
VoltDB Client Wire Protocol

VoltDB Team - 01/26/2016 - VoltDB Client Wire Protocol Version 1

Protocol Version
The current version of the protocol is version 1. VoltDB servers using wire protocol version 1 will interpret and respond
appropriately to messages sent using either version 0 or version 1 of the wire protocol.

Overview
A client connection to a VoltDB instance consists of a TCP connection on port 21212. After the initial login process the
only exchange between the client library and the VoltDB server is the invocation of and response to stored procedures.
All messages in the VoltDB wire protocol are in network byte order and all integers are signed. Every message is
length preceded with a 4 byte integer and the length does not include the length value. The first value after the length
preceding value is the version number of the wire protocol represented as a byte. These two items precede all messages.

The login message is the first message the client library sends to the VoltDB server and it is required even if authenti-
cation is disabled in the server's configuration. The login message consists of a service name string, a username string
and a 256-bit SHA-256 hash of the password. The response from the server consists of a response byte. A value of 0
indicates successful authentication and all other values indicate failure. If authentication fails the server will close the
connection. The client can safely send invocations before receiving an authentication response.

The procedure invocation request contains the procedure to be called by name, and the serialized parameters to the
procedure. The message also includes an opaque 8 byte client data value which will be returned with the response, and
can be used by the client to correlate requests with responses.

The returned response contains

• a byte status code,

• an integer measuring intra-cluster latency,

• a serialized exception if an error occurred and the exception was serializable,

• an array of VoltTables, which may be of length 0, and is never null,

• a string value containing any extra information the server included, and

• the 8 byte client data value contained in the originating procedure invocation.

The following sections describe how values are serialized. The wire protocol is still under development and will be
adapted to support new authentication methods and new data types as necessary.

Basic Data Types
Binary fields do not have a wire type associated with them but they are present in certain messages. Binary fields,
such as opaque client data or hashes, do not have any byte order, sign, or size other then what is specified in the
message format.

VoltDB Client Wire Protocol

2

Integer Types:
All integer types are signed, twos-compliment and in network byte order.

• Byte - 1 Byte

• Short - 2 Bytes

• Integer - 4 Bytes

• Long - 8 Bytes

Floating Point Type
Only 8-Byte Double floating point values are supported using the byte representation in IEEE 754 "double format."
Positive and negative infinity, as well as NaN, are supported on the wire, but not guaranteed to work as SQL values.

String Type
Strings begin with a 4-byte integer storing the number of bytes of character data, followed by the character data. UTF-8
is the only supported character encoding. The NULL string has a length preceded value of -1 (negative one) followed
by 0 (zero) bytes of string data. The empty string is represented with a length preceding value of 0.

A String encoded into a parameter set has to be deserialized as a Java String before being passed to a stored procedure
and this is a relatively slow operation. If the stored procedure does not need the Java String representation it can specify
a byte array as its argument instead of String. The String should then be presented in the parameter set as a byte array
(not preceded with the String wire type).

If an array of bytes is passed as a parameter to a SQL statement in a stored procedure, and that parameter expects a
string, it will automatically be converted to a string on the native side without any Java deserialization. SQL statements
do not support array parameters so this is not ambiguous. In the current implementation this can have significantly
better performance, especially with large parameter sets with many strings.

The following table presents the byte by byte serialization of the string "foo".

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 0

02 0

03 3

String Length 3 String is 3 bytes long

04 102 f

05 111 o

06 111

Characters

o

String data is "foo"

Varbinary Type
Varbinary is a effectively a binary string, using the same serialization and storage.

Like strings, varbinary begin with a 4-byte integer storing the number of bytes of raw data, followed by the raw data
itself. The NULL varbinary has a length preceded value of -1 (negative one) followed by 0 (zero) bytes of data. The
value of zero bytes is represented with a length preceding value of 0.

VoltDB Client Wire Protocol

3

The native java type for varbinary is byte[]. Stored procedures and SQL statements will accept byte[] as input for
varbinary parameters. For compatibility with textual SQL and less binary-friendly clients, varbinary parameters may
also be passed as hexadecimal strings using standard string serialization and the string type code indicator. For example,
the string "aa" would represent a single byte of value 170. The hex-encoding is case-insensitive and will fail on invalid
input, such as odd-length strings. The string prefix, "0x", is not used and will cause exceptions in VoltDB code.

Geography Point Value

It should be noted that, although a description of the GeographyPointValue structure is being provided here for com-
pleteness, in most cases the client interface does not need to interpret the structure. Generally the client passes the
point representation unchanged between the server and the client application.

A GeographyPointValue represents a point on the surface of the earth. These points are represented by a <longitude,
latitude> pair. GeographyPointValues have fixed size, so they are not preceded by their length.

