid time unit keywords are:

« MICROSECOND (or MICROS)
« MILLISECOND (or MILLIS)
« SECOND

« MINUTE

« HOUR

« DAY

« MONTH

« QUARTER

. YEAR

The second argument is an integer value specifying the interval to add to the TIMESTAMP value. A
positive interval moves the time ahead. A negative interval moves the time value backwards. The third
argument specifies the TIMESTAMP value to which theinterval is applied.

The DATEADD function takes into account leap years and the variable number of days in a month.
Therefore, if the year of either the specified timestamp or the resulting timestamp is a leap year, the day
is adjusted to its correct value. For example, DATEADD(YEAR, 1, ‘2008-02-29') returns ‘ 2009-02-28’ .
Similarly, if the original timestamp isthelast day of amonth, then the resulting timestamp will be adjusted
as necessary. For example, DATEADD(MONTH, 1, *2008-03-31") returns ‘ 2008-04-30’.

Example

Thefollowing example usesthe DATEADD() functiontofind all recordswherethe TIMESTAMP column,
incident, occurs within one day before a specified timestamp (entered as a POSIX time value).

SELECT incident, description FROM securitylLog
VWHERE DATEADD(DAY, 1, incident) > FROM UNI XTI ME(?)
AND i nci dent < FROM UNI XTI ME(?)
ORDER BY incident, description;

239

SQL Functions

DAY(), DAYOFMONTH()

DAY (), DAY OFMONTH() — Returns the day of the month as an integer value.

Syntax

DAY(timestamp-value)

DAYOFMONTH(timestamp-value)

Description

The DAY () function returns an integer value between 1 and 31 representing the timestamp's day of the
month. The DAY () and DAY OFMONTH() functions are synonyms. These functions produce the same
result as using the DAY or DAY_OF MONTH keywords with the EXTRACT() function.

Examples

Thefollowing example uses the DAY (), MONTH(), and Y EAR() functions to return atimestamp column
as aformatted date string.

SELECT CAST(MONTH(starttine) AS VARCHAR) ||
CAST(DAY(starttine) AS VARCHAR) | |
CAST(YEAR(starttinme) AS VARCHAR), title
FROM event ORDER BY starttine;

|/||
|/||

I
I
description

240

SQL Functions

DAYOFWEEK()

DAY OFWEEK () — Returns the day of the week as an integer between 1 and 7.

Syntax

DAYOFWEEK(timestamp-value)

Description

The DAY OFWEEK () function returns an integer value between 1 and 7 representing the day of the week
in atimestamp value. For the DAY OFTHEWEEK() function, the week starts (1) on Sunday and ends (7)
on Saturday.

This function produces the same result as using the DAY_OF WEEK keyword with the EXTRACT()
function.

Examples

The following example uses DAY OFWEEK() and the DECODE() function to return a string value
representing the day of the week for the specified TIMESTAMP value.

SELECT eventti ne,
DECODE(DAY(]=V\EEK(eventtine),

' Sunday"'
' Monday'
' Tuesday' ,
' Wednesday'
" Thur sday' ,
"Friday',
' Saturday') AS eventday
FROM event ORDER BY eventti ne;

NoghkrwnE

241

SQL Functions

DAYOFYEAR()

DAY OFYEAR() — Returns the day of the year as an integer between 1 and 366.

Syntax

DAYOFYEAR(timestamp-value)

Description

The DAY OFY EAR() function returns an integer val ue between 1 and 366 representing the day of the year
of atimestamp value. Thisfunction produces the same result asusing the DAY _OF_Y EAR keyword with
the EXTRACT() function.

Examples

Thefollowing example uses the DAY OFY EAR() function to determine the number of days until an event
occurs.

SELECT DECODE(YEAR(NOW, YEAR(starttine),
CAST(DAYOFYEAR(starttine) - DAYOFYEAR(NOW AS VARCHAR)
|| ' days remaining',
CAST(YEAR(starttine) - YEAR(NOWN AS VARCHAR)
|| ' years remaining'),
event nane FROM event ;

242

SQL Functions

DECODE()

DECODE() — Evaluates an expression against one or more alternatives and returnsthe matching response.

Syntax

DECODE(expression, { comparison-value, result } [,...] [,default-result])

Description

The DECODE() function compares an expression against one or more possible comparison values. If the
expression matches the comparison-value, the associated result is returned. If the expression does not
match any of the comparison values, the default-result is returned. If the expression does not match any
comparison value and no default result is specified, the function returns NULL.

The DECODE() function operates the same way an IF-THEN-EL SE, or CASE statement does in other
languages.

Example

The following example uses the DECODE() function to interpret a coded data column and replace it with
the appropriate meaning for each code.

SELECT title, industry, DECODE(sal ary_range,

"A, 'under $25,000',

"B, '$25,000 - $34,999',

"C, '$35,000 - $49,999',

"D, '$50,000 - $74,999',

"E', '$75,000 - $99, 000",

"F', '$100, 000 and over',
"unspecified') fromsurvey_results

order by industry, title;

The next exampl e tests a value against three columns and returns the name of the column when a match
isfound, or a message indicating no match if noneis found.

SELECT product _nane, DECODE(?, product nane, ' PRODUCT NAME' ,
part _nanme, ' PART NAME' ,
category, ' CATEGORY',

" NO MATCH FOUND)
FROM product _|ist ORDER BY product nane;

243

SQL Functions

DEGREES()

DEGREES() — Converts an angle in radians to degrees

Syntax

DEGREES(angle-in-radians)

Description

The DEGREES() function converts a floating-point value representing an angle measured in radians to
the equivalent angle measured in degrees.

Example

The following SELECT statement converts a column value stored in radians to degrees before returning
it to the user.

SELECT test _nunber, distance, DEGREES(angle) as angle_in_degrees
FROM t est s ORDER BY test_nunber;

244

SQL Functions

DISTANCE()

DISTANCE() — Returns the distance between two points or a point and a polygon.

Syntax

DISTANCE(point-or-polygon, point-or-polygon)

Description

The DISTANCE() function returns the distance, measured in meters, between two points or a point
and a polygon. The arguments to the function can be either two GEOGRAPHY _POINT values or a
GEOGRAPHY_POINT and GEOGRAPHY value.

The DISTANCE() function accepts multiple datatypes for its two arguments, but there are constraints
on which combination of datatypes are alowed. For example, the two arguments cannot both be of type
GEOGRAPHY . Consequently, the VoltDB planner must know the datatype of the arguments when the
statement is compiled. So using generic, untyped placehol dersfor these argumentsisnot valid. Thismeans
you cannot use syntax such as DISTANCE(?,?) in astored procedure. However, you can use placeholders
aslong asthey are cast to specific types. For example:

DI STANCE(POl NTFROMIEXT(?) , POLYGONFROMIEXT(?))

Examples

Thefollowing examplefinds the closest city to aspecified user, using the GEOGRAPHY _POINT column
user.location and the GEOGRAPHY column city.boundary.

SELECT TOP 1 user.nane, city.nane,
DI STANCE(user .l ocation, city.boundary)
FROM user, city WHERE user.id = ?
ORDER BY DI STANCE(user. |l ocation, city.boundary) ASC;

The next example finds the distance in kilometers from atruck to stores, listed in order with closest first,
using the two GEOGRAPHY_POINT columns truck.loc and store.loc.

SELECT st ore. addr ess,
DI STANCE(store. loc, truck.loc) / 1000 AS distance
FROM store, truck WHERE truck.id = ?
ORDER BY DI STANCE(store.loc,truck.|oc)/1000 ASC,

245

SQL Functions

DWITHIN()

DWITHIN() — Returns true or false depending whether two geospatial entities are within a specified
distance of each other.

Syntax

DWITHIN(polygon-or-point, polygon-or-point, distance)

Description

The DWITHIN() function determines if two geospatia values are within the specified distance of each
other. The values can be two points (GEOGRAPHY _POINT) or a point and a polygon (GEOGRAPHY).
The maximum distance is specified as a numeric value measured in meters. If the distance between the
two geospatial values is less than or equal to the specified distance, the function returns true. If not, it
returns false.

The DWITHIN() function accepts multiple datatypes for its first two arguments, but there are constraints
on which combination of datatypes are allowed. For example, the two arguments cannot both be of type
GEOGRAPHY . Consequently, the VoltDB planner must know the datatype of the arguments when the
statement is compiled. So using generic, untyped placehol dersfor these argumentsisnot valid. Thismeans
you cannot use syntax such as DWITHIN(?,?,?) in astored procedure. However, you can use placeholders
aslong asthey are cast to specific types. For example:

DW THI N(POl NTFROMIEXT(?) , POLYGONFROMIEXT(?), ?)

Examples

Thefollowing examplefindsall the citieswithin five kilometers of agiven user, by evaluating the distance
between the GEOGRAPHY _POINT column user.loc and the GEOGRAPHY column city.boundary.

SELECT user. nane, city.nane, DI STANCE(user.loc, city.boundary)
FROM user, city WHERE user.id=?
AND DW THI N(user .l oc, city. boundary, 5000)
ORDER BY DI STANCE(user.loc, city.boundary) ASC,

The next is a more generalized example, where the query returns all delivery trucks within a specified
distance of a store, where both the distance and the store ID are parameterized and can beinput at runtime.

SELECT store. address, truck.license nunber,
DI STANCE(store.loc, truck.loc)/ 1000 AS di stance_i n_km
FROM store, truck
VWHERE DW THI N(store.loc, truck.loc, ?) and store.id=?
ORDER BY DI STANCE(store.loc,truck.|oc)/1000 ASC,

246

SQL Functions

EXP()

EXP() — Returns the exponential of the specified numeric expression.

Syntax

EXP(numeric-expression)

Description

The EXP() function returns the exponential of the specified numeric expression. In other words, EXP(x)
isthe equivalent of the mathematical expression €.

Example

The following example uses the EXP function to calculate the potential population of certain species of
animal projecting out ten years.

SELECT species, population AS current,
(popul ation/2.0) * EXP(10*(gestation/365.0)*litter) AS future
FROM ani mal s
WHERE species = 'rabbit’
ORDER BY popul ati on;

247

SQL Functions

EXTRACTY()

EXTRACT() — Returns the value of a selected portion of atimestamp.

Syntax

EXTRACT(selection-keyword FROM timestamp-expression)

EXTRACT(selection-keyword, timestamp-expression)

Description

The EXTRACT() function returns the value of the selected portion of atimestamp. Table C.1, “ Selectable
Vaues for the EXTRACT Function” lists the supported keywords, the datatype of the value returned by
the function, and a description of its contents.

Table C.1. Selectable Valuesfor the EXTRACT Function

Keyword Datatype Description

YEAR INTEGER The year as anumeric value.

QUARTER TINYINT The quarter of the year as a single numeric value between 1
and 4.

MONTH TINYINT The month of the year as a numeric value between 1 and 12.

DAY TINYINT The day of the month as a numeric value between 1 and 31.

DAY_OF MONTH|TINYINT The day of the month as a numeric value between 1 and 31
(same as DAY).

DAY_OF WEEK |TINYINT The day of the week as a numeric value between 1 and 7,
starting with Sunday.

DAY_OF YEAR |SMALLINT The day of the year as a numeric value between 1 and 366.

WEEK TINYINT The week of the year as a numeric value between 1 and 52.

WEEK_OF YEAR|TINYINT The week of the year as a numeric value between 1 and 52
(same as WEEK).

WEEKDAY TINYINT The day of the week as a numeric value between 0 and 6,
starting with Monday.

HOUR TINYINT The hour of the day as a numeric value between 0 and 23.

MINUTE TINYINT The minute of the hour as a numeric value between 0 and 59.

SECOND DECIMAL Thewhole and fractional part of the number of secondswithin
the minute as a floating point value between 0 and 60.

The timestamp expression isinterpreted as a VoltDB timestamp; That is, time measured in microseconds.

Example

The following example lists all the contacts by hame and birthday, listing the birthday as three separate
fields for month, day, and year.

SELECT Last_nane, first_name, EXTRACT(MONTH FROM dat eof birth),

248

SQL Functions

EXTRACT(DAY FROM dat eof bi rt h), EXTRACT(YEAR FROM dat eof bi rt h)
FROM contact _|i st
ORDER BY | ast _nane, first_nane;

249

SQL Functions

FIELD()

FIELD() — Extracts afield value from a JSON-encoded string column.

Syntax

FIELD(column, field-name-path)

Description

The FIELD() function extracts a field value from a JSON-encoded string. For example, assume the
VARCHAR column Profile contains the following JSON string:

{"first":"Charles","last":"Dickens","birth": 1812,
"description":{"genre":"fiction",
"period":"Victorian",
"output":"prolific",
"children":["Charl es","Mary","Kate", "Wal ter", "Francis",
"Al fred", "Sydney", "Henry", "Dora", " Edwar d"]

}

It is possible to extract individual field values using the FIELD() function, as in the following SELECT
statement:

SELECT FIELD(profile,"'first') AS firstnaneg,
FI ELD(profile,'last') AS |astnane FROM Aut hors;

It is also possible to find records based on individual JSON fields by using the FIELD() function in the
WHERE clause. For example, the following query retrieves all records from the Authors table where the
JSON field birthis 1812. Note that the FIEL D() function always returns a string, even if the JSON typeis
numeric. The comparison must match the string datatype, so the constant' 1812" isin quotation marks:

SELECT * FROM Aut hors WHERE FI ELD(profile, ' birth') = '1812";

The second argument to the FIELD() function can be a simple field name, as in the previous examples.
In which case the function returns a first-level field matching the specified name. Alternately, you can
specify a path representing a hierarchy of names separated by periods. For example, you can specify the
genre element of the description field by specifying "description.genre” as the second argument, like so

SELECT * FROM Aut hors WHERE
FI ELD(profil e, ' description.genre') = 'fiction';

Y ou can & so use array notation — with square brackets and an integer value — to identify array elements
by their position. So, for example, the function can return "Kate", thethird child, by using the path specifier
"description.children[2]", where "[2]" identifies the third array element because JSON arrays are zero-
based.

Two important points to note concerning input to the FIELD() function:
* If the requested field name does not exist, the function returns a null value.

» Thefirst argument to the FIELD() function must be avalid JSON-encoded string. However, the content
isnot evaluated until thefunctionisinvoked at runtime. Therefore, it istheresponsibility of the database

250

SQL Functions

application to ensure the validity of the content. If the FIELD() function encounters invalid content,
the query will fail.

Example

Thefollowing example usesthe FIEL D() function to both return specific JSON fieldswithinaVARCHAR
column and filter the results based on the value of athird JSON field:

SELECT product _nane, sku,
FI ELD(speci fication,'color') AS col or,
FI ELD(speci fication, ' weight') AS weight FROM I nventory
WHERE FI ELD(speci fication, 'category') = 'housewares'
ORDER BY product _nane, sku;

251

SQL Functions

FLOOR()

FLOOR() — Returnsthe largest integer value less than or equal to a numeric expression.

Syntax

FLOOR(numeric-expression)

Description

The FLOOR() function returns the largest integer less then or equal to the specified numeric expression.
In other words, the FLOOR() function truncates fractional numeric values. For example:

FLOOR(3. 1415) = 3
FLOOR(2.0) = 2
FLOOR(-5.32) = -6

Example

The following example uses the FLOOR function to calculate the whole number of stocks owned by a
specific shareholder.

SELECT custoner, conpany,
FLOOR(num of _st ocks) AS stocks_avail able_for_sale
FROM shar ehol ders WHERE custoner _id = ?
CORDER BY company;

252

SQL Functions

FORMAT_CURRENCY()

FORMAT_CURRENCY () — Convertsa DECIMAL to atext string as a monetary value.

Syntax

FORMAT_CURRENCY(decimal-value, rounding-position)

Description

The FORMAT_CURRENCY () function convertsaDECIMAL valueto its string representation, rounding
to the specified position. The resulting string is formatted with commas separating every three digits of
the whole portion of the number (indicating thousands, millions, and so on) and a decimal point before
the fractional portion, as needed.

Therounding-position argument must be an integer between 12 and -25 and indicatesthe placeto which the
numeric value should be rounded. Positive valuesindicate adecimal place; for example 2 means round to
2 decimal places. Negative valuesindicate rounding to awhole number position; for example, -2 indicates
the number should be rounded to the nearest hundred. A zero indicates that the value should be rounded
to the nearest whole number.

Rounding is performed using "banker's rounding”, in that any fractional half isrounded to the nearest even
number. So, for example, if the rounding-position is 2, the value 22.225 isrounded to 22.22, but the value
33.335 isrounded to 33.34. The following list demonstrates some sample results.

FORMAT_CURRENCY (.123456789, 4) = 0.1235
FORMAT_CURRENCY (123456789.123, 2) = 123,456,789.12
FORMAT_CURRENCY (123456789.123, 0) = 123,456,789
FORMAT_CURRENCY (123456789.123, -2) = 123,456,800
FORMAT_CURRENCY (123456789.123, -6) = 123,000,000
FORMAT_CURRENCY (123456789.123, 6) = 123,456,789.123000

Example

The following example uses the FORMAT_CURRENCY () function to return a DECIMAL column as a
string representation of its monetary value, rounding to two decimal places and appending the appropriate
currency symbol from aVARCHAR column.

SELECT country,
currency_synbol || format_currency(budget, 2) AS annual budget
FROM wor | d_economy ORDER BY country;

253

SQL Functions

FROM_UNIXTIME()

FROM_UNIXTIME() — Convertsa UNIX time value to a VoltDB timestamp.

Syntax

FROM_UNIXTIME(integer-expression)

Description

The FROM_UNIXTIME() function converts an integer expression to a VVoltDB timestamp, interpreting
the integer value as a POSIX time value; that is the number of seconds since the epoch (00:00.00 on
January 1, 1970 Consolidated Universal Time). Thisfunctionisasynonymfor TO_TIMESTAM P(second,
integer-expression).

Example

Thefollowing exampleinserts arecord using FROM_UNIXTIME to convert the first argument, a POSI X
time value, into a VoltDB timestamp:

| NSERT | NTO event (e_when, e what, e where)
VALUES (FROM UNI XTI ME(?), 2, ?);

254

SQL Functions

HEXI)

HEX() — Returns the hexadecimal representation of aBIGINT value as a string.

Syntax

HEX(value)

Description

The HEX() function returns the hexadecimal representation of a BIGINT value as a string. The function
will return the shortest valid string representation, truncating any preceding zeros (except in the case of
the value zero, which is returned as the string "0").

Examples

The following example use the HEX and BITAND functions to return the hexadecimal representations of
two BIGINT values and their binary intersection.

$ sqglcmd

1> create table bits (a bigint, b bigint);
2> insert into bits val ues(555, 999);

3> select hex(a) as intl, hex(b) as int2,

4> hex(bitand(a, b)) as intersection frombits;
I NT1 | NT2 | NTERSECTI ON
22B 3E7 223

255

SQL Functions

HOUR()

HOUR() — Returns the hour of the day as an integer value.

Syntax

HOUR(timestamp-value)

Description

The HOUR() function returns an integer value between O and 23 representing the hour of the day
in a timestamp value. This function produces the same result as using the HOUR keyword with the
EXTRACT() function.

Examples

Thefollowing example usesthe HOUR(), MINUTE(), and SECOND() functionsto return thetime portion
of aTIMESTAMP value in aformatted string.

SELECT event nane,
CAST(HOUR(starttine) AS VARCHAR) || ' hours, ' ||
CAST(M NUTE(starttime) AS VARCHAR) || m nutes, and ' ||
CAST(SECOND(starttine) AS VARCHAR) || ' seconds.'
AS tinestring FROM event;

256

SQL Functions

INET6_ATON()

INET6_ATON() — Converts an IPv6 internet address from a string to aVVARBINARY (16) value

Syntax

INET6_ATON({string})

Description

The INET6_ATON() function converts a VARCHAR value representing an |Pv6 internet address in
hexidecimal notation to a16-byte VARBINARY vauein network byte order. The VARCHAR value must
consist of up to eight hexidecimal values separated by colons, such as "2600:141b:4:290::2add", or anull
value. Note that in IPv6 addresses, two colons together ("::") can and should be used in place of two or
more consecutive zero values in the sequence.

You can usethe INET6_NTOA () function to reverse the conversion or you can usethe INET_ATON and
INET_NTOA functions to perform similar conversions on | Pv4 addresses.

Example

Thefollowing example converts a string representation of an IPv6 internet addressto aVARBINARY (16)
value before storing it in the Address table

| NSERT | NTO Address (v6ip, owner, date) VALUES (I NET6_ATON(?),?,7?);

257

SQL Functions

INET6_NTOA()

INET6_NTOA() — Converts an IPv6 internet address from aVARBINARY (16) value to a string

Syntax

INET_NTOA({binary-value})

Description

The INET6_NTOA() function converts a 16-byte VARBINARY value representing an 1Pv6 internet
address to its corresponding string representation as a VARCHAR value. Or, if the argument is null, the
function returns anull VARCHAR as the result.

You can use the INET6_ATON() function to perform the reverse operation, from a VARCHAR |Pv6
address to a VARBINARY (16) value, or you can use the INET_ATON and INET_NTOA functions to
perform similar operations on |Pv4 addresses.

Examples

The following example converts a VARBINARY (16) representation of an IPv6 internet address into its
string representation for output.

SELECT | NET6_NTOA(Vv6i p), owner FROM Address
VWHERE owner =? ORDER BY v6i p;

258

SQL Functions

INET_ATON()

INET_ATON() — Converts an IPv4 internet address from a string to a numeric value

Syntax

INET_ATON({string})

Description

The INET_ATON() function converts a VARCHAR value representing an |Pv4 internet address in dot
notation to a single BIGINT value. The VARCHAR value must consist of four integer values separated
by dots, such as"104.112.152.119", or anull value. The string representations of the integer values must
be between 0 and 256 and cannot contain any spaces or leading zeros. For example, string values of "0"
and "12" arevalid but "012" is not.

You can usethe INET_NTOA() function to reverse the conversion or you can usethe INET6_ATON and
INET6_NTOA functionsto perform similar conversions on |Pv6 addresses.

Example

The following example converts a string representation of an internet addressto a BIGINT value before
storing it in the Address table

I NSERT | NTO Address (ip, owner, date) VALUES (I NET_ATON(?),?,7?);

259

SQL Functions

INET_NTOA()

INET_NTOA() — Converts an IPv4 internet address from a numeric value to a string

Syntax

INET_NTOA({numeric-value})

Description

The INET_NTOA() function converts a BIGINT value representing an 1Pv4 internet address to its
corresponding dot representation as a VARCHAR value. Or, if the argument is null, the function returns
anull VARCHAR asthe resullt.

You can use the INET_ATON() function to perform the reverse operation, from a VARCHAR |Pv4
addressin dot notationto aBIGINT value, or you can usethe INET6_ATON and INET6_NTOA functions
to perform similar operations on 1Pv6 addresses.

Examples

The following example converts a BIGINT representation of an internet address into its string
representation for output.

SELECT | NET_NTQA(i p), owner FROM Address
WHERE owner =? ORDER BY i p;

260

SQL Functions

ISINVALIDREASON()

ISINVALIDREASON() — Explains why a GEOGRAPHY polygonisinvalid

Syntax

ISINVALIDREASON(polygon)

Description

ThelSINVALIDREASON() function returns atext string explaining if the specified GEOGRAPHY value
is valid or not and, if not, why not. The argument to the ISINVALIDREASON() function must be a
GEOGRAPHY value describing a polygon. This function is especially useful when validating geospatial
data

Example

Thefollowing exampleusesthe | SVALID() and ISINVALIDREASON() functionsto report onany invalid
polygonsin the border column of the country table.

SELECT country_nane, | SI NVALI DREASON(bor der)
FROM Country WHERE NOT | SVALI D(bor der);

261

SQL Functions

ISVALID()

ISVALID() — Determinesiif the specified GEOGRAPHY vaueisavalid polygon.

Syntax

ISVALID(polygon)

Description

The ISVALID() function returns true or false depending on whether the specified GEOGRAPHY value
isavalid polygon or not. Polygons must follow rules defined by the Open Geospatial Consortium (OGC)
standard for Well Known Text (WKT). Specifically:

» A GEOGRAPHY polygon consists of one or more rings, where aring is a closed boundary described
by a sequence of vertices and the lines, or edges, between those vertices.

» Thefirst ring must be the outer ring and the vertices must be listed in counter clockwise order.

¢ All subsequent ringsrepresent "holes' in the outer ring. Theinner rings must be wholly contained within
the outer ring and their vertices must be listed in clockwise order.

» Rings cannot intersect or have adjacent edges.

» Theedges of an individual ring cannot cross (for example, afigure"8" isinvalid).

 For eachring, the first vertex is listed twice: as both the first and last vertex.

If the specified GEOGRAPHY valueisavalid polygon, the function returns true. If not, it returns false.

To maximize performance, VoltDB does not validate the GEOGRAPHY values when they are inserted.
However, if you are not sure the WKT strings are valid, you can use ISVALID() to validate the resulting
GEOGRAPHY values before inserting them or after they are inserted into the database.

Examples

Thefirst example shows an UPDATE statement that uses the ISVALID() function to remove the contents
of aGEOGRAPHY column (by setting it to NULL), if the current contents are invalid.

UPDATE REG ON SET border = NULL WHERE NOT | SVALI D(bor der);

The next example shows part of astored procedure that uses ISVALID() to conditionally set the value of a
column, mustbevalid, that is defined as NOT NULL. By setting the column valid to NULL, the procedure
ensures that the INSERT statement fails and the stored procedure rolls back if the WKT border column
isinvalid.

public class ValidateBorders extends VoltProcedure {

public final SQStm insertrec = new SQ.St nt (
"I NSERT | NTO REG ON (nane, border, nustbevalid)" +
" SELECT nane, border," +
" CASE WHEN | SVALI D(border) THEN 1 ELSE NULL END' +
" FROM anot hertabl e WHERE nane = ? LIMT 1;"

262

http://www.opengeospatial.org

SQL Functions

)

public VoltTable[] run(String nane)
t hrows Vol t Abort Excepti on
{ voltQueueSQ(insertrec, nanme); return voltExecuteSQ.(); }

263

SQL Functions

IS_VALID_TIMESTAMP()

IS VALID_TIMESTAMP() — Identifies whether a given valueis avalid timestamp.

Syntax

IS_VALID_TIMESTAMP(value)

Description

ThelS VALID_TIMESTAMP() function returns either true or false depending on whether the specified
valueisavalid timestamp or not. The minimum valid timestamp equatesto the beginning of the year 1583.
That is, the first microsecond of that year. The maximum valid timestamp equates to the last microsecond
of the year 9999.

Because TIMESTAMP values are stored and can be entered as an eight byte integer, it is possible to
enter anumeric valuethat is not actually avalid timestamp. ThefunctionsMIN_VALID TIMESTAMP()
and MAX_VALID_TIMESTAMP() give you access to the valid minimum and maximum values. The
function 1S VALID_TIMESTAMP() comparesa TIMESTAMP value and returns true or false depending
on whether the value falls within the valid range or not.

Example

The following example uses the TIMESTAMP functions to return an informational string for any event
records that contain an invalid timestamp value.

SELECT ' Tl MESTAMP nust be between ' ||
CAST(M N_VALI D_TI MESTAMP() as VARCHAR) ||
"and ' ||
CAST(MAX_VALI D_TI MESTAMP() as VARCHAR),
log_tine,
| og_event
FROM events WHERE NOT | S VALID Tl MESTAMP(| og_ti ne);

264

SQL Functions

LATITUDE()

LATITUDE() — Returns the latitude of a GEOGRAPHY _POINT value.

Syntax

LATITUDE(point)

Description

The LATITUDE() function returns the latitude, as a floating point value, from a GEOGRAPHY _POINT
expression.

Example

The following example returns all ships that are located in the northern hemisphere by examining the
latitude of their current location.

SELECT shi p. nunber, ship.country FROM ship
VWHERE LATI TUDE(shi p. | ocation) > O;

265

SQL Functions

LEFT()

LEFT() — Returns a substring from the beginning of a string.

Syntax

LEFT(string-expression, numeric-expression)

Description

The LEFT() function returnsthefirst n charactersfrom astring expression, where nisthe second argument
to the function.

Example

The following example uses the LEFT function to return an abbreviation (the first three characters) of the
product category as part of the SELECT expression.

SELECT LEFT(category, 3), product_nane, price FROM product i st
ORDER BY cat egory, product_naneg;

266

SQL Functions

LN(), LOGI)

LN(), LOG() — Returns the natural logarithm of a numeric value.

Syntax

LN(numeric-value)

LOG(numeric-value)

Description

The LN() function returns the natural logarithm of the specified input value. The log is returned as a
floating point (FLOAT) value. LN() and LOG() are synonyms and perform the same function.

Example

The following example uses the LN() function to cal cul ate the rate of population growth from census data.

SELECT «city, current_popul ation,
((LN(current_popul ation) - LN(base_popul ation))
/ (current_year - base_year)
) * 100.0 AS percent_growth
FROM census ORDER BY city;

267

SQL Functions

LOG10()

LOG10() — Returns the base-10 logarithm of a numeric value.

Syntax

LOG10(numeric-value)

Description

The LOG10() function returns the base-10, or decimal, logarithm of the specified input value. Thelog is
returned as a floating point (FLOAT) value.

Example

The following example uses the LOG10() function to calculate the magnitude of difference between two
values.

SELECT LOGLO(YR2.profit/YRL.profit) AS Magnitude of growth
FROM account AS YR1, account AS YR2
VWHERE YRL. fiscal year=? AND YR2.fi scal year=7?;

268

SQL Functions

LONGITUDE()

LONGITUDE() — Returns the longitude of a GEOGRAPHY _POINT value.

Syntax

LONGITUDE(point)

Description

The LONGITUDE() function returns the longitude, as a floating point value, from a
GEOGRAPHY _POINT expression.

Example

The following example returns al ships that are located in the western hemisphere by examining the
longitude of their current location.