A GeographyPointValue's wire protocol representation is simply two double precision numbers in sequence. The first
is the longitude, and must be in the range -180 ≤ longitude ≤ 180. The second is the latitude, and must be in the range
-90 ≤ latitude ≤ 90. The null GeographyPoint value has longitude and latitude both equal to 360.0.

Geography Point Example

The following table represents the coordinates of Santa Cruz, CA.

Byte Offset Field Length Field Value Field Description Meaning

0 8 -122.0264 Longitude Longitude is
122.0266W

8 8 36.90719 Latitude Latitude is 36.90719N

Geography Value

It should be noted that, although a description of the GeographyValue structure is being provided here for complete-
ness, in most cases the client interface does not need to interpret the structure. Generally the client passes the Geogra-
phyValue representation unchanged between the server and the client application.

A GeographyValue data item represents a region of the earth. In version 6.0 we only support polygons, with and without
holes. In the future we may support other kinds of geography values. The wire protocol data format for polygons
is not identical to the Java representation. There are coordinate transformations and ring transformations, which we
detail now.

Execution Engine Geography Value Coordinate and Ring
Transformations

The wire protocol representation is similar to the S2 representation which is used in the Execution Engine. This format
is different from the Java longitude/latitude format, so some explanation is in order. In Java a point is represented by
a longitude and latitude. In the wire protocol a point is represented by a three dimensional point on the unit sphere.
These three dimensional points are called XYZPoints. Each dimension is a double precision IEEE floating point
number. The Euclidean length of each XYZPoint must be 1.0. The formula to convert a longitude/latitude pair to
XYZPoint is given by the following pseudo-code. Let longitude and latitude be double precision floating
point numbers measured in degrees.

VoltDB Client Wire Protocol

4

double radiansPerDegree = (Math.PI/180.0); // A conversion factor.
double latRadians = latitude * radiansPerDegree; // latitude is in degrees.
double lngRadians = longitude * radiansPerDegree; // longitude is in degrees.
double cosPhi = Math.cos(latRadians);
double x = Math.cos(lngRadians) * cosPhi;
double y = Math.cos(lngRadians) * cosPhi;
double z = Math.sin(latRadians);

The three dimensional coordinates of the XYZPoint are x, y and z above. To convert from XYZPoint to longi-
tude/latitude pairs use the formula from this pseudocode. Let x, y and z be the coordinates of an XYZPoint.

double degreesPerRadian = (180.0/Math.PI);
double lngRadians = Math.atan2(y, x);
double latRadians = Math.atan2(z, Math.sqrt(x * x + y * y)
double longitude = lngRadians * degreesPerRadian;
double latRadians = latRadians * degreesPerRadian;

The longitude and latitude are given by the variables longitude and latitude above.

In addition to coordinate transformations, the rings which comprise the polygons are transformed. In the Java repre-
sentation the first ring is the exterior boundary, must be counter clockwise and must start and end with the same point.
Subsequent rings are holes, must be clockwise and must start and end with the same point. In the wire protocol the
first ring is still the exterior boundary and subsequent rings are holes. However, in the wire protocol all rings, exterior
and hole alike, must be counter clockwise, and the last point should not be equal to the first point. To transform a ring
from Java representation to wire protocol representation one must:

• Remove the last vertex, which is the same as the first vertex,

• Transform the coordinates to XYZPoint values, and

• Reverse the order of the rings from the second to the end.

It's best to reverse the rings by reversing the points from the second to the last. This leaves the first point invariant.

Transforming from the wire protocol value to Java values requires reversing the three steps above.

Geography Value Wire Representation

Like strings, GeographyValue begins with a 4-byte integer storing the number of bytes of raw data, followed by the
raw data itself. The NULL GeographyValue has a length of -1 followed by 0 (zero) bytes of data. Unlike strings, there
are no zero byte GeographyValue data values.

The raw data has a particular format. Some of this format is taken from the S2 format, to avoid copying. Consequently
some of the fields will be filled in by the Execution Engine, but are represented in the protocol. These fields need to be
given initial values if a polygon is created by an application, but their values should be maintained if the application
is reading a polygon from the server. We use the phase initially K but maintained on read for such values when their
initial value is K.

1. The first byte, byte 0, is an encoding version, which tells whether certain fields need to be initialized by the Execution
Engine. This is initially zero (0) and should be maintained on read.