SELECT shi p. nunber, ship.country FROM ship
WHERE LONG TUDE(ship.location) < 0
AND LONd TUDE(shi p. | ocation) > -180;

269

SQL Functions

LOWER()

LOWER() — Returns a string converted to all lowercase characters.

Syntax

LOWER(string-expression)

Description

The LOWER() function returns a copy of the input string converted to all lowercase characters.

Example

The following example uses the LOWER function to perform a case-insensitive search of aVARCHAR
field.

SELECT product _nane, product_id FROM product |i st
VWHERE LOWER(product _namne) LIKE 'acme%
ORDER BY product _nane, product id;

270

SQL Functions

MAKEVALIDPOLYGON()

MAKEVALIDPOLY GON() — Attempts to return a valid GEOGRAPHY value from a GEOGRAPHY
polygon

Syntax

MAKEVALIDPOLYGON(polygon)

Description

A common problem when generating polygons from Well Known Text (WKT) is listing the rings within
the polygon in the correct orientation. The vertices of the outer ring must be listed counter-clockwise,
while the vertices of the inner rings must be listed in a clockwise direction.

If you use the POLY GONFROMTEXT() function to create GEOGRAPHY vauesfrom WKT strings, the
rings can beindividually correct but, if they are not oriented properly, the resulting polygon will not match
your intended geographic region. As a consequence, using the polygon in VoltDB geospatial functions,
such as CONTAINS() and DISTANCE(), will produce unexpected answers. You can use ISVALID() to
test if the polygon is valid, but ISVALID() simply tests correctness, it does not fix simple errors, such
asring orientation.

MAKEVALIDPOLYGON() both tests the polygon and corrects any errors in ring orientation. The
argument to the MAKEVALIDPOLY GON() function isa GEOGRAPHY object representing a polygon.
The output is another GEOGRAPHY object, identical to the input if the input is valid, or with the
orientation of therings corrected if they arelisted in the wrong direction. If there are any other issues with
the polygon that cannot be corrected (such as an incomplete ring or crossed lines), the function throws
an error.

Example

Thefollowing example usesthe MAKEVALIDPOLY GON() function to correct any potential orientation
issues with the location column in the country table.

UPDATE country SET boundaries = MAKEVALI DPOLYGON(boundari es) ;

271

SQL Functions

MAX()

MAX() — Returns the maximum value from arange of column values.

Syntax

MAX(column-expression)

Description

The MAX() function returnsthe highest value from arange of column values. The range of values depends
on the constraints defined by the WHERE and GROUP BY clauses.

Example
The following example returns the highest price in the product list.
SELECT MAX(price) FROM product |ist;
The next example returns the highest price for each product category.

SELECT category, MAX(price) FROM product |i st
GROUP BY cat egory
ORDER BY cat egory;

272

SQL Functions

MAX_VALID_TIMESTAMP()

MAX_VALID_TIMESTAMP() — Returns the maximum valid timestamp.

Syntax

MAX_VALID_TIMESTAMP()

MAX_VALID_TIMESTAMP

Description

The MAX_VALID_TIMESTAMP() function returns the maximum valid value for the VoltDB
TIMESTAMP datatype. The minimum valid timestamp equates to the beginning of the year 1583. That
is, the first microsecond of that year. The maximum valid timestamp equates to the last microsecond of
the year 9999.

Because TIMESTAMP vaues are stored and can be entered as an eight byte integer, it is possible to
enter anumeric valuethat isnot actually avalid timestamp. ThefunctionsMIN_VALID_TIMESTAMP()
and MAX_VALID_TIMESTAMP() give you access to the valid minimum and maximum values. The
function|S_VALID_TIMESTAMP() comparesa TIMESTAMP value and returnstrue or false depending
on whether the value falls within the valid range or not.

Since there are no arguments to the function, the parentheses following the function name are optional.

Example

The following example uses the TIMESTAMP functions to return an informational string for any event
records that contain an invalid timestamp value.

SELECT ' TI MESTAMP nust be between ' ||
CAST(M N_VALI D_TI MESTAMP() as VARCHAR) ||
"and ' ||
CAST(MAX_VALI D_TI MESTAMP() as VARCHAR),
log tine,
| og_event
FROM events WHERE NOT |'S VALI D TI MESTAMP(| og_ti me);

273

SQL Functions

MIN()

MIN() — Returns the minimum value from arange of column values.

Syntax

MIN(column-expression)

Description

The MIN() function returns the lowest value from arange of column values. The range of values depends
on the constraints defined by the WHERE and GROUP BY clauses.

Example

The following example returns the lowest price in the product list.
SELECT M N(price) FROM product |ist;
The next example returns the lowest price for each product category.

SELECT category, M N(price) FROM product |i st
GROUP BY cat egory
ORDER BY cat egory;

274

SQL Functions

MIN_VALID_TIMESTAMP()

MIN_VALID_TIMESTAMP() — Returns the minimum valid timestamp.

Syntax

MIN_VALID_TIMESTAMP()

MIN_VALID_TIMESTAMP

Description

The MIN_VALID_TIMESTAMP() function returns the minimum valid value for the VoltDB
TIMESTAMP datatype. The minimum valid timestamp equates to the beginning of the year 1583. That
is, the first microsecond of that year. The maximum valid timestamp equates to the last microsecond of
the year 9999.

Because TIMESTAMP vaues are stored and can be entered as an eight byte integer, it is possible to
enter anumeric valuethat isnot actually avalid timestamp. ThefunctionsMIN_VALID_TIMESTAMP()
and MAX_VALID_TIMESTAMP() give you access to the valid minimum and maximum values. The
function|S_VALID_TIMESTAMP() comparesa TIMESTAMP value and returnstrue or false depending
on whether the value falls within the valid range or not.

Since there are no arguments to the function, the parentheses following the function name are optional.

Example

The following example uses the TIMESTAMP functions to return an informational string for any event
records that contain an invalid timestamp value.

SELECT ' TI MESTAMP nust be between ' ||
CAST(M N_VALI D_TI MESTAMP() as VARCHAR) ||
"and ' ||
CAST(MAX_VALI D_TI MESTAMP() as VARCHAR),
log tine,
| og_event
FROM events WHERE NOT |'S VALI D TI MESTAMP(| og_ti me);

275

SQL Functions

MINUTE()

MINUTE() — Returns the minute of the hour as an integer value.

Syntax

MINUTE(timestamp-value)

Description

The MINUTE() function returns an integer value between 0 and 59 representing the minute of the hour
in a timestamp value. This function produces the same result as using the MINUTE keyword with the
EXTRACT() function.

Examples

Thefollowing example usesthe HOUR(), MINUTE(), and SECOND() functionsto return thetime portion
of aTIMESTAMP value in aformatted string.

SELECT event nane,
CAST(HOUR(starttine) AS VARCHAR) || ' hours, ' ||
CAST(M NUTE(starttime) AS VARCHAR) || m nutes, and ' ||
CAST(SECOND(starttine) AS VARCHAR) || ' seconds.'
AS tinestring FROM event;

276

SQL Functions

MOD()

MOD() — Returns the result of a modulo operation.

Syntax

MOD(dividend, divisor)

Description

The MOD() function performs a modulo operation. That is, it divides one value, the dividend, by another
value, the divisor, and returns the remainder of the division operation as a new integer value. The sign of
the result, whether positive or negative, matches the sign of the first argument, the dividend.

Both the dividend and the divisor must either both be integer values or both be DECIMAL values and the
divisor must not be zero. Use of mixed input datatypes or a divisor of zero will result in a runtime error.
When using DECIMAL input values, the result isthe integer portion of the remainder. In other words, the
decimal result is truncated and returned as an integer using the following formula:

MOD(a,b) = a- INT(a/b) * b

Example

The following example uses the HOUR() and MOD() functions to return the hour of a timestamp in 12
hour format

SELECT event,
MOD(HOUR(event ti me) +11, 12)+1,
CASE WHEN HOUR(eventtine)/12 < 1
THEN ' AM
ELSE ' PM
END
FROM schedul e ORDER BY 3, 2;

277

SQL Functions

MONTHi()

MONTH() — Returns the month of the year as an integer value.

Syntax

MONTH(timestamp-value)

Description

The MONTHY() function returns an integer value between 1 and 12 representing the timestamp's month
of the year. The MONTH() function produces the same result as using the MONTH keyword with the
EXTRACT() function.

Examples

The following example uses the DAY (), MONTH(), and Y EAR() functions to return atimestamp column
as aformatted date string.

SELECT CAST(MONTH(starttine) AS VARCHAR) || |
CAST(DAY(starttine) AS VARCHAR) | | |
CAST(YEAR(starttinme) AS VARCHAR), title, description
FROM event ORDER BY starttine;

N
N

278

SQL Functions

NOW()

NOW() — Returns the current time as a timestamp value.

Syntax

NOW()

NOW

Description

The NOW() function returns the current time as a VoltDB timestamp. The value of the timestamp is
determined when the query or stored procedure is invoked. Since there are no arguments to the function,
the parentheses following the function name are optional.

Severa important aspects of how the NOW() function operates are:

The value returned is guaranteed to be identical for all partitions that execute the query.
Thevaluereturned ismeasured in millisecondsthen padded to create atimestamp valuein microseconds.

During command logging, the returned value is stored as part of the log, so when the command log is
replayed, the same value is used during the replay of the query.

Similarly, for database replication (DR) the value returned is passed and reused by the replica database
when replaying the query.

Y ou can specify NOW() asadefault valuein the CREATE TABLE statement when defining the schema
of aVoltDB database.

The NOW() function cannot be used in the CREATE INDEX or CREATE VIEW statements.

The NOW() and CURRENT_TIMESTAMP() functions are synonyms and perform an identical function.

Example

Thefollowing example uses NOW(0 in the WHERE clause to delete alert eventsthat occurred in the past:

DELETE FROM Al ert_event WHERE event timestanmp < NOW

279

SQL Functions

NUMINTERIORRINGS()

NUMINTERIORRINGS() — Returnsthe number of interior ringswithin apolygon GEOGRAPHY value.

Syntax

NUMINTERIORRINGS(polygon)

Description

The NUMINTERIORRINGS() function returns the number of interior rings within a polygon
GEOGRAPHY value. Polygon GEOGRAPHY values can contain multiple polygons: one and only one
outer polygon and one or more optiona inner polygons that define "holes" in the outer polygon. The
NUMINTERIORRINGS() function countsthe number of inner polygonsand returnstheresult asan integer
value.

Example

The following example lists the countries of the world based on the number of interior polygons within
the outline GEOGRAPHY column.

SELECT NUM NTERI ORRI NGS(outline), name, capital FROM country
ORDER BY NUM NTERI ORRI NGS(out | i ne);

280

SQL Functions

NUMPOINTS()

NUMPOINTS() — Returns the number of points within a polygon GEOGRAPHY value.

Syntax

NUMPOINTS(polygon)

Description

The NUMPOINTS() function returns the total number of points that comprise a polygon GEOGRAPHY
value. The number of points includes the points from both the outer polygon and any inner polygons. It
also includes all of the points defining the polygon. Which means the starting point for each polygon is

counted twice — once as the starting point and once and the ending point — because thisis required in
the WKT representation of a polygon.

Example

The following example lists the countries of the world based on the number of pointsin their outlines.

SELECT NUMPO NTS(outline), name, capital FROM country
ORDER BY NUMPO NTS(outl i ne);

281

SQL Functions

OCTET_LENGTH()

OCTET_LENGTH() — Returns the number of bytesin a string.

Syntax

OCTET_LENGTH(string-expression)

Description
The OCTET_LENGTH() function returns the number of bytes of datain a string.

Note that the number of bytes required to store a string and the actual characters that make up the string
can differ. To count the number of charactersin the string use the CHAR_LENGTH() function.

Example

The following example returns the string in the column LastName as well as the number of characters and
length in bytes of that string.

SELECT Last Name, CHAR LENGTH(Last Nane), OCTET_LENGTH(Last Nane)
FROM Cust omer s ORDER BY Last Nane, First Nane;

282

SQL Functions

OVERLAY()

OVERLAY () — Returnsastring overwriting aportion of the original string with the specified replacement.

Syntax

OVERLAY(string PLACING replacement-string FROM position [FOR length])

Description

The OVERLAY/() function overwrites a portion of the origina string with the replacement string and
returns the result. The replacement starts at the specified position in the original string and either replaces
the characters one-for-one for the length of the replacement string or, if aFOR length is specified, replaces
the specified number of characters.

For example, if the original stringis 12 charactersin length, the replacement string is 3 charactersin length
and starts at position 4, and the FOR clauseis left off, the resulting string consists of the first 3 characters
of the origina string, the replacement string, and the last 6 characters of the original string:

OVERLAY (‘abcdefghijkl’ PLACING 'XYZ' FROM 4) = abcXY ZghijKI'

If the FOR clause is included specifying that the replacement string replaces 6 characters, the result isthe
first 3 charactersof theoriginal string, the replacement string, and thelast 3 charactersof theoriginal string:

OVERLAY (‘abcdefghijkl' PLACING 'XYZ' FROM 4 FOR 6) = 'abcX Y ZjkI'

If the combination of the starting position and the replacement length exceed the length of the original
string, the resulting output is extended as necessary to include all of the replacement string:

OVERLAY (‘abcdef' PLACING 'XYZ' FROM 5) = "abcdXY Z'

If the starting position is greater than the length of the original string, the replacement string is appended
to the origina string:

OVERLAY (‘abcdef' PLACING 'XYZ' FROM 20) = 'abcdefXYZ'

Similarly, if the combination of the starting position and the FOR length is greater than the length of the
original string, the replacement string simply overwrites the remainder of the original string:

OVERLAY (‘abcdef' PLACING 'XYZ' FROM 2 FOR 20) = 'aXY Z'

The starting position and length must be specified as non-negative integers. The starting position must be
greater than zero and the length can be zero or greater.

Example

The following example uses the OVERLAY function to redact part of a name.

SELECT OVERLAY(fullname PLACING '****' FROM 2
FOR CHAR_LENGTH(f ul I nane) - 2
) FROM users ORDER BY ful |l nane;

283

SQL Functions

PI()

Pl() — Returns the value of the mathematical constant pi () &sa FLOAT value.

Syntax

PI()
Pl

Description
The PI() function returnsthe value of the mathematical constant pi () as adoublefloating point (FLOAT)

value. Since there are no arguments to the function, the parentheses following the function name are
optional.

Example
The following example uses the PI() function to return the surface area of a sphere.

SELECT radi us, 4*Pl*PONER(radi us, 2) FROM Sphere ORDER BY radi us;

284

SQL Functions

POINTFROMTEXT()

POINTFROMTEXT() — Returns a GEOGRAPHY _POINT value from the corresponding WKT

Syntax

POINTFROMTEXT(string)

Description

The POINTFROMTEXT() function generates a GEOGRAPHY _POINT value from a string containing
a well known text (WKT) representation of a geographic point. The WKT string must be in the form
'POINT(longitude latitude)' where longitude and latitude are floating point values.

if the argument is not avalid WKT representation of a point, the function generates an error.

Example

The following example uses the POINTFROMTEXT() function to update a record containing a
GEOGRAPHY _POINT column using two floating point input val ues (representing longitude and | atitude).

UPDATE user SET | ocation =
PO NTFROMTEXT(
CONCAT("' PO NT(', CAST(? AS VARCHAR),' ', CAST(? AS VARCHAR),')")

)
WHERE id = ?;

285

SQL Functions

POLYGONFROMTEXT()

POLY GONFROMTEXT() — Returns a GEOGRAPHY value from the corresponding WKT

Syntax

POLYGONFROMTEXT(text)

Description

The POLY GONFROMTEXT() function generatesa GEOGRAPHY value from astring containing awell
known text (WKT) representation of ageographic polygon. The WKT string must be avalid representation
of apolygon with only one outer polygon and, optionally, one or more inner polygons.

if the argument is not avalid WKT representation of a polygon, the function generates an error.

Example

The following example uses the POLY GONFROMTEXT() function to insert a record containing a
GEOGRAPHY column using a text input value containing the WKT representation of a geographic
polygon.

INSERT INTO city (nane, state, boundary) VALUES(?, ?, POLYGONFROMIEXT(?));

286

SQL Functions

POSITION()

POSITION() — Returns the starting position of a substring in another string.

Syntax

POSITION(substring-expression IN string-expression)

Description

The POSITION() function returns the starting position of a substring in another string. The position, if a
match isfound, is an integer number between one and the length of the string being searched. If no match
isfound, the function returns zero.

Example

Thefollowing example selects all books where the title contains the word "poodl€" and returns the book's
title and the position of the substring "poodl€e” in the title.

SELECT Title, POSITION(' poodle' IN Title) FROM Books
WHERE Title LIKE ' %oodl e% ORDER BY Title;

287

SQL Functions

POWER()

POWER() — Returns the value of the first argument raised to the power of the second argument.

Syntax

POWER(numeric-expression, humeric-expression)

Description

The POWER() function takes two numeric expressions and returns the val ue of thefirst raised to the power
of the second. In other words, POWER(x,y) is the equivalent of the mathematical expression x”.

Example
The following example uses the POWER function to return the surface area and volume of a cube.

SELECT length, 6 * PONER(| ength, 2) AS surface,
POAER(| engt h, 3) AS vol une FROM Cube
ORDER BY | engt h;

288

SQL Functions

QUARTER()

QUARTER() — Returns the quarter of the year as an integer value

Syntax

QUARTER(timestamp-value)

Description

The QUARTER() function returns an integer value between 1 and 4 representing the quarter of the year
ina TIMESTAMP value. The QUARTER() function produces the same result as using the QUARTER
keyword with the EXTRACT() function.

Examples

Thefollowing example uses the QUARTER() and Y EAR() functionsto group and sort records containing
atimestamp.

SELECT year(starttinme), quarter(starttine),
count (*) as eventsperquarter
FROM event
GROUP BY year(starttine), quarter(starttine)
ORDER BY year(starttine), quarter(starttine);

289

SQL Functions

RADIANS()

RADIANS() — Converts an angle in degrees to radians

Syntax

RADIANS(angle-in-degrees)

Description

The RADIANS() function converts a floating-point value representing an angle measured in degrees to
the equivalent angle measured in radians.

Example

Thefollowing INSERT statement converts input entered in degrees to radians before inserting the record
into the database.

I NSERT | NTO tests (test _nunber, distance, angle)
VALUES (?, ?, RADI ANS(?));

290

SQL Functions

REGEXP_POSITION()

REGEXP_POSITION() — Returns the starting position of aregular expression within atext string.

Syntax

REGEXP_POSITION(string, pattern [, flag])

Description

The REGEXP_POSITION() function returns the starting position of the first instance of the specified
regular expression within atext string. The position value starts at one (1) for thefirst position in the string
and the functions returns zero (0) if the regular expression is not found.

Thefirst argument to the function isthe VARCHAR character string to be searched. The second argument
isthe regular expression pattern to look for. The third argument is an optional flag that specifies whether
the search is case sensitive or not. The flag must be single character VARCHAR with one of the following

values:
Flag Description
c Case-sensitive matching (default)

i Case-insensitive matching

There are severa different formats for regular expressions. The REGEXP_POSITION() uses the revised
Perl compatible regular expression (PCRE2) syntax, which is described in detail on the PCRE website.

Examples

Thefollowing example uses the REGEXP_POSITION() to filter all records where the column description
matches a specific pattern. The examples uses the optional flag argument to make the pattern match text
regardless of case.

SELECT incident, description FROM securitylLog
WHERE REGEXP_PQCSI TI ON(descri pti on,
"host:\s*10\.186\.[0-9]+\.[0-9]+",
"i')y >0
ORDER BY i nci dent;

291

http://www.pcre.org/current/doc/html/pcre2syntax.html

SQL Functions

REPEAT()

REPEAT() — Returns a string composed of a substring repeated the specified number of times.

Syntax

REPEAT(string-expression, numeric-expression)

Description

The REPEAT() function returns a string composed of the substring string-expression repeated n times
where n is defined by the second argument to the function.

Example

Thefollowing example usesthe REPEAT and the CHAR_LENGTH functionsto replace acolumn's actual
contents with a mask composed of the letter "X" the same length as the origina column value.

SELECT usernanme, REPEAT(' X', CHAR LENGTH(password)) as Password
FROM account s ORDER BY user nane;

292

SQL Functions

REPLACE()

REPLACE() — Returns a string replacing the specified substring of the original string with new text.

Syntax

REPLACE(string, substring, replacement-string)

Description

The REPLACE() function returns a copy of the first argument, replacing all instances of the substring
identified by the second argument with the third argument. If the substring is not found, no changes are
made and a copy of the original string is returned.

Example

The following example uses the REPLACE function to update the Address column, replacing the string
"Ceylon" with "Sri Lanka".

UPDATE Custoners SET address=REPLACE(address,' Ceylon', 'Sri Lanka')
WHERE address LIKE ' %Ceyl on% ;

293

SQL Functions

RIGHTY()

RIGHT() — Returns a substring from the end of a string.

Syntax

RIGHT(string-expression, humeric-expression)

Description

TheRIGHT() function returnsthelast n charactersfrom astring expression, where nisthe second argument
to the function.

Example

The following example uses the LEFT() and RIGHT() functions to return an abbreviated summary of the
Description column, ensuring the result fits within 20 characters.

SELECT product _nane,
LEFT(description,10) || '..." || R GHT(description,7)
FROM product |ist ORDER BY product nane;

294

SQL Functions

ROUND()

ROUND() — Returns a numeric value rounded to the specified decimal place

Syntax

ROUND(numeric-value, rounding-position)

Description

The ROUND() functions returns the input value rounded to the specific decimal place. The result is
returned as a DECIMAL value.

The numeric-value argument must be a FLOAT or DECIMAL vaue. The rounding-position argument
must be an integer between 12 and -25 and indicates the place to which the numeric value should be
rounded. Positive valuesindicateadecimal place; for example 2 meansround to 2 decimal places. Negative
values indicate rounding to a whole number position; for example, -2 indicates the number should be
rounded to the nearest hundred. A zero indicates that the value should be rounded to the nearest whole
number.

Rounding is performed using "banker's rounding”, in that any fractional half isrounded to the nearest even
number. So, for example, if the rounding-position is 2, the value 22.225 isrounded to 22.22, but the value
33.335 isrounded to 33.34. The following list demonstrates some sample results.

ROUND (.123456789, 4) = 0.123500000000

ROUND(123456789.123, 2) = 123456789.120000000000
ROUND(123456789.123, 0) = 123456789.000000000000
ROUND(123456789.123, -2) = 123456800.000000000000
ROUND(123456789.123, -6) = 123000000.000000000000
ROUND(123456789.123, 6) = 123456789.123000000000

Examples

The following example uses the ROUND() function to return a DECIMAL value, rounding the value of
the budget column to two decimal places.

SELECT country, ROUND(budget, 2) AS annual _budget
FROM wor | d_economy ORDER BY country;

295

SQL Functions

SEC()

SEC() — Returns the secant of an angle specified in radians.

Syntax

SEC({numeric-expression})

Description

The SEC() function returns the secant of a specified angleasaFLOAT value. The angle must be specified
in radians as a numeric expression.

Examples

The following example returns the secant, cosecant, and cotangent of angles from 0 to 90 degrees (where
the angleis specified in radians).

SELECT SEC(radi ans), CSC(radians), COT(radi ans)
FROM tri angl es WHERE radi ans >= 0 AND radi ans <= Pl ()/2;

296

SQL Functions

SECOND()

SECOND() — Returns the seconds of the minute as a floating point value.

Syntax

SECOND(timestamp-value)

Description

The SECOND() function returns an floating point value between 0 and 60 representing the whole and
fractional part of the number of seconds in the minute of a timestamp value. This function produces the
same result as using the SECOND keyword with the EXTRACT() function.

Examples

Thefollowing example usesthe HOUR(), MINUTE(), and SECOND() functionsto return thetime portion
of aTIMESTAMP value in aformatted string.

SELECT event nane,
CAST(HOUR(starttine) AS VARCHAR) || ' hours, ' ||
CAST(M NUTE(starttime) AS VARCHAR) || m nutes, and ' ||
CAST(SECOND(starttine) AS VARCHAR) || ' seconds.'
AS tinestring FROM event;

297

SQL Functions

SET_FIELD()

SET_FIELD() — Returns a copy of a JSON-encoded string, replacing the specified field value.

Syntax

SET_FIELD(column, field-name-path, string-value)

Description

The SET_FIELD() function finds the specified field within a JSON-encoded string and returns a copy of
the string with the new value replacing that field's previous value. Note that the SET_FIELD() function
returns an atered copy of the JSON-encoded string — it does not change any column valuesin place. So
to change existing database columns, you must use SET_FIELD() with an UPDATE statement.

For example, assume the Product table contains a VARCHAR column Productinfo which for one row
contains the following JSON string:

{"product”:"Acne wi dget",
"availability":"plenty",
"info": { "description": "A fancy widget.",
"sku": " ABCXYZ",
"part _nunber": 1234},
"war ehouse": [{"location":"Dallas","units": 25},
{"location":"Chicago", "units": 14},
{"location":"Troy","units":67}]

}
It is possible to change the value of the avai | abi | i ty field using the SET_FIELD function, like so:

UPDATE Product SET Productinfo =
SET _FIELD(Productinfo, availability',""limted"")
WHERE FI ELD(Pr oducti nfo, ' product’') = 'Acne w dget';

The second argument tothe SET_FIEL D() function can beasimplefield name, asin the previous example,
In which case the function replaces the value of the top field matching the specified name. Alternately, you
can specify a path representing a hierarchy of names separated by periods. For example, you can replace
the SKU number by specifying "info.sku" as the second argument, or you can replace the number of units
in the second warehouse by specifying the field path "warehouse[1].units'. For example, the following
UPDATE statement does both by nesting SET_FIELD commands:

UPDATE Product SET Productinfo =

SET_FI ELIX
SET _FI ELD(Productinfo,'info.sku','"DEFGH ""),
"war ehouse[1] .units', '128")

WHERE FI ELD(Pr oducti nfo, ' product') = 'Acne w dget';

Note that the third argument isthe string value that will be inserted into the JSON-encoded string. To insert
anumeric value, you enclose the value in single quotation marks, asin the preceding example where '128'
isused asthe replacement valuefor thewar ehouse[1] . uni t s field. Toinsert astring value, you must
include the string quotation marks within the replacement string itself. For example, the preceding code
uses the SQL string constant ""'DEFGHI"" to specify the replacement value for the text field i nf 0. sku.

298

SQL Functions

Finally, thereplacement string value can be any valid JSON value, including another JSON-encoded object
or array. It does not have to be a scalar string or numeric value.

Example

Thefollowing example usesthe SET_FIEL D() function to add anew array element to the warehouse field.

UPDATE Product SET Productinfo =
SET_FI ELD(Product i nf o, ' war ehouse',
"[{"l ocation":"Dallas","units": 25},
{"1 ocation":"Chicago", "units": 14},
{"location":"Troy","units": 67},
{"1 ocation":"Phoeni x","units":23}]")
WHERE FI ELD(Pr oducti nfo, ' product') = 'Acnme w dget';

299

SQL Functions

SIN()

SIN() — Returns the sine of an angle specified in radians.

Syntax

SIN({numeric-expression})

Description

The SIN() function returns the sine of a specified angle as a FLOAT value. The angle must be specified
in radians as a numeric expression.

Example

The following example returns the sine, cosine, and tangent of angles from 0 to 90 degrees (where the
angleis specified in radians).

SELECT SI N(radi ans), COS(radians), TAN(radi ans)
FROM tri angl es WHERE radi ans >= 0 AND radi ans <= Pl ()/2;

300

SQL Functions

SINCE_EPOCH()

SINCE_EPOCH() — Converts a VoltDB timestamp to an integer number of time units since the POSIX
epoch.

Syntax

SINCE_EPOCH(time-unit, timestamp-expression)

Description

The SINCE_EPOCH() function converts a VoltDB timestamp into an 64-hit integer value (BIGINT)
representing the equivalent number since the POSIX epoch in a specified time unit. POSIX time is
usually represented as the number of seconds since the epoch; that is, since 00:00.00 on January 1, 1970
Consolidated Universal Time (UTC). So the function SINCE_EPOCH(SECONDS, timestamp) returns
the POSIX time equivalent for the value of timestamp. However, you can aso request the number of
milliseconds or microseconds since the epoch. The valid keywords for specifying the time units are:

» SECOND — Seconds since the epoch
* MILLISECOND, MILLIS— Milliseconds since the epoch
* MICROSECOND, MICROS — Microseconds since the epoch

You cannot perform arithmetic on timestamps directly. So SINCE_EPOCH() is useful for performing
calculations on timestamp valuesin SQL expressions. For exampl e, thefollowing SQL statement looksfor
eventsthat arelessthan aminutein length, based on thetimestamp columns STARTTIME and ENDTIME:

SELECT * FROM Event
WHERE (SI NCE_EPOCH(Second, endti nme)
- SI NCE_EPOCH(Second, starttinme)) < 60;

The TO_TIMESTAMP() function performs the inverse of SINCE_EPOCH(), by converting an integer
value to a VoltDB timestamp based on the specified time units.

Example

The following example returns atimestamp column as the equivalent POSIX time value.

SELECT event _id, event_nane,
SI NCE_EPCCH(Second, starttinme) as posix_tinme FROM Event
ORDER BY event _i d;

The next example uses SINCE_EPOCH() to return the length of an event, in microseconds, by calculating
the difference between two timestamp columns.

SELECT event _id, event_type,
SI NCE_EPCCH(M cr osecond, endtine)
- SI NCE_EPOCH(M crosecond, starttine) AS delta
FROM Event ORDER BY event i d;

301

SQL Functions

SPACE()

SPACE() — Returns a string of spaces of the specified length.

Syntax

SPACE(humeric-expression)

Description

The SPACE() function returns a string composed of n spaces where the string length n is specified by the
function's argument. SPACE(n) isa synonym for REPEAT(* ', n).

Example

The following example uses the SPACE and CHAR_LENGTH functions to ensure the result is a fixed
length, padded with blank spaces.

SELECT product_nane || SPACE(80 - CHAR LENGTH(product nane))
FROM product |ist ORDER BY product nane;

302

SQL Functions

SQRT()

SQRT() — Returns the square root of a numeric expression.

Syntax

SQRT(numeric-expression)

Description

The SQRT() function returns the square root of the specified numeric expression.

Example

Thefollowing example uses the SQRT and POWER functions to return the distance of agraph point from
the origin.

SELECT | ocation, X, v,
SQRT(POVER(x, 2) + PONER(Y, 2)) AS distance
FROM poi nts ORDER BY | ocati on;

303

SQL Functions

STR)

STR() — Returns the string representation of a numeric value.

Syntax

STR(numeric-value [string-length [decimal-precision]])

Description

The STR() function returns a string representation of the numeric input. The first argument can be either
aFLOAT or DECIMAL value.

The optiona second argument specifies the maximum size of the output string and must be an integer
between 0 and 38. If the maximum string length isless than the number of characters required to represent
the numeric value, the resulting string is filled with asterisk (*) characters. The default length is 10
characters.

The optional third argument specifies the number of decimal places included in the output, which is
specified asan integer between 0 and 12. If the numeric value requires more decimal places than specified,
the value is rounded using "banker's rounding”. (See the description of the FORMAT_CURRENCY ()
function for a description of banker's rounding.) If the decimal precision is not specified, the value is
rounded and only the integer portion is returned.

Example

The following example uses STR() to return a percentage, rounded to two decimal places and including
the percent sign.

SELECT STR(100.0 * c.population / total _pop) || '%
FROM countries AS c,
(SELECT SUM popul ation) AS total pop FROM countries) as w
WHERE c. nanme=?;

304

SQL Functions

SUBSTRING()

SUBSTRING() — Returns the specified portion of a string expression.

Syntax

SUBSTRING(string-expression FROM position [FOR length])

SUBSTRING(string-expression, position [, length])

Description

The SUBSTRING() function returns a specified portion of the string expression, where position specifies
the starting position of the substring (starting at position 1) and length specifies the maximum length of
the substring. The length of the returned substring is the lower of the remaining characters in the string
expression or the value specified by length.

For example, if the string expression is"ABCDEF" and position is specified as 3, the substring startswith
the character "C". If length is also specified as 3, the return value is "CDE". If, however, the length is
specified as 5, only the remaining four characters "CDEF" are returned.

If length is not specified, the remainder of the string, starting from the specified by position, is returned.
For example, SUBSTRING("ABCDEF",3) and SUBSTRING("ABCDEF"3,4) return the same value.

Example

The following example uses the SUBSTRING function to return the month of the year, which is a
VARCHAR column, as athree |etter abbreviation.

SELECT event, SUBSTRI NG nonth, 1, 3), day, year FROM cal endar
ORDER BY event ASC;

305

SQL Functions

SUM()

SUM() — Returns the sum of arange of numeric column values.

Syntax

SUM(column-expression)

Description

The SUM() function returnsthe sum of arange of numeric column values. The values being added together
depend on the constraints defined by the WHERE and GROUP BY clauses.

Example

Thefollowing example uses the SUM () function to determine how much inventory existsfor each product
type in the catalog.

SELECT category, SUMquantity) AS inventory FROM product |i st
GROUP BY cat egory ORDER BY category;

306

SQL Functions

TAN()

TAN() — Returns the tangent of an angle specified in radians.

Syntax

TAN({numeric-expression})

Description

The TAN() function returnsthe tangent of aspecified angleasaFLOAT value. The angle must be specified
in radians as a numeric expression.

Example

The following example returns the sine, cosine, and tangent of angles from 0 to 90 degrees (where the
angleis specified in radians).

SELECT SI N(radi ans), COS(radians), TAN(radi ans)
FROM tri angl es WHERE radi ans >= 0 AND radi ans <= Pl ()/2;

307

SQL Functions

TO_TIMESTAMP()

TO_TIMESTAMP() — Convertsan integer valueto aVoltDB timestamp based on the time unit specified.

Syntax

TO_TIMESTAMP(time-unit, integer-expression)

Description

The TO_TIMESTAMP() function converts an integer expression to a VoltDB timestamp, interpreting
the integer value as the number of specified time units since the POSIX epoch. POSIX time is usually
represented as the number of seconds since the epoch; that is, since 00:00.00 on January 1, 1970
Consolidated Universal Time (UTC). So the function TO_TIMESTAMP(Second, timeinsecs) returns the
VoltDB TIMESTAMP equivalent of timeinsecs as a POSIX time value. However, you can also request
the integer value be interpreted as milliseconds or microseconds since the epoch. The valid keywords for
specifying the time units are:

» SECOND — Seconds since the epoch
* MILLISECOND. MILLIS— Milliseconds since the epoch
* MICROSECOND, MICROS — Microseconds since the epoch

Y ou cannot perform arithmetic on timestamps directly. So TO_TIMESTAMP() is useful for converting
the results of arithmetic expressions to VoltDB TIMESTAMP values. For example, the following SQL
statement uses TO_TIMESTAMP to convert a POSIX time value before inserting it into a VoltDB
TIMESTAMP column:

I NSERT | NTO Event
(event _id, event _nane, event type, starttinme)
VALUES(?, ?, ?, TO_TI MESTAMP(Second, ?));

The SINCE_EPOCH() function performs the inverse of TO_TIMESTAMP(), by converting a VoltDB
TIMESTAMP to an integer value based on the specified time units.

Example

Thefollowing example updatesa TIMESTAMP column, adding one hour (in seconds) to the current value
using SINCE_EPOCH() and TO_TIMESTAMP() to perform the conversion and arithmetic:

UPDATE Cont est
SET deadl i ne=TO_TI MESTAMP(Second, SI NCE_EPOCH(Second, deadl i ne) + 3600)
WHERE expi red=1;

308

SQL Functions

TRIM()

TRIM() — Returns a string with leading and/or training spaces removed.

Syntax

TRIM([[LEADING | TRAILING | BOTH] [character] FROM] string-expression)

Description

The TRIM() function returns a string with leading and/or trailing spaces removed. By default, the TRIM
function removes spaces from both the beginning and end of the string. If you specify the LEADING or
TRAILING clause, spaces are removed from either the beginning or end of the string only.

Y ou can also specify an aternate character to remove. By default only spaces (UTF-8 character code 32)
are removed. If you specify a different character, only that character will be removed. For example, the
following INSERT statement uses the TRIM function to remove any TAB characters from the beginning
of the string input for the ADDRESS column:

I NSERT | NTO Custoners (first, |last, address)
VALUES(?, 2,
TRIM LEADI NG CHAR(9) FROM CAST(? AS VARCHAR))
);

Example

Thefollowing example uses TRIM() to remove extraneous leading and trailing spaces from the output for
three VARCHAR columns:

SELECT TRIMfirst), TRIMIlast), TRI Maddress) FROM Custoner
ORDER BY | ast, first;

309

SQL Functions

TRUNCATE()

TRUNCATE() — Truncates a VoltDB timestamp to the specified time unit.

Syntax

TRUNCATE(time-unit, timestamp)

Description

The TRUNCATE() function truncates a timestamp value to the specified time unit. For example,
if the timestamp column Apollo has the value July 20, 1969 4:17:40 P.M, then using the function
TRUNCATE(hour,apollo) would return the value July 20, 1969 4:00:00 P.M. Allowable time units for
truncation include the following:

- YEAR

« QUARTER

« MONTH

. DAY

« HOUR

« MINUTE

« SECOND

« MILLISECOND, MILLIS

Example

The following example uses the TRUNCATE function to find records where the timestamp column,
incident, falls within a specific day, entered as a POSIX time value.

SELECT incident, description FROM securityl og
VWHERE TRUNCATE(DAY, incident) = TRUNCATE(DAY, FROM UNI XTI ME(?))
ORDER BY incident, description;

310

SQL Functions

UPPER()

UPPER() — Returns a string converted to all uppercase characters.

Syntax

UPPER(string-expression)

Description
The UPPER() function returns a copy of the input string converted to all uppercase characters.

Example

The following example uses the UPPER function to return results al phabetically regardless of case.

SELECT UPPER(product nane), product_id FROM product i st
ORDER BY UPPER(product nane) ;

311

SQL Functions

VALIDPOLYGONFROMTEXT()

VALIDPOLY GONFROMTEXT() — Returns a validated GEOGRAPHY value from the corresponding
WKT

Syntax

VALIDPOLYGONFROMTEXT(text)

Description

The VALIDPOLY GONFROMTEXT() function generates a valid GEOGRAPHY value from a string
containing awell known text (WKT) representation of a geographic polygon. If the GEOGRAPHY value
resulting from the WKT string cannot be madeinto avalid representation of apolygon, the function returns
an error. The error message includes an explanation of why the WKT is not valid. If the polygon is valid
except the rings are drawn in the wrong direction (that is, the outer ring is clockwise or the inner rings
are counterclockwise), the VALIDPOLY GONFROMTEXT() function will correct the rings and generate
avalid polygon.

The difference between the POLY GONFROMTEXT() function and the
VALIDPOLYGONFROMTEXT() function isthat the VALIDPOLY GONFROMTEXT() verifiesthat the
resulting polygon meetsall of the requirementsfor use by VoltDB. If avalid polygon cannot be generated,
the VALIDPOLY GONFROMTEXT() function returnsan error. The POLY GONFROMTEXT () function,
on the other hand, simply constructsa GEOGRAPHY value without validating all of the requirementsof a
VoltDB polygon and may need separate validation (using the ISVALID() or MAKEVALIDPOLY GON()
function) before it can be used effectively with other geospatial functions. See the description of the
ISVALID() function for a description of the requirements for avalid polygon.

Example

The following example uses the VALIDPOLY GONFROMTEXT() function to insert arecord containing
a GEOGRAPHY column using a text input value containing the WKT representation of a geographic
polygon. Note that if

INSERT INTO city (nane, state, boundary)
VALUES(?, ?, VALI DPOLYGONFROMITEXT(?));

312

SQL Functions

WEEK(), WEEKOFYEAR()

WEEK(), WEEKOFY EAR() — Returns the week of the year as an integer value.

Syntax

WEEK(timestamp-value)

WEEKOFYEAR(timestamp-value)

Description
The WEEK () and WEEKOFY EAR() functions are synonyms and return an integer value between 1 and

52 representing the timestamp's week of the year. These functions produce the same result as using the
WEEK_OF_YEAR keyword with the EXTRACT() fucntion.

Examples

The following example uses the WEEK () function to group and sort records containing a timestamp.

SELECT week(starttime), count(*) as eventsperweek
FROM event GROUP BY week(starttine) ORDER BY week(starttinmne);

313

SQL Functions

WEEKDAY()

WEEKDAY () — Returns the day of the week as an integer between 0 and 6.

Syntax

WEEKDAY (timestamp-value)

Description

The WEEKDAY () function returns an integer value between 0 and 6 representing the day of theweek ina
timestamp value. For the WEEK DAY () function, the week starts (0) on Monday and ends (6) on Sunday.

This function is provided for compatibility with MySQL and produces the same result as using the
WEEKDAY keyword with the EXTRACT() function.

Examples

The following example uses WEEKDAY () and the DECODE() function to return a string vaue
representing the day of the week for the specified TIMESTAMP value.

SELECT eventti ne,
DECODE(WEEKDAY(event ti me),
' Monday'
' Tuesday' ,
' Wednesday'
" Thur sday' ,
" Friday',
' Sat ur day'
, ''Sunday') AS eventday
FROM event ORDER BY eventti ne;

ook wNEO

314

SQL Functions

YEAR()

Y EAR() — Returns the year as an integer value.

Syntax

YEAR(timestamp-value)

Description

TheY EAR() function returnsan integer value representing theyear of aTIMESTAMPvalue. The Y EAR()
function produces the same result as using the Y EAR keyword with the EXTRACT() function.

Examples

The following example uses the DAY (), MONTH(), and Y EAR() functions to return atimestamp column
as aformatted date string.

SELECT CAST(MONTH(starttine) AS VARCHAR) || |
CAST(DAY(starttine) AS VARCHAR) | | |
CAST(YEAR(starttinme) AS VARCHAR), title, description
FROM event ORDER BY starttine;

N
N

315

Appendix D. VoltDB CLI Commands

VolItDB provides shell or CLI (command line interpreter) commands to perform common functions for
developing, starting, and managing VoltDB applications and databases. This appendix describes those
shell commands in detail.

The commands are listed in al phabetical order.

» csvloader
* jdbcloader
» kafkaloader
* sglemd
 voltadmin
» voltdb

Using CLI Commands with TLS/SSL

When TL S (Transport Layer Security) encryption isenabled for the cluster external ports (that is, the client
and admin ports, not just the httpd port), you must explicitly tell VoltDB CLI commandsthat interact with
arunning cluster to use TLS. The simplest way to do this, if you are using a certificate from an external
certificate authority, isto include the --ssl flag on the command line. For example:

$ sglcnd --ssl

Alternately, if you are using alocally generated certificate, you must specify an Java properties file that
points to the trust store as an argument to the flag, like so:

$ sqlcmd --ssl=nytruststore. conf

The propertiesfile verifiesthat the database server is passing credentialsthat you trust. That is, credentials
that match thetrust store you reference. Theformat of fileisaJavapropertiesfilesdeclaring two properties,
one per line, that identify the trust store and trust store password:

trustStore={ path-to-trust-store}
trustStorePassword={ trust-store password}

See Section 12.7, “Encrypting VoltDB Communication Using TLS/SSL” for more information on
configuring TLS encryption on the external ports.

316

VoltDB CLI Commands

csvioader

csvloader — Imports the contents of a CSV fileand insertsit into aVoltDB table.

Syntax

csvloader table-name [arguments]

csvloader -p procedure-name [arguments]

Description

The csvloader command reads comma-separated values and inserts each valid line of datainto the specified
tablein aVoltDB database. The most common way to use csvloader is to specify the database table to be
loaded and a CSV file containing the data, like so:

$ csvl oader enpl oyees -f acne_enpl oyees. csv
Alternately, you can use standard input as the source of the data:
$ csvl oader enpl oyees < acne_enpl oyees. csv

In addition to inserting all valid content into the specified database table, csvlioader creates three output
files:

» Error log— Theerror log provides details concerning any errors that occur while processing the input
file. Thisincludes errorsin the format of theinput as well as errorsthat occur attempting the insert into
VoltDB. For example, if two rows contain the same value for a column that is declared as unique, the
error log indicates that the second insert fails due to a constraint violation.

» Failed input — A separate file contains the contents of each line that failed to load. Thisfileis useful
becauseit allowsyou to correct any formatting issues and retry just the failed content, rather than having
to restart and reload the entire table.

e Summary report — Once al input lines are processed, csvloader generates a summary report listing
how many lines were read, how many were successfully loaded and how long the operation took.

All three files are created, by default, in the current working directory using "csvloader" and the table
name as prefixes. For example, using csvloader to insert contestants into the sample voter database creates
the following files:

csvloader_contestants _insert_log.log
csvloader_contestants_invalidrows.csv
csvloader_contestants _insert_report.log

It is possible to use csvloader to load text files other than CSV files, using the - - separ at or, - -
guot echar, and - - escape flags. Note that csvlioader uses Python to process the command line
arguments. So to enter certain non-alphanumeric characters, you must use the appropriate escaping
mechanism for Python command lines. For example, to use a tab-delimited file as input, you need to use
the- - separ at or flag, escaping the tab character like so:

$ csvl oader --separator=$\t' \

317

VoltDB CLI Commands

-f enpl oyees.tab enpl oyees

It is also important to note that, unlike VoltDB native clients, when interpreting string values for
TIMESTAMP columns, csvloader evaluates the value in the local timezone. That is, the timezone set by
the local system. To have string values interpreted as Greenwich Mean Time, set the system variable TZ
to "GMT" prior to invoking the csvloader. For example:

$ export TZ=GMT; csvl oader enpl oyees -f enpl oyees. csv

Arguments

--batch {integer}
Specifies the number of rows to submit in a batch. If you do not specify an insert procedure, rows of
input are sent in batches to maximize overall throughput. You can specify how many rows are sent
in each batch using the - - bat ch flag. The default batch sizeis 200. If you usethe - - pr ocedur e
flag, no batching occurs and each row is sent separately.

--blank {error | null | empty }
Specifies what to do with missing values in the input. By default, if aline contains a missing value,
it is interpreted as a null value in the appropriate datatype. If you do not want missing values to
be interpreted as nulls, you can use the --blank argument to specify other behaviors. Specifying - -
bl ank error resultsin an error if aline contains any missing values and the line is not inserted.
Specifying - - bl ank enpt y returns the corresponding "empty" value in the appropriate datatype.
An empty value isinterpreted as the following:

» Zerofor al numeric columns
» Zero, or the Unix epoch value, for timestamp columns

» Anempty or zero-length string for VARCHAR and VARBINARY columns

-C, --charset {character-set}
Specifies the character set of the input file. The default character set isUTF-8.

--columnsizelimit {integer}
Specifies the maximum size of quoted column input, in bytes. Mismatched quotation marks in the
input can cause csvloader to read all subsequent input — including line breaks— as part of the column.
To avoid excessive memory usein this situation, theflag setsalimit on the maximum number of bytes
that will be accepted as input for a column that is enclosed in quotation marks and spans multiple
lines. The default is 16777216 (that is, 16MB).

--escape {character}
Specifies the escape character that must precede a separator or quotation character that is supposed to
beinterpreted asaliteral character in the CSV input. The default escape character isthe backslash (\).

-f, --file {file-specification}
Specifies the location of a CSV file to read as input. If you do not specify an input file, csvlioader
reads input from standard input.

--header
Specifiesthat the first line of the CSV fileis a header row, containing the names of the columns. The
column names must match columns in the VoltDB table. However, by using --header, the columns
can appear in adifferent order in the CSV file from the order in the database schema. Note that you
must specify all of the table column names in the header. The arguments --header and --procedure
are mutually exclusive.

318

VoltDB CLI Commands

--kerberos={ service-name}
Specifies the use of kerberos authentication when connecting to the database server(s). The service
name identifies the Kerberos client service module, as defined by the JAAS login configuration file.

--limitrows {integer}
Specifies the maximum number of rows to be read from the input stream. This argument (along with
--skip) lets you load a subset of alarger CSV file.

-m, --maxerrors {integer}
Specifies the target number of errors before csvlioader stops processing input. Once csvloader
encountersthe specified number of errorswhiletrying toinsert rows, it will stop reading input and end
the process. Note that, since csvloader performsinserts asynchronously, it often attempts moreinserts
before the target number of exceptions are returned from the database. So it is possible more errors
could be returned after the target is met. This argument lets you conditionally stop a large loading
process if more than an acceptable number of errors occur.

--noquotechar
Disablesthe interpretation of quotation charactersin the CSV input. All input other than the separator
character and line break will be treated as literal input characters.

--nowhitespace
Specifiesthat the CSV input must not contain any whitespace between data values and separators. By
default, csvloader ignores extra space between values, quotation marks, and the value separators. If
you use thisargument, any input lines containing whitespace will generate an error and not beinserted
into the database.

--password {text}
Specifies the password to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument
but not the --password argument, VoltDB prompts for the password. Thisis useful when writing shell
scripts because it avoids having to hardcode passwords as plain text in the script.

--port { port-number}
Specifies the network port to use when connecting to the database. If you do not specify a port,
csvloader uses the default client port 21212.

-p, --procedure {procedure-name}
Specifies a stored procedure to use for loading each record from the data file. The named procedure
must exist in the database schema and must accept the fields of the data record as input parameters.
By default, csvloader uses a custom procedure to batch multiple rows into a single insert operation.
If you explicitly name a procedure, batching does not occur.

--guotechar {character}
Specifies the quotation character that is used to enclose values. By default, the quotation character is
the double quotation mark ().

-r, --reportdir {directory}
Specifies the directory where csvlioader writes the three output files. By default, csvlioader writes
output files to the current working directory. This argument lets you redirect output to an alternative
location.

--s, --servers{server-id}[,...]
Specifies the network address of one or more nodes of a database cluster. By default, csvlioader
attempts to insert the CSV data into a database on the local system (localhost). To load data into a
remote database, usethe --serversargument to specify the database nodestheloader should connect to.

319

VoltDB CLI Commands

--separator {charactor}
Specifies the character used to separate individual values in the input. By default, the separator
character isthe comma(,).

--skip {integer}
Specifies the number of lines from the input stream to skip before inserting rows into the database.
This argument (along with --limitrows) lets you load a subset of alarger CSV file.

--sdl[=sdl-config-fil€]
Specifiesthe use of TL S encryption when communicating with the server. Only necessary if the cluster
is configured to use TLS encryption for the external ports. See Section D, “Using CLI Commands
with TLS/SSL” for more information.

--stopondisconnect
Specifies that if connectionsto all of the VoltDB servers are broken, the loader will stop. Normally,
if the connection to the database is lost, csvloader periodically attempts to reconnect until the servers
come back online and it can complete the loading process. However, you can use this argument to
have the loader process stop if the VoltDB cluster becomes unavailable.

--strictquotes
Specifies that al values in the CSV input must be enclosed in quotation marks. If you use this
argument, any input lines containing unguoted values will generate an error and not be inserted into
the database.

--update
Specifiesthat existing recordswith amatching primary key are updated, rather than being rejected. By
default, csvloader attempts to create new records. The --update flag lets you load updates to existing
records — and create new records where the primary key does not already exist. To use --update, the
table must have a primary key.

--user {text}

Specifies the username to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database.

Examples

Thefollowing example loadsthe datafrom aCSV file, | anguages. csv, into the helloworld table from
the Hello World example database and redirects the output files to the ./logs subfolder.

$ csvloader helloworld -f |anguages.csv -r ./l ogs
The following example performs the same function, providing the input interactively.

$ csvloader helloworld -r ./l ogs
"Hell 0", "Wérld", "English"

"Bonjour", "Mnde", "French"
"Hol a", "Mundo", "Spanish"
"Hej", "Verden", "Danish"
"G ao", "Mndo", "lItalian"
CTRL-D

320

VoltDB CLI Commands

jdbcloader

jdbcloader — Extracts a table from another database via JDBC and insertsit into a VoltDB table.

Syntax

jdbcloader table-name [arguments]

jdbcloader -p procedure-name [arguments]

Description

The jdbcloader command uses the JDBC interface to fetch all records from the specified table in aremote
database and then insert those records into a matching table in VoltDB. The most common way to use
jdbcloader isto copy matching tables from another database to VoltDB. In this case, you specify the name
of the table, plus any JDBC-specific arguments that are needed. Usualy, the required arguments are the
JDBC connection URL, the source table, the username, password, and local JDBC driver. For example:

$ j dbcl oader enpl oyees \
--jdbcurl =j dbc: post gresql : //renot esvr/ cor phr \
--j dbct abl e=enpl oyees \
--j dbcuser =char | esdi ckens \
- - j dbcpasswor d=bl eakhouse \
--jdbcdriver=org. postgresql.Driver

In addition to inserting all valid content into the specified database table, jdbcloader creates three output
files:

e Error log— Theerror log provides details concerning any errors that occur while processing the input
file. Thisincludes errorsthat occur attempting the insert into VoltDB. For example, if two rows contain
the same value for a column that is declared as unique, the error log indicates that the second insert fails
dueto aconstraint violation.

» Failed input — A separate file contains the contents of each record that failed to load. The records are
stored in CSV (comma-separated value) format. Thisfileis useful because it allows you to correct any
formatting issues and retry just the failed content using the csvloader.

* Summary report — Onceall input records are processed, jdbcl oader generatesasummary report listing
how many records were read, how many were successfully loaded and how long the operation took.

All three files are created, by default, in the current working directory using "jdbcloader” and the table
name as prefixes. For example, using jdbcl oader to insert contestantsinto the sample voter database creates
the following files:

jdbcloader_contestants insert_log.log
jdbcloader_contestants insert_invalidrows.csv
jdbcloader_contestants insert_report.log

It is possible to use jdbcloader to perform other input operations. For example, if the source table does
not have the same structure as the target table, you can use a custom stored procedure to perform the
necessary trandation from one to the other by specifying the procedure name on the command line with
the --procedure flag:

$ j dbcl oader --procedure transl ateEnpRecords \

321

VoltDB CLI Commands

--jdbcurl =j dbc: post gresql : //renot esvr/ corphr \
- -j dbct abl e=enpl oyees \
- -j dbcuser =charl esdi ckens \
- - j dbcpasswor d=bl eakhouse \
--jdbcdriver=org. postgresql.Driver

Arguments

--batch {integer}
Specifiesthe number of rowsto submit in abatch to the target VoltDB database. If you do not specify
aninsert procedure, rows of input are sent in batches to maximize overall throughput. Y ou can specify
how many rows are sent in each batch using the - - bat ch flag. The default batch size is 200. If you
usethe - - pr ocedur e flag, no batching occurs and each row is sent separately.

--fetchsize {integer}
Specifies the number of records to fetch in each JDBC call to the source database. The default fetch
size is 100 records,

--jdbcdriver {class-name}
Specifiesthe class name of the JDBC driver to invoke. The driver must exist locally and be accessible
either from the CLASSPATH environment variable or in the | i b/ ext ensi on directory where
VoltDB isinstalled.

--jdbcpassword {text}
Specifies the password to use when connecting to the source database via JDBC. Y ou must specify a
username and password if security is enabled on the source database.

--jdbctable {table-name}
Specifies the name of source table on the remote database. By default, jdbcl oader assumes the source
table has the same name as the target VVoltDB table.

--jdbeurl {connection-URL}
Specifies the JDBC connection URL for the source database. This argument is required.

--jdbcuser {text}
Specifies the username to use when connecting to the source database via JDBC. Y ou must specify a
username and password if security is enabled on the source database.

--limitrows {integer}
Specifies the maximum number of rowsto be read from the input stream. This argument lets you load
a subset of aremote database table.

-m, --maxerrors {integer}
Specifies the target number of errors before jdbcloader stops processing input. Once jdbcloader
encountersthe specified number of errorswhiletrying toinsert rows, it will stop reading input and end
the process. Notethat, sincejdbcloader performsinsertsasynchronously, it often attempts moreinserts
before the target number of exceptions are returned from the database. So it is possible more errors
could be returned after the target is met. This argument lets you conditionally stop a large loading
process if more than an acceptable number of errors occur.

--password {text}
Specifies the password to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument
but not the --password argument, VoltDB prompts for the password. Thisis useful when writing shell
scripts because it avoids having to hardcode passwords as plain text in the script.

322

VoltDB CLI Commands

--port { port-number}
Specifies the network port to use when connecting to the VoltDB database. If you do not specify a
port, jdbcloader uses the default client port 21212.

-p, --procedure {procedure-name}
Specifiesastored procedureto usefor loading each record from theinput source. The named procedure
must exist in the VoltDB database schema and must accept the fields of the data record as input
parameters. By default, jdbcloader uses a custom procedure to batch multiple rowsinto asingle insert
operation. If you explicitly name a procedure, batching does not occur.

-r, --reportdir {directory}
Specifies the directory where jdbcloader writes the three output files. By default, jdbcloader writes
output files to the current working directory. This argument lets you redirect output to an alternative
location.

--s, --servers{server-id}[,...]
Specifies the network address of one or more nodes of a VoltDB cluster. By default, jdbcloader
attemptsto insert the datainto a VVoltDB database on the local system (localhost). To load datainto a
remote database, use the --servers argument to specify the VoltDB database nodes the loader should
connect to.

--ssl[=sdl-config-file]
Specifiesthe use of TL Sencryption when communicating with the server. Only necessary if the cluster
is configured to use TLS encryption for the external ports. See Section D, “Using CLI Commands
with TLS/SSL” for more information.

--stopondisconnect
Specifiesthat if connectionsto all of the VVoltDB servers are broken, the loader will stop. Normally, if
the connection to the database is lost, jdbcloader periodically attempts to reconnect until the servers
come back online and it can complete the loading process. However, you can use this argument to
have the loader process stop if the VoltDB cluster becomes unavailable.

--user {text}
Specifiesthe username to use when connecting to the VVoltDB database. Y ou must specify ausername
and password if security is enabled on the target database.

Example

The following example loads records from the Products table of the Warehouse database on server
hg.mycompany.com and writesthe recordsinto the Productstabl e of the VoltDB database on serverssvrA,
svrB, and svrC, using the MySQL JDBC driver to access to source database. Note that the --jdbctable flag
is not needed since the source and target tables have the same name.

$ jdbcl oader Products --servers="svrA svrB,svrC' \
--jdbcurl ="jdbc: mysql : //hqg. nyconpany. conf war ehouse" \
--jdbcdriver="com nysql .jdbc.Driver" \
--j dbcuser="ceo" \
- - j dbcpasswor d=" headhoncho"

323

VoltDB CLI Commands

kafkaloader

kafkal oader — Imports data from a Kafka message queue into the specified database table.

Syntax

kafkaloader table-name [arguments]

Description

The kafkaloader utility loads data from a Kafka message queue and inserts each message as a separate
record into the specified database table. Apache Kafkais a distributed messaging service that lets you set
up message queues which are written to and read from by "producers' and "consumers’, respectively. In
the Apache Kafka model, the kafkal oader acts as a"consumer".

When you start the kafkal oader, you must specify at least three arguments:

* The database table

» The Kafka server to read messages from, specified using the --zookeeper flag

» The Kafka"topic" where the messages are stored, specified using the --topic flag

For example:

$ kaf kal oader --zookeeper=quesvr:2181 --topic=vol tdb_custoner customner
Note that Kafka does not impose any specific format on the messages it manages. The format of the
messages are application specific. In the case of kafkal oader, VoltDB assumes the messages are encoded
as standard comma-separated value (CSV) strings, with the values representing the columns of the table
in the order listed in the schema definition. Each Kafka message contains a single row to be inserted into
the database table.

It is aso important to note that, unlike the csvloader which reads a stetic file, the kafkal oader is reading
from a queue where messages can be written at any time, on an ongoing basis. Therefore, the kafkal oader
process does not stop when it reads the last message on the queue; instead it continues to monitor the queue
and process any new messages it receives. The kafkaloader process will continue to read from the queue
until one of the following events occur:

* The maximum number of errors (specified by - - maxer r or s) isreached.