2. The next byte, byte 1, is internal. It should be initially 1, and should be maintained on read.

3. The next byte, byte 2, is 1 if the polygon has holes and 0 if it does not.

VoltDB Client Wire Protocol

5

4. The next four bytes, bytes 3, 4, 5 and 6, comprise a 32 bit integer which gives the number of rings. Call this value
`NRINGS`

5. Next follows NRINGS ring representations. Each ring representation is variable sized, and is described below.

a. The first byte of a ring tells if the ring is initialized. It is initially zero (0) and should be maintained on read.

b. The next 4 bytes are a 32-bit integer containing the number of vertices in the ring. Call this number `NVERTS`.

c. The next `NVERTS*3*8` bytes are `NVERTS` triples of double precision floating point numbers, in the order
`X`, `Y` and `Z`.

d. The next 38 bytes contain a bounding box and some internal fields. They should all be initially zero (0) and
should be maintained on read.

6. The next 33 bytes, after all the vertices, should be initially zero (0) and should be maintained on read.

Geography Value Wire Protocol Example

Table WirePoly below is an example of the the initial representation of the polygon 'polygon((0 0, 1 0, 1 1, 0 1, 0 0),
((0.1 0.1, 0.1 0.9, 0.9 0.9, 0.9 0.1, 0.1 0.1))'. This is a polygon with one somewhat large hole in the center. Some fields
will be given values by the Execution Engine, so they are given their initial values here.

There are 8 interesting points in this polygon. We show their XYZPoint coordinates here for reference.

`XYZPoint` values for points in Table WirePoly.

Longitude Latitude x y z

0.000000 0.000000 1.000000 0.000000 0.000000

1.000000 0.000000 0.999848 0.017452 0.000000

1.000000 1.000000 0.999695 0.017450 0.017452

0.000000 1.000000 0.999848 0.000000 0.017452

0.100000 0.100000 0.999997 0.001745 0.001745

0.100000 0.900000 0.999875 0.001745 0.015707

0.900000 0.900000 0.999753 0.015705 0.015707

0.900000 0.100000 0.999875 0.015707 0.001745

This is the initial representation of the polygon given in well known text above. Note that the second ring has been
reversed.

Table WirePoly: Representation of a polygon.

Byte Offset Length in Bytes Value Data Type Meaning

0 1 byte 0 IsValid. Initially zero
(0)

1 1 byte 1 Internal. Initially zero
(0)

2 1 byte 1 Polygon has holes.

3 4 32 bit int 2 Number of Rings

VoltDB Client Wire Protocol

6

Byte Offset Length in Bytes Value Data Type Meaning

Vertices follow here.

Ring 1

7 1 byte 0 Is initialized. Initially
zero (0)

8 4 32 bit int 4 Number Vertices in
ring 1

12 8 double 1.000000 X Coordinate for ring
1, vertex 1

20 8 double 0.000000 Y Coordinate for ring
1, vertex 1

28 8 double 0.000000 Z Coordinate for ring
1, vertex 1

36 8 double 0.999848 X Coordinate for ring
1, vertex 2

44 8 double 0.017452 Y Coordinate for ring
1, vertex 2

52 8 double 0.000000 Z Coordinate for ring
1, vertex 2

60 8 double 0.999695 X Coordinate for ring
1, vertex 3

68 8 double 0.017450 Y Coordinate for ring
1, vertex 3

76 8 double 0.017452 Z Coordinate for ring
1, vertex 3

84 8 double 0.999848 X Coordinate for ring
1, vertex 4

92 8 double 0.000000 Y Coordinate for ring
1, vertex 4

100 8 double 0.017452 Z Coordinate for ring
1, vertex 4

108 38 0 blob of zeros Internal plus the
bounding box of the
ring. Initially zero (0).

Ring 2

146 1 byte 0 Is initialized. Initially
zero (0)

147 4 32 bit int 4 Number Vertices in
ring 2

151 8 double 0.999997 X Coordinate for ring
2, vertex 1

159 8 double 0.001745 Y Coordinate for ring
2, vertex 1

167 8 double 0.001745 Z Coordinate for ring
2, vertex 1

VoltDB Client Wire Protocol

7

Byte Offset Length in Bytes Value Data Type Meaning

175 8 double 0.999875 X Coordinate for ring
2, vertex 2

183 8 double 0.015707 Y Coordinate for ring
2, vertex 2

191 8 double 0.001745 Z Coordinate for ring
2, vertex 2

199 8 double 0.999753 X Coordinate for ring
2, vertex 3

207 8 double 0.015705 Y Coordinate for ring
2, vertex 3

215 8 double 0.015707 Z Coordinate for ring
2, vertex 3

223 8 double 0.999875 X Coordinate for ring
2, vertex 4

231 8 double 0.001745 Y Coordinate for ring
2, vertex 4

239 8 double 0.015707 Z Coordinate for ring
2, vertex 4

247 38 0 blob of zeros Internal plus the
bounding box of the
ring. Initially zero (0).