» Theuser explicitly stops the process.

» If--stopondi sconnect isspecified and connection to all of the VoltDB serversisbroken (that is,
kafkaloader can no longer access the VoltDB database).

The kafkaloader will not terminate if it loses its connection to the Kafka zookeeper. Therefore, it is
important to monitor the Kafka service and restart the kafkaloader if and when the Kafka service is
interrupted. Similarly, the kafkaloader will not stop if it loses connection to the VVoltDB database, unless
you include the - - st opondi sconnect argument on the command line.

324

http://kafka.apache.org/

VoltDB CLI Commands

Arguments
Note

The arguments - - server s and - - port are deprecated in favor of the new, more flexible
argument - - host . Also, the argument - - zookeeper is deprecated in favor of the new
argument - - br oker s. The deprecated arguments continue to work but may be removed in a
future major release.

--batch {integer}
Specifies the number of rows to submit in a batch. By default, rows of input are sent in batches to
maximize overall throughput. Y ou can specify how many rows are sent in each batch using the - -
bat ch flag. The default batch sizeis 200.

Note that --batch and --flush work together. Whichever limit is reached first triggers an insert to the
database.

-b, -brokers {kafka-broker[:port] }[,...]
Specifiesone or more Kafkabrokersto connect to. Specify multiple brokersasacomma-separated list.

The Kafka service must be running Kafka 0.8. Use the kaflaloader10 utility , also included in the
VoltDB kit, when accessing Kafka version 0.10.2 or later.

-c, --config {file}
SpecifiesaKafkaconfiguration filethat lets you set Kafkaconsumer properties, such asgroup.id. The
file should contain the names of the properties you want to set, one per line, followed by an equals
sign and the desired value. For example:

group. i d=nydb
client.id=nyappnane

--commitpolicy {interval}
Because the loader performs two distinct tasks — retrieving records from Kafka and then inserting
them into VoltDB — Kafka's automated tracking of the current offset may not match what records
are successfully inserted into the database. Therefore, by default, the importer uses a manual commit
policy to ensure the Kafka offset matches the completed inserts.

Use of the default commit policy is recommended. However, you can, if you choose, use Kafka's
automated commit policy by specifying acommit interval, in milliseconds, using this property.

-f, --flush {integer}
Specifies the maximum number of seconds before pending dataiswritten to the database. The default
flush period is 10 seconds.

If dataisinserted into the kafka queue intermittently, there could be along delay between when data
is read from the queue and when enough records have been read to meet the - - bat ch limit. The
flush value avoids unnecessary delaysin this situation by periodically writing al pending data. If the
flush limit is reached, al pending records are written to the database, even if the - - bat ch limit has
not been satisfied.

--formatter {file}
Specifies a configuration file identifying properties for a custom formatter. The file must set the
property f or mat t er to the class for the custom implementation of the Formatter interface. (Note,
thisisdifferent than the attribute set when declaring aformatter for abuilt-inimport connector. For the
kaflaloader utility you specify the Formatter class, not the Formatter Factory.) Y ou can also declare
additional custom properties used by the formatter itself. For example:

325

VoltDB CLI Commands

formatter=nyformatter. M\yFornmatter
col utm_wi dt h=12

Before running kafkaloader with a custom formatter, you must define two environment variables:
ZK_LIB pointing to the location of the Apache Zookeeper librariesand FORMATTER_LIB pointing
to the location of your custom formatter JAR file. See the chapter on "Custom Importers,Exporters,
and Formatters' in the VoltDB Guide to Performance and Customization for more information about
using custom formatters.

-H, --host {server[:port]}|,...]
Specifies one or more nodes of the database cluster where the records are to be inserted. You
can specify servers as a network address or hostname, plus an optional port number. By default,
kafkal oader attempts to connect to the default client port on the local system (localhost). To load data
into a remote database, use the --host argument to specify one or more VoltDB servers the loader
should connect to. Once kafkal oader connectsto at |east one cluster node, it will automatically connect
to the other serversin the cluster.

-m, --maxerrors {integer}
Specifies the target number of input errors before kafkaloader stops processing input. Once
kafkal oader encounters the specified number of errors while trying to insert rows, it will stop reading
input and end the process.

The default maximum error count is 100. Since kafka import can be an persistent process, you can
avoid having input errors cancel ongoing import by setting the maximum error count to zero, which
means that the loader will continue to run no matter how many input errors are generated.

--password {text}
Specifies the password to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument
but not the --password argument, VoltDB prompts for the password. Thisis useful when writing shell
scripts because it avoids having to hardcode passwords as plain text in the script.

-p, --procedure {procedure-name}
Specifies a stored procedure to use for loading each record from the data file. The named procedure
must exist in the database schema and must accept the fields of the data record as input parameters.
By default, kafkal oader uses a custom procedure to batch multiple rows into asingle insert operation.
If you explicitly name a procedure, batching does not occur.

--sdl[=sdl-config-fil€]
Specifiesthe use of TL S encryption when communicating with the server. Only necessary if the cluster
is configured to use TLS encryption for the external ports. See Section D, “Using CLI Commands
with TLS/SSL” for more information.

--stopondisconnect
Specifiesthat if connectionsto all of the VoltDB serversare broken, the kafkal oader processwill stop.
The kafkal oader connectsto servers automatically asthe topology of the cluster changes. Normally, if
all connections are broken, kafkaloader will periodically attempt to reconnect until the servers come
back online. However, you can use this argument to have the loader process stop when the VoltDB
cluster becomes unavailable.

-t, --topic { kafka-topic}
Specifies the Kafka topic to read from the Kafka queue.

--update
Specifies that existing records with a matching primary key are updated, rather than being rejected.
By default, kafkaloader attempts to create new records. The --update flag lets you load updates to

326

VoltDB CLI Commands

existing records — and create new records where the primary key does not already exist. To use --
update, the table must have a primary key.

--user {text}
Specifies the username to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database.

Examples

The following example starts the kafkaloader to read messages from the voltdb_customer topic on the
Kafkabroker quebkr:9092, inserting the resulting recordsinto the CUSTOMER tablein the VoltDB cluster
that includes the servers dbsvrl, dbsvr2, and dbsvr3. The process will continue, regardless of errors, until
the user explicitly ends the process.

$ kaf kal oader --maxerrors=0 custoner \
- - br oker s=quebkr: 2181 --topi c=vol tdb_custoner \
--host =dbsvr 1, dbsvr 2, dbsvr 3

327

VoltDB CLI Commands

sqlemd

sglemd — Starts an interactive command prompt for issuing SQL queriesto arunning VoltDB database

Syntax

sglcmd [args...]

Description

The sglemd command lets you query a VoltDB database interactively. Y ou can execute SQL statements,
invoke stored procedures, or use directives to examine the structure of the database. When sglcmd starts
it provides its own command line prompt until you exit the session. When you start the session, you can
optionally specify one or more database servers to access. By default, sglcmd accesses the database on
the local system vialocalhost.

At the sglemd prompt, you have several options:

e SQL queries— You can enter ad hoc SQL queries that are run against the database and the results
displayed. Y ou must terminate the query with a semi-colon and carriage return.

» Procedurecalls— Y ou can have sglcmd execute astored procedure. Y ou identify aprocedure call with
the exec directive, followed by the procedure class name, the procedure parameters, and a closing semi-
colon. For example, the following sglcmd directive executes the @SystemCatalog system procedure
reguesting information about the stored procedures.

$ sqgl cnd
1> exec @bystentCatal og procedures;

Note that string values can be entered as plain text or enclosed in single quotation marks. Also, the exec
directive must be terminated by a semi-colon.

» Echodirectives— The echo and echoerror directiveslet you add comments or informational messages
to the sglemd output. Any text following the directive up to and including the line break or carriage
return is repeated verbatim:

« ECHO [text] — Writes the specified text, asis, to standard output (stdout).
« ECHOERROR [text] — Writes the specified text, asis, to standard error (stderr).

» Show and Explain directives— The show and explain directives |et you examine the structure of the
schema and user-defined stored procedures. Valid directives are:

e SHOW CLASSES — Lists the user-defined classes in the database. Classes are grouped into
procedures classes (those that can be invoked as a stored procedure) and non-procedure classes
(shared classes that cannot themselves be called as stored procedures but can be invoked from within
stored procedures).

¢ SHOW PROCEDURES — Lists the user-defined, default, and system procedures for the current
database, including the type and number of arguments for each.

* SHOW TABLES — Liststhetablesin the schema.

* EXPLAIN {sqgl-query} — Displays the execution plan for the specified SQL statement.

328

VoltDB CLI Commands

* EXPLAINPROC {procedure-name} — Displays the execution plans for the specified stored
procedure.

 EXPLAINVIEW {view-name} — Displays the execution plans for the components of the specified
view.

Classmanagement dir ectives— Theload classesand remove classes directives|et you add and remove
Java classes from the database:

¢ LOAD CLASSES—L oadsany classesor resourcefilesin the specified JAR file. If aclassor resource
aready existsin the database, it is replaced by the new definition from the JAR file.

« REMOVE CLASSES — Removes any classes that match the specified class name string. The class
specification can include wildcards.

Command recall — You can recall previous commands using the up and down arrow keys. Or you
can recall a specific command by line number (the command prompt shows the line number) using the
recall command. For example:

$ sqgl cnd

1> select * fromvotes;
2> show procedur es;

3> recall 1

select * fromvotes;

Once recalled, you can edit the command before reissuing it using typical editing keys, such as the | eft
and right arrow keys and backspace and delete.

Script files— You can run multiple queries or stored procedures in a single command using the file
directive. The file directive takes one or more text files as an argument and executes all of the SQL
queries and exec directives in the file(s) as if they were entered interactively. (Do not use control
directives such asrecall and exit in script files.) Separate multiple script files with spaces. Enclosefile
namesthat contain spaces with single quotation marks. For example, the first command in the following
example processes all of the SQL queries and procedure invocationsin thefilemyscri pt. sql . The
second command processes the SQL queries from two files:

$ sqgl cnd
1> file nyscript.sql;
2> file yourscript.sql "their script.sql’;

If the file(s) contain only data definition language (DDL) statements, you can also have the files
processed as a single batch by including the - bat ch argument:

$ sqgl cnd
1> file -batch nyscript.sql;

If afile or set of statements includes both DDL and DML statements, you can still batch process a
group of DDL statements by enclosing the statementsinafil e -inli nebat ch directive and the
specified end marker. For example, in the following code the three CREATE PROCEDURE statements
are processed as a batch:

| oad cl asses nyprocs.jar;

file -inlinebatch END OF BATCH

CREATE PROCEDURE FROM CLASS procs. AddEnpl oyee;
CREATE PROCEDURE FROM CLASS procs. ChangeDept ;

329

VoltDB CLI Commands

CREATE PROCEDURE FROM CLASS procs. Pronot eEnpl oyee;
END_OF_BATCH

Batch processing the DDL statements has two effects:

« Batch processing can significantly improve performance since all of the schema changes are
processed and distributed to the cluster nodes at onetime, rather than individually for each statement.

» The batch operates as a transaction, succeeding or failing as a unit. If any statement fails, all of the
schema changes are rolled back.

» Exit — When you are done with your interactive session, enter the exit directive to end the session and
return to the shell prompt.

To run a sglemd command without starting the interactive prompt, you can pipe the command through
standard input to the sglemd command. For example:

$ echo "select * fromcontestants;" | sql cnd

In general, the sglcmd commands are not case sensitive and must be terminated by a semi-colon. However,
the semi-colon is optional for the exit, file, and recall directives. Also, list and quit are supported as
synonyms for the show and exit directives, respectively.

Arguments

--help
Displays the sglcmd help text then returns to the shell prompt.

--servers=server-id[,...]
Specifiesthe network address of one or more nodesin the database cluster. By default, sglcmd attempts
to connect to a database on local host.

--port=port-num
Specifies the port number to use when connecting to the database servers. All servers must be using
the same port number. By default, sglcmd connects to the standard client port (21212).

--user=user-id
Specifies the username to use for authenticating to the database. The username is required if the
database has security enabled.

--password={text}
Specifies the password to use when connecting to the database. You must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument
but not the --password argument, VoltDB prompts for the password. Thisis useful when writing shell
scripts because it avoids having to hardcode passwords as plain text in the script.

--kerberos={ service-name}
Specifies the use of kerberos authentication when connecting to the database server(s). The service
name identifies the Kerberos client service module, as defined by the JAAS login configuration file.

--output-format={ csv | fixed | tab}
Specifiestheformat of the output of query results. Output can be formatted as comma-separated values
(csv), fixed monospaced text (fixed), or tab-separated text fields (tab). By default, the output is in
fixed monospaced text.

330

VoltDB CLI Commands

--output-skip-metadata
Specifiesthat the column headings and other metadata associated with query results are not displayed.
By default, the output includes such metadata. However, you can use this argument, along with the
- - out put - f or mat argument, to write just the dataitself to an output file.

--guery-timeout=time-limit
Specifies a time limit for read-only queries. Any read-only queries that exceed the time limit are
canceled and control returned to the user. Specify the time out as an integer number of milliseconds.
The default timeout is set in the cluster configuration (or set to 10 seconds by default). Only users
with ADMIN privileges can set a sglcmd timeout longer than the cluster-wide setting.

--sdl[=sdl-config-fil€]
Specifiesthe use of TL S encryption when communicating with the server. Only necessary if the cluster
is configured to use TLS encryption for the external ports. See Section D, “Using CLI Commands
with TLS/SSL” for more information.

Example

The following example demonstrates an sglcmd session, accessing the voter sample database running on
node zeus.

$ sglcnd --servers=zeus
SQ. Command :: zeus: 21212
1> select * fromcontestants;
1 Edwi na Bur nam
2 Tabat ha Gehling
3 Kelly d auss
4 Jessie Al oway
5 Al ana Bregnan
6 Jessie Ei chman

(6 row(s) affected)

2> sel ect sun{numyvotes) as total, contestant_number from
v_votes by contestant nunber_ State group by contestant_ nunber
order by total desc;

TOTAL CONTESTANT_NUMBER

757240 1

630429 6

442962 5

390353 4

384743 2

375260 3

(6 row(s) affected)
3> exit
$

331

VoltDB CLI Commands

voltadmin

voltadmin — Performs administrative functions on aVoltDB database.

Syntax

voltadmin {command} [args...]

Description

The voltadmin command allows you to perform administrative tasks on a VoltDB database. Y ou specify
the database server to access and, optionally, authentication credentials using arguments to the voltadmin
command. Individual administrative commands may have they own unique arguments as well.

Arguments
The following global arguments are available for al voltadmin commands.

-h, --help
Displays information about how to use a command. The --help flag and the help command perform
the same function.

-H, --host=server-id[: port]
Specifies which database server to connect to. You can specify the server as a network address or
hostname. By default, voltadmin attempts to connect to a database on localhost. Y ou can optionally
specify the port number. If you do not specify a port, voltadmin uses the default admin port.

--kerberos
Specifiesthe use of Kerberos authentication when connecting to the database. Y ou must login to your
Kerberos account using kinit before issuing the voltadmin with this argument.

-p, --password={text}
Specifies the password to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database. If you specify a username with the --user argument
but not the --password argument, VoltDB prompts for the password. Thisis useful when writing shell
scripts because it avoids having to hardcode passwords as plain text in the script.

--ssl[=sdl-config-file]
Specifiesthe use of TL Sencryption when communicating with the server. Only necessary if the cluster
is configured to use TLS encryption for the external ports. See Section D, “Using CLI Commands
with TLS/SSL” for more information.

-U, --user=user-id
Specifies the username to use for authenticating to the database. The username is required if the
database has security enabled.

-v, -verbose
Displays additional information about the specific commands being executed.

Commands

The following are the administrative functions that you can invoke using voltadmin.

332

VoltDB CLI Commands

help [command]
Displays information about the usage of individual commands or, if you do not specify a command,
summarizes usage information for al commands. The help command and --help qualifier are
Synonymous.

dr drop
Removes the current cluster from an XDCR environment. Performing a drop breaks existing DR
connections, deletes pending binary logs and stops the queuing of DR data on the current cluster. It
also tells all other clustersin the XDCR relationship to drop their connection to the current cluster
and remove any associated binary logs for that cluster.

This command will wait until all other clusters respond before returning to the shell prompt. If one
(or more) of the clusters are unreachable, the command will periodically report which clustersit is
waiting for. Be aware that if you CTRL-C out of the command before it returns to the shell prompt,
one or more of the remote clusters will not have received the appropriate message and will not have
cleared their logs for the targeted cluster. In that case, you need to clear that cluster's queues manually
after it comes back online using the dr reset --cluster command.

The dr drop command lets you effectively remove a single cluster — the cluster on which the the
command is executed — from amulti-cluster XDCR environment in a single command.

dr reset
Resetsthe database replication (DR) connection(s) for the database. Performing areset breaks existing
DR connections, deletes pending binary logs and stops the queuing of DR data on the current cluster.

This command is useful in passive DR for eliminating unnecessary resource usage on a master
database after the replica stops or is promoted. Note, however, after a reset DR must start over
from scratch; it cannot be restarted where it left off. Similarly, if there are two clustersin an XDCR
environment, you can use dr reset for one cluster to drop the connection to the other cluster.

If you are using multiple XDCR clusters, the dr drop command isthe recommended way to remove a
running cluster from the environment. Otherwise, if you use the dr reset command you must choose
between removing the connectionsto all other clustersor just one cluster using the following options.
Y ou must issue the appropriate command on al applicable clusters:

--all
Resets DR connections and queuesto all other clusters on the current cluster. Choose this option
if you want the current cluster to survive and then restart DR from scratch on the other remaining
clusters.

--cluster={remote-cluster-1D}
Drops the connection to just one cluster. Specify the ID of the remote cluster you wish to drop
from the XDCR environment as an argument to the --cluster option. For example, if one cluster
has stopped and you want to removeit from the XDCR environment, you can reset the connections
to that cluster by issuing the dr reset --cluster ={id} command on al the remaining clusters. Y ou
must also specify --force when you specify --cluster.

--force
Verifies that you want to drop one cluster from a multi-cluster XDCR environment. Thereis a
risk, when a cluster fails, that it has not sent the same binary logs to all other clusters. In this
situation, if you drop the one cluster from the XDCR environment, the remaining clusters can
diverge. Which iswhy you must confirm that you really want to drop just one cluster.

Stopping the remote cluster with an orderly shutdown (voltadmin shutdown) ensures that all
binary logs are delivered. So it isthen safeto do adr reset with --cluster and --force. Otherwise,
the recommended approach is to choose one cluster as the source, stop all DR connections from

333

VoltDB CLI Commands

that cluster, then restart DR from scratch on the remaining clusters. However, you can, if you
choose, use --force to drop the one cluster if you are sure no divergence has occurred.

The --all and --cluster options are mutually exclusive.

log4j {configuration-file}
Updates the logging configuration. Y ou specify the new configuration asalLog4j XML configuration
file.

pause [--wait [--timeout={seconds}]]
Pauses the database, stopping any additiona activity on the client port. Normally, pause returns
immediately. However, you can use the --wait flag to have the command wait until al pending
transactions are processed and all database replication (DR) and export queues are flushed. Use of --
wait isrecommended if you are shutting down the database and do not intend to restart with recover,
since --wait ensures all associated DR or export data is delivered prior to shutdown.

Since it is possible that lost connections to external systems or other abnormal conditions can cause
gueuesto hang, the pause --wait command waitsfor up to two minutesif transactions are pending but
not being cleared. After two minutes of inactivity, the command times out and stops waiting, leaving
the database in a paused state. Y ou can change the timeout period by using the --timeout (or -t) flag
and specifying a different timeout period in seconds.

If the pause --wait command times out, review any error messages to determine the cause of the
delay. Once you correct the problem, you can either reissue the pause --wait command or check the
@Statistics system procedure results to make sure all pending transactions and queues are clear.

promote
Promotes a replica database, stopping replication and enabling read/write queries on the client port.

resume
Resumes normal database operation after a pause.

save [{directory} {unique-1D}]
Creates a snapshot containing the current database contents. Snapshot files are saved to each server in
the cluster. If you use save without any arguments, the snapshot is saved into the database's snapshots
directory where it can automatically be restored the next time the database starts. If you specify an
alternate directory and 1D, the snapshot files are saved to the specified path using the unique ID as
afile prefix.

When saving into the default snapshots directory, VoltDB automatically performs a full snapshot
in native mode. The following are additional arguments you can specify when saving to a specific
location and unique I D. (Only the--blocking argument is allowed when saving to the default snapshots
directory.)

--format={ csv | native}
Specifies the format of the snapshot files. The alowable formats are CSV (comma-separated
value) and native formats. Native format snapshots can be used for restoring the database. CSV
files can be used by other utilities (such as spreadsheets or the VoltDB CSV loader) but cannot
be restored using the voltadmin restor e command.

--blocking
Specifies that the snapshot will block all other transactions until the snapshot is complete. The
advantage of blocking snapshots is that once the command completes you know the snapshot is
finished. The disadvantage is that the snapshot blocks ongoing use of the database.

By default, voltadmin performs non-blocking snapshots so as not to interfere with ongoing
database operation. However, note that the non-blocking save command only starts the snapshot.

334

VoltDB CLI Commands

Y ou must use show snapshots to determine when the snapshot processis finished if you want to
know when it is safe, for example, to shutdown the database.

--skiptables={ table-name[,...] }
Specifies one or more tables to leave out of the snapshot. Separate multiple table names with
commeas.

--tables={ table-name][,...] }
Specifies what table(s) to include in the snapshot. Only the specified tables will be included.
Separate multiple table names with commas.

restore {directory} {unique-ID}
Restores the data from a snapshot to the database. The datais read from a snapshot using the same
unique 1D and directory path that were used when the snapshot was created. If no tables exist in the
database (that is, no schema has been defined) the restore command will aso restore the original
schema, including stored procedure classes, before restoring the data.

show snapshots
Displaysinformation about up to ten previous snapshots. This command is useful for determining the
success or failure of snapshots started with the save command.

status
Displaysinformation on the state of the cluster, such as the number of nodes and uptime. Y ou can use
the following options to customize the content and presentation of the status information:

--dr
Adds information about the current status of data replication to the display.

-j, --json
Outputs the information in JSON format.

--continuous
Specifies that the information be continuously updated until you interrupt the command (with
CTRL-C, for example).

update {configuration}
Updates the configuration on arunning database. There are limitations on what changes can be made
to the configuration of arunning database cluster. Allowable changes include the following:

 Security settings, including user accounts
 Import and export settings
 Database replication settings (except the DR cluster ID)
» Automated snapshots
» System settings:
Heartbeat timeout
Query Timeout
Resource Limit — Disk Limit

Resource Limit — Memory Limit

Y ou cannot use the update command to change paths, ports, command logging, partition detection,
or <cluster> attributes (such as K safety or sites per host).

335

VoltDB CLI Commands

stop {server-id}
Stops an individual node in the cluster. The voltadmin stop command can only be used on aK-safe
cluster and will not intentionally shutdown the database. That is, the command will only stop a node
if there are enough nodes | eft for the cluster to remain viable.

shutdown [--force | --save] [--timeout={seconds}]
Shuts down the database process on all nodes of the cluster. By default, voltadmin shutdown performs
an orderly shutdown, pausing the database, completing all pending transactions and writing any
gueued export, import, or DR data to disk before shutting down the database. Y ou can also use one
of the following arguments to modify the behavior of shutdown:

--force
Stops the database immediately. If you do not need to save any in-process work, you can use the
- - f or ce argument to stop the database immediately.

--save
Specifies that not only will al data be made durable, all pending DR and export data will be
sent to the corresponding external systems and a final snapshot will be taken before the cluster
is shutdown. The resulting snapshot will be used, in place of command logs, the next time the
database is started with the voltdb start command. Using the final snapshot on startup permits
changes not normally allowed by command logs, such as upgrading the VoltDB software.

Since it is possible that lost connections to external systems or other abnormal conditions can cause
gueues to hang, the shutdown command (without the --for ce flag) waits for up to two minutes if
transactions are pending but not being cleared. After two minutes of inactivity, the command times
out, leaving the database in a paused state but not shutdown. Y ou can change the timeout period by
using the --timeout (or -t) flag and specifying a different timeout period in seconds.

If the shutdown command times out, review any error messages to determine the cause of the delay.
Y ou can either correct the problem and reissue the shutdown command or do a shutdown --forceto
initiate an immediate shutdown. Note, however, if you do a shutdown --for ce after a shutdown --
save command times out, the system will not have created afinal snapshot.

Examples

The following example performs an orderly shutdown.
$ vol tadni n shut down

The next example uses pause and save to create a snapshot of the database contents as a backup before
shutting down.

$ vol tadnmi n pause --wait
$ voltadm n save --blocking ./ nydb
$ vol tadmi n shut down

Thelast example usesthe shutdown --save command to create a snapshot of the database contents, similar
to the previous example. However, in this case, the snapshot that is created will be used automatically to
restore the database on the next start command.

$ vol tadm n shutdown --save

336

VoltDB CLI Commands

voltdb

voltdb — Performs management tasks on the current server, such as starting and recovering the database.

Syntax

voltdb collect [args]

voltdb get classes [args]

voltdb get deployment [args]

voltdb get schema [args]

voltdb collect [args] voltdbroot-directory

voltdb mask [args] source-configuration-file [new-configuration-file]
voltdb init [args]

voltdb start [args]

Description

The voltdb command performs local management functions on the current system, including:

Initializing the database root directory and setting configuration options
Starting the database process

Collecting log files into a single compressed file

Retrieving the classes, deployment, or schema from a database root directory

Hiding passwords in the configuration file

The action that is performed depends on which start action you specify to the voltdb command:

collect — the collect option collects system and process logs related to the VoltDB database process
on the current system and compresses them into asingle file. This command is helpful when reporting
problems to VoltDB support.

get — the get option retrieves the current configuration, procedure classes, or schemafrom the database
root directory. The requested item is then written to a file. This command can be used whether the
database is running or not. Y ou can use options to specify either or both the parent of the root directory
(- - di r) or the name and location of the output file (- - out put). Note that the get option can only be
used on databases created using init and start.

mask — the mask option disguises the passwords associated with user accounts in the security section
of the configuration file. The output of the voltdb mask command is either anew configuration file with
hashed passwords or, if you do not specify an output file, the original input fileis modified in place.

337

VoltDB CLI Commands

* init — theinit option initializes the root directory VoltDB uses for storing the configuration, logs, and
other disk-based information (such as snapshots and command logs) for the database process. Y ou only
need to initialize the root directory once. After that, VoltDB manages the content and selecting the
appropriate start actions to maintain the database state. If you choose to re-initialize an existing root
directory, you can use the --force argument to delete any previous data!

» start — the starts option starts the database process after the root directory has been initialized. The
actual action that VVoltDB takes depends on the current state of the database cluster:

« If thisisthefirst time the database has started, it creates a new database.

« If the database has run before and is configured to use command logs or there is at |east one snapshot
in the snapshots directory, the database is restarted and previous data recovered.

« If the cluster is aready running and a server is missing (assuming the use of K-safety) the current
node will rejoin the running cluster.

« |If the cluster isaready running with all servers present, the current node will be added to expand the
size of the cluster — aslong as you use the --add argument on the start command.

The voltdb start command uses Java to instantiate the process. It is possible to customize the Java
environment, if necessary, by passing command line argumentsto Javathrough the following environment
variables:

* LOG4J_CONFIG_PATH — Specifies an aternate Log4J configuration file.

* VOLTDB_HEAPMAX — Specifies the maximum heap size for the Java process. Specify the value
as an integer number of megabytes. By default, the maximum heap sizeis set to 2048.

* VOLTDB_OPTS — Specifies al other Java command line arguments. You must include both the
command line flag and argument. For example, this environment variable can be used to specify system
properties using the -D flag:

export VOLTDB_OPTS="- DnyApp. DebugFl ag=t r ue"

Log Collection (voltdb collect) Arguments
The following arguments apply specifically to the collect action.

-D --dir={directory}
Specifies the parent location for the database root directory from which to collect information. The
default, if you do not specify adirectory, is the current working directory.

--days={integer}
Specifies the number of days of log filesto collect. For example, using - - days=1 will collect data
from the last 24 hours. By default, VoltDB collects 14 days (2 weeks) worth of logs.

--dry-run

Lists the actions that will be taken, including the files that will be collected, but does not actually
perform the collection or upload.
The init --force command deletes command logs and overflow subfolders within the database root directory. However, to avoid accidentally
deleting backups, the snapshots subfolder is renamed rather than deleted. Thisway, it is possible to restore a snapshot in case of an unintended re-

initialization. On the other hand, this means you should periodically check your database root directories and purge any archived snapshots folders
(named snapshot s. nn) that are no longer needed.

338

VoltDB CLI Commands

--no-prompt
Specifies that the process will not prompt for input, such as whether to delete the output file after
uploading is complete. This argument is useful when starting the collect action from within a script.

--output={file}
Specifies the name and location of the resulting output file. The default output file name starts with
"voltdb_collect_" and includes the current server I P or hostname, with afile extension of ".zip" saved
to the current working directory.

--skip-heap-dump
Specifiesthat the heap dump not be included in the collection. The heap dump isusually significantly
larger than the other log files and can be excluded to save space.

Get Resource (voltdb get) Arguments

The following arguments apply specifically to the get classes, get deployment, and get schema actions.

-D --dir={directory}
Specifies the parent location for the database root directory. The default, if you do not specify a
directory, isthe current working directory.

-f, --force
Allows the command to overwrite an existing file. By default, the get actions will not overwrite
existing files.

-0 --output={file-path}
Specifies the name and, optionally, location for the resulting output file. The default location is the
current working directory. The default file depends on the resource being requested:
» procedures.jar forget classes
» depl oyment . xm for get deployment
» schema. sql for get schema

Initialization (voltdb init) Arguments

The following arguments apply to the voltdb init command.

-C, --config={configuration-fil}
Specifies the location of the database configuration file. The configuration file is an XML file that
defines the database configuration, including which options to enable when the database starts. See
Appendix E, Configuration File (deployment.xml) for a complete description of the syntax of the
configuration file.

Thedefault, if you do not specify aconfiguration file, isadefault configuration that i ncludes command
logging (where available), no K-safety, and eight sites per host.

-D --dir={directory}
Specifies the parent location for the database root directory. The root directory is named
vol t dbr oot andiscreated if it does not already exist in the specified location. If avol t dbr oot
directory does already exist, you must use the --force argument to override any existing data. The
default, if you do not specify adirectory, is the current working directory.

-f, --force
Initializes the database root directory, even if files (such as command logs or snapshots) already exist
in the specified directory. Initializing the root directory after previously running a database could
overwrite and therefore erase old command logs. Therefore, VoltDB will not, by default, initialize the

339

VoltDB CLI Commands

database if such files exist. If you do not need the files from the previous session, you can use the --
force argument to overwrite these files.

-j, --classes={ JAR-file}
Specifiesthe location of a JAR file containing classes used to declare user-defined stored procedures.
The JAR file (and any schema definitions included with the --schema argument) are loaded
automatically when the database starts. If durability is enabled (through command logs or a shutdown
snapshot) the classes specified on the init command are loaded only the first time the database starts
and the command logs are used for subsequent starts. If no durability is provided, theinitialized classes
are loaded on every start.

-s, --schema={ schema-fil e}
Specifies the location of afile containing database definition language (DDL) statements. The DDL
statements (and any classes included with the --classes argument) are loaded automatically when the
database starts. If durability is enabled (through command logs or a shutdown snapshot) the schema
specified ontheinit commandisloaded only thefirst timethe database starts and the command logs are
used for subsequent starts. If no durability is provided, the initialized schemaisloaded on every start.

Database Startup (voltdb start) Arguments

The following arguments apply to the voltdb start command.

-D --dir={directory}
Specifies the parent location for the database root directory. This is the same directory specified on
the voltdb init command. (Y ou must initialize the root directory before you can start the database.)
The default, if you do not specify a directory, isthe current working directory.

-H, --host={ host-id [,...] }
Specifies the network address of one or more nodes in the database cluster. VoltDB selects one of
these nodes to coordinate the start of the database or the adding or rejoining of servers. When starting
a database, all nodes must specify the same list of host addresses. Note that once the database starts
and the cluster is complete, the role of the host node is complete and all nodes become peers.

When rgjoining or adding a server to arunning cluster, you can specify any node(s) still in the cluster.
The host for an add or rejoin operation does not have to be the same node specified when the database
started.

The default if you do not specify a host when creating or recovering the database is| ocal host .
In other words, a single node cluster running on the current system. Y ou must specify a host on the
command line when adding or rejoining a node or when starting a cluster.

If the host node is using an internal port other than the default (3021), you must specify the port as
part of the host string, in the format host:port.

-, --count={ humber-of-nodes}
Specifies the number of nodesin the database cluster.

--add
When joining arunning cluster, specifies that the new node can be "added", elastically expanding the
size of the cluster. The --add flag only takes affect when anode is joining a complete, running cluster.
If the cluster is starting or if a node is missing from a K-safe cluster, the current node will join the
cluster as normal. But if the cluster is already running and has its full complement of members, you
must specify --add if you want to increase the size of the cluster.

-B, --background
Starts the server process in the background (as a daemon process).

340

VoltDB CLI Commands

-g, --placement-group={group-string}
Specifies the location of the server. When the K-safety value is greater than zero, VoltDB uses this
argument to assist in rack-aware partitioning. The cluster will attempt to place multiple copies of each
partition on different nodes to keep them physically asfar apart as possible.

The physical location is specified by the group-string, which is any set of alphanumeric names
separated by periods. The names might represent physical servers, racks, switches, or anything
meaningful to the user to avoid multiple copiesfailing at the sametime. For example, the string might
be "row6.rack5.server3”, to ensure that in a virtualized environment copies of the same partition do
not get placed on the same physical server or rack if possible. The group strings for al nodes of the
cluster are compared so matches of the rightmost name will be avoided first, then matches of the two
rightmost names, and so on.

--ignore=thp
For Linux systems, alows the database to start even if the server is configured to use Transparent
Huge Pages (THP). THP is aknown problem for memory-intense applications like VoltDB. So under
normal conditions VoltDB will not start if the use of THP is enabled. This flag alows you to ignore
that restriction for test purposes. Do not use this flag on production systems.

-1, --license={license-file}
Specifiesthelocation of thelicensefile, which is required when using the VoltDB Enterprise Edition.
The argument is ignored when using the community edition.

--missing={ number-of-nodes}
Allows a K-safe cluster to start without the full complement of nodes. This argument specifies how
many nodes are missing from the cluster at startup. For example, if the arguments are - - count =5
and --missing=2, then the database will start once three nodes join the cluster, assuming those nodes
can support at least one copy of each partition. Note that use of the - - m ssi ng option means that
the cluster is not fully K-safe until the specified number of missing nodes rejoin the cluster after the
database starts.

--pause
For the create and recover operations only, starts the database in admin mode. Admin mode stops
applications from performing write operations to the database through the client interface. This is
useful when performing administrative functions such as restoring a snapshot before allowing client
access. Onceall administrative operations are complete, you can use the voltadmin r esume command
to resume normal operation for the database. If any nodes in the cluster start with the --pause switch,
the entire cluster starts paused.

--safemode
When using command logs to recover an existing database that cannot recover under normal
circumstances, the --safemode argument recovers the database to the last valid transaction. This
argument should only be used when troubleshooting a failed recovery. See the description of safe
mode recovery in the VoltDB Administrator's Guide for details.

Network Configuration Arguments

In addition to the arguments listed above for the voltdb start command, there are additional arguments
that specify the network configuration for server ports and interfaces when starting a VVoltDB database.
In most cases, the default values can and should be accepted for these settings. The exceptions are the
external and internal interfaces that should be specified whenever there are multiple network interfaces
on asingle machine.

You can also, optionally, specify a unique network interface for individual ports by preceding the port
number with theinterface's | P address (or hostname) followed by acolon. Specifying the network interface

341

https://docs.voltdb.com/AdminGuide/Troubleshootrecovery.php#Troubleshootsafemode
https://docs.voltdb.com/AdminGuide/Troubleshootrecovery.php#Troubleshootsafemode
https://docs.voltdb.com/AdminGuide/

VoltDB CLI Commands

as part of an individual port setting overrides the default interface for that port set by --externalinterface
or --internalinterface.

The network configuration arguments to the voltdb start command are listed below. See the appendix
on server configuration optionsin the VoltDB Administrator's Guide for more information about network
configuration options.

--externalinterface={ip-address}
Specifies the default network interface to use for external ports, such as the admin and client ports.

--internalinterface ={ip-address}
Specifies the default network interface to use for internal communication, such asthe internal port.

--publicinterface={ip-address}
Specifies the public network interface. This argument is useful for hosted systems where the internal
and external interfaces may not be generally reachable from the Internet. In which case, specifying
the public interface helps the VoltDB Management Center provide publicly accessible links for the
cluster nodes.

--admin=[ip-address:]{port-number}
Specifies the admin port. The --admin flag overrides the admin port setting in the configuration file.

--client=[ip-address:]{port-number}
Specifies the client port.

--http=[ip-address:]{port-number}
Specifies the http port. The --http flag both sets the port number (and optionaly the interface) and
enables the http port, overriding the http setting, if any, in the configuration file.

--internal=[ip-address:]{ port-number}
Specifies the internal port used to communicate between cluster nodes.

--replication=[ip-address:]{ port-number}
Specifies the replication port used for database replication. The --replication flag overrides the
replication port setting in the configuration file.

--zookeeper=[ip-address:]{port-number}

Specifies the zookeeper port. By default, the zookeeper port is bound to the server'sinternal interface
(127.0.0.2).

Examples

The first example shows the commands for initializing and starting a three-node database cluster using a
custom configuration file, depl oy. xm , and the node zeus as the host.

$ voltdb init --dir=~/nydb --config=depl oy. xm
$ voltdb start --dir=~/nmydb --count=3 --host=zeus

The second exampl e takes advantage of the defaults for the host and configuration argumentsto initialize
and start a single-node database in the current directory.

$ voltdb init
$ voltdb start

The next example shows the use of the --force argument to re-initialize the directory used in the first
example, to delete old data and set new configuration options from a different configuration file.

342

http://docs.voltdb.com/AdminGuide/

VoltDB CLI Commands

$ voltdb init --dir=~/mydb --config=newdepl oy.xm --force

Appendix E. Configuration File
(deployment.xml)

The configuration file describes the physical configuration of a VoltDB database cluster at runtime,
including the number of sites per hosts and K-safety value, among other things. This appendix describes
the syntax for each component within the configuration file.

The configuration file is a fully-conformant XML file. If you are unfamiliar with XML, see Section E.1,
“Understanding XML Syntax” for abrief explanation of XML syntax.

E.1. Understanding XML Syntax

The configuration file is a fully-conformant XML file. XML files consist of a series of nested elements
identified by beginning and ending "tags'. The beginning tag is the element name enclosed in angle
brackets and the ending tag is the same except that the element name is preceded by a slash. For example:

<depl oynent >
<cl ust er >
</cluster>
</ depl oynment >

Elements can be nested. In the preceding example cl ust er isachild of the element depl oynent .

Elements can also have attributes that are specified within the starting tag by the attribute name, an
equals sign, and its value enclosed in single or double quotes. In the following example the hostcount and
sitesperhost attributes of the cluster element are assigned values of "2" and "4", respectively.

<depl oynent >
<cl uster hostcount="2" sitesperhost="4">
</cluster>

</ depl oynent >

Finally, as a shorthand, elements that do not contain any children can be entered without an ending tag by
adding the slash to the end of the initial tag. In the following example, the cl ust er and heart beat
tags use this form of shorthand:

<depl oynent >
<cl uster hostcount="2" sitesperhost="4"/>
<heartbeat tinmeout="10"/>

</ depl oynent >

For complete information about the XML standard and XML syntax, see the official XML site at http://
www.w3.0rg/XML/.

E.2. The Structure of the Configuration File

The configuration file starts with the XML declaration. After the XML declaration, the root element of the
configuration file is the deployment element. The remainder of the XML document consists of elements
that are children of the deployment element.

http://www.w3.org/XML/
http://www.w3.org/XML/

Configuration File (deployment.xml)

Figure E.1, “Configuration XML Structure” shows the structure of the configuration file. The indentation
indicates the hierarchical parent-child relationships of the elements and an dllipsis (...) shows where an
element may appear multiple times.

Configuration File (deployment.xml)

<deployment>
Figatust/2. Configuration XML Structure
<paths>
<commandlog/>
<commandlogsnapshot/>
<exportoverflow/>
<snapshots/>
<voltdbroot/>
</paths>
<commandlog>
<frequency/>
</commandlog>
<consistency/>
<dr>
<connection/>
</dr>
<export>
<configuration>
<property/>...
</configuration>...
</export>
<heartbeat/>
<httpd>
<jsonapi/>
</httpd>
<import>
<configuration>
<property/>...
</configuration>...
</import>
<partition-detection/>
<security/>
<snapshot/>
<ssl>
<keystore/>
<truststore/>
</sdl>
<snmp/>
<systemsettings>
<elastic/>
<procedure/>
<query/>
<resourcemonitor>
<disklimit>
<feature/>...
</disklimit>
<memorylimit/>
</resourcemonitor>
<snapshot/>
<temptables/>
</systemsettings>
<users>
<user/>...
</users>
</deployment>

346

Configuration File (deployment.xml)

TableE.1, “Configuration File Elements and Attributes” provides further detail on the elements, including
their relationships (as child or parent) and the allowable attributes for each.

Table E.1. Configuration File Elements and Attributes

Element Child of Parent of Attributes
depl oyment* (root element) cluster, commandlog,
consistency, dr,
export, heartbeat,
httpd, import,
partition-detection,
paths, security,

snapshot, snmp, sd,
systemsettings, users

cluster’ deployment kfactor={int}
sitesperhost={int}
heartbeat deployment timeout={int} "
partition-detection deployment enabled={ truelfalse}
commandlog deployment frequency enabled={ true|fal se}
logsize={int}
synchronous={ truelfal se}
frequency commandlog time={int}
transactions={int}
consistency deployment readlevel ={ fast|saf e} :
dr deployment connection id={int}"
listen={ truelfal se}
port={int}

role={ master|replicajxdcr}

connection dr source={ server|,...]} ’
enabled={ truelfal se}
preferred-source={int}

ssl=[file-path]
export deployment configuration
configuration’ export property target={ text} "
enabled={ truelfalse}
exportconnectorclass={ class-name}
type={ filg|httpljdbc|kafkajrabbitmg|custom}
property configuration name={ text} :
import deployment configuration
configuration’ import property type={ kafkalcustom} "
enabled={ truelfalse}
format={ csv|tsv}
module={ text}
version={ 8|10}
property configuration name={ text}
httpd deployment jsonapi port={int}

enabled={ true|fal se}

347

Configuration File (deployment.xml)

Element Child of Parent of Attributes
jsonapi httpd enabled={ true|fal se}
paths deployment commandlog,
commandlogsnapshoat,
droverflow,

exportoverflow,
snapshots, voltdbroot

commandlog paths path={ directory-path}
commandlogsnapshot | paths path={ directory-path}
droverflow paths path={ directory-path}
exportoverflow paths path={ directory-path} ’
snapshots paths path={ directory-path}
voltdbroot paths path={ directory-path}
security deployment enabled={ true|fal se}
provider={ hash|kerberos}
snapshot deployment enabled={ truelfalse}
frequency={int}{ sjm|h}
prefix={ text}
retain={int}
s deployment keystore, truststore | enabled={ truejfal se}
externa ={ truejfal se}
keystore s path={ file-path}
password={ text}
truststore s path={ file-path} "

password={ text}

snmp deployment target={ | P-address} "

authkey={ text}

authprotocol={ SHA|MD5|NoAuth}
community={ text}

enabled={ truelfalse}

privacykey={ text}

privacyprotocol ={ text}

username={ text}

systemsettings deployment eagtic, procedure,
query,
resourcemonitor,
snapshot, temptables

elastic systemsettings duration={int}
throughput={int}

procedure systemsettings loginfo={int} ’

query systemsettings timeout={int} "

resourcemonitor systemsettings disklimit, frequency={int}
memorylimit

disklimit resourcemonitor feature

feature diskllimit name={text} "

Configuration File (deployment.xml)

Element Child of Parent of Attributes
size={int[%]}
alert={int[%]}

memorylimit resourcemonitor size={int[%]}
alert={int[%]}

snapshot systemsettings priority={int} ’

temptables systemsettings maxsize={int}"

users deployment user

user users name={text}”
password={ text}
roles={role-namq],..]}

"Required

349

Appendix F. VoltDB Datatype
Compatibility

VoltDB supports eleven datatypes. When invoking stored procedures from different programming
languages or queuing SQL statements within a Java stored procedure, you must use an appropriate
language-specific value and datatype for arguments corresponding to placeholders in the query. This
appendix provides the mapping of language-specific datatypes to the corresponding VoltDB datatype.

In several cases, there are multiple possible language-specific datatypes that can be used. The following
tables highlight the best possible matchesin bold.

F.1. Java and VoltDB Datatype Compatibility

Table F.1, “Java and VoltDB Datatype Compatibility” shows the compatible Java datatypes for each
VoltDB datatype when:

 Caling simple stored procedures defined using the CREATE PROCEDURE AS statement
 Calling default stored procedures created for each table in the schema

Note that when calling user-defined stored procedures written in Java, you can use additional datatypes,
including arrays and the VoltTable object, as arguments to the stored procedure, as long as the actual
guery invocations within the stored procedure use the following datatypes. Within the stored procedure,
when queuing SQL statements using the voltdbQueueSqgl method, implicit type casting is not guaranteed
so using the highlighted Java type is recommended.

Note that VoltDB accepts both primitive numeric types (byte, short, int, and so on) and their reference
type equivalents (Byte, Short, Integer, etc.). The reference types can be useful, especially when passing
null values, where you can send a Java null. In most cases when using the primitive types, you must pass
the largest possible negative value for the type in place of null.

TableF.1. Java and VoltDB Datatype Compatibility

SQL Datatype Compatible Java Datatypes Notes

byte/Byte Larger datatypes (short, int, long, and

short/Short BigDecimal) are valid input types. However,

int/I nteger VoltDB throws aruntime error if the value

long/Long exceedsthe allowablerange of aTINYINT.

BigDecimal

String String input must be a properly formatted text
representation of an integer value in the correct
range.

SMALLINT byte/Byte Larger datatypes (int, long, and BigDecimal) are
short/Short valid input types. However, VoltDB throws a
int/Integer runtime error if the value exceeds the allowable
long/Long range of a SMALLINT.

BigDecimal

String String input must be a properly formatted text
representation of an integer value in the correct
range.

byte/Byte Larger datatypes (long and BigDecimal) are valid

short/Short input type. However, VoltDB throws aruntime

350

VoltDB Datatype Compatibility

SQL Datatype

Compatible Java Datatypes

Notes

int/Integer error if the value exceeds the allowable range of

long/Long an INTEGER.

BigDecimal

String String input must be a properly formatted text
representation of an integer value in the correct
range.

BIGINT byte/Byte String input must be a properly formatted text
short/Short representation of an integer value in the correct
int/I nteger range.
long/Long
BigDecimal
String

FLOAT double/Double Because of the difference in how numbers are
byte/Byte represented in the two types, there can be aloss
short/Short of precision when using BigDecimal asinput to a
int/I nteger FLOAT value.
long/Long
BigDecimal String input must be a properly formatted text
String representation of afloating point value.

DECIMAL BigDecimal String input must be a properly formatted text
double/Double representation of adecimal number.
byte/Byte
short/Short
int/I nteger
long/Long
String

GEOGRAPHY (none) Geospatial input should be converted from Well

Known Text (WKT) to aVoltDB native format
either using the GeographyV alue.fromWKT()
method or by passing a String and using the
POLY GONFROMTEXT function within the SQL
Statement.

GEOGRAPHY _POINT |(none) Geospatial input should be converted

from Well Known Text (WKT) to a

VoltDB native format either using the
GeographyPointValue.fromWKT() method
or by passing a String and using the
POINTFROMTEXT function within the SQL
statement.

VARCHAR() String Byte arrays are interpreted as UTF-8 encoded
byte]] string values. String objects can use other
byte/Byte encodings.
short/Short
int/I nteger Numeric and timestamp values are converted
long/Long to their string representation. For example, the
BigDecimal double value 13.25 isinterpreted as " 13.25" when
VoltDB TimestampType converted to aVARCHAR.

VARBINARY () String String input is interpreted as a hex-encoded binary
byte(] value.

351

VoltDB Datatype Compatibility

SQL Datatype

Compatible Java Datatypes

Notes

TIMESTAMP

VoltDB TimestampType
int/I nteger

long/Long

String

For String variables, the text must be formatted as
either YYYY- MM DD hh. mm ss. nnnnnn or
just the date portion YYYY- M\t DD.

352

Appendix G. System Procedures

VoltDB provides system procedures that perform system-wide administrative functions. Y ou can invoke
system procedures interactively using the sglcmd utility, or you can invoke them programmatically like
other stored procedures, using the VoltDB client method call Procedure.

This appendix describes the following system procedures.

» @AdHoc

* @Explain

* @ExplainProc

* @ExplainView

* @GetPartitionKeys
* @Pause

* @Promote

* @Quiesce

* @Resume

* @Shutdown

* @SnapshotDelete
* @SnapshotRestore
* @SnapshotSave

* @SnapshotScan

o @Statistics

* @StopNode

* @SwapTables

* @SystemCatalog
* @Systeminformation
* @UpdateApplicationCatalog
* @UpdateClasses

* @Updatelogging

353

System Procedures

@AdHoc

@AdHoc — Executes an SQL statement specified at runtime.

Syntax

@AdHoc String SQL-statement

Description
The @AdHoc system procedure lets you perform arbitrary SQL statementson arunning VoltDB database.

Y ou can execute multiple SQL statements— either queries or data definition language (DDL) statements
—inasinglecall to @AdHoc by separating the individual statements with semicolons. When you do this,
the statements are performed as a single transaction. That is, the statements all succeed as agroup or they
all roll back if any of them fail. Y ou cannot mix SQL queries and DDL in asingle @AdHoc call.

Performance of ad hoc queriesis optimized, where possible. However, it isimportant to note that ad hoc
gueries are not pre-compiled, like queries in stored procedures. Therefore, use of stored procedures is
recommended over @AdHoc for frequent, repetitive, or performance-sensitive queries.

Return Values

ReturnsoneVoltTablefor each statement, with asmany rows asthere arerecordsreturned by the statement.
The column names and datatypes match the names and datatypes of the fields returned by the query.

Examples

The following program example uses @AdHoc to execute an SQL SELECT statement and display the
number of reservations for a specific customer in the flight reservation database.

try {
Vol t Tabl e[] results = client.callProcedure("@udHoc",
"SELECT COUNT(*) FROM RESERVATION " +
"WHERE CUSTOVERI D=" + custid).getResults();
Systemout.printf("% reservations found.\n",
results[0].fetchRow(0).getLong(0));
}
catch (Exception e) {
e.printStackTrace();
}

Note that you do not need to explicitly invoke @A dHoc when using sglcmd. Y ou can type your statement
directly into the sglcmd prompt, like so:

$ sqglcmd
1> SELECT COUNT(*) FROM RESERVATI ON WHERE CUSTOVERI D=12345;

354

System Procedures

@EXxplain

@Explain — Returns the execution plan for the specified SQL query.

Syntax

@EXxplain String SQL-statement

Description

The @Explain system procedure evaluates the specified SQL query and returns the resulting execution
plan. Execution, or explain, plans describe how VoltDB expectsto execute the query at runtime, including
what indexes are used, the order the tables are joined, and so on. Execution plans are useful for
identifying performance issues in query design. See the chapter on execution plans in the VoltDB Guide
to Performance and Customization for information on how to interpret the plans.

Return Values

Returns one VoltTable with one row and one column.

Name Datatype Description
EXECUTION_PLAN VARCHAR | The execution plan as text.
Examples

The following program example uses @Explain to evaluate an ad hoc SQL SELECT statement against
the voter sample application.

try {
String query = "SELECT COUNT(*) FROM CONTESTANTS; ";

Vol t Tabl e[] results = client.callProcedure("@xplain",
query).getResults();
Systemout.printf("Qery: %\ nPlan:\n%",
query, results[0].fetchRow(0).getString(0));

}
catch (Exception e) {

e.printStackTrace();
}

In the sglemd utility, the "explain” command is a shortcut for "exec @Explain”. So the following two
commands are equivalent:

$ sqglcnmd
1> exec @xplain 'SELECT COUNT(*) FROM CONTESTANTS' ;
2> explain SELECT COUNT(*) FROM CONTESTANTS;

355

http://community.voltdb.com/docs/PerfGuide/ChapExecPlans
http://community.voltdb.com/docs/PerfGuide/index
http://community.voltdb.com/docs/PerfGuide/index

System Procedures

@ExplainProc

@ExplainProc — Returns the execution plans for all SQL queriesin the specified stored procedure.

Syntax

@ExplainProc String procedure-name

Description

The @ExplainProc system procedure returns the execution plans for all of the SQL queries within the
specified stored procedure. Execution, or explain, plans describe how VoltDB expects to execute the
gueries at runtime, including what indexes are used, the order the tables are joined, and so on. Execution
plans are useful for identifying performance issuesin query and stored procedure design. See the chapter
on execution plans in the VoltDB Guide to Performance and Customization for information on how to
interpret the plans.

Return Values

Returns one VoltTable with one row for each query in the stored procedure.

Name Datatype Description

SQL_STATEMENT VARCHAR |The SQL query.

EXECUTION_PLAN VARCHAR | The execution plan as text.
Examples

The following example uses @ExplainProc to evaluate the execution plans associated with the
ContestantWinningStates stored procedure in the voter sample application.

try {
Vol t Tabl e[] results = client.call Procedure(" @xpl ai nProc",

"Cont est ant W nni ngSt at es”). get Resul ts();
resul ts[0] . reset RowPosition();
while (results[0].advanceRow)) {
Systemout. printf("Query: %\ nPl an:\n%",
results[0].getString(0),results[0].getString(l));
}

}
catch (Exception e) {

e.printStackTrace();
}

In the sglemd utility, the "explainproc” command is ashortcut for "exec @ExplainProc". So the following
two commands are equivalent:

$ sqglcmd
1> exec @xpl ai nProc ' Cont est ant W nni ngSt at es' ;
2> expl ai nproc Cont est ant W nni ngSt at es;

356

http://community.voltdb.com/docs/PerfGuide/ChapExecPlans
http://community.voltdb.com/docs/PerfGuide/index

System Procedures

@ExplainView

@ExplainView — Returns the execution plans for the components of the specified view.

Syntax

@EXxplainView String view-name

Description

The @ExplainView system procedure returns the execution plans for certain components of the specified
view. Execution plans describe how VoltDB expects to cal culate the component values as the referenced
tables or streams are updated. The plansinclude what indexes are used, the order the tables are joined, and
so on. Execution plans are useful for identifying performance issues in the design of the view statement.
Seethe chapter on execution plansin the VoltDB Guideto Performance and Customization for information
on how to interpret the plans.

For views, execution plans are listed for the calculation of MIN() and MAX() functions and multi-table
joinsonly. For simple views — that is, views on a single table with aggregate functions other than MIN()
or MAX() — the system procedure returns no rows.

Return Values

Returns one VoltTable with one row for each component of the view.

Name Datatype Description

TASK VARCHAR |The function or join statement

EXECUTION_PLAN VARCHAR | The execution plan as text.
Examples

The following example uses @ExplainView to evaluate the execution plans associated with a view that
joinstwo tables.

try {
Vol t Tabl e[] results = client.callProcedure("@xpl ai nVi ew',

"stats by city and state").getResults();
resul ts[0].reset RowPosition();
while (results[0].advanceRowm)) {
Systemout. printf("Task: %\ nPl an:\n% ",
results[0].getString(0),results[0].getString(1));
}

}
catch (Exception e) {

e.printStackTrace();
}

Inthe sglemd utility, the"explainview" command isashortcut for "exec @ExplainView". Sothefollowing
two commands are equivalent:

$ sql cnd

357

http://community.voltdb.com/docs/PerfGuide/ChapExecPlans
http://community.voltdb.com/docs/PerfGuide/index

System Procedures

1> exec @xplainView 'stats by city_and_state';
2> explainview stats_by city_and_state;

358

System Procedures

@GetPartitionKeys

@GetPartitionKeys — Returns alist of partition values, one for every partition in the database.

Syntax

@GetPartitionKeys String datatype

Description

The @GetPartitionK eys system procedure returns a set of partition values that you can use to reach every
partition inthe database. Thisprocedureisuseful when youwant to run astored procedurein every partition
but you do not want to use a multi-partition procedure. By running multiple single-partition procedures,
you avoid the impact on latency and throughput that can result from a multi-partition procedure. This
is particularly true for longer running procedures. Using multiple, smaller procedures can aso help for
gueries that modify large volumes of data, such aslarge deletes.

When you call @GetPartitionK eys you specify the datatype of the keysto return as the second parameter.
You specify the datatype as a case-insensitive string. Valid options are "INTEGER", "STRING", and
"VARCHAR" (where"STRING" and "VARCHAR" are synonyms).

Note that the results of the system procedure are valid at the time they are generated. If the cluster is static
(that is, no nodes are being added and any rebalancing is complete), the results remain valid until the next
elastic event. However, during rebalancing, the distribution of partitionsislikely to change. Soit isagood
ideato call @GetPartitionKeys once to get the keys, act on them, then call the system procedure again to
verify that the partitions have not changed.

Return Values

Returns one VoltTable with arow for every unique partition in the cluster.

Name Datatype Description

PARTITION_ID INTEGER | Thenumeric ID of the partition.

PARTITION_KEY INTEGER or|A valid partition key for the partition. The datatype of the
STRING key matches the type requested in the procedure call.

Examples

The following example shows the use of sglecmd to get integer key values from @GetPartitionK eys:

$sqgl cnd
1> exec @etPartitionKeys integer;

The next example shows a Java program using @GetPartitionK eys to execute a stored procedure to clear
out old records, one partition at atime.

Vol t Tabl e[] results = client.callProcedure(" @etPartitionKeys",
"I NTEGER') . get Resul t s();

Vol t Tabl e keys = results[0];

for (int k=0;k<keys. get RowCount (); k++) {
| ong key = keys.fetchRow(k).getLong(1);

359

System Procedures

client.callProcedure("Purged dData", key);

360

System Procedures

@Pause

@Pause — Initiates read-only mode on the cluster.

Syntax

@Pause

Description

The @Pause system procedure initiates admin mode on the cluster. Admin mode puts the database into
read-only mode and ensures no further changes to the database can be made through the client port when
performing sensitive administrative operations, such as taking a snapshot before shutting down.

Whilein admin mode, any writetransactionson the client port are rejected and return an error status. Read-
only transactions, including system procedures, are allowed. However, write transactions such as inserts,
deletes, or schema changes are only allowed through the admin port.

Several important points to consider concerning @Pause are;
e @Pause must be called through the admin port, not the standard client port.

« Although write transactions on the client port are rgjected in admin mode, existing connections from
client applications are not removed.

» Toreturntonormal database operation, you must call the system procedure @Resume on the admin port.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

Itispossibleto call @Pause using the sglemd utility. However, you must explicitly connect to the admin
port when starting sgqlcmd to do this. Also, it is often easier to use the voltadmin utility, which connects
to the admin port by default. For example, the following commands demonstrate pausing and resuming
the database using both sqlcmd and voltadmin:

$ sqglcnmd --port=21211
1> exec @pPause;
2> exec @Resune;

$ vol tadni n pause
$ vol tadmin resune

The following program example, if called through the admin port, initiates admin mode on the database
cluster.

client.callProcedure("@ause");

361

System Procedures

@Promote

@Promote — Promotes a replica database to normal operation.