285 33 0 blob of zeros Internal fields plus the
bounding box of the
polygon. Initially ze-
ro(0).

Date Type
All dates are represented on the wire as Long values. This signed number represents the number of microseconds
before or after Jan. 1 1970 00:00:00 GMT, the Unix epoch. Note that the units are microseconds, not milliseconds.

Decimal Type
VoltDB implements a fixed precision and scale DECIMAL(38,12) type. This type is serialized as a 128 bit signed
twos complement integer representing the un-scaled decimal value. The integer must be in network byte order. Null
is serialized as the smallest representable value which is "-170141183460469231731687303715884105728." Seri-
alizing values (Null excluded) that are greater than "99999999999999999999999999999999999999" or less than
"-99999999999999999999999999999999999999" will result in an error response.

Note that the serialization is given above in terms of a 128 bit integer. Since the logical value repre-
sented is actually scaled by 12 decimal places, the logical maximum value, minimum value and null val-
ues are "99999999999999999999999999.999999999999", "-99999999999999999999999999.999999999999" and
"-170141183460469231731687303.715884105728" respectively.

The following table presents the byte by byte serialization of the number "-23325.23425"

Byte Offset Byte Value (dec)

00 -1

VoltDB Client Wire Protocol

8

Byte Offset Byte Value (dec)

01 -1

02 -1

03 -1

04 -1

05 -1

06 -1

07 -1

08 -1

09 -83

10 33

11 -46

12 -78

13 57

14 -39

15 -128

Application Specific Data Types

Wire Type Info

A Byte value specifying the type of a serialized value on the wire.

• ARRAY = -99

• NULL = 1

• TINYINT = 3

• SMALLINT = 4

• INTEGER = 5

• BIGINT = 6

• FLOAT = 8

• STRING = 9

• TIMESTAMP = 11

• DECIMAL = 22

• VARBINARY = 25

• GEOGRAPHY_POINT = 26

• GEOGRAPHY = 27

VoltDB Client Wire Protocol

9

Procedure Call Status Code

A Byte value specifying the success or failure of a remote stored procedure call.

• SUCCESS = 1

• USER_ABORT = -1

• GRACEFUL_FAILURE = -2

• UNEXPECTED_FAILURE = -3

• CONNECTION_LOST = -4

Compound Data Types

Array Types

Arrays are represented as Byte value indicating the wire type of the elements and a 2 byte Short value indicating
the number of elements in the array, followed by the specified number of elements. The length preceding value for
the TINYINT (byte) type is length preceded by a 4 byte integer instead of a 2 byte short. This important exception
allows large quantities of binary or string data to be passed as a byte array, and allows the serialization of and array of
TINYINTs (bytes) to match the serialization of VARBINARY. Each array is serialized according to its type (Strings
as Strings, VoltTables as VoltTables, Integers as Integers). Arrays are only present as parameters in parameter sets.
Note that it is possible to pass an array of arrays of bytes if they are serialized as an array of VARBINARY types.

• Size is limited to 32,767 values due to the signed short length with the exception of TINYINT (byte) arrays which
use a 4 byte integer length.

• All values must be homogeneous with respect to type.

The following example serialization shows an array with two String elements ("foo1", "foo2").

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 9 Element Type 9 Array Elements are
Strings

01 0

02 2

Element Count 2 Array contains two el-
ements

03 0

04 0

05 0

06 4

String Length 4 String is 4 bytes long

07 102 f

08 111 o

09 111 o

10 49

Characters

1

String data is "foo1"

11 0

12 0

String Length 4 String is 4 bytes long

VoltDB Client Wire Protocol

10

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

13 0

14 4

15 102 f

16 111 o

17 111 o

18 50

Characters

2

String data is "foo2"

Complex API Data Types

VoltTable

On the wire a VoltTable is serialized as a header followed by tuple data. VoltTables, like all VoltDB serialized struc-
tures are stored in network byte order.

(Note: In the following description, the term "sequence" means a sequence of objects of the specified
type, not a VoltDB array object as described in the previous section. Because the number of columns
is fixed and is already part of the VoltTable descriptor, we know how many objects are in each
sequence and a full array descriptor is not needed.)

It should also be noted that although a description of the VoltTable structure is being provided here for completeness,
in most cases the client interface does not need to interpret the structure, but rather passes it unchanged between the
server and the client application.

Name Type Length (bytes) [Basic | Compound | Com-
plex]

Total table length Integer 4 Basic

Table Metadata Length Integer 4 Basic

Status Code Byte 1 Basic

Column Count Short 2 Basic

Column Types Sequence of Bytes variable Compound

Column Names Sequence of Strings variable Compound

Row Count Integer 4 Basic

Row Data...