Syntax

@Promote

Description

The @Promote system procedure promotes a replica database to normal operation. During database
replication, the replica database only accepts input from the master database. If, for any reason, the master
database fails and replication stops, you can use @Promote to change the replica database from areplica
to anormal database. When you invoke the @Promote system procedure, the replica exits read-only mode
and becomes a fully operational VVoltDB database that can receive and execute both read-only and read/

write queries.

Note that once a database is promoted, it cannot return to its original role as the receiving end of database
replication without first stopping and reinitializing the database asareplica. If the databaseisnot areplica,

invoking @Promote returns an error.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

The following programming example promotes a database cluster.

client.callProcedure("@uronote");

It is aso possible to promote a replica database using sglcmd or the voltadmin promote command. The

following commands are equivalent:

$ sqlcmd
1> exec @°ronpte;

$ voltadnmin pronote

362

System Procedures

@Quiesce

@Quiesce — Waits for al queued export data to be written to the connector.

Syntax

@Quiesce

Description
The @Quiesce system procedure waits for any queued export data to be written to the export connector
before returning to the calling application. @Quiesce also does an fsync to ensure any pending export
overflow iswritten to disk. This system procedure should be called after stopping client applications and
before calling @Shutdown to ensurethat all export activity isconcluded before shutting down the database.

If export is not enabled, the procedure returns immediately.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

The following example calls @Quiesce using sglcmd:

$ sqlcnd
1> exec @i esce;

The following program example uses drain and @Quiesce to complete any asynchronous transactions and
clear the export queues before shutting down the database.

/1 Conplete all outstanding activities
try {
client.drain();
client.callProcedure("@uiesce");
}
catch (Exception e) {
e.printStackTrace();
}

/] Shut down t he dat abase.

try {
client.call Procedure(" @hutdown");
}

/1 W expect an exception when the connection drops.
/1 Report any other exception.

catch (org.voltdb.client.ProcCall Exception e) { }

catch (Exception e) { e.printStackTrace(); }

363

System Procedures

@Resume

@Resume — Returns a paused database to normal operating mode.

Syntax

@Resume

Description

The @Resume system procedure switches all nodes in a database cluster from admin mode to normal
operating mode. In other words, @Resume is the opposite of @Pause.

After calling this procedure, the cluster returnsto accepting read/write ad hoc queries and stored procedure
invocations from clients connected to the standard client port.

@Resume must be invoked from a connection to the admin port.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

Y ou can call @Resume using the sgqlemd utility. However, you must explicitly connect to the admin port
when starting sglcmd to do this. It is often easier to use the voltadmin resume command, which connects
to the admin port by default. For example, the following commands are equivalent:

$ sqglcnd --port=21211
1> exec @Resune;

$ voltadmin resune
The following program example uses @Resume to return the cluster to normal operation.

client.callProcedure("@esune");

364

System Procedures

@Shutdown

@Shutdown — Shuts down the database.

Syntax

@Shutdown

Description

The @Shutdown system procedure performs an immediate shut down of aVoltDB database on all nodes
of the cluster.

Note

The @Shutdown system procedure does not wait for running transactions to complete or queued
data to be written to disk before stopping the database process, which can result in loss of data.
Therefore, using the voltadmin shutdown command to perform an orderly shutdown, making
all datadurable, isthe recommended method for stopping a VoltDB database.

Note that once the database shuts down, the client connection islost and the calling program cannot make
any further requests to the server.

Examples

The first example shows the recommended way to shutdown a VoltDB database, using the voltadmin
shutdown command to perform an orderly shutdown:

$ vol tadni n shut down

The next example shows calling @Shutdown from sglcmd. This is equivalent to the voltdb shutdown
--for ce command:

$ sqglcmd
1> exec @shut down;

The following program example uses @Shutdown to stop the database cluster programmatically. Note
the use of catch to separate out a VoltDB call procedure exception (which is expected) from any other
exception.

try {
client.call Procedure(" @hutdown");
}

/1 we expect an exception when the connection drops.
catch (org.voltdb.client.ProcCall Exception e) {
System out. printl n("Database shutdown initiated.");
}
/1 report any other exception.
catch (Exception e) {
e.printStackTrace();

}

365

System Procedures

@SnapshotDelete

@SnapshotDelete — Deletes one or more native snapshots.

Syntax

@SnapshotDelete String[] directory-paths, String[] Unique-IDs

Description

The @SnapshotDelete system procedure deletes native snapshots from the database cluster. Thisis a
cluster-wide operation and a single invocation will remove the snapshot files from all of the nodes.

The procedure takes two parameters: a String array of directory paths and a String array of unique 1Ds
(prefixes).

The two arrays are read as a series of value pairs, so that the first element of the directory path array and
the first element of the unique ID array will be used to identify the first snapshot to delete. The second
element of each array will identify the second snapshot to delete. And so on.

@SnapshotDelete can delete native format snapshots only. The procedure cannot delete CSV format
snapshots.

Return Values

Returns one VoltTable with arow for every snapshot file affected by the operation.

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path where the snapshot file resides.

NONCE STRING The unique identifier for the snapshot.

NAME STRING Thefile name.

SIZE BIGINT The total size, in bytes, of thefile.

DELETED STRING String value indicating whether the file was successfully
deleted ("TRUE") or not ("FALSE").

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

Example

The following example uses @SnapshotScan to identify all of the snapshots in the directory / t np/
vol t db/ backup/ . Thisinformation is then used by @SnapshotDelete to delete those snapshots.

try {
results = client.call Procedure(" @napshot Scan",

366

System Procedures

"/tnp/vol tdb/ backup/").get Resul ts();

}
catch (Exception e) { e.printStackTrace(); }

Vol t Tabl e table = results[O0];
i nt nunof snapshots = tabl e. get RowCount () ;
int i =0;

i f (numofsnapshots > 0) {
String[] paths = new String[nunof snapshots];
String[] nonces = new String[nunof snapshot s];

for (i=0;i<nunofsnapshots;i++) { paths[i] = "/etc/voltdb/backup/"; }
tabl e. reset RowPosi tion();
i = 0;

whil e (tabl e.advanceRow)) {
nonces[i] = table.getString("NONCE");

| ++;
}
try {
client.callProcedure("” @napshot Del et e", pat hs, nonces) ;
}
catch (Exception e) { e.printStackTrace(); }

}

367

System Procedures

@SnapshotRestore

@SnapshotRestore — Restores a database from disk using a native format snapshot.

Syntax

@SnapshotRestore String directory-path, String unique-1D

Description

The @SnapshotRestore system procedure restores a previously saved database from disk to memory. The
snapshot must be in native format. (Y ou cannot restore aCSV format snapshot using @SnapshotRestore.)
The restore request is propagated to al nodes of the cluster, so a single call to @SnapshotRestore will
restore the entire database cluster.

Thefirst parameter, directory-path, specifies where VoltDB looks for the snapshot files.

The second parameter, unique-ID, is a unique identifier that is used as a filename prefix to distinguish
between multiple snapshots.

In general, when restoring a complete snapshot you can perform only one restore operation on a running
VoltDB database. Subsequent attemptsto call @SnapshotRestore result in an error. More specifically, you
can only restore each table once. Since you can create— and restore— partial snapshots, you can perform
multiplerestores aslong asho individual tableisrestored more than once. Since command logging usually
includes snapshots, you should never perform a manual @SnapshotRestore after recovering a database
using command logs.

See Chapter 13, Saving & Restoring a VoltDB Database for more information about saving and restoring
VoltDB databases.

Return Values

Returns one VoltTable with arow for every table restored at each execution site.

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER |Numeric ID of the execution site on the host node.
TABLE STRING The name of the table being restored.

PARTITION_ID INTEGER |The numeric ID for the logical partition that this site

represents. When using a K value greater than zero, there
are multiple copies of each logical partition.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.
ERR_MSG STRING If the result is FAILURE, this column contains a message

explaining the cause of the failure.

Examples

Thefollowing example uses @SnapshotRestore to restore previously saved database content from the path
/tmp/ vol t db/ backup/ using the uniqueidentifier flight.

368

System Procedures

$ sqgl cnd
1> exec @napshot Restore '/tnp/voltdb/backup/', "flight";

Alternately, you can use the voltadmin restore command to perform the same function:
$ voltadm n restore /tnp/voltdb/backup/ flight

Sincethere are anumber of situationsthat impact what dataisrestored, it isagood ideato review thereturn
values to see what tables and partitions were affected. In the following program example, the contents of
the VoltTable array is written to standard output so the operator can confirm that the restore completed
as expected.

Vol t Tabl e[] results = null;

try {
results = client.callProcedure(" @napshot Restore",

“/tnp/vol tdb/ backup/ ",
"flight").getResults();
}
catch (Exception e) {
e.printStackTrace();
}

for (int t=0; t<results.length; t++) {
Vol t Tabl e table = results[t];
for (int r=0;r<table.getRowCount();r++) {
Vol t Tabl eRow row = table.fetchRow(r);
Systemout.printf("Node % Site % restoring " +
"table % partition %l.\n",
row. get Long("HOST_ID"), row. getLong("SITE ID"),
row. get String(" TABLE"), row. get Long(" PARTI TI ON"));

369

System Procedures

@SnapshotSave

@SnapshotSave — Saves the current database contents to disk.

Syntax

@SnapshotSave String directory-path, String unique-ID, Integer blocking-flag

@SnapshotSave String json-encoded-options

@SnapshotSave

Description

The @SnapshotSave system procedure saves the contents of the current in-memory database to disk. Each
node of the database cluster savesits portion of the database locally.

There are three forms of the @SnapshotSave stored procedure: a procedure call with individual argument
parameters, with all argumentsin a single JSON-encoded string, or with no arguments. When you specify
theargumentsasindividual parameters, VoltDB creates anative mode snapshot that can be used to recover
or restore the database. When you specify the arguments as a JSON-encoded string, you can regquest a
different format for the snapshot, including CSV (comma-separated value) filesthat can be used for import
into other databases or utilities. When you specify no arguments a full, native snapshot is saved into the
default snapshots directory in the database root directory.

Individual Arguments

When you specify the arguments asindividual parameters, you must specify three arguments:
1. Thedirectory path where the snapshot files are stored

2. An identifier that is included in the file names to uniquely identify the files that make up a single
snapshot

3. A flag value indicating whether the snapshot should block other transactions until it is complete or not

The resulting snapshot consists of multiple files saved to the directory specified by directory-path using
unique-1D asafilename prefix. The third argument, blocking-flag, specifieswhether the saveis performed
synchronously (thereby blocking any following transactions until the save completes) or asynchronously.
If this parameter is set to any non-zero value, the save operation will block any following transactions. If
it is zero, others transactions will be executed in parallel.

The files created using this invocation are in native VoltDB snapshot format and can be used to restore
or recover the database at some later time. This is the same format used for automatic snapshots. See
Chapter 13, Saving & Restoring a VoltDB Database for more information about saving and restoring
VoltDB databases.

JSON-Encoded Arguments

When you specify the arguments as a JSON-encoded string, you can specify what snapshot format you
want to create. Table G.1, “@SnapshotSave Options’ describes all possible options when creating a
snapshot using JSSON-encoded arguments.

370

System Procedures

Table G.1. @SnapshotSave Options

Option

Description

uripath

Specifiesthe path where the snapshot files are created. Notethat, asa JSON-encoded
argument, the path must be specified as a URI, not just a system directory path.
Therefore, alocal directory must be specified usingthefi | e: // identifier, such
as"file:///tnp", andthe path must exist on all nodes of the cluster.

nonce

Specifies the unique identifier for the snapshot.

block

Specifies whether the snapshot should be synchronous (true) and block other
transactions or asynchronous (false).

format

Specifies the format of the snapshot. Valid formats are "csv" and "native".

When you save asnapshot in CSV format, the resulting files are in standard comma-
separated value format, with only one file for each table. In other words, duplicates
(from replicated tables or duplicate partitions due to K-safety) are eliminated. CSV
formatted snapshots are useful for import or reuse by other databases or utilities.
However, they cannot be used to restore or recover aVoltDB database.

Whenyou saveasnapshot in native format, each node and partition savesits contents
to separate files. These files can then be used to restore or recover the database. It
isalso possible to later convert native format snapshots to CSV using the snapshot
utilities described in the VoltDB Administrator's Guide.

skiptables

Specifiestables to leave out of the snapshot. Use of tables or skiptables allows you
to create a partial snapshot of the larger database. Specify the list of tables as a
JSON array. For example, the following JSON argument excludes the Areacode and
Country tables from the snapshot:

"ski ptabl es":["areacode", "country"]

tables

Specifiestablesto include in the snapshot. Use of tables or skiptables allows you to
create a partial snapshot of the larger database. Specify the list of tables asa JSON
array. For example, the following JSON argument includes only the Employee and
Company tablesin the snapshot:

"tabl es":["enpl oyee", "conpany"]

For example, the JSON-encoded argumentsto synchronously saveaCSV formatted snapshot to /tmp using
the unique identifier "mydb" is the following:

{uripath:"file:///tnp", nonce: "nydb", bl ock:true,format: "csv"}

The block and format arguments are optional. If you do not specify them they default to bl ock: f al se
andfornmat: "native".Theargumentsuri pat h and nonce arerequired. The tables and skiptables
arguments are mutually exclusive.

Because the unique identifier is used in the resulting filenames, the identifier can contain only characters
that are valid for Linux file names. In addition, hyphens ("-") and commas (",") are not permitted.

Note that it is normal to perform manual saves synchronously, to ensure the snapshot represents a known
state of the database. However, automatic snapshots are performed asynchronously to reduce the impact
on ongoing database activity.

371

http://community.voltdb.com/docs/AdminGuide/

System Procedures

Return Values

The @SnapshotSave system procedure returns two different VoltTables, depending on the outcome of
the request.

Option #1. one VoltTable with arow for every execution site. (That is, the number of hosts multiplied
by the number of sites per host.).

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER |Numeric ID of the execution site on the host node.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

Option #2: one VoltTable with a variable number of rows.

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

TABLE STRING The name of the database table. The contents of each table

is saved to a separate file. Therefore it is possible for the
snapshot of each table to succeed or fail independently.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.
ERR_MSG STRING If the result is FAILURE, this column contains a message

explaining the cause of the failure.

Examples

Thefollowing exampl e uses @SnapshotSaveto save the current database content in native snapshot format
tothepath/ t np/ vol t db/ backup/ using the unique identifier flight on each node of the cluster.

$ sqglcmd
1> exec @napshot Save '/tnp/vol tdb/backup/', 'flight', 1;

Alternately, you can use the voltadmin save command to perform the same function. When using the
voltadmin save command, you use the - - bl ocki ng flag instead of a third parameter to request a
blocking save:

$ voltadm n save --blocking /tnp/voltdb/backup/ flight

Note that the procedure call will return successfully even if the save was not entirely successful. The
information returned in the VoltTable array tells you what parts of the operation were successful or not.
For example, save may succeed on one node but not on another.

The following code sample performs the same function, but also checks the return values and notifies the
operator when portions of the save operation are not successful.

372

System Procedures

Vol t Tabl e[] results = null;

try { results = client.call Procedure("@napshot Save",
"/tnp/vol tdb/ backup/ ™",
"flight", 1).getResults(); }
catch (Exception e) { e.printStackTrace(); }

for (int table=0; table<results.length; table++) {
for (int r=0;r<results[table].get RowCount();r++) {
Vol t Tabl eRow row = results[table].fetchRow(r);
if (row. getString("RESULT"). conmpareTo("SUCCESS") != 0) {
Systemout.printf("Site % failed to wite " +

"tabl e % because %s.\n",
row. get String("HOSTNAMVE"), row. getString("TABLE"),
row. getString("ERR_MSG'));

373

System Procedures

@SnapshotScan

@SnapshotScan — Listsinformation about existing native snapshots in a given directory path.

Syntax

@SnapshotScan String directory-path

Description

The @SnapshotScan system procedure provides information about any native snapshots that exist within
the specified directory path for al nodes on the cluster. The procedure reports the name (prefix) of the
snapshot, when it was created, how long it took to create, and the size of the individua files that make
up the snapshot(s).

@SnapshotScan does not include CSV format snapshots in its output. Only native format snapshots are
listed.

Return Values

On successful completion, this system procedure returns three VoltTables providing the following
information:

» A summary of the snapshots found
» Available space in the directories scanned
* Details concerning the Individual files that make up the snapshots

Thefirst table contains one row for every snapshot found.

Name Datatype Description

PATH STRING The directory path where the snapshot resides.

NONCE STRING The unique identifier for the snapshot.

TXNID BIGINT The transaction ID of the snapshot.

CREATED BIGINT The timestamp when the snapshot was created (in
milliseconds).

SIZE BIGINT Thetotal size, in bytes, of al the snapshot data.

TABLES REQUIRED STRING A comma-separated list of all the table names listed in the
snapshot digest file. In other words, all of the tables that
make up the snapshot.

TABLES_MISSING STRING A comma-separated list of database tablesfor which no data
can be found. (That is, the corresponding files are missing
or unreadable.)

TABLES INCOMPLETE |STRING A commarseparated list of database tables with only partial
data saved in the snapshot. (That is, data from some
partitions is missing.)

COMPLETE STRING A string value indicating whether the snapshot as a whole
is complete ("TRUE") or incomplete ("FALSE"). If this

374

System Procedures

Name Datatype Description
column is "FALSE", the preceding two columns provide
additional information concerning what is missing.
PATHTYPE STRING A string value indicating the type of snapshot and its

location, where the type can be "SNAP_PATH" for manua
snapshots, "SNAP_CL" for command log snapshots, and
"SNAP_AUTO" for automated snapshots.

The second table contains one row for every host.

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path specified in the call to the procedure.

TOTAL BIGINT The total space (in bytes) on the device.

FREE BIGINT The available free space (in bytes) on the device.

USED BIGINT Thetotal space currently in use (in bytes) on the device.

RESULT STRING String valueindicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message

explaining the cause of the failure.

The third table contains one row for every file in the snapshot collection.

Name Datatype Description

HOST _ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path where the snapshot file resides.

NAME STRING Thefile name.

TXNID BIGINT The transaction ID of the snapshot.

CREATED BIGINT The timestamp when the snapshot was created (in
milliseconds).

TABLE STRING The name of the database table the data comes from.

COMPLETED STRING A string indicating whether all of the data was successfully
written to thefile ("TRUE") or not ("FALSE").

SIZE BIGINT Thetotal size, in bytes, of thefile.

IS REPLICATED STRING A string indicating whether the table in question is
replicated ("TRUE") or partitioned ("FALSE").

PARTITIONS STRING A comma-separated string of partition (or site) IDs from
which data was taken during the snapshot. For partitioned
tables where there are multiple sites per host, there can
be data from multiple partitions in each snapshot file. For
replicated tables, data from only one copy (and therefore
one partition) is required.

TOTAL_PARTITIONS BIGINT The total number of partitions from which data was taken.

375

System Procedures

Name Datatype Description

READABLE STRING A string indicating whether the file is accessible ("TRUE")
or not ("FALSE").

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

If the system procedure fails because it cannot access the specified path, it returnsasingle VoltTable with
one row and one column.

Name Datatype Description
ERR_MSG STRING A message explaining the cause of the failure.
Examples

The following example uses @SnapshotScan to list information about the snapshots in the directory /
t np/ vol t db/ backup/ .

$ sqglcnmd
1> exec @napshot Scan /tnp/vol tdb/ backup/;

The following program example performs the same function, using the VoltTablet oSt ri ng() method
to display the results of the procedure call:

Vol t Tabl e[] results = null;

try { results = client.callProcedure("@napshot Scan",
“/tnp/vol tdb/ backup/").get Resul ts();

}
catch (Exception e) { e.printStackTrace(); }

for (VoltTable t: results) {
Systemout.printlin(t.toString());

}

In the return value, the first VoltTable in the array lists the snapshots and certain status information. The
second element of thearray providesinformation about the directory itself (such asused, free, and total disk
space). Thethird element of the array lists specific information about theindividual filesin the snapshot(s).

376

System Procedures

@Statistics

@Statistics — Returns statistics about the usage of the VoltDB database.

Syntax

@ Statistics String component, Integer delta-flag

Description

The @Statistics system procedure returns information about the VoltDB database. The first argument,
component, specifies what aspect of VVoltDB to return statistics about. The second argument, delta-flag,
specifies whether statistics are reported from when the database started or since the last call to @Statistics

where the flag was set.

If the delta-flag is set to zero, the system procedure returns statistics since the database started. If the delta-
flag is non-zero, the system procedure returns statistics for the interval since the last time @Statistics was
called with a non-zero flag. (If @Statistics has not been called with a non-zero flag before, the first call
with the flag set returns statistics since startup.)

Note that in a cluster with K-safety, if a node fails, the statistics reported by this procedure are reset to
zero for the node when it rejoins the cluster.

The following are the allowable values of component:

"COMMANDLOG"

"CPU"

"DRCONSUMER"

"DRPRODUCER"

"DRROLE"

"IMPORTER"

Returns information about the progress of command logging, including the
number of segment filesin use and the amount of command log datawaiting
to be written to disk.

Returns information about the amount of CPU used by each VoltDB server
process. CPU usage is returned as a number between 0 and 100 representing
the amount of CPU used by the VoltDB process out of the total CPU
available for that server.

Returns information about the status of database replication on a DR
consumer, including the status and data replication rate of each partition.
This information is available only if the database is licensed for database
replication and operating as a passive DR replica or an active XDCR
database.

Returns information about the status of database replication on a producer
database, including how much data is waiting to be sent to the consumer.
This information is available only if the database is licensed for database
replication and is operating as a passive master or an active XDCR database.

Returns information about the current state of database replication (DR),
including the role of the cluster (master, replica, or XDCR) and whether DR
has started, is running, stopped, or been disabled.

Returns statistics on the import streams, including how many import
transactions have succeeded, failed, and been retried and how many rows
have been read but not applied yet.

377

System Procedures

"INDEX"

"INITIATOR"

"IOSTATS'

"LATENCY"

"LIVECLIENTS'

"MANAGEMENT"

"MEMORY"

"PARTITIONCOUNT"

"PLANNER"

"PROCEDURE"

"PROCEDUREDETAIL"

Returnsinformation about the indexesin the database, including the number
of keys for each index and the estimated amount of memory used to
store those keys. Separate information is returned for each partition in the
database.

Returns information on the number of procedure invocations for each
stored procedure (including system and import procedures). The count of
invocations is reported for each connection to the database.

Returns information on the number of messages and amount of data (in
bytes) sent to and from each connection to the database.

Returns statistics on the latency of transactions. The information reports on
median, percentage (99% through 99.999%), and maximum latency over the
most recent five second sampling period.

Returns information about the number of outstanding requests per client.
Y ou can use this information to determine how much work iswaiting in the
execution queues.

Returns the same information as CPU, INDEX, INITIATOR, IOSTATS,
MEMORY, PROCEDURE, and TABLE, except al in a single procedure
cal.

Returns statistics on the use of memory for each node in the cluster.
MEMORY statistics include the current resident set size (RSS) of the
VoltDB server process; the amount of memory used for Java temporary
storage, database tables, indexes, and string (including varbinary) storage;
aswell as other information.

Returns information on the number of unique partitions in the cluster. The
VoltDB cluster creates multiple partitions based on the number of servers
and the number of sites per host requested. So, for example, a 2 node cluster
with 4 sites per host will have 8 partitions. However, when you define a
cluster with K-safety, there are duplicate partitions. PARTITIONCOUNT
only reports the number of unique partitions available in the cluster.

Returnsinformation on the use of cached planswithin each partition. Queries
in stored procedures are planned when the procedure is declared in the
schema. However, ad hoc queries must be planned at runtime. To improve
performance, VoltDB caches plans for ad hoc queries so they can be reused
when asimilar query is encountered later. There are two caches: the level 1
cache performs exact matches on queries and the level 2 cache parameterizes
constants so it can match queries with the same plan but different input.
The planner statistics provide information about the size of each cache, how
frequently it is used, and the minimum, maximum, and average execution
time of ad hoc queries as aresult.

Returns information on the usage of stored procedures for each site within
the database cluster sorted by partition. The information includes the name
of the procedure, the number of invocations (for each site), and selected
performance information on minimum, maximum, and average execution
time.

Returns detailed performance information about the individual statements
within each stored procedure. PROCEDUREDETAIL returns information

378

System Procedures

"PROCEDUREINPUT"

"PROCEDUREOUTPUT"

"PROCEDUREPROFILE"

"QUEUE"

"REBALANCE"

"SNAPSHOTSTATUS!

"TABLE"

for each statement in each procedure, grouped by site and partition within
the database cluster. The information includesthe name of the procedure, the
name of the statement, the number of invocations (for each site), and selected
performance information on minimum, maximum, and average execution
time.

Returns summary information on the size of the input data submitted with
stored procedure invocations. PROCEDUREINPUT uses information from
PROCEDURE, except it focuseson theinput parameters and aggregates data
for the entire cluster.

Returns summary information on the size of the result sets returned by
stored procedure invocations. PROCEDUREOUTPUT uses information
from PROCEDURE, except it focuses on the result sets and aggregates data
for the entire cluster.

Returns summary information on the usage of stored procedures
averaged across al partitions in the cluster. The information from
PROCEDUREPROFILE is similar to the information from PROCEDURE,
except it focuses on the performance of theindividual proceduresrather than
on procedures by partition. The weighted average across partitionsis hel pful
for determining which stored procedures the application is spending most of
itstimein.

Returns statistics on the number of tasks in each partition's process queue
and the average and maximum time tasks were waiting in the queue.

Returns information on the current progress of rebalancing on the cluster.
Rebalancing occurs when one or more nodes are added "on the fly" to an
eastic cluster. If no rebalancing is occurring, no data is returned. During
a rebalance, this selector returns information about the speed of migration
of the data, the latency of rebalance tasks, and the estimated time until
completion.

For rebalance, the deltaflag to the system procedureisignored. All rebalance
statistics are cumulative for the current rebalance activity.

Returns information about up to ten of the most recent snapshots performed
by the database. The results include the directory path and prefix for the
snapshot, when it occurred, how long it took, and whether the snapshot was
completed successfully or not. The results report on both native and CSV
snapshots, aswell as manual, automated, and command log snapshots. Note
that this selector does not tell you whether the snapshot files still exist,
only that the snapshot was performed. Use the @SnapshotScan procedure to
determine what snapshots are available.

Returnsinformation about the database tabl es, including the number of rows
per site for each table. This information can be useful for seeing how well
the rows are distributed across the cluster for partitioned tables.

Notethat INITIATOR and PROCEDURE report information on both user-declared stored procedures and
system procedures. These include certain system procedures that are used internally by VoltDB and are
not intended to be called by client applications. Only the system procedures documented in this appendix
areintended for client invocation.

379

System Procedures

Return Values

Returns different VVoltTables depending on which component is requested. The following tables identify
the structure of the return values for each component. (Note that the MANAGEMENT component returns
seven VoltTables.)

COMMANDL OG — Returns arow for every server in the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

OUTSTANDING_BYTES |BIGINT The size, in bytes, of pending command log data. That is,
datafor transactions that have been initiated but the log has
yet to bewritten to disk. For synchronouslogging, thisvalue
is aways zero.

OUTSTANDING_TXNS |BIGINT The size, in number of transactions, of pending command
log data. That is, the number of transactions that have been
initiated for which the log has yet to be written to disk. For
synchronous logging, this value is always zero.

IN_USE_SEGMENT INTEGER |The total number of segment files currently in use for

_COUNT command logging.

SEGMENT_COUNT INTEGER | The number of segment files allocated, including currently
unused segments.

FSYNC_INTERVAL INTEGER | The average interval, in milliseconds, between the last 10

fsync system calls.

CPU — Returns arow for every server in the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PERCENT_USED BIGINT The percentage of total CPU available used by the database
SErver process.

DRCONSUMER — Returns two VoltTables. The first table returns a row for every host in the cluster,
showing whether areplication snapshot isin progressand if it is, the status of transmission to the consumer.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

380

System Procedures

Name Datatype Description
HOSTNAME STRING Server name of the host node.
CLUSTER_ID INTEGER | Thenumeric ID of the current cluster.
REMOTE_CLUSTER_ID |INTEGER |Thenumeric ID of the producer cluster.
STATE STRING A text string indicating the current state of replication.
Possible values are;
e UNINITIALIZED — DR has not begun yet or has
stopped
e INITIALIZE — DR is enabled and the replica is
attempting to contact the producer
e SYNC — DR has sarted and the consumer is
synchronizing by receiving snapshots of existing data
from the master
e« RECEIVE — DR is underway and the consumer is
receiving binary logs from the master
» DISABLE — DR hasbeen canceled for some reason and
the consumer is stopping DR
REPLICATION_RATE_1M [BIGINT The average rate of replication over the past minute. The
datarate is measured in bytes per second.
REPLICATION_RATE_5M |BIGINT The average rate of replication over the past five minutes.

The data rate is measured in bytes per second.

The second table contains information about the replication streams, which consist of arow per partition
for each server. The data shows the current state of replication and how much data has been received by
the consumer from each producer.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CLUSTER_ID INTEGER | Thenumeric ID of the current cluster.

REMOTE_CLUSTER_ID |INTEGER |Thenumeric ID of the producer cluster.

PARTITION_ID INTEGER | The numeric ID for the logical partition.

IS COVERED STRING A text string of "true" or "false" indicating whether this
partition is currently connected to and receiving data from
amatching partition on the producer cluster.

COVERING_HOST STRING The host name of the server in the producer cluster that

is providing DR data to this partition. If IS COVERED is
"false”, thisfield is empty.

LAST_RECEIVED

TIMESTAMRAThe timestamp of the last transaction received from the

_TIMESTAMP producer.

LAST_APPLIED TIMESTAMARA The timestamp of the last transaction successfully applied
_TIMESTAMP to this partition on the consumer.

IS PAUSED STRING A text string of "true" or "false" indicating whether this

partition is paused. A partition "pauses’ when the schema

381

System Procedures

Name

Datatype

Description

of the DR tables on the producer change to no longer match
the consumer and all binary logs prior to the change have
been processed.

DRPRODUCER — Returns two VoltTables. The first table contains information about the replication
streams, which consist of arow per partition for each server. The data showsthe current state of replication
and how much dataiis currently queued for each consumer.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CLUSTER_ID INTEGER | Thenumeric ID of the current cluster.

REMOTE _CLUSTER ID |INTEGER |Thenumeric ID of the consumer cluster.

PARTITION_ID INTEGER | Thenumeric ID for the logical partition.

STREAMTYPE STRING The type of stream, which can either be
"TRANSACTIONS" or "SNAPSHOT".

TOTALBYTES BIGINT Thetotal number of bytes currently queued for transmission
to thereplica

TOTALBYTESIN BIGINT The total number of bytes of queued data currently held

MEMORY in memory. If the amount of total bytes is larger than
the amount in memory, the remainder is kept in overflow
storage on disk.

TOTALBUFFERS BIGINT The total number of buffers in this partition currently
waiting for acknowledgement from the replica. The
partitions buffer the binary logs to reduce overhead and
optimize network transfers.

LASTQUEUEDDRID BIGINT ThelD of thelast transaction queued for transmission to the
consumer.

LASTACKDRID BIGINT The ID of the last transaction acknowledged by the

consumer.

LASTQUEUEDTIMESTAM

FIMESTAMRBThe timestamp of the last transaction queued for

transmission to the consumer.

LASTACKTIMESTAMP

TIMESTAMARA The timestamp of the last transaction acknowledged by the

consumer.

ISSYNCED

STRING

A text string indicating whether the database is currently
being replicated. If replication has not started, or the
overflow capacity has been exceeded (that is, replication
hasfailed), thevalue of ISSYNCED is"false". If replication
iscurrently in progress, the value is "true".

MODE

STRING

A text string indicating whether this particular partition
is replicating data for the replica ("NORMAL") or not
("PAUSED"). Only one copy of each logical partition
actually sends data during replication. So for clusters
with a K-safety value greater than zero, not al physical

382

System Procedures

Name Datatype Description
partitionswill report "NORMAL" even when replication is
in progress.

QUEUE_GAP BIGINT The number of missing transactions between those already

acknowledged by the consumer and the next available for
transmission. Under normal operating conditions, thisvalue
is zero.

The second table returns arow for every host in the cluster, showing whether a replication snapshot isin
progress and if it is, the status of transmission to the consumer.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CLUSTER_ID INTEGER | The numeric ID of the current cluster.

REMOTE_CLUSTER ID |INTEGER |Thenumeric ID of the consumer cluster.

STATE STRING A text string indicating the current state of replication.
Possible values are "OFF" (replication is not enabled),
'PENDING" (replication is enabled but not occurring), and
"ACTIVE" (replication is enabled and a replica database
hasinitiated DR).

SYNCSNAPSHOTSTATE |STRING A text string indicating the current state of the
synchronization snapshot that begins replication. During
normal operation, this value is "NONE" indicating either
that replication is not active or that transactions are
actively being replicated. If asynchronization snapshot isin
progress, this value provides additional information about
the specific activity underway.

ROWSINSYNC BIGINT Reserved for future use.

SNAPSHOT

ROWSACKEDFORSYNC |BIGINT Reserved for future use.

SNAPSHOT

DRROL E — Returns one row per connection showing the current status of DR for that cluster.

Name Datatype Description

ROLE STRING Theroleof the current cluster in aDR relationship. Possible
values are NONE, MASTER, REPLICA, and XDCR.
(None indicates that no DR ID is defined and the cluster
cannot participate in DR.)

STATE STRING The current state of the DR relationship. Possible values are

the following:

» DISABLED — DR isnot enabled for the cluster

* PENDING — DRisenabled but communication with the
other cluster has not begun

* ACTIVE — Communication with the other cluster has
begun

383

System Procedures

Name

Datatype

Description

¢ STOPPED — Communication with the other cluster has
stopped due to afailure of somekind

Note that if DR stops, issuing the voltadmin dr reset
command will return the cluster to the PENDING state.

REMOTE_CLUSTER_ID

INTEGER

The DR ID of the other DR cluster, or -1 if not available
(for example, when DR is disabled or communication has
not begun).

IMPORTER — Returns a separate row for each import stream and each server.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER |Numeric ID of the execution site on the host node.

IMPORTER_NAME STRING The name of the import stream.

PROCEDURE_NAME STRING The name of the stored procedure invoked by the import
stream to insert the incoming data.

SUCCESSES BIGINT The number of import transactions that succeeded.

FAILURES BIGINT The number of import transactions that failed.

OUTSTANDING BIGINT The number of records read from the import stream and

_REQUESTS waiting to be inserted into the database.

RETRIES BIGINT The number of attempts to replay failed transactions.

INDEX — Returns arow for every index in every execution site.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE ID BIGINT Numeric ID of the execution site on the host node.

PARTITION_ID BIGINT The numeric ID for the logical partition that this site
represents. When using a K value greater than zero, there
are multiple copies of each logical partition.

INDEX_NAME STRING The name of the index.

TABLE_NAME STRING The name of the database table to which the index applies.

INDEX_TYPE STRING A text string identifying the type of the index as either a

hash or tree index and whether it is unique or not. Possible
values include the following:

CompactingHashMulti M apl ndex
CompactingHashUniquel ndex

384

System Procedures

Name Datatype Description
CompactingTreeM ultiMapl ndex
CompactingTreeUniquel ndex
IS UNIQUE TINYINT A byte value specifying whether the index is unique (1) or
not (0).
IS COUNTABLE TINYINT A byte value specifying whether the index maintains a
counter to optimize COUNT (*) queries.
ENTRY_COUNT BIGINT The number of index entries currently in the partition.
MEMORY_ESTIMATE BIGINT The estimated amount of memory (in kilobytes) consumed

by the current index entries.

INITIATOR — Returns a separate row for each connection and the stored procedures initiated by that

connection.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE ID INTEGER |Numeric ID of the execution site on the host node.

CONNECTION_ID BIGINT Numeric ID of the client connection invoking the
procedure.

CONNECTION_HOST STRING The server name of the node from which the client

NAME connection originates. In the case of import procedures, the
name of the importer is reported here.

PROCEDURE_NAME STRING The name of the stored procedure. If import is enabled,
import procedures are included as well.

INVOCATIONS BIGINT The number of times the stored procedure has been invoked
by this connection on this host node.

AVG_EXECUTION_TIME |INTEGER |The average length of time (in milliseconds) it took to
execute the stored procedure.

MIN_EXECUTION_TIME |[INTEGER |The minimum length of time (in milliseconds) it took to
execute the stored procedure.

MAX_EXECUTION_TIME|INTEGER |The maximum length of time (in milliseconds) it took to
execute the stored procedure.

ABORTS BIGINT The number of times the procedure was aborted.

FAILURES BIGINT Thenumber of timesthe procedurefailed unexpectedly. (As

opposed to user aborts or expected errors, such as constraint
violations.)

|OSTATS — Returns one row for every client connection on the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

385

System Procedures
Name Datatype Description
HOSTNAME STRING Server name of the host node.

CONNECTION_ID BIGINT

Numeric ID of the client connection invoking the
procedure.

CONNECTION_HOST STRING
NAME

The server name of the node from which the client
connection originates.

BYTES _READ BIGINT The number of bytes of data sent from the client to the host.

MESSAGES READ BIGINT The number of individual messages sent from the client to
the host.

BYTES WRITTEN BIGINT The number of bytes of data sent from the host to the client.

MESSAGES WRITTEN BIGINT

The number of individual messages sent from the host to
the client.

LATENCY — Returnsarow for every server in the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp, in milliseconds, when the data was
collected (not when the call was processed). If two cals
to this selector return the same timestamp, the data being
returned isidentical.

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

INTERVAL INTEGER | The length of the measurement interval, in milliseconds.
Theinterval is five seconds (5000).

COUNT INTEGER | Thetotal number of transactions during the interval.

TPS INTEGER | The number of transactions per second during the interval.

P50 BIGINT The 50th percentile latency, in microseconds. This value
measures the median latency.

PO5 BIGINT The 95h percentile latency, in microseconds.

P99 BIGINT The 99th percentile latency, in microseconds.

P99.9 BIGINT The 99.9th percentile latency, in microseconds.

P99.99 BIGINT The 99.99th percentile latency, in microseconds.

P99.999 BIGINT The 99.999th percentile latency, in microseconds.

MAX BIGINT The maximum latency during theinterval, in microseconds.

LIVECLIENTS— Returnsarow for every client connection currently active on the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CONNECTION_ID BIGINT Numeric ID of the client connection invoking the
procedure.

386

System Procedures

Name Datatype Description

CLIENT_HOSTNAME STRING The server name of the node from which the client
connection originates.

ADMIN TINYINT A byte value specifying whether the connection is to the
client port (0) or the admin port (1).

OUTSTANDING_ BIGINT The number of bytes of data sent from the client currently

REQUEST BYTES pending on the host.

OUTSTANDING_ BIGINT The number of messages on the host queue waiting to be

RESPONSE_MESSAGES retrieved by the client.

OUTSTANDING BIGINT The number of transactions (that is, stored procedures)

TRANSACTIONS

initiated on behalf of the client that have yet to be
completed.

MEMORY — Returns arow

for every server in the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

RSS INTEGER |The current resident set size. That is, the total amount of
memory allocated to the VoltDB processes on the server.

JAVAUSED INTEGER | Theamount of memory (in kilobytes) allocated by Javaand
currently in use by VoltDB.

JAVAUNUSED INTEGER | Theamount of memory (in kilobytes) allocated by Java but
unused. (In other words, free space in the Java heap.)

TUPLEDATA BIGINT The amount of memory (in kilobytes) currently in use for
storing database records.

TUPLEALLOCATED BIGINT The amount of memory (in kilobytes) alocated for the
storage of database records (including free space).

INDEXMEMORY BIGINT The amount of memory (in kilobytes) currently in use for
storing database indexes.

STRINGMEMORY BIGINT The amount of memory (in kilobytes) currently in use for
storing string, binary, and geospatial data that is not stored
"in-line" in the database record.

TUPLECOUNT BIGINT The total number of database records currently in memory.

POOLEDMEMORY BIGINT The tota size of memory (in kilobytes) allocated for tasks
other than database records, indexes, and strings. (For
example, pooled memory isused for temporary tableswhile
processing stored procedures.)

PHYSICALMEMORY BIGINT The total size of physical memory (in kilobytes) on the
server.

JAVAMAXHEAP INTEGER | The maximum heap size (in kilobytes) of the Java runtime

environment.

PARTITIONCOUNT — Returns one row identifying the total number of partitions and the host that

provided that information.

387

System Procedures

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PARTITION_COUNT INTEGER | The number of unique or logical partitions on the cluster.

When using a K value greater than zero, there are multiple
copies of each logical partition.

PLANNER — Returns a row for every planner cache. That is, one cache per execution site, plus one
global cache per server. (The global cacheisidentified by a site and partition 1D of minus one.)

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER |Numeric ID of the execution site on the host node.

PARTITION_ID INTEGER |The numeric ID for the logica partition that this site
represents. When using a K value grester than zero, there
are multiple copies of each logical partition.

CACHE1_LEVEL INTEGER | The number of query plansin thelevel 1 cache.

CACHE2 LEVEL INTEGER | The number of query plansin thelevel 2 cache.

CACHE1 HITS BIGINT The number of queries that matched and reused a plan in
thelevel 1 cache.

CACHE2_HITS BIGINT The number of queries that matched and reused a plan in
thelevel 2 cache.

CACHE_MISSES BIGINT The number of queries that had no match in the cache and
had to be planned from scratch

PLAN_TIME_MIN BIGINT The minimum length of time (in nanoseconds) it took to
complete the planning of ad hoc queries.

PLAN_TIME_MAX BIGINT The maximum length of time (in nanoseconds) it took to
complete the planning of ad hoc queries.

PLAN_TIME_AVG BIGINT The average length of time (in nanoseconds) it took to
complete the planning of ad hoc queries.

FAILURES BIGINT The number of times planning for an ad hoc query failed.

PROCEDURE — Returnsarow for every stored procedure that has been executed on the cluster, grouped

by execution site.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER |Numeric ID of the execution site on the host node.

388

System Procedures

Name Datatype Description

PARTITION_ID INTEGER |The numeric ID for the logical partition that this site
represents. When using a K value greater than zero, there
are multiple copies of each logical partition.

PROCEDURE STRING The class name of the stored procedure.

INVOCATIONS BIGINT The total number of invocations of this procedure at this
site.

TIMED_INVOCATIONS |BIGINT The number of invocations used to measure the minimum,
maximum, and average execution time.

MIN_EXECUTION_TIME |BIGINT The minimum length of time (in nanoseconds) it took to
execute the stored procedure.

MAX_EXECUTION_TIME BIGINT The maximum length of time (in nanoseconds) it took to
execute the stored procedure.

AVG_EXECUTION_TIME |BIGINT The average length of time (in nanoseconds) it took to
execute the stored procedure.

MIN_RESULT _SIZE INTEGER | The minimum size (in bytes) of the results returned by the
procedure.

MAX_RESULT_SIZE INTEGER | The maximum size (in bytes) of the results returned by the
procedure.

AVG RESULT SIZE INTEGER |The average size (in bytes) of the results returned by the
procedure.

MIN_PARAMETER INTEGER | The minimum size (in bytes) of the parameters passed as

_SET_SIZE input to the procedure.

MAX_PARAMETER INTEGER | The maximum size (in bytes) of the parameters passed as

_SET_SIZE input to the procedure.

AVG_PARAMETER INTEGER | Theaveragesize(inbytes) of the parameters passed asinput

_SET_SIZE to the procedure.

ABORTS BIGINT The number of times the procedure was aborted.

FAILURES BIGINT Thenumber of timesthe procedurefailed unexpectedly. (As
opposed to user aborts or expected errors, such as constraint
violations.)

TRANSACTIONAL TINYINT O or 1. Reserved for future use.

PROCEDUREDETAIL — Returns arow for every statement in every stored procedure that has been
executed on the cluster, grouped by execution site.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER |Numeric ID of the execution site on the host node.

PARTITION_ID INTEGER The numeric ID for the logical partition that this site

represents. When using a K value greater than zero, there
are multiple copies of each logical partition.

389

System Procedures

Name Datatype Description

PROCEDURE STRING The class name of the stored procedure.

STATEMENT STRING The name of the statement in the stored procedure.
Cumulative statistics for al statementsin the procedure are
included in a separate row labeled "<ALL>".

INVOCATIONS BIGINT Thetotal number of invocations of the statement at thissite.

TIMED_INVOCATIONS |BIGINT The number of invocations used to measure the minimum,
maximum, and average execution time.

MIN_EXECUTION_TIME |BIGINT The minimum length of time (in nanoseconds) it took to
execute the statement.

MAX_EXECUTION_TIME BIGINT The maximum length of time (in nanoseconds) it took to
execute the statement.

AVG_EXECUTION_TIME |BIGINT The average length of time (in nanoseconds) it took to
execute the statement.

MIN_RESULT _SIZE INTEGER | The minimum size (in bytes) of the results returned by the
statement.

MAX_RESULT_SIZE INTEGER | The maximum size (in bytes) of the results returned by the
Statement.

AVG RESULT SIZE INTEGER |The average size (in bytes) of the results returned by the
statement.

MIN_PARAMETER INTEGER | The minimum size (in bytes) of the parameters passed as

_SET_SIZE input to the statement.

MAX_PARAMETER INTEGER | The maximum size (in bytes) of the parameters passed as

_SET SIZE input to the statement.

AVG_PARAMETER INTEGER | Theaveragesize(inbytes) of the parameters passed asinput

_SET_SIZE to the statement.

ABORTS BIGINT In the cumulative row for each procedure ("<ALL>"), the
number of times the procedure was aborted. For individual
statements, this column is set to zero.

FAILURES BIGINT The number of timesthe statement failed unexpectedly. (As

opposed to user aborts or expected errors, such as constraint
violations.)

PROCEDUREINPUT — Returnsarow for every stored procedure that has been executed on the cluster,

summarized across the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

PROCEDURE STRING The class name of the stored procedure.

WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the
parameter set size for invocations of this stored procedure
compared to all stored procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

MIN_PARAMETER BIGINT The minimum parameter set sizein bytes.

_SET SIZE

390

System Procedures

Name Datatype Description

MAX_PARAMETER BIGINT The maximum parameter set sizein bytes.

_SET_SIZE

AVG _PARAMETER BIGINT The average parameter set size in bytes.

_SET_SIZE

TOTAL_PARAMETER BIGINT The total input for all invocations of this stored procedure
_SET_SIZE_MB measured in megabytes.

PROCEDUREOUTPUT — Returns a row for every stored procedure that has been executed on the
cluster, summarized across the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

PROCEDURE STRING The class name of the stored procedure.

WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the result
set size returned by invocations of this stored procedure
compared to all stored procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

MIN_RESULT_SIZE BIGINT The minimum result set size in bytes.

MAX RESULT SIZE BIGINT The maximum result set sizein bytes.

AVG RESULT SIZE BIGINT The average result set sizein bytes.

TOTAL_RESULT BIGINT The total output returned by all invocations of this stored

_SIZE_MB

procedure measured in megabytes.

PROCEDUREPROFILE — Returns a row for every stored procedure that has been executed on the
cluster, summarized across the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

PROCEDURE STRING The class name of the stored procedure.

WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the
execution time for this stored procedure compared to all
stored procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

AVG BIGINT The average length of time (in nanoseconds) it took to
execute the stored procedure.

MIN BIGINT The minimum length of time (in nanoseconds) it took to
execute the stored procedure.

MAX BIGINT The maximum length of time (in nanoseconds) it took to
execute the stored procedure.

ABORTS BIGINT The number of times the procedure was aborted.

FAILURES BIGINT Thenumber of timesthe procedurefailed unexpectedly. (As

opposed to user aborts or expected errors, such as constraint
violations.)

391

System Procedures

QUEUE — Returns a separate row for each partition and host listing the current state of the process queue
for that execution site.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER |Numeric ID of the execution site on the host node.

CURRENT_DEPTH INTEGER | The number of tasks currently in the queue.

POLL_COUNT BIGINT The number of tasks that left the queue (and started
executing) in the past five seconds.

AVG _WAIT BIGINT The average length of time (in microseconds) tasks were
waiting in the queue in the last five seconds.

MAX_WAIT BIGINT The maximum length of time (in microseconds) tasks were
waiting in the queue in the last five seconds.

REBAL ANCE — Returns one row if the cluster is rebalancing. No datais returned if the cluster is not
rebalancing.

Warning

The rebalance selector is still under development. The return values are likely to change in
upcoming rel eases.

Name Datatype Description

TOTAL_RANGES BIGINT The total number of partition segments to be migrated.

PERCENTAGE_MOVED |FLOAT The percentage of the total segmentsthat have already been
moved.

MOVED_ROWS BIGINT The number of rows of datathat have been moved.

ROWS PER _SECOND FLOAT The average number of rows moved per second.

ESTIMATED BIGINT The estimated time remaining until the rebalance is

_REMAINING complete, in milliseconds.

MEGABYTES PER FLOAT The average volume of data moved per second, measured

_SECOND in megabytes.

CALLS PER SECOND FLOAT The average number of rebalance work units, or
transactions, executed per second.

CALLS LATENCY FLOAT The average execution time for rebalance transactions, in
milliseconds.

SNAPSHOTSTATUS — Returns arow for every snapshot file in the recent snapshots performed on the
cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the snapshot was initiated (in
milliseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

392

System Procedures

Name Datatype Description

TABLE STRING The name of the database table whose datathefile contains.
PATH STRING The directory path where the snapshot file resides.
FILENAME STRING Thefile name.

NONCE STRING The unique identifier for the snapshot.

TXNID BIGINT The transaction 1D of the snapshot.

START_TIME BIGINT The timestamp when the snapshot began (in milliseconds).
END_TIME BIGINT The timestamp when the snapshot was completed (in
milliseconds).

SIZE BIGINT Thetotal size, in bytes, of thefile.

DURATION BIGINT The length of time (in milliseconds) it took to complete the
snapshot.

THROUGHPUT FLOAT The average number of bytes per second written to the file
during the snapshot process.

RESULT STRING String value indicating whether the writing of the snapshot
file was successful ("SUCCESS") or not ("FAILURE").

TYPE STRING String value indicating how the snapshot was initiated.

Possible values are:

« AUTO — an automated snapshot as defined by the
configuration file

« COMMANDLOG — acommand log snapshot

« MANUAL — amanual snapshot initiated by a user

TABLE — Returns arow for every table, per partition. In other words, the number of tables, multiplied
by the number of sites per host and the number of hosts.

_MEMORY

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in
milliseconds).

HOST _ID BIGINT Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE ID BIGINT Numeric ID of the execution site on the host node.

PARTITION_ID BIGINT The numeric ID for the logical partition that this site
represents. When using a K value greater than zero, there
are multiple copies of each logical partition.

TABLE_NAME STRING The name of the database table.

TABLE_TYPE STRING The type of the table. Values returned include
"PersistentTable” for normal data tables and views and
"StreamedTable" for streams.

TUPLE_COUNT BIGINT The number of rows currently stored for this table in the
current partition. For streams, the cumulative total number
of rows inserted into the stream.

TUPLE_ALLOCATED BIGINT Thetotal size of memory, in kilobytes, allocated for storing

inline data associated with this table in this partition.
The alocated memory can exceed the currently used

393

System Procedures

Name

Datatype

Description

memory (TUPLE_DATA_MEMORY). For streams, this
field identifies the amount of memory currently in use to
gueue export data (both in memory and as export overflow)
prior to its being passed to the export target.

TUPLE_DATA_MEMORY

BIGINT

The total memory, in kilobytes, used for storing inline data
associated with thistablein thispartition. Thetotal memory
used for storing data for this table is the combination of
memory used for inline (tuple) and non-inline (string) data.

STRING_DATA
_MEMORY

BIGINT

The total memory, in kilobytes, used for storing non-
inline variable length data (VARCHAR, VARBINARY,
and GEOGRAPHY) associated with this table in this
partition. The total memory used for storing data for this
table is the combination of memory used for inline (tuple)
and non-inline (string) data.

TUPLE_LIMIT

INTEGER

Therow limit for thistable. Row limits are optional and are
defined in the schema as a maximum number of rows that
any partition can contain. If no row limit is set, this value
isnull.

PERCENT_FULL

INTEGER

The percentage of the row limit currently in use by table
rowsinthispartition. If norow limitisset, thisvalueiszero.

Examples

The following example uses @Statistics to gather information about the distribution of table rows within

the cluster:

$ sqglcmd

1> exec @statistics TABLE, O;

The next program example shows a procedure that collects and displays the number of transactions (i.e.
stored procedures) during a given interval, by setting the delta-flag to a non-zero value. By calling this
procedureiteratively (for example, every fiveminutes), it ispossibleto identify fluctuationsin the database
workload over time (as measured by the number of transactions processed).

394

System Procedures

voi d neasureWrkl oad() {
Vol t Tabl e[] results = null;
String procNamne;
i nt procCount = O;
i nt sysprocCount = 0;

try { results = client.call Procedure("@tatistics",
“I NI TI ATOR', 1) . get Resul ts(); }
catch (Exception e) { e.printStackTrace(); }

for (VoltTable t: results) {
for (int r=0;r<t.get RowCount();r++) {
Vol t Tabl eRow row = t.fetchRow(r);
procName = row. get Stri ng(" PROCEDURE_NAME") ;
/* Count system procedures separately */
i f (procNane.substring(0,1).conpareTo("@) == 0)
{ sysprocCount += row. getLong("lNVOCATI ONS"); }
el se
{ procCount += row. getLong("lNVOCATIONS"); }
}
}
Systemout. printf("System procedures: %\n" +
"User-defined procedures: %l\n", +
sysprocCount, procCount);

395

System Procedures

@StopNode

@StopNode — Stops a VoltDB server process, removing the node from the cluster.

Syntax

@StopNode Integer host-1D

Description

The @StopNode system procedure lets you stop a specific server in a K-safe cluster. Y ou specify which
node to stop using the host ID, which is the unique identifier for the node assigned by VoltDB when the
server joins the cluster.

Note that by calling the @StopNode procedure on a node other than the node being stopped, you will
receive areturn statusindicating the success or failure of the call. If you call the procedure on the node that
you are requesting to stop, the return status can only indicate that the call was interrupted (by the VoltDB
process on the node stopping), not whether it was successfully completed or not.

If you call @StopNode on a node or cluster that is not K-safe — either because it was started with a K-
safety value of zero or one or more nodes have failed so any further failure could crash the database — the
@StopNode procedure will not be executed. Y ou can only stop nodes on a cluster that will remain viable
after the node stops. To stop the entire cluster, please use the voltadmin shutdown command.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

The following program example uses grep, sqlcmd, and the @Systeminformation stored procedure to
identify the host 1D for a specific node (doodah) of the cluster. The example then uses that host ID (2) to
call @StopNode and stop the desired node.

$ echo "exec @ystenl nformation overview," | sqlcnd | grep "doodah"
2 HOSTNAME doodah

$ sqglcmd

1> exec @t opNode 2;

The next example uses the voltadmin stop command to perform the same action. Note that voltadmin
stop performs the translation from a network name to a host 1D for you.

$ vol tadnin stop doodah

The following Java code fragment performs the same function programmatically.

try {
results = client.callProcedure("”@ysten nfornati on",

396

System Procedures

"overview').get Resul ts();

}
catch (Exception e) { e.printStackTrace(); }

Vol t Tabl e table = results[O0];
tabl e. reset RowPosi tion();
int targetHostID = -1;

whil e (tabl e.advanceRow() && targetHostld < 0) {
if ((table.getString("KEY") == "HOSTNAMVE') &&
(table.getString("VALUE") == targetHost Nane)) {
targetHostld = (int) table.getLong("HOST_ID");

}

try {
client.call Procedure(" @St opNode",

target Host1d). get Resul ts();

}
catch (Exception e) { e.printStackTrace(); }

397

System Procedures

@SwapTlables

@SwapTables— Swaps the contents of one table for another

Syntax

@SwapTables String[] table-name, String[] table-name

Description

The @SwapTables system procedure swaps the contents of one table for another. So, for example, if table
A has 2 rows and table B has 10 rows, after executing the following system procedure call table A would
have 10 rows and table B would have 2 rows:

sqgl cnd> exec @wapTables "A" 'B';

The tables being swapped must have identical schema. That is the names, datatype, and order of the
columns must be the same and the tables must have the same indexes and other constraints. Also there
cannot be any views on either table. If these requirements are not met, or if either of the named tables does
not exist, the system procedure returns an error.

The system procedure provides asignificant performance advantage over any comparable SQL statements
when swapping large tables because the operation does not actually move any data. The pointers for the
two tables are switched, eliminating any need for excessive temporary storage or data movement.

When using database replication (DR), the @SwapTables procedure is treated like a schema change and
will pause replication. To use @SwapTables in a DR environment, follow the procedures for schema
changes. That is:

» When using passive DR:
1. Pause the master database with voltadmin pause --wait.
2. Invoke @SwapTables on the master database.
3. Resume the master database with voltadmin resume.
4. Invoke the same @SwapTables call on thereplica.
* When using XDCR:
1. Pause all of the clustersin the XDCR relationshp with voltadmin pause --wait.
2. Invoke the same @SwapTables call on all of the databases.

3. Resume all the databases with voltadmin resume.

Return Values

Returns one VoltTable with one row and one column.

Name Datatype Description

MODIFIED_TUPLES BIGINT The number of tuples affected by the swap. In other words,
the sum of the tuplesin both tables.

398

System Procedures

Examples

The following example uses the @SwapTables system procedure to replace a lookup table of hot topics
with an updated list in a single statement.

sqgl cnd> exec @wapTabl es Hot Topi cs Hot Topi cs_Updat e;

399

System Procedures

@SystemCatalog

@SystemCatal og — Returns metadata about the database schema.

Syntax

@SystemCatalog String component

Description

The @SystemCatalog system procedure returns information about the schema of the VoltDB database,
depending upon the component keyword you specify. The following are the allowable values of

component:

"COLUMNS" Returnsalist of columnsfor al of the tablesin the database.

"FUNCTIONS' Returns information about user-defined functions in the database.

"INDEXINFO" Returns information about the indexes in the database schema. Note that the
procedure returns information for each column in the index. In other words,
if an index is composed of three columns, the result set will include three
separate entries for the index, one for each column.

"PRIMARYKEYS" Returns information about the primary keys in the database schema. Note

that the procedure returns information for each column in the primary key.
If an primary key is composed of three columns, the result set will include
three separate entries.

"PROCEDURECOLUMNS" Returns information about the arguments to the stored procedures.
"PROCEDURES" Returnsinformation about the stored procedures defined in the database.

"TABLES" Returns information about the tables in the database.

Return Values

Returns adifferent VoltTable for each component. The layout of the VoltTables is designed to match the
corresponding JDBC data structures. Columns are provided for all JDBC properties, but where VoltDB
has no corresponding element the column is unused and anull value is returned.

For the COLUMNS component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table the column belongs to.

COLUMN_NAME STRING The name of the column.

DATA_TYPE INTEGER |An enumerated value specifying the corresponding Java
SQL datatype of the column.

TYPE_NAME STRING A string value specifying the datatype of the column.

400

System Procedures

Name Datatype Description

COLUMN_SIZE INTEGER |The length of the column in bits, characters, or digits,
depending on the datatype.

BUFFER_LENGTH INTEGER |Unused.

DECIMAL_DIGITS INTEGER | The number of fractional digits in a DECIMAL datatype
column. (Null for all other datatypes.)

NUM_PREC_RADIX INTEGER |Specifies the radix, or numeric base, for calculating the
column size. A radix of 2 indicates the column size
is measured in bits while a radix of 10 indicates a
measurement in bytes or digits.