Notes on the Header Format:

• The "Table Metadata Length" stores the length in bytes of the contents of the table from byte 8 (the end of the
metadata length field) all the way to the end of the "Column Names" sequence. NOTE: It does not include the row
count value. See below for an example.

• The size of the "Column Types" and "Column Names" sequences is expected to equal the value stored in "Column
Count".

• Column names are limited to the ASCII character set. Strings in row values are still UTF-8 encoded.

• Values with 4-byte (integer) length fields are signed and are limited to a max of 1 megabyte.

VoltDB Client Wire Protocol

11

Row Data Format:
Each row is preceded by a 4 byte integer that holds the length of the row not including the length. For example, if
a row is a single 4-byte integer column, the value of this length prefix will be 4. Row size is artificially restricted
to 2 megabytes.

The body of the row is packed array of values. The value at index i is is of type specified by the column type field for
index i. The values are serialized according to the serialization rules in "Basic Data Types" above.

Name Type Length (bytes) [Basic | Compound | Com-
plex]

Row Length Integer 4 Basic

Single Row Value Array

Example VoltTable Serialization:
The following is a 35-byte long serialized table containing one column named "Test" of type BIGINT with one row
containing the number 5.

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 0

02 0

03 31

Total Table Length 31 Table size is 31 bytes

04 0

05 0

06 0

07 12

Table Metadata
Length

12 Header size is 12 bytes

08 0 Status Code 0 Status code is 0

09 0

10 1

Column Count 1 Table contains 1 col-
umn

11 6 Column 1 Type VoltType.BIGINT Column 1 is a BigInt

12 0

13 0

14 0

15 4

Col 1 Name Length 4 The name of column 1
has 4 chars (ASCII)

16 84 T

17 101 e

18 115 s

19 116

Column 1 Name Val-
ue

t

Column 1 is named
"Test"

20 0

21 0

22 0

23 1

Row Count 1 Table has 1 row

VoltDB Client Wire Protocol

12

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

24 0

25 0

26 0

27 8

Row 1 Length 8 First row is 8 bytes
long

28 0

29 0

30 0

31 0

32 0

33 0

34 0

35 5

Row 1 Col 1 Value 5 Value in first row/first
col is 5

Serializable exceptions
Currently serializable exceptions are not a part of the wire protocol although they are present in the invocation response
message. The length of every serialized exception as a 4 byte integer is part of the invocation response message. It
can be used to skip the exception. It is possible to retrieve the Byte ordinal that follows the exception's length. The
ordinal will not be present if the exception's length is 0.

Exception Ordinal Name Exception Ordinal Value Description

EEException 1 This is a generic failure in Volt.
Should indicate a failure in the serv-
er and not the application code. These
should not occur in normal operation.

SQLException 2 This is the base class for all excep-
tions that can occur during normal op-
eration. This includes things like con-
straint failures (unique, string length,
not null) that are caught and handled
correct by Volt.

ConstraintFailureException 3 This is a specialization of SQLExcep-
tion for constraint failures during the
execution of a stored procedure.

In the future a set of serializable exceptions and their serialization format will be added to the wire protocol.

Parameter Set
A parameter set contains all the parameters to be passed to a stored procedure and it is one of the structures bundled
inside a stored procedure invocation request. The first value of a parameter set is a Short indicating the number of
parameters that follow. The following values are a series of <wire type, value> pairs. Each value is preceded by its
wire type represented as a Byte. NULL is a valid wire type and value and it is not followed by any additional value.
Arrays are preceded by the wire type -99 and the array value contains the type of the array elements as well as the
number of elements (see Array type). A parameter set cannot contain a nested parameter set (there is no wire type
for parameter set).

VoltDB Client Wire Protocol

13

Note that varbinary values using type number 25 and arrays of bytes using type number -99, followed by type 3 are
effectively interchangeable.

Parameter set
Name Type Length (bytes) [Basic | Compound | Com-

plex]

Parameter count Short 2 Basic

Parameters...

Parameter
Name Type Length (bytes) [Basic | Compound | Com-

plex]

Parameter type Byte 1 Basic

Parameter Any Basic | Compound |
Complex excluding parame-
ter sets

variable Basic | Compound | Com-
plex

The following example parameter set serialization shows a parameter set consisting of an array of two strings ("foo1,
"foo2") and a decimal.

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 2

Parameter Count 2 Parameter set contains
two parameters

02 -99 Parameter Type -99 Next parameter is an
array

03 9 Element Type 9 Array Elements are
Strings

04 0

05 2

Element Count 2 Array contains two el-
ements

06 0

07 0

08 0

09 4

String Length 4 String is 4 bytes long

10 102 f

11 111 o

12 111 o

13 49

Characters

1

String data is "foo1"

14 0

15 0

16 0

17 4

String Length 4 String is 4 bytes long

18 102 f

19 111

Characters

o

String data is "foo2"

VoltDB Client Wire Protocol

14

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

20 111 o

21 50 2

22 22 Parameter Type 22 Next parameter is a
decimal

23 -1

24 -1

25 -1

26 -1

27 -1

28 -1

29 -1

30 -1

31 -1

32 -83

33 33

34 -46

35 -78

36 57

37 -39

38 -128

Decimal data -23325.23425 Decimal value
"-23325.23425"

Message formats

Message header
The header that is included at the beginning of all messages. The length value includes the protocol version byte but
not the 4 byte length value.

Name Type Length (bytes) [Basic | Compound | Com-
plex]

Message length Integer 4 Basic

Protocol version Byte 1 Basic

The following table shows and example header for a 140,000 byte message.

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 2

02 34

03 -32

Message Length 140000 The message is
140,000 bytes long

04 0 Protocol version 1 This messages is a
Volt Wire Protocol
version 1 message

VoltDB Client Wire Protocol

15

Login message
The login message is the first message a client can send to a server after opening a connection. A client does not need
to wait for a response to the login message to begin sending invocation requests. The login message identifies a service
to authenticate to. There are currently two supported services: the "database" service authenticates stored procedure
callers; the "export" service authenticates export connector callers. Export connectors are extensible and future plugin
connectors may handle other service string values.

Name Type Length (bytes) [Basic | Compound | Com-
plex]

Message Header

Password hash version Byte 0 or 1 Basic

Service String variable Basic

Username String variable Basic

SHA-1 or SHA-2 password
hash

Binary 20 or 32 Basic

The size and type of the password hash depends on the hash version number. If the version is 0, the hash is a 20-byte
SHA-1 hash. If the version number is 1, the hash is a 32-byte SHA-256 hash.

The following table shows an example login message for username "scooby" password "doo" using the recommended
SHA-256 hashing.

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 0

02 0

03 81

Message Length 81 The message is 80
bytes long

04 0 Protocol version 1 This messages is a
Volt Wire Protocol
version 1 message

05 1 Password Hash ver-
sion

1 The password is be-
ing sent as a SHA-256
hash

06 0

07 0

08 0

09 8

Service length 8 Service string is 8
bytes long

10 100 d

11 97 a

12 116 t

13 97 a

14 98 b

15 97 a

16 115 s

17 101

Characters

e

Service string is "data-
base"

VoltDB Client Wire Protocol

16

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

18 0

19 0

20 0

21 6

Username length 6 Username is 6 bytes
long

22 115 s

23 99 c

24 111 o

25 111 o

26 98 b

27 121

Characters

y

Username is "scooby"

28 119

29 -116

30 85

31 62

32 -6

33 0

34 -45

35 -60

36 36

37 14

38 109

39 -96

40 79

41 82

42 90

43 60

44 -123

45 -24

46 35

47 38

48 12

49 126

50 -59

51 -98

52 -86

53 -76

54 -118

55 64

SHA-256 Hash SHA-256("doo") Password has is
SHA-256("doo")

VoltDB Client Wire Protocol

17

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

56 -84

57 -23

58 110

59 3

Login response
A response is generated to a login request and success is indicated with a result code of 0. Any other value indicates
authentication failure and will be followed by the server closing the connection. A response code of 1 indicates that
the there are too many connections. A response code of 2 indicates that authentication failed because the client took
too long to transmit credentials. A response code of 3 indicates a corrupt or invalid login message. If the response code
is 0 the response will also contain additional information following the result code. A 4 byte integer specifying the
host id of the Volt node . An 8 byte long specifying a connection id that is unique among connections to that node.
An 8 byte long timestamp (milliseconds since Unix epoch) and a 4 byte IPV4 address representing the time the cluster
was started and the address of the leader node. These two values uniquely identify a Volt cluster instance. And finally
a string containing a textual description of the build the node being connected to is running.