NULLABLE INTEGER |Indicates whether the column value can be null (1) or not
(0).

REMARKS STRING Contains the string "PARTITION_COLUMN" if the
column is the partitioning key for a partitioned table.
Otherwise null.

COLUMN_DEF STRING The default value for the column.

SQL_DATA_TYPE INTEGER |Unused.

SQL_DATETIME_SUB INTEGER |Unused.

CHAR_OCTET _LENGTH |INTEGER |For variable length columns (VARCHAR and
VARBINARY), the maximum length of the column. Null
for all other datatypes.

ORDINAL_POSITION INTEGER |Anindex specifying the position of the columnin thelist of
columnsfor the table, starting at 1.

IS NULLABLE STRING Specifies whether the column can contain a null value
("YES") or not ("NO").

SCOPE_CATALOG STRING Unused.

SCOPE_SCHEMA STRING Unused.

SCOPE_TABLE STRING Unused.

SOURCE _DATE_TYPE |SMALLINT |Unused.

IS AUTOINCREMENT STRING Specifies whether the column is auto-incrementing or not.

(Always returns "NO").

For the FUNCTIONS component, the VVoltTable has the following columns:

Name Datatype Description

FUNCTION_TYPE STRING The function typeis always "scalar”.

FUNCTION_NAME STRING The name of the user-defined function.

CLASS NAME STRING The Java class name that contains the user-defined function
method.

METHOD_NAME STRING The name of the method that implements the user-defined

function.

For the INDEXINFO component, the VoltTable has the following columns:

Name

Datatype

Description

TABLE_CAT

STRING

Unused.

401

System Procedures

Name Datatype Description

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table the index applies to.

NON_UNIQUE TINYINT Value specifying whether theindex is unique (0) or not (1).

INDEX_QUALIFIER STRING Unused.

INDEX_NAME STRING The name of the index that includes the current column.

TYPE SMALLINT |An enumerated value indicating the type of index as either
ahash (2) or other type (3) of index.

ORDINAL_POSITION SMALLINT |Anindex specifying the position of the columnin theindex,
starting at 1.

COLUMN_NAME STRING The name of the column.

ASC _OR _DESC STRING A string value specifying the sort order of the index.
Possible values are "A" for ascending or null for unsorted
indexes.

CARDINALITY INTEGER |Unused.

PAGES INTEGER Unused.

FILTER_CONDITION STRING Unused.

For the PRIMARY KEY S component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table.

COLUMN_NAME STRING The name of the column in the primary key.

KEY_SEQ SMALLINT |An index specifying the position of the column in the
primary key, starting at 1.

PK_NAME STRING The name of the primary key.

For the PROCEDURECOLUMNS component, the VoltTable has the following columns:

Name Datatype Description

PROCEDURE_CAT STRING Unused.

PROCEDURE_SCHEM STRING Unused.

PROCEDURE_NAME STRING The name of the stored procedure.

COLUMN_NAME STRING The name of the procedure parameter.

COLUMN_TYPE SMALLINT |An enumerated value specifying the parameter type.
Always returns 1, corresponding to procedureColumnin.

DATA_TYPE INTEGER |An enumerated value specifying the corresponding Java
SQL datatype of the column.

TYPE_NAME STRING A string value specifying the datatype of the parameter.

PRECISION INTEGER | The length of the parameter in bits, characters, or digits,

depending on the datatype.

402

System Procedures

Name Datatype Description

LENGTH INTEGER |The length of the parameter in bytes. For variable length
datatypes (VARCHAR and VARBINARY), this value
specifies the maximum possible length.

SCALE SMALLINT |The number of fractional digits in a DECIMAL datatype
parameter. (Null for all other datatypes.)

RADIX SMALLINT |Specifies the radix, or numeric base, for caculating the
precision. A radix of 2 indicates the precision is measured
in bitswhile aradix of 10 indicates ameasurement in bytes
or digits.

NULLABLE SMALLINT |Unused.

REMARKS STRING If this column contains the string
"PARTITION_PARAMETER", the parameter is the
partitioning key for a single-partitioned procedure. If the
column contains the string "ARRAY_PARAMETER" the
parameter is a native Java array. Otherwise this column is
null.

COLUMN_DEF STRING Unused.

SQL_DATA_TYPE INTEGER Unused.

SQL_DATETIME_SUB INTEGER |Unused.

CHAR_OCTET_LENGTH |INTEGER |For variable length columns (VARCHAR and
VARBINARY), the maximum length of the column. Null
for all other datatypes.

ORDINAL_POSITION INTEGER |Anindex specifying the position inthe parameter list for the
procedure, starting at 1.

IS NULLABLE STRING Unused.

SPECIFIC_NAME STRING Same as COLUMN_NAME

For the PROCEDURES component, the VoltTable has the following columns:

Name Datatype Description

PROCEDURE_CAT STRING Unused.

PROCEDURE_SCHEM STRING Unused.

PROCEDURE_NAME STRING The name of the stored procedure.

RESERVED1 STRING Unused.

RESERVED2 STRING Unused.

RESERVED3 STRING Unused.

REMARKS STRING Unused.

PROCEDURE_TYPE SMALLINT |An enumerated value that specifies the type of procedure.
Always returns zero (0), indicating "unknown".

SPECIFIC_NAME STRING Same as PROCEDURE_NAME.

For the TABLES component, the VoltTable has the following columns:
Name Datatype Description
TABLE_CAT STRING Unused.

403

System Procedures

Name Datatype Description
TABLE_SCHEM STRING Unused.
TABLE_NAME STRING The name of the database table.
TABLE_TYPE STRING Specifies whether the table is a data table ("TABLE"), a
materialized view ("VIEW"), or a stream ('EXPORT").
REMARKS STRING Unused.
TYPE_CAT STRING Unused.
TYPE_SCHEM STRING Unused.
TYPE_NAME STRING Unused.
SELF_REFERENCING STRING Unused.
_COL_NAME
REF_GENERATION STRING Unused.
Examples

Thefollowing example calls @SystemCatalog to list the stored procedures in the active database schema:

$ sqglcnmd
1> exec @BystentCatal og procedures;

The next program example uses @SystemCatalog to display information about the tables in the database
schema.

Vol t Tabl e[] results = null;
try {

results = client.call Procedure(" @ystenCatal og",

"TABLES") . get Resul ts();

Systemout.println("Information about the database schema:");

for (VoltTable node : results) Systemout.println(node.toString());
}
catch (Exception e) {

e.printStackTrace();

}

System Procedures

@SystemInformation

@Systemlnformation — Returns configuration information about VoltDB and the individual nodes of the

database cluster.

Syntax

@Systeminformation

@SystemInformation String component

Description

The @SystemlInformation system procedure returns information about the configuration of the VoltDB
database or the individual nodes of the database cluster, depending upon the component keyword you
specify. The following are the allowable values of component:

"DEPLOYMENT" Returns information about the configuration of the database. In particular, this
keyword returns information about the various features and settings enabled through
the configuration file, such as export, snapshots, K-safety, and so on. These properties
arereturned in asingle VoltTable of name/value pairs.

"OVERVIEW"

Returnsinformation about the individual serversin the database cluster, including the
host name, the | P address, the version of VVoltDB running on the server, aswell asthe
path to the configuration file in use. The overview aso includes entries for the start
time of the server and length of time the server has been running.

If you do not specify acomponent, @Systemlnformation returnsthe results of the OVERVIEW component
(to provide compatibility with previous versions of the procedure).

Return Values

Returns one of two VoltTables depending upon which component is requested.

For the DEPLOYMENT component, the VoltTable has the columns specified in the following table.

Name Datatype Description

PROPERTY STRING The name of the deployment property being reported.

VALUE STRING The corresponding value of that property in the
configuration file (either explicitly or by default).

For the OVERVIEW component, information is reported for each server in the cluster, so an additional
column is provided identifying the host node.

Name Datatype Description

HOST _ID INTEGER |A numeric identifier for the host node.

KEY STRING The name of the system attribute being reported.

VALUE STRING The corresponding value of that attribute for the specified
host.

405

System Procedures

Examples
The first example displays information about the individual serversin the database cluster:

$ sqglcmd
1> exec @ystem nformation overview,

The following program example uses @Systeminformation to display information about the nodes in the
cluster and then about the database itself.

Vol t Tabl e[] results = null;
try {
results = client.call Procedure("@ystem nformation",
"OVERVI EW) . get Resul t s() ;
Systemout.println("Information about the database cluster:");
for (VoltTable node : results) Systemout.println(node.toString());

results = client.call Procedure("@ystem nformation",

" DEPLOYMENT") . get Resul t s();
Systemout.println("Information about the database configuration:");
for (VoltTable node : results) Systemout.println(node.toString());

}
catch (Exception e) {

e.printStackTrace();
}

406

System Procedures

@UpdateApplicationCatalog

@UpdateApplicationCatalog — Reconfigures the database by replacing the configuration file.

Syntax

@UpdateApplicationCatalog byte[] null, String configuration

Description

The @UpdateApplicationCatalog system procedure lets you modify the configuration of a running
database without having to shutdown and restart.

Note

The @UpdateA pplicationCatal og system procedure originally supported updating a precompiled
schema called an application catalog. Application catalogs are no longer supported in favor of
interactive DDL statements. However, the first argument is still required and should be sent as
anull value. See the voltadmin update command for an easier way to update the configuration
from the command line.

The arguments to the system procedure are a null value and a string containing the contents of the
configuration file. That is, you pass the actual contents of the configuration file as a string. The new
settings must not contain any changes other than the allowed modifications listed in the description of the
voltadmin update command. If there are any other changes, the procedure returns an error indicating that
an incompatible change has been found.

To simplify the process of encoding the configuration file contents, the Java client interface includes two
hel per methods (one synchronous and one asynchronous) to encode the file and issue the stored procedure
request:

ClientResponse client.updateApplicationCatalog(null, File configuration-file)

ClientResponse client.updateApplicationCatalog(clientCallback callback, null, File
configuration-file)

Similarly, the sglemd utility interprets the configuration argument as a filename.

Examples
The following example uses sglcmd to update the configuration using thefile myconfi g. xm :

$ sqglcnmd
1> exec @Jpdat eApplicationCatalog null, myconfig.xmn;

An dternative isto use the voltadmin update command. In which case, the following command performs
the same function as the preceding sglcmd example:

$ vol tadnmi n update nyconfig. xm

The following program example uses the @UpdateA pplicationCatalog procedure to update the current
database catalog, using the configuration file at pr oj ect/ pr oduct i on. xm with the synchronous
helper method.

407

System Procedures

String newconfig = "project/production.xm";
try {

client.updateApplicationCatal og(null, new File(newonfig));
}

catch (Exception e) { e.printStackTrace(); }

408

System Procedures

@UpdateClasses

@UpdateClasses — Adds and removes Java classes from the database.

Syntax

@UpdateClasses byte[] JAR-file, String class-selector

Description
The @UpdateClasses system procedure performs two functions:
 Loadsinto the database any Java classes and resources in the JAR file passed as the first parameter
» Removes any classes matching the class selector string passed as the second parameter

Y ou heed to compile and pack your stored procedure classesinto aJAR file and | oad them into the database
using @UpdateClasses before entering the CREATE PROCEDURE statements that define those classes
as VoltDB stored procedures. Note that, for interactive use, the sglemd utility has two directives, load
classes and remove classes, that perform these actionsin separate steps.

Toremove classes, you specify the class namesin the second parameter, the class selector. Y ou caninclude
multiple class selectors using a commarseparated list. You can aso use Ant-style wildcards in the class
specification to identify multiple classes. For example, the following command deletes al classes that are
children of org.mycompany.utils as well as*.DebugHandler:

sql cnd
1> exec @Jpdat e asses NULL "org. nycompany.utils.*,*. DebugHandl er";

You can aso use the @UpdateClasses system procedure to include reusable code that is accessed by
multiple stored procedures. Reusable code includes both resource files, such as XML or other data files,
aswell as classes accessed by stored procedures.

* Resourcefilesmust be stored in asubfolder within the JAR. Resourcesin theroot directory areignored.

» Any classes and methods called by stored procedures must follow the same rules for deterministic
behavior that stored procedures follow, as described in Section 5.1.2, “VoltDB Stored Procedures are
Deterministic”.

» Use of @UpdateClasses is not recommended for large, established libraries of classes used by stored
procedures. For larger, static libraries that do not need to be modified on the fly, the preferred approach
istoincludethe code by placing JAR filesin the/lib directory where VoltDB isinstalled on the database
servers.

Classes can be overwritten by loading a new class with the same path. Similarly, resource files can be
updated by reloading a file with the same name and location. Classes can be removed using the second
argument to the system procedure (or the remove classes directive). However, there is no mechanism for
removing resources files other than classes once they are loaded.

Examples

The following example compiles and packs Java stored procedures into the file myapp.jar. The example
then uses @UpdateClasses to load the classes from the JAR file, then defines and partitions a stored
procedure based on the uploaded classes.

409

System Procedures

$ javac -cp "/opt/voltdb/voltdb/*" -d obj src/nyapp/*.java
$ jar cvf nyapp.jar -C obj

$ sqgl cnd

1> exec @Jpdat ed asses nyapp.j ar

2> CREATE PROCEDURE

3> PARTI TI ON ON TABLE Custonmer COLUWN Custoner| D

4> FROM CLASS myapp. procedur es. AddCust oner;

The second example removes the class added and defined in the preceding example. Note that you
must drop the procedure definition first; you cannot delete classes that are referenced by defined stored
procedures.

$ sqlcmd
1> DROP PROCEDURE AddCust oner;
2> exec @Jpdat eC asses NULL "myapp. procedur es. AddCust oner";

As an dternative, the loading and removing of classes can be performed using native sglcmd directives
load classes and remove classes. So the previous tasks can be performed using the following commands:

$ sqlcnd

1> | oad cl asses nyapp.jar "";

2> CREATE PROCEDURE

3> PARTI TI ON ON TABLE Custonmer COLUWN Custonerl D
4> FROM CLASS nyapp. procedur es. AddCust oner ;

[.. .]

1> DROP PROCEDURE AddCust orer;
2> renpove cl asses "nyapp. procedures. AddCust oner";

410

System Procedures

@UpdatelLogging

@Updatel ogging — Changes the logging configuration for a running database.

Syntax

@UpdatelLogging CString configuration

Description

The @Updatel ogging system procedureletsyou changethelogging configurationfor VoltDB. The second
argument, configuration, is atext string containing the Log4dJ XML configuration definition.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

It is possible to use sgqlcmd to update the logging configuration. However, the argument is interpreted as
raw XML content rather than as a file specification. Consequently, it can be difficult to use interactively.
But you can write the file contents to an input file and then pipe that to sqlcmd, like so:

$ echo "exec @JpdatelLogging '" > sqgl cnd. i nput
$ cat nylog4j.xm >> sql cnd. i nput

$ echo "';" >> sqglcnd. input

$ cat sqglcnmd.input | sqlcnmd

Thefollowing program example demonstrates another way to update the logging, using the contents of an
XML file (identified by the string xmlfilename).

try {
Scanner scan = new Scanner (new File(xm fil enane));

scan. useDelimter("\\Z");

String content = scan. next();

client.call Procedure(" @lpdat eLoggi ng", content);
}
catch (Exception e) {

e.printStackTrace();
}

411

	Using VoltDB
	Table of Contents
	About This Book
	Chapter 1. Overview
	1.1. What is VoltDB?
	1.2. Who Should Use VoltDB
	1.3. How VoltDB Works
	1.3.1. Partitioning
	1.3.2. Serialized (Single-Threaded) Processing
	1.3.3. Partitioned vs. Replicated Tables
	1.3.4. Ease of Scaling to Meet Application Needs

	1.4. Working with VoltDB Effectively

	Chapter 2. Installing VoltDB
	2.1. Operating System and Software Requirements
	2.2. Installing VoltDB
	2.2.1. Upgrading From Older Versions
	2.2.2. Building a New VoltDB Distribution Kit

	2.3. Setting Up Your Environment
	2.4. What is Included in the VoltDB Distribution
	2.5. VoltDB in Action: Running the Sample Applications

	Chapter 3. Starting the Database
	3.1. Initializing and Starting a VoltDB Database
	3.2. Initializing and Starting a VoltDB Database on a Cluster
	3.3. Stopping a VoltDB Database
	3.4. Saving the Data
	3.5. Restarting a VoltDB Database
	3.6. Updating Nodes on the Cluster
	3.7. Defining the Cluster Configuration
	3.7.1. Determining How Many Sites per Host
	3.7.2. Configuring Paths for Runtime Features
	3.7.3. Verifying your Hardware Configuration

	Chapter 4. Designing the Database Schema
	4.1. How to Enter DDL Statements
	4.2. Creating Tables and Primary Keys
	4.3. Analyzing Data Volume and Workload
	4.4. Partitioning Database Tables
	4.4.1. Choosing a Column on which to Partition Table Rows
	4.4.2. Specifying Partitioned Tables
	4.4.3. Design Rules for Partitioning Tables

	4.5. Replicating Database Tables
	4.5.1. Choosing Replicated Tables
	4.5.2. Specifying Replicated Tables

	4.6. Modifying the Schema
	4.6.1. Effects of Schema Changes on Data and Clients
	4.6.2. Viewing the Schema
	4.6.3. Modifying Tables
	4.6.3.1. Altering a Table Column's Data Definition
	4.6.3.2. Adding and Dropping Table Columns
	4.6.3.3. Adding and Dropping Table Constraints

	4.6.4. Adding and Dropping Indexes
	4.6.5. Modifying Partitioning for Tables and Stored Procedures
	4.6.5.1. Un-partitioning a Stored Procedure
	4.6.5.2. Changing a Partitioned Table to a Replicated Table
	4.6.5.3. Re-partitioning a Table to a Different Column
	4.6.5.4. Updating a Stored Procedure
	4.6.5.5. Removing a Stored Procedure from the Database

	Chapter 5. Designing Stored Procedures to Access the Database
	5.1. How Stored Procedures Work
	5.1.1. VoltDB Stored Procedures are Transactional
	5.1.2. VoltDB Stored Procedures are Deterministic
	5.1.2.1. Use Sorted SQL Queries
	5.1.2.2. Avoid Introducing Non-deterministic Values from External Functions
	5.1.2.3. Stored Procedures have no Persistence

	5.2. The Anatomy of a VoltDB Stored Procedure
	5.2.1. The Structure of the Stored Procedure
	5.2.2. Passing Arguments to a Stored Procedure
	5.2.3. Creating and Executing SQL Queries in Stored Procedures
	5.2.4. Interpreting the Results of SQL Queries
	5.2.5. Returning Results from a Stored Procedure
	5.2.6. Rolling Back a Transaction

	5.3. Installing Stored Procedures into the Database
	5.3.1. Compiling, Packaging, and Loading Stored Procedures
	5.3.2. Declaring Stored Procedures in the Schema
	5.3.3. Partitioning Stored Procedures in the Schema
	5.3.3.1. How to Declare Single-Partition Procedures
	5.3.3.2. Queries in Single-Partitioned Stored Procedures

	Chapter 6. Designing VoltDB Client Applications
	6.1. Connecting to the VoltDB Database
	6.1.1. Connecting to Multiple Servers
	6.1.2. Using the Auto-Connecting Client

	6.2. Invoking Stored Procedures
	6.3. Invoking Stored Procedures Asynchronously
	6.4. Closing the Connection
	6.5. Handling Errors
	6.5.1. Interpreting Execution Errors
	6.5.2. Handling Timeouts
	6.5.3. Writing a Status Listener to Interpret Other Errors

	6.6. Compiling and Running Client Applications
	6.6.1. Starting the Client Application
	6.6.2. Running Clients from Outside the Cluster

	Chapter 7. Simplifying Application Development
	7.1. Using Default Procedures
	7.2. Shortcut for Defining Simple Stored Procedures
	7.3. Verifying Expected Query Results

	Chapter 8. Using VoltDB with Other Programming Languages
	8.1. C++ Client Interface
	8.1.1. Writing VoltDB Client Applications in C++
	8.1.2. Creating a Connection to the Database Cluster
	8.1.3. Invoking Stored Procedures
	8.1.4. Invoking Stored Procedures Asynchronously
	8.1.5. Interpreting the Results

	8.2. JSON HTTP Interface
	8.2.1. How the JSON Interface Works
	8.2.2. Using the JSON Interface from Client Applications
	8.2.3. How Parameters Are Interpreted
	8.2.4. Interpreting the JSON Results
	8.2.5. Error Handling using the JSON Interface

	8.3. JDBC Interface
	8.3.1. Using JDBC to Connect to a VoltDB Database
	8.3.2. Using JDBC to Query a VoltDB Database

	Chapter 9. Using VoltDB in a Cluster
	9.1. Starting a Database Cluster
	9.2. Updating the Cluster Configuration
	9.2.1. Adding Nodes with Elastic Scaling
	9.2.2. Configuring How VoltDB Rebalances New Nodes

	Chapter 10. Availability
	10.1. How K-Safety Works
	10.2. Enabling K-Safety
	10.2.1. What Happens When You Enable K-Safety
	10.2.2. Calculating the Appropriate Number of Nodes for K-Safety

	10.3. Recovering from System Failures
	10.3.1. What Happens When a Node Rejoins the Cluster
	10.3.2. Where and When Recovery May Fail

	10.4. Avoiding Network Partitions
	10.4.1. K-Safety and Network Partitions
	10.4.2. Using Network Fault Protection

	Chapter 11. Database Replication
	11.1. How Database Replication Works
	11.1.1. Starting Database Replication
	11.1.2. Database Replication, Availability, and Disaster Recovery
	11.1.3. Database Replication and Completeness

	11.2. Using Passive Database Replication
	11.2.1. Specifying the DR Tables in the Schema
	11.2.2. Configuring the Clusters
	11.2.3. Starting the Clusters
	11.2.4. Loading the Schema and Starting Replication
	11.2.5. Updating the Schema During Replication
	11.2.6. Stopping Replication
	11.2.6.1. Stopping Replication on the Master if the Replica Becomes Unavailable
	11.2.6.2. Database Replication and Disaster Recovery
	11.2.6.3. Promoting the Replica When the Master Becomes Unavailable
	11.2.6.4. Reversing the Master/Replica Roles

	11.2.7. Database Replication and Read-only Clients

	11.3. Using Cross Datacenter Replication
	11.3.1. Designing Your Schema for Active Replication
	11.3.2. Configuring the Database Clusters
	11.3.2.1. Choosing Unique IDs
	11.3.2.2. Identifying the DR Connections

	11.3.3. Starting the Database Clusters
	11.3.4. Loading a Matching Schema and Starting Replication
	11.3.5. Updating the Schema During Active Replication
	11.3.6. Stopping Replication
	11.3.7. Example XDCR Configurations
	11.3.8. Understanding Conflict Resolution
	11.3.8.1. Designing Your Application to Avoid Conflicts
	11.3.8.2. How Conflicts are Resolved
	11.3.8.3. What Types of Conflict Can Occur
	11.3.8.4. Reporting Conflicts

	11.4. Monitoring Database Replication

	Chapter 12. Security
	12.1. How Security Works in VoltDB
	12.2. Enabling Authentication and Authorization
	12.3. Defining Users and Roles
	12.4. Assigning Access to Stored Procedures
	12.5. Assigning Access by Function (System Procedures, SQL Queries, and Default Procedures)
	12.6. Using Built-in Roles
	12.7. Encrypting VoltDB Communication Using TLS/SSL
	12.7.1. Configuring TLS/SSL on the VoltDB Server
	12.7.2. Choosing What Ports to Encrypt with TLS/SSL
	12.7.3. Using the VoltDB Command Line Utilities with TLS/SSL
	12.7.4. Implementing TLS/SSL in the Java Client Applications
	12.7.5. Configuring Database Replication (DR) With TLS/SSL

	12.8. Integrating Kerberos Security with VoltDB
	12.8.1. Installing and Configuring Kerberos
	12.8.2. Installing and Configuring the Java Security Extensions
	12.8.3. Configuring the VoltDB Servers and Clients
	12.8.4. Accessing the Database from the Command Line and the Web

	Chapter 13. Saving & Restoring a VoltDB Database
	13.1. Performing a Manual Save and Restore of a VoltDB Cluster
	13.1.1. How to Save the Contents of a VoltDB Database
	13.1.2. How to Restore the Contents of a VoltDB Database Manually
	13.1.3. Changing the Cluster Configuration Using Save and Restore
	13.1.3.1. Adding and Removing Nodes from the Database
	13.1.3.2. Modifying the Database Schema and Stored Procedures

	13.2. Scheduling Automated Snapshots
	13.3. Managing Snapshots
	13.4. Special Notes Concerning Save and Restore

	Chapter 14. Command Logging and Recovery
	14.1. How Command Logging Works
	14.2. Controlling Command Logging
	14.3. Configuring Command Logging for Optimal Performance
	14.3.1. Log Size
	14.3.2. Log Frequency
	14.3.3. Synchronous vs. Asynchronous Logging
	14.3.4. Hardware Considerations

	Chapter 15. Importing and Exporting Live Data
	15.1. Understanding Export
	15.2. Planning your Export Strategy
	15.3. Identifying Export Streams in the Schema
	15.4. Configuring Export in the Configuration File
	15.5. How Export Works
	15.5.1. Export Overflow
	15.5.2. Persistence Across Database Sessions

	15.6. The File Export Connector
	15.7. The HTTP Export Connector
	15.7.1. Understanding HTTP Properties
	15.7.2. Exporting to Hadoop via WebHDFS
	15.7.3. Exporting to Hadoop Using Kerberos Security

	15.8. The JDBC Export Connector
	15.9. The Kafka Export Connector
	15.10. The RabbitMQ Export Connector
	15.11. The Elasticsearch Export Connector
	15.12. Understanding Import
	15.12.1. One-Time Import Using Data Loading Utilities
	15.12.2. Streaming Import Using Built-in Import Features

	15.13. The Kafka Importer
	15.14. The Kinesis Importer
	15.15. The CSV/TSV Import Formatters

	Appendix A. Supported SQL DDL Statements
	ALTER TABLE
	CREATE FUNCTION
	CREATE INDEX
	CREATE PROCEDURE AS
	CREATE PROCEDURE FROM CLASS
	CREATE ROLE
	CREATE STREAM
	CREATE TABLE
	CREATE VIEW
	DR TABLE
	DROP FUNCTION
	DROP INDEX
	DROP PROCEDURE
	DROP ROLE
	DROP STREAM
	DROP TABLE
	DROP VIEW
	PARTITION PROCEDURE
	PARTITION TABLE

	Appendix B. Supported SQL Statements
	DELETE
	INSERT
	SELECT
	TRUNCATE TABLE
	UPDATE
	UPSERT

	Appendix C. SQL Functions
	ABS()
	APPROX_COUNT_DISTINCT()
	AREA()
	ARRAY_ELEMENT()
	ARRAY_LENGTH()
	ASTEXT()
	AVG()
	BIN()
	BIT_SHIFT_LEFT()
	BIT_SHIFT_RIGHT()
	BITAND()
	BITNOT()
	BITOR()
	BITXOR()
	CAST()
	CEILING()
	CENTROID()
	CHAR()
	CHAR_LENGTH()
	COALESCE()
	CONCAT()
	CONTAINS()
	COS()
	COT()
	COUNT()
	CSC()
	CURRENT_TIMESTAMP()
	DATEADD()
	DAY(), DAYOFMONTH()
	DAYOFWEEK()
	DAYOFYEAR()
	DECODE()
	DEGREES()
	DISTANCE()
	DWITHIN()
	EXP()
	EXTRACT()
	FIELD()
	FLOOR()
	FORMAT_CURRENCY()
	FROM_UNIXTIME()
	HEX()
	HOUR()
	INET6_ATON()
	INET6_NTOA()
	INET_ATON()
	INET_NTOA()
	ISINVALIDREASON()
	ISVALID()
	IS_VALID_TIMESTAMP()
	LATITUDE()
	LEFT()
	LN(), LOG()
	LOG10()
	LONGITUDE()
	LOWER()
	MAKEVALIDPOLYGON()
	MAX()
	MAX_VALID_TIMESTAMP()
	MIN()
	MIN_VALID_TIMESTAMP()
	MINUTE()
	MOD()
	MONTH()
	NOW()
	NUMINTERIORRINGS()
	NUMPOINTS()
	OCTET_LENGTH()
	OVERLAY()
	PI()
	POINTFROMTEXT()
	POLYGONFROMTEXT()
	POSITION()
	POWER()
	QUARTER()
	RADIANS()
	REGEXP_POSITION()
	REPEAT()
	REPLACE()
	RIGHT()
	ROUND()
	SEC()
	SECOND()
	SET_FIELD()
	SIN()
	SINCE_EPOCH()
	SPACE()
	SQRT()
	STR()
	SUBSTRING()
	SUM()
	TAN()
	TO_TIMESTAMP()
	TRIM()
	TRUNCATE()
	UPPER()
	VALIDPOLYGONFROMTEXT()
	WEEK(), WEEKOFYEAR()
	WEEKDAY()
	YEAR()

	Appendix D. VoltDB CLI Commands
	csvloader
	jdbcloader
	kafkaloader
	sqlcmd
	voltadmin
	voltdb

	Appendix E. Configuration File (deployment.xml)
	E.1. Understanding XML Syntax
	E.2. The Structure of the Configuration File

	Appendix F. VoltDB Datatype Compatibility
	F.1. Java and VoltDB Datatype Compatibility

	Appendix G. System Procedures
	@AdHoc
	@Explain
	@ExplainProc
	@ExplainView
	@GetPartitionKeys
	@Pause
	@Promote
	@Quiesce
	@Resume
	@Shutdown
	@SnapshotDelete
	@SnapshotRestore
	@SnapshotSave
	@SnapshotScan
	@Statistics
	@StopNode
	@SwapTables
	@SystemCatalog
	@SystemInformation
	@UpdateApplicationCatalog
	@UpdateClasses
	@UpdateLogging