Name Type Length (bytes) [Basic | Compound | Com-
plex]

Message Header

Authentication result code Byte 1 Basic

Server Host ID Integer 4 Basic

Connection ID Long 8 Basic

Cluster start timestamp
(milliseconds since Unix
epoch)

Long 8 Basic

Leader IPV4 address Integer 4 Basic

Build string String variable Basic

The following table shows a login response indicating success

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 0

02 0

03 82

Message Length 82 The message is 82
bytes long

04 0 Protocol version 0 This messages is a
Volt Wire Protocol
version 0 message

05 0 Result code 0 Authentication suc-
ceded

06 0

07 0

08 0

09 0

Server Host ID 0 The Host ID of the
server is 0

VoltDB Client Wire Protocol

18

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

10 0

11 0

12 0

13 0

14 0

15 0

16 0

17 12

Connection ID 12 The ID of the connec-
tion is 12

18 0

19 0

20 0

21 0

22 0

23 0

24 0

25 105

Cluster start time-
stamp

105 The cluster was start-
ed 105 milliseconds
after the Unix epoch

26 192

27 168

28 0

29 1

Leader IPV4 address 192.168.0.1 The IPV4 address of
the leader that start-
ed the cluster was
192.168.0.1

30 0

31 0

32 0

33 52

Build string length 52 The length of the build
string is 52

34 48 ("0")

35 46 (".")

36 55 ("7")

37 46 (".")

38 48 ("0")

39 49 ("1")

40 32 (" ")

41 104 ("h"

42 116 ("t")

43 116 ("t")

44 112 ("p")

45 115 ("s")

46 58 (":")

47 47 ("/")

Build string 0.7.01 https://
svn.voltdb.com/eng/
trunk?revision=443

Build is version 0.7.01
off the trunk revision
443/td>

VoltDB Client Wire Protocol

19

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

48 47 ("/")

49 115 ("s")

50 118 ("v")

51 110 ("n")

52 46 (".")

53 118 ("v")

54 111 ("o")

55 108 ("l")

56 116 ("t")

57 100 ("d")

58 98 ("b")

59 46 (".")

60 99 ("c")

61 111 ("o")

62 109 ("m")

63 47 ("/")

64 101 ("e")

65 110 ("n")

66 103 ("g")

67 47 ("/")

68 116 ("t")

69 114 ("r")

70 117 ("u")

71 110 ("n")

72 107 ("k")

73 63 ("?")

74 114 ("r")

75 101 ("e")

76 118 ("v")

77 105 ("i")

78 115 ("s")

79 105 ("i")

80 111 ("o")

81 110 ("n")

82 61 ("=")

83 52 ("4")

84 52 ("4")

85 51 ("3")

VoltDB Client Wire Protocol

20

Invocation request
A request to invoke a stored procedure identifies the procedure to invoke by name, the parameters to pass to the
procedure, and an 8 byte piece of client data that will be returned with the response to the invocation request. A client
does not need to wait for a response to a request to continue sending requests. The server will use TCP backpressure
to avoid running out of memory when a client sends too many invocations for the server to handle.

Name Type Length (bytes) [Basic | Compound | Com-
plex]

Message Header

Procedure name String variable Basic

Client data Binary 8 Basic

Parameters Parameter Set variable Complex

The following table shows the serialization for invoking a procedure called "proc" with a parameter set containing an
array of two strings ("foo1", "foo2") and a decimal value "-23325.23425"

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 0

02 0

03 56

Message Length 56 The message is 56
bytes long

04 0 Protocol version 0 This messages is a
Volt Wire Protocol
version 0 message

05 0

06 0

07 0

08 4

Procedure name
length

4 Procedure name is 4
bytes long

09 112 p

10 114 r

11 111 o

12 99

Characters

c

Stored procedure
name is "proc"

13 0

14 1

15 2

16 3

17 4

18 5

19 6

20 7

Client Data Opaque client data

21 0

22 2

Parameter Count 2 Parameter set contains
two parameters

VoltDB Client Wire Protocol

21

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

23 -99 Parameter Type -99 Next parameter is an
array

24 9 Element Type 9 Array Elements are
Strings

25 0

26 2

Element Count 2 Array contains two el-
ements

27 0

28 0

29 0

30 4

String Length 4 String is 4 bytes long

31 102 f

32 111 o

33 111 o

34 49

Characters

1

String data is "foo1"

35 0

36 0

37 0

38 4

String Length 4 String is 4 bytes long

39 102 f

40 111 o

41 111 o

42 50

Characters

2

String data is "foo2"

43 22 Parameter Type 22 Next parameter is a
decimal

44 -1

45 -1

46 -1

47 -1

48 -1

49 -1

50 -1

51 -1

52 -1

53 -83

54 33

55 -46

56 -78

57 57

58 -39

Decimal data -23325.23425 Decimal value
"-23325.23425"

VoltDB Client Wire Protocol

22

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

59 -128

Invocation response
An invocation response contains the results of the server's attempt to execute the stored procedure. The response
includes optional fields and the first byte after the header is used to indicate which optional fields are present. The
status string, application status string, and serializable exception are all optional fields. Bit 7 indicates the presence of
a serializable exception, bit 6 indicates the presence of a status string, and bit 8 indicates the presence of an app status
string. The serializable exception that can be included in some responses is currently not a part of the wire protocol.
The exception length value should be used to skip exceptions if they are present. The status string is used to return any
human readable information the server or stored procedure wants to return with the response. The app status code and
app status string can be set by application code from within stored procedures and is returned with the response.

Name Type Length (bytes) [Basic | Compound | Com-
plex]

Message Header

Client data Binary 8 Basic

Fields present Byte (bit field) 1 Basic

Status Byte 1 Basic

Status string String (optional field) variable Basic

Application Status Byte 1 Basic

Application Status string String (optional field) variable Basic

Cluster Round Trip Time Integer 4 Basic

Serialized exception length Integer (optional field) 4 Basic

Serialized exception Serializable exception (op-
tional field)

variable Complex

Result count Short 2 Basic

Result tables Series of VoltTables variable Compound (containing
Complex)

The following table shows a response to a previous invocation. For demonstrational purposes two tables are returned,
but in a real failure case there would be no tables returned.

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

00 0

01 0

02 0

03 109

Message Length 109 The message is 109
bytes long

04 0 Protocol version 0 This messages is a
Volt Wire Protocol
version 0 message

05 0

06 1

07 2

08 3

Client Data Opaque client data

VoltDB Client Wire Protocol

23

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

09 4

10 5

11 6

12 7

13 -32 Fields present -32 The optional sta-
tus string, app sta-
tus string, and serial-
izable exception fields
are present

14 2 Status code 2 Status code is graceful
failure (2)

15 0

16 0

17 0

18 4

Status String length 4 Status string length is
4

19 102 f

20 97 a

21 105 i

22 108

Status String

l

The status string was
"fail"

23 99 Application status
code

99 Application status
code is 99

24 0

25 0

26 0

27 4

Application status
string length

4 Application status
string length is 4

28 118 v

29 111 o

30 108 l

31 116

Application status
string

t

The application status
string was "volt"

32 0

33 0

34 0

35 1

Cluster Round Trip
Time

1 Milliseconds from in-
vocation receipt to re-
sponse on the cluster

36 0

37 0

38 0

39 5

Serialized Exception
length

5 Serialized exception is
5 bytes long

40 1 Exception ordinal 1 Exception is a SQL
exception

41 0 Exception body Opaque Opaque

VoltDB Client Wire Protocol

24

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

42 0

43 0

44 0

45 0

46 2

Result table count 2 Two result tables fol-
low

47 0

48 0

49 0

50 32

Total Table Length 32 Table size is 32 bytes

51 0

52 0

53 0

54 12

Table Metadata
Length

12 Header size is 12 bytes

55 0 Status Code 0 Status code is 0

56 0

57 1

Column Count 1 Table contains 1 col-
umn

58 6 Column 1 Type VoltType.BIGINT Column 1 is a BigInt

59 0

60 0

61 0

62 4

Col 1 Name Length 4 The name of column 1
has 4 chars (ASCII)

63 84 T

64 101 e

65 115 s

66 116

Column 1 Name Val-
ue

t

Column 1 is named
"Test"

67 0

68 0

69 0

70 1

Row Count 1 Table has 1 row

71 0

72 0

73 0

74 8

Row 1 Length 8 First row is 8 bytes
long

75 0

76 0

77 0

78 0

79 0

Row 1 Col 1 Value 5 Value in first row/first
col 5

VoltDB Client Wire Protocol

25

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

80 0

81 0

82 5

83 0

84 0

85 0

86 32

Total Table Length 32 Table size is 32 bytes

87 0

88 0

89 0

90 12

Table Metadata
Length

12 Header size is 12 bytes

91 0 Status Code 0 Status code is 0

92 0

93 1

Column Count 1 Table contains 1 col-
umn

94 6 Column 1 Type VoltType.BIGINT Column 1 is a BigInt

95 0

96 0

97 0

98 4

Col 1 Name Length 4 The name of column 1
has 4 chars (ASCII)

99 84 T

100 101 e

101 115 s

102 116

Column 1 Name Val-
ue

t

Column 1 is named
"Test"

103 0

104 0

105 0

106 1

Row Count 1 Table has 1 row

107 0

108 0

109 0

110 8

Row 1 Length 8 First row is 8 bytes
long

111 0

112 0

113 0

114 0

115 0

116 0

117 0

Row 1 Col 1 Value 5 Value in first row/first
col 5

VoltDB Client Wire Protocol

26

Byte Offset Byte Value (dec) Field Desc Field Value Meaning

118 5

